1
|
Yi D, Wang M, Liu X, Qin L, Liu Y, Zhao L, Peng Y, Liang Z, He J. Rosmarinic Acid Attenuates Salmonella enteritidis-Induced Inflammation via Regulating TLR9/NF-κB Signaling Pathway and Intestinal Microbiota. Antioxidants (Basel) 2024; 13:1265. [PMID: 39456517 PMCID: PMC11504439 DOI: 10.3390/antiox13101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Salmonella enteritidis (SE) infection disrupts the homeostasis of the intestinal microbiota, causing an intestinal inflammatory response and posing a great threat to human and animal health. The unreasonable use of antibiotics has led to an increase in the prevalence of drug-resistant SE, increasing the difficulty of controlling SE. Therefore, new drug strategies and research are urgently needed to control SE. Rosmarinic acid (RA) is a natural phenolic acid with various pharmacological activities, including antioxidant, anti-inflammatory and antibacterial properties. However, the protective effects and mechanism of RA on intestinal inflammation and the gut microbial disorders caused by SE have not been fully elucidated. In this study, RAW264.7 cells, MCECs and BALB/c mice were challenged with SE to assess the protective effects and mechanisms of RA. The results showed that RA enhanced the phagocytic ability of RAW264.7 cells, reduced the invasion and adhesion ability of SE in MCECs, and inhibited SE-induced inflammation in cells. Moreover, RA inhibited the activation of the NF-κB signaling pathway by upregulating TLR9 expression. Importantly, we found that RA provided protection against SE and increased the diversity and abundance of the intestinal microbiota in mice. Compared with infection control, RA significantly increased the abundance of Firmicutes and Acidibacteria and decreased the abundance of Proteobacteria, Epsilonbacteraeota and Bacteroidota. However, RA failed to alleviate SE-induced inflammation and lost its regulatory effects on the TLR9/NF-κB signaling pathway after destroying the gut microbiota with broad-spectrum antibiotics. These results indicated that RA attenuated SE-induced inflammation by regulating the TLR9/NF-κB signaling pathway and maintaining the homeostasis of the gut microbiota. Our study provides a new strategy for preventing SE-induced intestinal inflammation.
Collapse
Affiliation(s)
- Dandan Yi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (D.Y.); (M.W.); (X.L.); (L.Q.); (Y.L.); (L.Z.); (Y.P.)
| | - Menghui Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (D.Y.); (M.W.); (X.L.); (L.Q.); (Y.L.); (L.Z.); (Y.P.)
| | - Xia Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (D.Y.); (M.W.); (X.L.); (L.Q.); (Y.L.); (L.Z.); (Y.P.)
| | - Lanqian Qin
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (D.Y.); (M.W.); (X.L.); (L.Q.); (Y.L.); (L.Z.); (Y.P.)
| | - Yu Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (D.Y.); (M.W.); (X.L.); (L.Q.); (Y.L.); (L.Z.); (Y.P.)
| | - Linyi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (D.Y.); (M.W.); (X.L.); (L.Q.); (Y.L.); (L.Z.); (Y.P.)
| | - Ying Peng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (D.Y.); (M.W.); (X.L.); (L.Q.); (Y.L.); (L.Z.); (Y.P.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (D.Y.); (M.W.); (X.L.); (L.Q.); (Y.L.); (L.Z.); (Y.P.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (D.Y.); (M.W.); (X.L.); (L.Q.); (Y.L.); (L.Z.); (Y.P.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
| |
Collapse
|
2
|
Yu F, Yang L, Zhang R, Hu F, Yuan Y, Wang Z, Yang W. Low levels of supercoiled mitochondrial DNA are involved in heart failure induced by transverse aortic constriction in mice via an inflammatory response mediated by ZBP1. Exp Cell Res 2024; 442:114187. [PMID: 39069152 DOI: 10.1016/j.yexcr.2024.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Inflammation in the myocardium plays a critical role in cardiac remodeling and the pathophysiology of heart failure (HF). Previous studies have shown that mitochondrial DNA (mtDNA) can exist in different topological forms. However, the specific influence of the ratio of supercoiled/relaxed mtDNA on the inflammatory response in cardiomyocytes remains poorly understood. The aim of this study was to elucidate the differential effects of different mtDNA types on cardiomyocyte inflammation through regulation of ZBP1. MATERIALS AND METHODS A mouse model of HF was established by transverse aortic constriction (TAC) or doxorubicin (Doxo) induction. Histopathological changes were assessed by HE staining. ELISA was used to measure cytokine levels (IL-1β and IL-6). Southern blot analysis was performed to examine the different topology of mtDNA. Pearson correlation analysis was used to determine the correlation between the ratio of supercoiled/relaxed mtDNA and inflammatory cytokines. Reverse transcription quantitative PCR (RT-qPCR) was used to measure the mRNA expression levels of cytokines (IL-1β, IL-6) and Dloop, as an mtDNA marker. RESULTS The ratio of supercoiled to relaxed mtDNA was significantly increased in the myocardium of Doxo-induced mice, whereas no significant changes were observed in TAC-induced mice. The levels of IL-1β and IL-6 were positively correlated with the cytoplasmic mtDNA supercoiled/relaxed circle ratio. Different mtDNA topology has different effects on inflammatory pathways. Low supercoiled mtDNA primarily activates the NF-κB (Ser536) pathway via ZBP1, whereas high supercoiled mtDNA significantly affects the STAT1 and STAT2 pathways. The RIPK3-NF-κB pathway, as a downstream target of ZBP1, mediates the inflammatory response induced by low supercoiled mtDNA. Knockdown of TLR9 enhances the expression of ZBP1, p-NF-κB, and RIPK3 in cardiomyocytes treated with low supercoiled mtDNA, indicating the involvement of TLR9 in the anti-inflammatory role of ZBP1 in low supercoiled mtDNA-induced inflammation. CONCLUSION Different ratios of supercoiled to relaxed mtDNA influence the inflammatory response of cardiomyocytes and contribute to HF through the involvement of ZBP1. ZBP1, together with its downstream inflammatory mechanisms, mediates the inflammatory response induced by a low ratio of supercoiled mtDNA.
Collapse
Affiliation(s)
- Fan Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lu Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Rongjie Zhang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yong Yuan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zixu Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
3
|
Hu L, Li L, Che H, Zhao B, Xiao LI, Liu P, Yi W, Liu S. Huanglian Decoction treats Henoch-Schonlein purpura nephritis by inhibiting NF-κB/NLRP3 signaling pathway and reducing renal IgA deposition. AN ACAD BRAS CIENC 2024; 96:e20220970. [PMID: 38597498 DOI: 10.1590/0001-3765202420220970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/05/2023] [Indexed: 04/11/2024] Open
Abstract
Henoch-Schonlein purpura nephritis (HSPN) is a systemic vascular inflammatory disease. Huanglian Decoction (HLD) ameliorates renal injury in nephritis; however, the mechanism of action of HLD on HSPN has not been investigated. This study aimed to investigate the protective mechanism of HLD treatment in HSPN. The effects of HLD on HSPN biochemical indices, kidney injury and NF-κB/NLRP3 signaling pathway were analyzed by biochemical analysis, ELISA, HE and PAS staining, immunohistochemistry, immunofluorescence, and Western Blot. In addition, the effects of HLD on HSPN cells were analyzed. We found that HLD treatment significantly reduced renal tissue damage, decreased the levels of IL-17, IL-18, TNF-α, and IL-1β, and increased the levels of TP and ALB in HSPN mice. It also inhibited the deposition of IgA, IgG, and C3 in kidney tissues and significantly decreased the expression of IκBα, p-IκBα, NLRP3, caspase-1, and IL-1β in kidney tissues and cells. In addition, PMA treatment inhibited the above-mentioned effects of HLD. These results suggested that HLD attenuates renal injury, IgA deposition, and inflammation in HSPN mice and its mechanism of action may be related to the inhibition of the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Lian Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Department of Hematology, Chengdu, 39, Twelve Bridges Road, Jinniu District, Chengdu, Sichuan Province, 610032, P. R. China
| | - Linlin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Department of Hematology, Chengdu, 39, Twelve Bridges Road, Jinniu District, Chengdu, Sichuan Province, 610032, P. R. China
| | - Hong Che
- Hospital of Chengdu University of Traditional Chinese Medicine, Department of Hematology, Chengdu, 39, Twelve Bridges Road, Jinniu District, Chengdu, Sichuan Province, 610032, P. R. China
| | - Bingjie Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Department of Hematology, Chengdu, 39, Twelve Bridges Road, Jinniu District, Chengdu, Sichuan Province, 610032, P. R. China
| | - L I Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Department of Hematology, Chengdu, 39, Twelve Bridges Road, Jinniu District, Chengdu, Sichuan Province, 610032, P. R. China
| | - Peijia Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Department of Hematology, Chengdu, 39, Twelve Bridges Road, Jinniu District, Chengdu, Sichuan Province, 610032, P. R. China
| | - Wenjing Yi
- Hospital of Chengdu University of Traditional Chinese Medicine, Department of Hematology, Chengdu, 39, Twelve Bridges Road, Jinniu District, Chengdu, Sichuan Province, 610032, P. R. China
| | - Songshan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Department of Hematology, Chengdu, 39, Twelve Bridges Road, Jinniu District, Chengdu, Sichuan Province, 610032, P. R. China
| |
Collapse
|
4
|
Liu Z, Du J, Wang Y, Song H, Lu L, Wu R, Jin C. The NLRP3 molecule is responsible for mediating the pyroptosis of intestinal mucosa cells and plays a crucial role in salmonellosis enteritis in chicks. Mol Immunol 2024; 168:47-50. [PMID: 38422886 DOI: 10.1016/j.molimm.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
Salmonella enteritis in poultry can result in reduced immune function, decreased growth rate, and increased mortality. Many farm salmonella strains have developed severe drug resistance and are less susceptible to multiple antibiotics. In the post-antibiotic era, it is of great significance to identify the mechanism of salmonella-induced enteritis in chicks to protect their health and ensure food safety. This article will elucidate the activation mechanism of NOD-like receptor protein 3 (NLRP3) inflammasomes in Salmonella enteritis and review the research on interventions targeting NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Zhe Liu
- College of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, Heilongjiang Province 163319, P.R. China
| | - Juan Du
- Department of Geriatrics, Zhuhai People's Hospital (Zhuhai Clinical Medical College of JinanUniversity), No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong Province 519000, China
| | - Yanhong Wang
- College of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, Heilongjiang Province 163319, P.R. China
| | - Haoyu Song
- Department of Geriatrics, Zhuhai People's Hospital (Zhuhai Clinical Medical College of JinanUniversity), No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong Province 519000, China
| | - Ligong Lu
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of JinanUniversity), No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong Province 519000, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, 163319, People's Republic of China
| | - Chenghao Jin
- College of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, Heilongjiang Province 163319, P.R. China; National Coarse Cereals Engineering Research Center, Daqing 163319, PR China; Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
5
|
Wang Y, Hu Y, Liu Y, Shi C, Yu L, Lu N, Zhang C. Liver-resident CD44 hiCD27 - γδT Cells Help to Protect Against Listeria monocytogenes Infection. Cell Mol Gastroenterol Hepatol 2023; 16:923-941. [PMID: 37611663 PMCID: PMC10616555 DOI: 10.1016/j.jcmgh.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND & AIMS Gamma delta (γδ) T cells are heterogeneous and functionally committed to producing interferon (IFN)-γ and interleukin (IL)-17. γδT cells are defined as tissue-resident lymphocytes in barrier tissues. Among them, IL-17-producing γδT cells are relatively abundant in the liver. However, a systematic and comprehensive understanding of the residency characteristics and function of hepatic IL-17A+ γδT cells is lacking. METHODS We undertook a single-cell analysis of γδT17 cells derived from murine livers. A parabiosis model was used to assess tissue residency. Fluorescence-activated cell sorting and adoptive transfer experiments were used to investigate the response and protective role of liver-resident CD44hiCD27- γδT cells in Listeria monocytogenes infection. Transwell assay was used to assess the role of macrophages in the chemotaxis of liver-resident CD44hiCD27- γδT cells. RESULTS We identified hepatic IL-17A-producing γδT cells as CD44hiCD27- γδT cells. They had tissue-resident characteristics and resided principally within the liver. Vγ6+ T cells also exhibited liver-resident features. Liver-resident CD44hiCD27- γδT cells had significantly increased proliferation capacity, and their proportion rapidly increased after infection. Some CD44hiCD27- γδT cells could produce IL-17A and IFN-γ simultaneously in response to Lm infection. Adoptive transfer of hepatic CD44hiCD27- γδT cells into Lm-infected TCRδ-/- mice led to markedly lower bacterial numbers in the liver. Hepatic macrophages promoted the migration and accumulation of liver-resident CD44hiCD27- γδT cells into infection sites. CONCLUSIONS Liver-resident CD44hiCD27- γδT cells protect against Lm infection. Hepatic macrophages coordinate with liver-resident CD44hiCD27- γδT cells and contribute to the clearance of Lm at the early stage of infection corporately.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chongdeng Shi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linyan Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
6
|
Wang D, Zheng Y, Fan Y, He Y, Liu K, Deng S, Liu Y. Sodium Humate-Derived Gut Microbiota Ameliorates Intestinal Dysfunction Induced by Salmonella Typhimurium in Mice. Microbiol Spectr 2023; 11:e0534822. [PMID: 37067423 PMCID: PMC10269575 DOI: 10.1128/spectrum.05348-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Salmonella is a foodborne pathogen that is one of the main causes of gastroenteric disease in humans and animals. As a natural organic substance, sodium humate (HNa) possesses antibacterial, antidiarrheal, and anti-inflammatory properties. However, it is unclear whether the HNa and HNa-derived microbiota exert alleviative effects on Salmonella enterica serovar Typhimurium-induced enteritis. We found that treatment with HNa disrupted the cell wall of S. Typhimurium and decreased the virulence gene expression. Next, we explored the effect of HNa presupplementation on S. Typhimurium-induced murine enteritis. The results revealed that HNa ameliorated intestinal pathological damage. In addition, we observed that presupplementation with HNa enhanced intestinal barrier function via modulating gut microbiota, downregulating toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) and NOD-like receptor protein 3 (NLRP3) signaling pathways, regulating intestinal mucosal immunity, and enhancing tight junction protein expression. To further validate the effect of HNa-derived microbiota on S. Typhimurium-induced enteritis, we performed fecal microbiota transplantation and found that HNa-derived microbiota also alleviated S. Typhimurium-induced intestinal damage. It is noteworthy that both HNa and HNa-derived microbiota improved the liver injury caused by S. Typhimurium infection. Collectively, this is the first study to confirm that HNa could alleviate S. Typhimurium-induced enteritis in a gut microbiota-dependent manner. This study provides a new perspective on HNa as a potential drug to prevent and treat salmonellosis. IMPORTANCE Salmonella Typhimurium is an important zoonotic pathogen, widely distributed in nature. S. Typhimurium is one of the leading causes of foodborne illnesses worldwide, and more than 350,000 people died from Salmonella infection each year, which poses a substantial risk to public health and causes a considerable economic loss. Here, we found that the S. Typhimurium infection caused severe intestinal and liver damage. In addition, we first found that sodium humate (HNa) and HNa-derived gut microbiota can alleviate S. Typhimurium infection-induced intestinal damage. These findings extend the knowledge about the public health risk and pathogenic mechanisms of S. Typhimurium.
Collapse
Affiliation(s)
- Dong Wang
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yingce Zheng
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuying Fan
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanjun He
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kexin Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shouxiang Deng
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yun Liu
- Heilongjiang Key Laboratory of Experimental Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
7
|
Zhang X, Liang Y, Jiang J, Lu C, Shi F, Cao Q, Zhang Y, Diao H. A High-Salt Diet Exacerbates Liver Fibrosis through Enterococcus-Dependent Macrophage Activation. Microbiol Spectr 2023; 11:e0340322. [PMID: 36786636 PMCID: PMC10100947 DOI: 10.1128/spectrum.03403-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/14/2023] [Indexed: 02/15/2023] Open
Abstract
People consume more salt than the recommended levels due to poor dietary practices. The effects of long-term consumption of high-salt diets (HSD) on liver fibrosis are unclear. This study aimed to explore the impact of HSD on liver fibrosis. In this study, a carbon tetrachloride (CCL4)-induced liver fibrosis mouse model was used to evaluate fibrotic changes in the livers of mice fed a normal diet (ND) and an HSD. The HSD exacerbated liver injury and fibrosis. Moreover, the protein expression levels of transforming growth factor β (TGF-β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein 1 (MCP-1) were significantly higher in the HSD group than in the normal group. The proportion of macrophages and activation significantly increased in the livers of HSD-fed mice. Meanwhile, the number of macrophages significantly increased in the small intestinal lamina propria of HSD-fed mice. The levels of profibrotic factors also increased in the small intestine of HSD-fed mice. Additionally, HSD increased the profibrotic chemokines and monocyte chemoattractant levels in the portal vein blood. Further characterization suggested that the HSD decreased the expression of tight junction proteins (ZO-1 and CLDN1), enhancing the translocation of bacteria. Enterococcus promoted liver injury and inflammation. In vitro experiments demonstrated that Enterococcus induced macrophage activation through the NF-κB pathway, thus promoting the expression of fibrosis-related genes, leading to liver fibrogenesis. Similarly, Enterococcus disrupted the gut microbiome in vivo and significantly increased the fibrotic markers, TGF-β, and alpha smooth muscle actin (α-SMA) expression in the liver. IMPORTANCE This study further confirms that Enterococcus induce liver fibrosis in mice. These results indicate that an HSD can exacerbate liver fibrosis by altering the gut microbiota composition, thus impairing intestinal barrier function. Therefore, this may serve as a new target for liver fibrosis therapy and gut microbiota management.
Collapse
Affiliation(s)
- Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Chong Lu
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua, Zhejiang, China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanhui Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Villafuerte Gálvez JA, Pollock NR, Alonso CD, Chen X, Xu H, Wang L, White N, Banz A, Miller M, Daugherty K, Gonzalez-Luna AJ, Barrett C, Sprague R, Garey KW, Kelly CP. Stool Interleukin-1β Differentiates Clostridioides difficile Infection (CDI) From Asymptomatic Carriage and Non-CDI Diarrhea. Clin Infect Dis 2023; 76:e1467-e1475. [PMID: 35906836 PMCID: PMC10169396 DOI: 10.1093/cid/ciac624] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Despite advances in the understanding and diagnosis of Clostridioides difficile infection (CDI), clinical distinction within the colonization-infection continuum remains an unmet need. METHODS By measuring stool cytokines and antitoxin antibodies in well-characterized cohorts of CDI (diarrhea, nucleic acid amplification test [NAAT] positive), non-CDI diarrhea (NCD; diarrhea, NAAT negative), asymptomatic carriers (ASC; no diarrhea, NAAT positive) and hospital controls (CON; no diarrhea, NAAT negative), we aim to discover novel biological markers to distinguish between these cohorts. We also explore the relationship of these stool cytokines and antitoxin antibody with stool toxin concentrations and disease severity. RESULTS Stool interleukin (IL) 1β, stool immunoglobulin A (IgA), and immunoglobulin G (IgG) anti-toxin A had higher (P < .0001) concentrations in CDI (n = 120) vs ASC (n = 43), whereas toxins A, B, and fecal calprotectin did not. Areas under the receiver operating characteristic curve (ROC-AUCs) for IL-1β, IgA, and IgG anti-toxin A were 0.88, 0.83, and 0.83, respectively. A multipredictor model including IL-1β and IgA anti-toxin A achieved an ROC-AUC of 0.93. Stool IL-1β concentrations were higher in CDI compared to NCD (n = 75) (P < .0001) and NCD + ASC+ CON (CON, n = 75) (P < .0001), with ROC-AUCs of 0.83 and 0.86, respectively. Stool IL-1β had positive correlations with toxins A (ρA = +0.55) and B (ρB = +0.49) in CDI (P < .0001) but not in ASC (P > .05). CONCLUSIONS Stool concentrations of the inflammasome pathway, proinflammatory cytokine IL-1β, can accurately differentiate CDI from asymptomatic carriage and NCD, making it a promising biomarker for CDI diagnosis. Significant positive correlations exist between stool toxins and stool IL-1β in CDI but not in asymptomatic carriers.
Collapse
Affiliation(s)
- Javier A Villafuerte Gálvez
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Nira R Pollock
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolyn D Alonso
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Hua Xu
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Lamei Wang
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole White
- Harvard Medical School, Boston, Massachusetts, USA.,Division of Infectious Disease, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | - Kaitlyn Daugherty
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Anne J Gonzalez-Luna
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Caitlin Barrett
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Sprague
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Ciaran P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Verstockt B, Verstockt S, Cremer J, Sabino J, Ferrante M, Vermeire S, Sudhakar P. Distinct transcriptional signatures in purified circulating immune cells drive heterogeneity in disease location in IBD. BMJ Open Gastroenterol 2023; 10:bmjgast-2022-001003. [PMID: 36746519 PMCID: PMC9906185 DOI: 10.1136/bmjgast-2022-001003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To infer potential mechanisms driving disease subtypes among patients with inflammatory bowel disease (IBD), we profiled the transcriptome of purified circulating monocytes and CD4 T-cells. DESIGN RNA extracted from purified monocytes and CD4 T-cells derived from the peripheral blood of 125 endoscopically active patients with IBD was sequenced using Illumina HiSeq 4000NGS. We used complementary supervised and unsupervised analytical methods to infer gene expression signatures associated with demographic/clinical features. Expression differences and specificity were validated by comparison with publicly available single cell datasets, tissue-specific expression and meta-analyses. Drug target information, druggability and adverse reaction records were used to prioritise disease subtype-specific therapeutic targets. RESULTS Unsupervised/supervised methods identified significant differences in the expression profiles of CD4 T-cells between patients with ileal Crohn's disease (CD) and ulcerative colitis (UC). Following a pathway-based classification (Area Under Receiver Operating Characteristic - AUROC=86%) between ileal-CD and UC patients, we identified MAPK and FOXO pathways to be downregulated in UC. Coexpression module/regulatory network analysis using systems-biology approaches revealed mediatory core transcription factors. We independently confirmed that a subset of the disease location-associated signature is characterised by T-cell-specific and location-specific expression. Integration of drug-target information resulted in the discovery of several new (BCL6, GPR183, TNFAIP3) and repurposable drug targets (TUBB2A, PRKCQ) for ileal CD as well as novel targets (NAPEPLD, SLC35A1) for UC. CONCLUSIONS Transcriptomic profiling of circulating CD4 T-cells in patients with IBD demonstrated marked molecular differences between the IBD-spectrum extremities (UC and predominantly ileal CD, sandwiching colonic CD), which could help in prioritising particular drug targets for IBD subtypes.
Collapse
Affiliation(s)
- Bram Verstockt
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Sare Verstockt
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| | - João Sabino
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Marc Ferrante
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Severine Vermeire
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Padhmanand Sudhakar
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Salmonella Typhimurium Infection Reduces the Ascorbic Acid Uptake in the Intestine. Mediators Inflamm 2023; 2023:2629262. [PMID: 36704315 PMCID: PMC9873446 DOI: 10.1155/2023/2629262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/19/2023] Open
Abstract
Salmonella Typhimurium infection of the gastrointestinal tract leads to damage that compromises the integrity of the intestinal epithelium and results in enterocolitis and inflammation. Salmonella infection promotes the expression of inflammasome NLRP3, leading to activation and release of proinflammatory cytokines such as IL-1β, and the infected host often displays altered nutrient levels. To date, the effect of Salmonella infection and proinflammatory cytokine IL-1β on the intestinal uptake of ascorbic acid (AA) is unknown. Our results revealed a marked decrease in the rate of AA uptake in mouse jejunum infected with Salmonella wild type (WT). However, the nonpathogenic mutant (Δ invA Δ spiB) strain did not affect AA uptake. The decrease in AA uptake due to Salmonella WT infection is accompanied by significantly lower expression of mouse (m)SVCT1 protein, mRNA, and hnRNA levels. NLRP3 and IL-1β expression levels were markedly increased in Salmonella-infected mouse jejunum. IL-1β-exposed Caco-2 cells displayed marked inhibition in AA uptake and significantly decreased hSVCT1 expression at both protein and mRNA levels. Furthermore, the activity of the SLC23A1 promoter was significantly inhibited by IL-1β exposure. In addition, GRHPR (a known SVCT1 interactor) protein and mRNA expression levels were significantly reduced in Salmonella-infected mouse jejunum. These results indicate that Salmonella infection inhibits AA absorption in mouse jejunum and IL-1β-exposed Caco-2 cells. The observed inhibitory effect may partially be mediated through transcriptional mechanisms.
Collapse
|
11
|
Choi YH, Kim BS, Kang SS. Inhibitory Effect of Genomic DNA Extracted from Pediococcus acidilactici on Porphyromonas gingivalis Lipopolysaccharide-Induced Inflammatory Responses. Food Sci Anim Resour 2023; 43:101-112. [PMID: 36789204 PMCID: PMC9890371 DOI: 10.5851/kosfa.2022.e62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to assess whether genomic DNA (gDNA) extracted from Pediococcus acidilactici inhibits Porphyromonas gingivalis lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 cells. Pretreatment with gDNA of P. acidilactici K10 or P. acidilactici HW01 for 15 h effectively inhibited P. gingivalis LPS-induced mRNA expression of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein (MCP)-1. Although both gDNAs did not dose-dependently inhibit P. gingivalis LPS-induced mRNA expression of IL-6 and MCP-1, they inhibited IL-1β mRNA expression in a dose-dependent manner. Moreover, pretreatment with both gDNAs inhibited the secretion of IL-1β, IL-6, and MCP-1. When RAW 264.7 cells were stimulated with P. gingivalis LPS alone, the phosphorylation of mitogen-activated protein kinases (MAPKs) was increased. However, the phosphorylation of MAPKs was reduced in the presence of gDNAs. Furthermore, both gDNAs restored IκBα degradation induced by P. gingivalis LPS, indicating that both gDNAs suppressed the activation of nuclear factor-κB (NF-κB). In summary, P. acidilactici gDNA could inhibit P. gingivalis LPS-induced inflammatory responses through the suppression of MAPKs and NF-κB, suggesting that P. acidilactici gDNA could be effective in preventing periodontitis.
Collapse
Affiliation(s)
- Young Hyeon Choi
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Bong Sun Kim
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| | - Seok-Seong Kang
- Department of Food Science and
Biotechnology, College of Life Science and Biotechnology, Dongguk
University, Goyang 10326, Korea
| |
Collapse
|
12
|
Li D, Guo J, Ni X, Sun G, Bao H. The progress and challenges of circRNA for diabetic foot ulcers: A mini-review. Front Endocrinol (Lausanne) 2022; 13:1019935. [PMID: 36531481 PMCID: PMC9747764 DOI: 10.3389/fendo.2022.1019935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Since the Human Genome Project was successfully completed, humanity has entered a post-genome era, and the second-generation sequencing technology has gradually progressed and become more accurate. Meanwhile, circRNAs plays a crucial role in the regulation of diseases and potential clinical applications has gradually attracted the attention of physicians. However, the mechanisms of circRNAs regulation at the cellular and molecular level of diabetic foot ulcer (DFU) is still not well-understood. With the deepening of research, there have been many recent studies conducted to explore the effect of circRNAs on DFU. In this mini-review, we discuss the potential role of circRNAs as therapeutic targets and diagnostic markers for DFU in order to gain a better understanding of the molecular mechanisms that underlie the development of DFU and to establish a theoretical basis for accurate treatment and effective prevention.
Collapse
Affiliation(s)
- Deer Li
- Graduate School, Inner Mongolia Medical University, Hohhot, China
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jiaxing Guo
- Department of Joint Surgery, The Second Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Xiyu Ni
- Graduate School, Inner Mongolia Medical University, Hohhot, China
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Guanwen Sun
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| | - Huhe Bao
- Department of Traumatology and Orthopedics, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
13
|
Xia J, Hu JN, Wang Z, Cai EB, Ren S, Wang YP, Lei XJ, Li W. Based on network pharmacology and molecular docking to explore the protective effect of Epimedii Folium extract on cisplatin-induced intestinal injury in mice. Front Pharmacol 2022; 13:1040504. [PMID: 36313368 PMCID: PMC9596753 DOI: 10.3389/fphar.2022.1040504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Epimedii Folium, as a natural botanical medicine, has been reported to have protective effects on intestinal diseases by modulating multiple signaling pathways. This study aimed to explore the potential targets and molecular mechanisms of Epimedii Folium extract (EFE) against cisplatin-induced intestinal injury through network pharmacology, molecular docking, and animal experiments. Methods: Network pharmacology was used to predict potential candidate targets and related signaling pathways. Molecular docking was used to simulate the interactions between significant potential candidate targets and active components. For experimental validation, mice were intraperitoneally injected with cisplatin 20 mg/kg to establish an intestinal injury model. EFE (100, 200 mg/kg) was administered to mice by gavage for 10 days. The protective effect of EFE on intestinal injury was analyzed through biochemical index detection, histopathological staining, and western blotting. Results: Network pharmacology analysis revealed that PI3K-Akt and apoptosis signaling pathways were thought to play critical roles in EFE treatment of the intestinal injury. Molecular docking results showed that the active constituents of Epimedii Folium, including Icariin, Epimedin A, Epimedin B, and Epimedin C, stably docked with the core AKT1, p53, TNF-α, and NF-κB. In verified experiments, EFE could protect the antioxidant defense system by increasing the levels of glutathione peroxidase (GSH-Px) and catalase (CAT) while reducing the content of malondialdehyde (MDA). EFE could also inhibit the expression of NF-κB and the secretion of inflammatory factors, including TNF-α, IL-1β, and IL-6, thereby relieving the inflammatory damage. Further mechanism studies confirmed that EFE had an excellent protective effect on cisplatin-induced intestinal injury by regulating PI3K-Akt, caspase, and NF-κB signaling pathways. Conclusion: In summary, EFE could mitigate cisplatin-induced intestinal damage by modulating oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Juan Xia
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - En-Bo Cai
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Ying-Ping Wang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Xiu-Juan Lei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- *Correspondence: Xiu-Juan Lei, ; Wei Li,
| | - Wei Li
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- *Correspondence: Xiu-Juan Lei, ; Wei Li,
| |
Collapse
|
14
|
Wang H, Guo F, Wang M, Wang T, Wang S, Huang Y, Ye F. The Effect of TLR9, MyD88, and NF- κB p65 in Systemic Lupus Erythematosus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6830366. [PMID: 35733626 PMCID: PMC9208942 DOI: 10.1155/2022/6830366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Purpose This study was conducted to characterize the expression level of peripheral blood toll-like receptors 9 (TLR9), nuclear factor kappa-B protein 65 (NF-κB p65), and myeloid differentiation factor88 (MyD88) of active systemic lupus erythematosus (SLE) and analyse their clinical significance. Methods The prospective cohort study enrolled 30 active SLE patients (SG1 group), 30 stable SLE patients (SG2 group), and 20 healthy individuals (RG group) in the First Affiliated Hospital of Hainan Medical University between January 2018 and June 2020. All SLE patients were treated with methylprednisolone tablets. Quantitative polymerase chain reaction (qPCR) was used to determine the levels of TLR9, MyD88, and NF-κB p65 in the peripheral blood mononuclear cell (PBMC). ELISA was adopted for the determination of serum interleukin (IL-6) and tumor necrosis factor-α (TNF-α). Results Patients in SG1 showed the highest mRNA levels of TLR9, MyD88, and NF-κB p65, followed by SG2, and then RG. SG1 had the highest serum levels of IL-6 and TNF-α, followed by SG2 and RG. The level of TLR9 was positively correlated with the SLE disease activity index (SLEDAI) and negatively correlated with complement component 3 (C3) and complement component 4 (C4). MyD88 and NF-κB p65 were positively correlated with SLEDAI. Conclusion Compared with a healthy status, SLE induces an increase in TLR9, MyD88, NF-κB p65, IL-6, and TNF-α levels, and the activation of the TLR9-MyD88-NF-κB p65 signal path was associated with the pathogenesis of SLE.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Hainan Medical University, Haikou City 570102, Hainan Province, China
| | - Feng Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Hainan Medical University, Haikou City 570102, Hainan Province, China
| | - Min Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Hainan Medical University, Haikou City 570102, Hainan Province, China
| | - Tingting Wang
- Department of Nephrology, The First Affillated Hospital of Hainan Medical University, Haikou City 570102, Hainan Province, China
| | - Shanzhi Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Hainan Medical University, Haikou City 570102, Hainan Province, China
| | - Yanni Huang
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou City 570102, Hainan Province, China
| | - Feng Ye
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Hainan Medical University, Haikou City 570102, Hainan Province, China
| |
Collapse
|
15
|
Liu C, He D, Zhang S, Chen H, Zhao J, Li X, Zeng X. Homogeneous Polyporus Polysaccharide Inhibit Bladder Cancer by Resetting Tumor-Associated Macrophages Toward M1 Through NF-κB/NLRP3 Signaling. Front Immunol 2022; 13:839460. [PMID: 35603205 PMCID: PMC9115861 DOI: 10.3389/fimmu.2022.839460] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
Bladder cancer(BC)is one of the most common urinary system tumors, which characterized by a high incidence. Polyporus polysaccharide is the main active component of polyporus, which is clinically used in the treatment of bladder cancer, but the mechanism is not clear. In previous study, we isolated homogeneous polyporus polysaccharide(HPP) with high purity from polyporus. The goal of this study was to assess the polarization of macrophages induced by HPP in the bladder tumor microenvironment and explored its anti-bladder cancer mechanism through BBN bladder cancer rat model and Tumor associated macrophages(TAM). The results suggested that HPP regulates TAM polarization to improve the tumor inflammatory microenvironment, possibly through the NF-κB/NLRP3 signaling pathway. Our results suggested that HPP may be a potential therapeutic agent for bladder tumors.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Dongyue He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihui Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Tao X, Zhang R, Du R, Yu T, Yang H, Li J, Wang Y, Liu Q, Zuo S, Wang X, Lazarus M, Zhou L, Wang B, Yu Y, Shen Y. EP3 enhances adhesion and cytotoxicity of NK cells toward hepatic stellate cells in a murine liver fibrosis model. J Exp Med 2022; 219:213141. [PMID: 35420633 DOI: 10.1084/jem.20212414] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells exhibit antifibrotic properties in liver fibrosis (LF) by suppressing activated hepatic stellate cell (HSC) populations. Prostaglandin E2 (PGE2) plays a dual role in innate and adaptive immunity. Here, we found that E-prostanoid 3 receptor (EP3) was markedly downregulated in NK cells from liver fibrosis mice and patients with liver cirrhosis. NK cell-specific deletion of EP3 aggravated hepatic fibrogenesis in mouse models of LF. Loss of EP3 selectively reduced the cytotoxicity of the CD27+CD11b+ double positive (DP) NK subset against activated HSCs. Mechanistically, deletion of EP3 impaired the adhesion and cytotoxicity of DP NK cells toward HSCs through modulation of Itga4-VCAM1 binding. EP3 upregulated Itga4 expression in NK cells through promoting Spic nuclear translocation via PKC-mediated phosphorylation of Spic at T191. Activation of EP3 by sulprostone alleviated CCL4-induced liver fibrosis in mice. Thus, EP3 is required for adhesion and cytotoxicity of NK cells toward HSCs and may serve as a therapeutic target for the management of LF.
Collapse
Affiliation(s)
- Xixi Tao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rui Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ronglu Du
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jiwen Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yuhong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba City, Ibaraki, Japan
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Han J, Zheng Q, Cheng Y, Liu Y, Bai Y, Yan B, Guo S, Yu J, Li X, Wang C. Toll-like receptor 9 (TLR9) gene deletion-mediated fracture healing in type II diabetic osteoporosis associates with inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway. Bioengineered 2022; 13:13689-13702. [PMID: 35707851 PMCID: PMC9275877 DOI: 10.1080/21655979.2022.2063663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diabetes is characterized by increased fracture risk. Evidence from in vivo studies is lacking for anti-fracture strategies in diabetes. Our microarray analyses predicted association of Toll-like receptor 9 (TLR9) with both diabetes and osteoporosis, which was the focus of this work in a murine model of type II diabetic osteoporosis (T2DOP). A T2DOP model with fracture was established in TLR9 knockout (TLR9−/−) mice, which were then treated with the NF-κB signaling pathway inhibitor (PDTC) and activator (TNF-α). The obtained data suggested that TLR9 knockout augmented regeneration of bone tissues and cartilage area in the callus, and diminished fibrous tissues in T2DOP mice. Moreover, TLR9 depletion significantly affected bone mineral density (BMD), bone volume/tissue volume (BV/TV), connectivity density, trabecular number, trabecular separation and trabecular thickness, thus promoting fracture recovery. Bone morphology and structure were also improved in response to TLR9 depletion in T2DOP mice. TLR9 depletion inactivated NF-κB signaling in T2DOP mice. PDTC was found to enhance fracture healing in T2DOP mice, while TNF-α negated this effect. Collectively, these data indicate that TLR9 depletion may hold anti-fracture properties, making it a potential therapeutic target for T2DOP. Abbreviations: Diabetic osteoporosis (DOP); bone mineral density (BMD); Toll-like receptors (TLRs); type 2 diabetes (T2D); Toll-like receptor 9 (TLR9); nuclear factor-kappaB (NF-κB); streptozotocin (STZ); type 2 diabetic osteoporosis (T2DOP); Gene Expression Omnibus (GEO); Kyoto encyclopedia of genes and genomes (KEGG); pyrrolidine dithiocarbamate (PDTC); computed tomography (CT); Hematoxylin–eosin (HE); bone morphogenetic protein 7 (BMP7); analysis of variance (ANOVA);
Collapse
Affiliation(s)
- Jiakai Han
- Endocrinology Department, Huaihe Hospital of Henan University, Kaifeng, PR, China
| | - Qian Zheng
- Endocrinology Department, Yan'an Hospital of Kunming Medical University, Kunming, PR, China
| | - Yongxia Cheng
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Yong Liu
- Platform Management Division, Scientific Research Division of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Yuxin Bai
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Bin Yan
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Sufen Guo
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Jianbo Yu
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Xinxin Li
- Ultrasound Department, Second Hospital of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Chong Wang
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| |
Collapse
|
18
|
Dong Y, Liu J, Lu N, Zhang C. Enterovirus 71 Antagonizes Antiviral Effects of Type III Interferon and Evades the Clearance of Intestinal Intraepithelial Lymphocytes. Front Microbiol 2022; 12:806084. [PMID: 35185830 PMCID: PMC8848745 DOI: 10.3389/fmicb.2021.806084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Enterovirus 71 (EV71) is the major pathogen causing severe neurological complications and hand, foot, and mouth disease. The intestinal mucosal immune system has a complete immune response and immune regulation mechanism, consisting of densely arranged monolayer intestinal epithelial cells (IECs) and intestinal intraepithelial lymphocytes (iIELs) distributed among the IECs, which constitute the first line of intestinal mucosa against infection of foreign pathogens. As an enterovirus, EV71 is transmitted by the intestinal tract; however, the mechanisms it uses to evade the immunosurveillance of the intestinal mucosal immune system are still incompletely clarified. The present study investigated how EV71 evades from recognizing and eliminating IECs, iIELs, and iNK cells. We found that EV71 infection induced a higher level of type III interferons (IFN-λ) than type I interferons (IFN-β) in IECs, and the addition of IFN-λ markedly restricted EV71 replication in IECs. These results indicate that IFN-λ plays a more important role in anti-EV71 intestinal infection. However, EV71 infection could markedly attenuate the antiviral responses of IFN-λ. Mechanistically, 2A protease (2Apro) and 3C protease (3Cpro) of EV71 inhibited the IFN-λ production and IFN-λ receptor expression and further decreased the response of IECs to IFN-λ. In addition, we found that EV71-infected IECs were less susceptible to the lysis of intestinal NK (iNK) cells and CD3+iIELs. We revealed that the viral 2Apro and 3Cpro could significantly reduce the expression of the ligands of natural killer group 2D (NKG2D) and promote the expression of PD-L1 on IECs, rendering them to evade the recognition and killing of iNK and CD3+iIELs. These results provide novel evasion mechanisms of EV71 from intestinal mucosal innate immunity and may give new insights into antiviral therapy.
Collapse
Affiliation(s)
- Yuanmin Dong
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
19
|
Shen J, Dai Z, Li Y, Zhu H, Zhao L. TLR9 regulates NLRP3 inflammasome activation via the NF-kB signaling pathway in diabetic nephropathy. Diabetol Metab Syndr 2022; 14:26. [PMID: 35120573 PMCID: PMC8815223 DOI: 10.1186/s13098-021-00780-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are critical sensors for the conservation of bacterial molecules and play a key role in host defense against pathogens. The effect of TLRs on the maintenance of diabetic nephropathy (DN) and resistance to infection has been investigated; however, the detailed effects of TLR9 on DN development remain elusive. METHODS We performed quantitative reverse transcription-polymerase chain reaction and western blotting to detect TLR9 expression levels in the kidneys of experimental mice (db/db) and high-glucose-treated mouse mesangial cell strains (MCs). RESULTS TLR9 expression was found to be remarkably upregulated in the kidneys of experimental mice (db/db) and MCs cultivated under hyperglycemic conditions. Moreover, knockdown of TLR9 could restrain NF-kB viability and downregulate the NLRP3 inflammasome in high glucose-treated MCs. TLR9 inhibition also alleviated inflammation and apoptosis, which was reversed by the addition of the NF-κB activator, betulinic acid. Furthermore, depleted TLR9 levels restrained NF-κB viability and NLRP3 expression and reduced kidney inflammation, microalbuminuria discharge, blood sugar level, and glomerular damage in experimental mice (db/db) kidneys. Conclusions These findings offer novel insights into the regulation of TLR9 via the nuclear factor-kB/NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome inflammation pathways in DN progression.
Collapse
Affiliation(s)
- Jinfeng Shen
- Department of Nephrology, The First People's Hospital of Wenling, No. 333, Chuanan South Road, Wenling, 317500, Zhejiang, China
| | - Zaiyou Dai
- Department of Nephrology, The First People's Hospital of Wenling, No. 333, Chuanan South Road, Wenling, 317500, Zhejiang, China
| | - Yunsheng Li
- Department of Nephrology, The First People's Hospital of Wenling, No. 333, Chuanan South Road, Wenling, 317500, Zhejiang, China
| | - Huiping Zhu
- Department of Nephrology, The First People's Hospital of Wenling, No. 333, Chuanan South Road, Wenling, 317500, Zhejiang, China
| | - Lijin Zhao
- Department of Nephrology, The First People's Hospital of Wenling, No. 333, Chuanan South Road, Wenling, 317500, Zhejiang, China.
| |
Collapse
|
20
|
Wang Y, Guan Y, Hu Y, Li Y, Lu N, Zhang C. Murine CXCR3+CXCR6+γδT Cells Reside in the Liver and Provide Protection Against HBV Infection. Front Immunol 2022; 12:757379. [PMID: 35126348 PMCID: PMC8814360 DOI: 10.3389/fimmu.2021.757379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Gamma delta (γδ) T cells play a key role in the innate immune response and serve as the first line of defense against infection and tumors. These cells are defined as tissue-resident lymphocytes in skin, lung, and intestinal mucosa. They are also relatively abundant in the liver; however, little is known about the residency of hepatic γδT cells. By comparing the phenotype of murine γδT cells in liver, spleen, thymus, and small intestine, a CXCR3+CXCR6+ γδT-cell subset with tissue-resident characteristics was found in liver tissue from embryos through adults. Liver sinusoidal endothelial cells mediated retention of CXCR3+CXCR6+ γδT cells through the interactions between CXCR3 and CXCR6 and their chemokines. During acute HBV infection, CXCR3+CXCR6+ γδT cells produced high levels of IFN-γ and adoptive transfer of CXCR3+CXCR6+ γδT cells into acute HBV-infected TCRδ−/− mice leading to lower HBsAg and HBeAg expression. It is suggested that liver resident CXCR3+CXCR6+ γδT cells play a protective role during acute HBV infection. Strategies aimed at expanding and activating liver resident CXCR3+CXCR6+ γδT cells both in vivo or in vitro have great prospects for use in immunotherapy that specifically targets acute HBV infection.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Chemokines/metabolism
- Hepatitis B/metabolism
- Hepatitis B virus/pathogenicity
- Hepatocytes/metabolism
- Hepatocytes/virology
- Intestine, Small/metabolism
- Intestine, Small/virology
- Liver/metabolism
- Liver/virology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, CXCR3/metabolism
- Receptors, CXCR6/metabolism
- Spleen/metabolism
- Spleen/virology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Thymus Gland/metabolism
- Thymus Gland/virology
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jining No. 1 People’s Hospital, Jining, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| |
Collapse
|
21
|
Kim SK, Park KY, Choe JY. Toll-Like Receptor 9 Is Involved in NLRP3 Inflammasome Activation and IL-1β Production Through Monosodium Urate-Induced Mitochondrial DNA. Inflammation 2021; 43:2301-2311. [PMID: 32700178 DOI: 10.1007/s10753-020-01299-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is a cytoplasmic multimolecular complex that generates interleukin (IL)-1β and is considered a main pathogenic mechanism for uric acid-induced inflammation. Whether toll-like receptor 9 (TLR9) is responsible for uric acid-induced NLRP3 inflammasome activation remains unclear. Thus, the aim of this study was to identify the role of TLR9 in NLRP3 inflammasome activation through monosodium urate (MSU) crystal-induced mitochondrial DNA. RAW 264.7 cells treated with MSU crystals, CpG oligonucleotides (ODNs), or a combination of both were used to assess nuclear factor (NF)-κB signaling, NLRP3 inflammasome components such as NLRP3, ASC, and caspase-1, and IL-1β. Real-time polymerase chain reaction (RT-PCR), Western blotting, DNA fragmentation assay, mitochondrial DNA copy number assay, and immunofluorescence were used in the in vitro study. RAW 264.7 cells treated with CpG-ODN stimulated the activation of NF-κB signaling, the NLRP3 inflammasome components NLRP3, ASC, and caspase-1, and IL-1β gene and protein expression. DNA fragmentation assay showed that MSU crystals induced cellular apoptosis. Fragmented DNA prompted by MSU crystals induced TLR9 expression. RAW 264.7 cells treated with CpG-ODN or MSU crystals and both increased expression of mitochondrial DNA relative to nuclear DNA. CpG-ODN and MSU crystals augmented the activation of NLRP3 inflammasome components and IL-1β expression, which was significantly suppressed in RAW 264.7 cells transfected with TLR9 siRNA. This study suggests that TLR9 activated by MSU crystal-mediated mitochondrial DNA contributes to the activation of NLRP3 inflammasomes and IL-1β production.
Collapse
Affiliation(s)
- Seong-Kyu Kim
- Department of Internal Medicine, Division of Rheumatology, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea. .,Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu, Republic of Korea.
| | - Ki-Yeun Park
- Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu, Republic of Korea
| | - Jung-Yoon Choe
- Department of Internal Medicine, Division of Rheumatology, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea.,Arthritis and Autoimmunity Research Center, Catholic University of Daegu, Daegu, Republic of Korea
| |
Collapse
|
22
|
Yu C, Cai X, Liu X, Liu J, Zhu N. Betulin Alleviates Myocardial Ischemia-Reperfusion Injury in Rats via Regulating the Siti1/NLRP3/NF-κB Signaling Pathway. Inflammation 2021; 44:1096-1107. [PMID: 33392937 DOI: 10.1007/s10753-020-01405-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
To study the effects of betulin (BE) on myocardial ischemia-reperfusion (I/R) injury in rats, electrocardiogram (ECG) was detected by an electrocardiograph; myocardial infarction was evaluated by triphenyltetrazolium (TTC) staining, serum biochemical indicators myocardial enzymes creatine kinase (CK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), serum superoxide dismutase (SOD), glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA); and inflammatory cytokines were tested by using commercial kits. The expression of the Siti1/NLRP3/NF-κB signaling pathway was detected by western blotting and immunohistochemistry experiments. BE improved ECG; reduced myocardial infarction area; decreased CK, LDH, AST, MDA, NO, and inflammatory cytokines; and increased SOD and GSH in I/R rats. In addition, BE also increased Siti1 and decreased the NLRP3/NF-κB signaling pathway in I/R rats. This study shows that the protection of BE is associated with changes in the Siti1/NLRP3/NF-κB pathway.
Collapse
Affiliation(s)
- Chenchen Yu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Xixi Cai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Xuejiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Jianlong Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| | - Na Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| |
Collapse
|
23
|
Sun Y, Wu D, Zeng W, Chen Y, Guo M, Lu B, Li H, Sun C, Yang L, Jiang X, Gao Q. The Role of Intestinal Dysbacteriosis Induced Arachidonic Acid Metabolism Disorder in Inflammaging in Atherosclerosis. Front Cell Infect Microbiol 2021; 11:618265. [PMID: 33816331 PMCID: PMC8012722 DOI: 10.3389/fcimb.2021.618265] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background Aging induced chronic systemic inflammatory response is an important risk factor for atherosclerosis (AS) development; however, the detailed mechanism is yet to be elucidated. Objective To explore the underlying mechanism of how aging aggravates AS advancement. Methods A young (five-week-old, YM) and aged group (32-week-old, OM) male apoE-/- mice with a high fat diet were used as models, and age-matched male wild-type C57BL/6J (WT) mice were used as controls. AS lesion size, serum lipid profile, cytokines, and gut microbiota-derived LPS were analyzed after 32 weeks of diet intervention. A correlation analysis between the 16S rRNA sequencing of the feces and serum metabolomics profiles was applied to examine the effect of their interactions on AS. Results ApoE-/- mice developed severe atherosclerosis and inflammation in the aorta compared to the WT groups, and aged apoE-/- mice suffered from a more severe AS lesion than their younger counterparts and had low-grade systemic inflammation. Furthermore, increased levels of serum LPS, decreased levels of SCFAs production, as well as dysfunction of the ileal mucosal barrier were detected in aged mice compared with their younger counterparts. There were significant differences in the intestinal flora composition among the four groups, and harmful bacteria such as Lachnospiraceae_FCS020, Ruminococcaceae_UCG-009, Acetatifactor, Lachnoclostridium and Lactobacillus_gasseri were significantly increased in the aged apoE-/- mice compared with the other groups. Concurrently, metabolomics profiling revealed that components involved in the arachidonic acid (AA) metabolic pathway such as 20-HETE, PGF2α, arachidonic acid, and LTB4 were significantly higher in the aged AS group than in the other groups. This suggested that metabolic abnormalities and disorders of intestinal flora occurred in AS mice. Conclusions Aging not only altered the gut microbiome community but also substantially disturbed metabolic conditions. Our results confirm that AA metabolism is associated with the imbalance of the intestinal flora in the AS lesions of aged mice. These findings may offer new insights regarding the role of gut flora disorders and its consequent metabolite changed in inflammaging during AS development.
Collapse
Affiliation(s)
- Yingxin Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Danbin Wu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yefei Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chun Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
24
|
Smita S, Ghosh A, Biswas VK, Ahad A, Podder S, Jha A, Sen K, Acha-Orbea H, Raghav SK. Zbtb10 transcription factor is crucial for murine cDC1 activation and cytokine secretion. Eur J Immunol 2021; 51:1126-1142. [PMID: 33527393 DOI: 10.1002/eji.202048933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/14/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cell (DC) activation and cytokine production is tightly regulated. In this study, we found that Zbtb10 expression is activation dependent and it is essential for the immunogenic function of cDC1. Zbtb10 knockdown (KD) significantly reduced the expression of co-stimulatory genes CD80 and CD86 along with cytokines including IL-12, IL-6, and IL-10, in activated cDC1 Mutu-DC line. Consequently, the clonal expansion of CD44+ effector T cells in co-cultured CD4+ T cells was drastically reduced owing to significantly reduced IL-2. At the same time, these CD44+ effector T cells were unable to differentiate toward Tbet+ IFNγ+ Th1 subtype. Instead, an increased frequency of Th2 cells expressing GATA3+ and IL-13+ was observed. Interestingly, in Zbtb10 KD condition the co-cultured T cells depicted increased expression of PD1 and LAG3, the T-cell anergic markers. Moreover, the global transcriptome analysis identified that Zbtb10 is pertinent for DC activation and its depletion in cDC1 completely shuts down their immune responses. Mechanistic analysis revealed that Zbtb10 KD enhanced the expression of NKRF (NF-κB repressing factor) leading to drastic suppression of NF-κB related genes. Zbtb10 KD abrogated p65 and RelB nuclear translocation, thereby controlling the activation and maturation of cDC1 and the ensuing adaptive T cell responses.
Collapse
Affiliation(s)
- Shuchi Smita
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Arup Ghosh
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Viplov Kumar Biswas
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Abdul Ahad
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Sreeparna Podder
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Atimukta Jha
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Kaushik Sen
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Hans Acha-Orbea
- Department of Biochemistry CIIL, University of Lausanne (UNIL), Epalinges, Switzerland
| | - Sunil K Raghav
- Immuno-genomics & Systems Biology group, Institute of Life Sciences, Bhubaneswar, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India.,Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| |
Collapse
|
25
|
Hu JN, Yang JY, Jiang S, Zhang J, Liu Z, Hou JG, Gong XJ, Wang YP, Wang Z, Li W. Panax quinquefolium saponins protect against cisplatin evoked intestinal injury via ROS-mediated multiple mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153446. [PMID: 33387967 DOI: 10.1016/j.phymed.2020.153446] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cisplatin is one of the most common chemotherapeutic drugs. Cisplatin-induced toxicity gives rise to gastrointestinal cell damage, subsequent diarrhea and vomiting, leading to the discontinuation of its clinical application in long-term cancer chemotherapy. Panax quinquefolium L., also known as American ginseng, has many pharmacological activities such as improving immunity, anti-tumor, anti-radiation and blood sugar lowering. PURPOSE Previously, our laboratory reported that American ginseng berry extract could alleviate chemotherapeutic agents-induced renal damage caused by cisplatin. Hence, this study further explored the protective effect of P. quinquefolium saponins (PQS) on cisplatin-induced intestinal injury in mice and the possible molecular mechanisms. METHODS Biochemical markers, levels of inflammatory factors, histopathological staining and western blotting were used to analyze intestinal injury based on various molecular mechanisms. RESULTS We demonstrated the destruction of the intestinal barrier caused by cisplatin exposure by detecting the activity of diamine oxidase (DAO) and the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin. Meanwhile, cisplatin exposure changed SOD and MDA levels in the small intestine, causing oxidative damage to the intestinal mucosa. The inflammation associated-intestinal damage was further explored by the measurement of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and analysis of nuclear factor-kappa B (NF-κB) inflammatory pathway protein expression. Moreover, apoptotic cells labeled with TUNEL staining-positive cells and activated caspase family proteins suggest that cisplatin induces intestinal apoptosis. Interestingly, PQS pretreatment significantly reversed these situations. CONCLUSION These evidences clearly suggest that PQS can alleviate cisplatin-induced intestinal damage by inhibiting oxidative stress, reducing the occurrence of inflammation and apoptosis, and improving intestinal barrier function.
Collapse
Affiliation(s)
- Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Jia-Yu Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Jing Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Jin-Gang Hou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China
| | - Xiao-Jie Gong
- College of Life Science, Dalian Minzu University, Dalian 116600 China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, China.
| |
Collapse
|
26
|
Yin B, Liu H, Tan B, Dong X, Chi S, Yang Q, Zhang S. MHC II-PI 3K/Akt/mTOR Signaling Pathway Regulates Intestinal Immune Response Induced by Soy Glycinin in Hybrid Grouper: Protective Effects of Sodium Butyrate. Front Immunol 2021; 11:615980. [PMID: 33537033 PMCID: PMC7849651 DOI: 10.3389/fimmu.2020.615980] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Soy glycinin (11S) is involved in immune regulation. As an additive, sodium butyrate (SB) can relieve inflammation caused by 11S. To further delve into the mechanisms. A diet containing 50% fishmeal was the control group (FM group), and the experimental groups consisted of the FM group baseline plus 2% glycinin (GL group), 8% glycinin (GH group), and 8% glycinin + 0.13% sodium butyrate (GH-SB group). The specific growth ratio (SGR), feed utilization, and density of distal intestinal (DI) type II mucous cells were increased in the GL group. In the serum, IFN-γ was significantly upregulated in the GL group, and IgG and IL-1β were upregulated in the GH group. IgG, IL-1β, and TNF-α in the GH-SB group were significantly downregulated compared to those in the GH group. The mRNA levels of mTOR C1, mTOR C2, and Deptor were upregulated in the GL, GH, and GH-SB groups in the DI compared with those in the FM group, while the mRNA levels of mTOR C1 and Deptor in the GH group were higher than those in the GL and GH-SB groups. 4E-BP1, RICTOR, PRR5, MHC II, and CD4 were upregulated in the GH group. TSC1, mLST8, and NFY mRNA levels in the GL and GH-SB groups were upregulated compared with those in the FM and GH groups. Western blotting showed P-PI3KSer294/T-PI3K, P-AktSer473/T-Akt, and P-mTORSer2448/T-mTOR were upregulated in the GH group. Collectively, our results demonstrate that low-dose 11S could improve serum immune by secreting IFN-γ. The overexpression of IgG and IL-1β is the reason that high-dose 11S reduces serum immune function, and supplementing SB can suppress this overexpression. Low-dose 11S can block the relationship between PI3K and mTOR C2. It can also inhibit the expression of 4E-BP1 through mTOR C1. High-dose 11S upregulates 4E-BP2 through mTOR C1, aggravating intestinal inflammation. SB could relieve inflammation by blocking PI3K/mTOR C2 and inhibiting 4E-BP2. Generally speaking, the hybrid grouper obtained different serum and DI immune responses under different doses of 11S, and these responses were ultimately manifested in growth performance. SB can effectively enhance serum immunity and relieve intestinal inflammation caused by high dose 11S.
Collapse
Affiliation(s)
- Bin Yin
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Centre of Guangdong Province, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
| |
Collapse
|
27
|
Zuo L, Zhou L, Wu C, Wang Y, Li Y, Huang R, Wu S. Salmonella spvC Gene Inhibits Pyroptosis and Intestinal Inflammation to Aggravate Systemic Infection in Mice. Front Microbiol 2020; 11:562491. [PMID: 33384666 PMCID: PMC7770238 DOI: 10.3389/fmicb.2020.562491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S). Typhimurium is a primary foodborne pathogen infecting both humans and animals. Salmonella plasmid virulence C (spvC) gene is closely related to S. Typhimurium dissemination in mice, while the mechanisms remain to be fully elucidated. Pyroptosis, a gasdermin-mediated inflammatory cell death, plays a role in host defense against bacterial infection, whereas the effect of spvC on pyroptosis and its function in inflammatory injury induced by S. Typhimurium are rather limited. In our study, C57BL/6 mice and J774A.1 cells infected with S. Typhimurium wild-type strain SL1344, spvC deletion mutant, spvC K136A site-directed mutant, and complemented strain were used to investigate potential pathogenesis of spvC. We verity that SpvC attenuates intestinal inflammation, suppresses pyroptosis through phosphothreonine lyase activity, and reduces pyroptosis in the ceca. Moreover, the reduction of inflammation via spvC results in systemic infection. These findings demonstrate that spvC inhibits pyroptosis and intestinal inflammation to promote bacterial dissemination, which provide new strategies for controlling systemic infection caused by Salmonella and novel insights for the treatment of other corresponding diseases.
Collapse
Affiliation(s)
- Lingli Zuo
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China.,Medical Research Center, The People's Hospital of Suzhou New District, Suzhou, China
| | - Liting Zhou
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
| | - Chaoyi Wu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
| | - Yanlin Wang
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
| | - Rui Huang
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Vandereyken M, James OJ, Swamy M. Mechanisms of activation of innate-like intraepithelial T lymphocytes. Mucosal Immunol 2020; 13:721-731. [PMID: 32415229 PMCID: PMC7434593 DOI: 10.1038/s41385-020-0294-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Intraepithelial T lymphocytes (T-IEL) contain subsets of innate-like T cells that evoke innate and adaptive immune responses to provide rapid protection at epithelial barrier sites. In the intestine, T-IEL express variable T cell antigen receptors (TCR), with unknown antigen specificities. Intriguingly, they also express multiple inhibitory receptors, many of which are normally found on exhausted or antigen-experienced T cells. This pattern suggests that T-IEL are antigen-experienced, yet it is not clear where, and in what context, T-IEL encounter TCR ligands. We review recent evidence indicating TCR antigens for intestinal innate-like T-IEL are found on thymic or intestinal epithelium, driving agonist selection of T-IEL. We explore the contributions of the TCR and various co-stimulatory and co-inhibitory receptors in activating T-IEL effector functions. The balance between inhibitory and activating signals may be key to keeping these highly cytotoxic, rapidly activated cells in check, and key to harnessing their immune surveillance potential.
Collapse
Affiliation(s)
- Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
29
|
Chen Q, Shi P, Wang Y, Zou D, Wu X, Wang D, Hu Q, Zou Y, Huang Z, Ren J, Lin Z, Gao X. GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol 2020; 11:496-508. [PMID: 30321352 DOI: 10.1093/jmcb/mjy056] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/08/2018] [Accepted: 10/13/2018] [Indexed: 12/11/2022] Open
Abstract
Gasdermin B (GSDMB) has been reported to be associated with immune diseases in humans, but the detailed molecular mechanisms remain unsolved. The N-terminus of GSDMB by itself, unlike other gasdermin family proteins, does not induce cell death. Here, we show that GSDMB is highly expressed in the leukocytes of septic shock patients, which is associated with increased release of the gasdermin D (GSDMD) N-terminus. GSDMB expression and the accumulation of the N-terminal fragment of GSDMD are induced by the activation of the non-canonical pyroptosis pathway in a human monocyte cell line. The downregulation of GSDMB alleviates the cleavage of GSDMD and cell death. Consistently, the overexpression of GSDMB promotes GSDMD cleavage, accompanied by increased LDH release. We further found that GSDMB promotes caspase-4 activity, which is required for the cleavage of GSDMD in non-canonical pyroptosis, by directly binding to the CARD domain of caspase-4. Our study reveals a GSDMB-mediated novel regulatory mechanism for non-canonical pyroptosis and suggests a potential new strategy for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Peiliang Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Yufang Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Dayuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dingyu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Qiongyuan Hu
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yujie Zou
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Zan Huang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China.,Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agriculture University, Nanjing, China
| | - Jianan Ren
- Department of Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Fideles LDS, de Miranda JAL, Martins CDS, Barbosa MLL, Pimenta HB, Pimentel PVDS, Teixeira CS, Scafuri MAS, Façanha SDO, Barreto JEF, Carvalho PMDM, Scafuri AG, Araújo JL, Rocha JA, Vieira IGP, Ricardo NMPS, da Silva Campelo M, Ribeiro MENP, de Castro Brito GA, Cerqueira GS. Role of Rutin in 5-Fluorouracil-Induced Intestinal Mucositis: Prevention of Histological Damage and Reduction of Inflammation and Oxidative Stress. Molecules 2020; 25:molecules25122786. [PMID: 32560278 PMCID: PMC7356626 DOI: 10.3390/molecules25122786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal mucositis, characterized by inflammatory and/or ulcerative processes in the gastrointestinal tract, occurs due to cellular and tissue damage following treatment with 5-fluorouracil (5-FU). Rutin (RUT), a natural flavonoid extracted from Dimorphandra gardneriana, exhibits antioxidant, anti-inflammatory, cytoprotective, and gastroprotective properties. However, the effect of RUT on inflammatory processes in the intestine, especially on mucositis promoted by antineoplastic agents, has not yet been reported. In this study, we investigated the role of RUT on 5-FU-induced experimental intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, RUT-50, RUT-100, RUT-200, Celecoxib (CLX), and CLX + RUT-200 groups. The mice were weighed daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis); malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH) concentrations; mast and goblet cell counts; and cyclooxygenase-2 (COX-2) activity, as well as to perform immunohistochemical analyses. RUT treatment (200 mg/kg) prevented 5-FU-induced histopathological changes and reduced oxidative stress by decreasing MDA concentrations and increasing GSH concentrations. RUT attenuated the inflammatory response by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. These results suggest that the COX-2 pathway is one of the underlying protective mechanisms of RUT against 5-FU-induced intestinal mucositis.
Collapse
Affiliation(s)
- Lázaro de Sousa Fideles
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - João Antônio Leal de Miranda
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
- Correspondence: ; Tel.: +55-85-3366-8492
| | - Conceição da Silva Martins
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Maria Lucianny Lima Barbosa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Helder Bindá Pimenta
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Paulo Vitor de Souza Pimentel
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Claudio Silva Teixeira
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | | | | | - João Erivan Façanha Barreto
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
- Christus University Center (Unichristus), 133 Adolfo Gurgel Street, Fortaleza 63010-475, Brazil;
| | | | - Ariel Gustavo Scafuri
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
- Scafuri Institute of Human Sexuality, 1513 Republic of Lebanon Street, Varjota, Fortaleza 60175-222, Brazil;
| | - Joabe Lima Araújo
- Department of Genetics and Morphology, s/n Darcy Ribeiro University Campus, University of Brasília, Brasília-DF 70910-900, Brazil;
| | - Jefferson Almeida Rocha
- Medicinal Chemistry and Biotechnology Research Group (QUIMEBIO), Federal University of Maranhão (UFMA), São Bernardo/MA 65550-000, Brazil;
| | - Icaro Gusmão Pinto Vieira
- Technological Development Park, Federal University of Ceará, Humberto Monte Avenue, 2977, Pici Campus, Fortaleza 60440-900, Brazil;
| | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Matheus da Silva Campelo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Maria Elenir Nobre Pinho Ribeiro
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Gerly Anne de Castro Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Gilberto Santos Cerqueira
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (L.d.S.F.); (C.d.S.M.); (M.L.L.B.); (H.B.P.); (P.V.d.S.P.); (C.S.T.); (J.E.F.B.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| |
Collapse
|
31
|
Yin N, Gao Q, Tao W, Chen J, Bi J, Ding F, Wang Z. Paeoniflorin relieves LPS-induced inflammatory pain in mice by inhibiting NLRP3 inflammasome activation via transient receptor potential vanilloid 1. J Leukoc Biol 2020; 108:229-241. [PMID: 32083340 DOI: 10.1002/jlb.3ma0220-355r] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
LPS has been widely used to induce inflammatory pain, attributing to production of inflammatory cytokines and sensitization of nociceptors. Paeoniflorin (PF) possesses anti-nociceptive property, but its effect on LPS-induced inflammatory pain has not been investigated. In this study, we aimed to investigate the analgesic effect of PF on an inflammatory pain mouse model and explore the underlying mechanisms. LPS-induced inflammatory pain model was established in C57BL/6J mice after PF treatment. Then, thermal hyperalgesia, neutrophil infiltration, inflammatory cytokine production, intracellular Ca2+ levels, PKC activity, transient receptor potential vanilloid 1 (TRPV-1) expression, NF-κB transcription, and NLPR3 inflammasome activation were assessed by thermal withdrawal latency, histopathology, ELISA, intracellular Ca2+ concentration, immunohistochemistry, and Western blot, separately. PF significantly relieved inflammatory pain and paw edema in mice with LPS-induced inflammatory pain. Additionally, PF inhibited neutrophil infiltration, inflammatory cytokine production (IL-1β, TNF-α, and IL-6), intracellular Ca2+ levels, and PKC activity as well as suppressed TRPV-1 expression, NF-κB transcription, and NLPR3 inflammasome activation in the footpad tissue samples. Importantly, capsaicin (TRPV-1 agonists) obviously reversed the pain-relieving effect of PF, suggesting the involvement of TRPV-1 in the analgesic activity of PF. Our results indicated PF ameliorated LPS-induced inflammation and pain in mice by inhibiting TRPV-1-mediated NLRP3 inflammasome activation. These findings suggest that PF can be as a potential pharmacological agent for inflammatory pain and thus deserves more attention and further investigation.
Collapse
Affiliation(s)
- Nina Yin
- Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Qinghua Gao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenting Tao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiaojiao Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Jing Bi
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Fengmin Ding
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhigang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
32
|
Bai D, Ma Y, Lv L, Wang Y, Yang W, Ma Y. Progranulin suppresses the age-dependent enhancement of neuronal activity in the hypothalamus. Neurosci Lett 2020; 720:134755. [PMID: 31945450 DOI: 10.1016/j.neulet.2020.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 11/17/2022]
Abstract
Our previous investigations revealed that progranulin (PGRN) is a lysosomal protein involved in hippocampal neurogenesis and neuroinflammation. However, the possible involvement of PGRN in regulating inflammatory response and mediating neuronal activity is still not well-defined. Here, we demonstrate that PGRN deficiency enhances the age-dependent increase of neuronal activity in the paraventricular nucleus (PVN) of the hypothalamus. Aging increased neuronal activity in the PVN of the hypothalamus, and PGRN deficiency enhanced the effects of age on hypothalamic neuronal activity. Aging increased the lysosomal biogenesis and inflammatory response in microglia, which was also aggravated in PGRN-knockout mice. Moreover, PGRN deficiency enhanced interleukin-1 beta and lysosomal genes levels. These results suggest that PGRN deficiency may enhance the age-dependent increase of neuronal activity possibly because PGRN facilitates immunological responses through regulating lysosomal function.
Collapse
Affiliation(s)
- Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Leyuan Lv
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wanqing Yang
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China.
| |
Collapse
|
33
|
Guo C, He Y, Gai L, Qu J, Shi Y, Xu W, Cai Y, Wang B, Zhang J, Zhao Z, Yuan C. Balanophora polyandra Griff. prevents dextran sulfate sodium-induced murine experimental colitis via the regulation of NF-κB and NLRP3 inflammasome. Food Funct 2020; 11:6104-6114. [DOI: 10.1039/c9fo02494h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Balanophora polyandra Griff. (B. polyandra) is a folk medicine used as an antipyretic, antidote, haemostatic, dressing and haematic tonic, for the treatment of gonorrhea, syphilis, wounds, and the bleeding of the alimentary tract by the local people in China.
Collapse
|
34
|
Soderholm AT, Pedicord VA. Intestinal epithelial cells: at the interface of the microbiota and mucosal immunity. Immunology 2019; 158:267-280. [PMID: 31509239 PMCID: PMC6856932 DOI: 10.1111/imm.13117] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
The intestinal epithelium forms a barrier between the microbiota and the rest of the body. In addition, beyond acting as a physical barrier, the function of intestinal epithelial cells (IECs) in sensing and responding to microbial signals is increasingly appreciated and likely has numerous implications for the vast network of immune cells within and below the intestinal epithelium. IECs also respond to factors produced by immune cells, and these can regulate IEC barrier function, proliferation and differentiation, as well as influence the composition of the microbiota. The mechanisms involved in IEC-microbe-immune interactions, however, are not fully characterized. In this review, we explore the ability of IECs to direct intestinal homeostasis by orchestrating communication between intestinal microbes and mucosal innate and adaptive immune cells during physiological and inflammatory conditions. We focus primarily on the most recent findings and call attention to the numerous remaining unknowns regarding the complex crosstalk between IECs, the microbiota and intestinal immune cells.
Collapse
Affiliation(s)
- Amelia T. Soderholm
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| | - Virginia A. Pedicord
- Cambridge Institute of Therapeutic Immunology & Infectious DiseaseUniversity of CambridgeCambridgeUK
| |
Collapse
|
35
|
Citrobacter rodentium-host-microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol 2019; 17:701-715. [PMID: 31541196 DOI: 10.1038/s41579-019-0252-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Citrobacter rodentium is an extracellular enteric mouse-specific pathogen used to model infections with human pathogenic Escherichia coli and inflammatory bowel disease. C. rodentium injects type III secretion system effectors into intestinal epithelial cells (IECs) to target inflammatory, metabolic and cell survival pathways and establish infection. While the host responds to infection by activating innate and adaptive immune signalling, required for clearance, the IECs respond by rapidly shifting bioenergetics to aerobic glycolysis, which leads to oxygenation of the epithelium, an instant expansion of mucosal-associated commensal Enterobacteriaceae and a decline of obligate anaerobes. Moreover, infected IECs reprogramme intracellular metabolic pathways, characterized by simultaneous activation of cholesterol biogenesis, import and efflux, leading to increased serum and faecal cholesterol levels. In this Review we summarize recent advances highlighting the intimate relationship between C. rodentium pathogenesis, metabolism and the gut microbiota.
Collapse
|
36
|
Cheng J, Liu Q, Hu N, Zheng F, Zhang X, Ni Y, Liu J. Downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in high glucose conditioned by sponging miR-197. Gene 2019; 709:1-7. [DOI: 10.1016/j.gene.2019.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/03/2019] [Accepted: 05/06/2019] [Indexed: 02/05/2023]
|
37
|
Parvifoline AA Promotes Susceptibility of Hepatocarcinoma to Natural Killer Cell-Mediated Cytolysis by Targeting Peroxiredoxin. Cell Chem Biol 2019; 26:1122-1132.e6. [DOI: 10.1016/j.chembiol.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/24/2019] [Accepted: 04/02/2019] [Indexed: 12/23/2022]
|
38
|
The plasmacytoid dendritic cells evoke Salmonella-specific CTL effector response. ACTA ACUST UNITED AC 2019; 39:172-181. [PMID: 31529843 DOI: 10.7705/biomedica.v39i3.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 11/21/2022]
Abstract
Introduction: The immunological role of plasmacytoid dendritic cells (pDC) in bacterial infections such as Salmonella has been poorly documented. Therefore, we analyzed the effector function of these cells by presenting cytotoxic T lymphocytes (CTL) with Salmonella Typhimurium antigens.
Objective: To analyze the Salmonella-specific CTL response evoked by pDCs.
Materials and methods: We used plasmacytoid dendritic cells stained with carboxyfluorescein succinimidyl ester (CFSE) and pulsed with OmpC73, Salmonella Kb restricted epitopes or S. Typhimurium as targets for cytotoxicity assays.
Results: Specific lysis was shown to be statistically significant in pDC + OmpC73 for all effector:target ratios (p≤0.05). For pDC + S. Typhimurium, statistical significance was only observed at a 1:100 ratio (p≤0.05) using OmpC73.
Conclusion: Plasmacytoid dendritic cells evoke CTL response during S. Typhimurium infection.
Collapse
|
39
|
Velagapudi R, Kosoko AM, Olajide OA. Induction of Neuroinflammation and Neurotoxicity by Synthetic Hemozoin. Cell Mol Neurobiol 2019; 39:1187-1200. [PMID: 31332667 PMCID: PMC6764936 DOI: 10.1007/s10571-019-00713-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022]
Abstract
Hemozoin produced by Plasmodium falciparum during malaria infection has been linked to the neurological dysfunction in cerebral malaria. In this study, we determined whether a synthetic form of hemozoin (sHZ) produces neuroinflammation and neurotoxicity in cellular models. Incubation of BV-2 microglia with sHZ (200 and 400 µg/ml) induced significant elevation in the levels of TNFα, IL-6, IL-1β, NO/iNOS, phospho-p65, accompanied by an increase in DNA binding of NF-κB. Treatment of BV-2 microglia with sHZ increased protein levels of NLRP3 with accompanying increase in caspase-1 activity. In the presence of NF-κB inhibitor BAY11-7082 (10 µM), there was attenuation of sHZ-induced release of pro-inflammatory cytokines, NO/iNOS. In addition, increase in caspase-1/NLRP3 inflammasome activation was blocked by BAY11-7082. Pre-treatment with BAY11-7082 also reduced both phosphorylation and DNA binding of the p65 sub-unit. The NLRP3 inhibitor CRID3 (100 µM) did not prevent sHZ-induced release of TNFα and IL-6. However, production of IL-1β, NO/iNOS as well as caspase-1/NLRP3 activity was significantly reduced in the presence of CRID3. Incubation of differentiated neural progenitor (ReNcell VM) cells with sHZ resulted in a reduction in cell viability, accompanied by significant generation of cellular ROS and increased activity of caspase-6, while sHZ-induced neurotoxicity was prevented by N-acetylcysteine and Z-VEID-FMK. Taken together, this study shows that the synthetic form of hemozoin induces neuroinflammation through the activation of NF-κB and NLRP3 inflammasome. It is also proposed that sHZ induces ROS- and caspase-6-mediated neurotoxicity. These results have thrown more light on the actions of malarial hemozoin in the neurobiology of cerebral malaria.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.,Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ayokulehin M Kosoko
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Olumayokun A Olajide
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
40
|
Liu B, Lu R, Li H, Zhou Y, Zhang P, Bai L, Chen D, Chen J, Li J, Yu P, Wu J, Liang C, Song J, Liu X, Zhou J. Zhen-wu-tang ameliorates membranous nephropathy rats through inhibiting NF-κB pathway and NLRP3 inflammasome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152913. [PMID: 30991182 DOI: 10.1016/j.phymed.2019.152913] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Zhen-wu-tang (ZWT), a traditional herbal formula, has been widely used for the treatment of kidney diseases in clinics, but the underlying molecular mechanisms have not been fully understood. PURPOSE Inflammation mediated podocyte injury has been reported to constitute a crucial part in the pathogenesis of membranous nephropathy (MN). The current study was designed to evaluate the effect of ZWT on MN related to nuclear factor-κB (NF-κB) pathway and NLRP3 inflammasome. METHODS The main components of ZWT were identified by 3D-ultra performance liquid chromatography (3D-UPLC) assay. A MN rat model induced by cationic-bovine serum albumin (C-BSA) and podocytes stimulated by TNF-α were used in this study. The 24 h urine protein, serum total cholesterol (TC) and triglyceride (TG), as well as kidney histology were measured to evaluate kidney damage. The expressions of IgG and complement 3 (C3), and the co-localization of NLRP3 and ASC were detected by immunofluorescence. The expressions of podocyte injury related protein desmin, podocin were measured by immunohistochemistry and western blot. Cell vitality of cultured podocytes was detected by MTT assay, as apoptosis assay was measured via flow cytometry. The protein expressions of p-p65, p-IκBα, NLRP3, Caspase-1, IL-1β were detected by western blot. RESULTS Our results showed that ZWT significantly ameliorated kidney damage in MN model rats by decreasing the levels of 24 h urine protein, TC and TG. ZWT also improved renal histology and reduced the expressions of IgG and C3 in glomerulus. In addition, ZWT lessened the expressions of desmin, but increased podocin expression in vivo and vitro. ZWT protected cultured podocytes by maintaining cell vitality and inhibiting apoptosis. Moreover, we found that ZWT suppressed the expressions of NLRP3, Caspase-1, IL-1β and the co-localization of NLRP3 and ASC. Furthermore, the inhibition of NLRP3 inflammasome under ZWT treatment were accompanied by down-regulation of NF-κB pathway, as the p-p65 and p-IκBα protein expression were reduced. CONCLUSIONS Our present study indicates that the inhibition of NF-κB pathway and NLRP3 inflammasome might be the potential mechanisms for the therapeutic effects of ZWT against MN.
Collapse
Affiliation(s)
- Bihao Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 WaiHuan East Road, Guangzhou University Town, Guangzhou 510006, PR China
| | - Ruirui Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 WaiHuan East Road, Guangzhou University Town, Guangzhou 510006, PR China
| | - Honglian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 WaiHuan East Road, Guangzhou University Town, Guangzhou 510006, PR China
| | - Yuan Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 WaiHuan East Road, Guangzhou University Town, Guangzhou 510006, PR China
| | - Peichun Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 WaiHuan East Road, Guangzhou University Town, Guangzhou 510006, PR China
| | - Lixia Bai
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 WaiHuan East Road, Guangzhou University Town, Guangzhou 510006, PR China
| | - Dandan Chen
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Junqi Chen
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Jicheng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 WaiHuan East Road, Guangzhou University Town, Guangzhou 510006, PR China
| | - Pang Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 WaiHuan East Road, Guangzhou University Town, Guangzhou 510006, PR China
| | - Junbiao Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Chunling Liang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Jianping Song
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510400, PR China
| | - Xusheng Liu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 WaiHuan East Road, Guangzhou University Town, Guangzhou 510006, PR China.
| |
Collapse
|
41
|
Yi X, Xu E, Xiao Y, Cai X. Evaluation of the Relationship Between Common Variants in the TLR-9 Gene and Hip Osteoarthritis Susceptibility. Genet Test Mol Biomarkers 2019; 23:373-379. [PMID: 31066581 DOI: 10.1089/gtmb.2019.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: Hip osteoarthritis (HOA) is one of the most common types of osteoarthritis and affects nearly 10% of men and 18% of women who are >60 years of age worldwide. It has been demonstrated to be a genetic disease with a 50% heritability risk. Recently, the TLR-9 gene has been associated with knee OA in both Turkish and Chinese populations, but the relationship between the TLR-9 gene and HOA has not been evaluated. In this study, we aimed to evaluate the relationship between the common genetic variants in the TLR-9 gene and the predisposition of Han Chinese individuals to HOA. Methods: A total of 730 HOA patients and 1220 healthy controls were recruited in a hospital-based case-control study. Six common single nucleotide polymorphisms (SNPs) of the TLR-9 gene were selected for genotyping, and genetic association analyses were performed using both single-marker and haplotype-based methods. Results: The SNP rs187084 was found to be significantly associated with the risk of HOA after a Bonferroni correction (adjusted allelic p-values with age, gender, and body mass index [BMI] = 0.0008). The results indicated that the A allele of rs187084 is a risk allele for HOA and is likely to be a predisposing factor leading to an increased risk of HOA (adjusted odds ratio with age, gender, and BMI = 1.26, 95% confidence interval = 1.10-1.43). The results of the haplotype analyses confirmed a similar pattern to the SNP analyses. Conclusions: Our study provides strong evidence that variations in the TLR-9 gene are closely linked with genetic susceptibility to HOA in the Han Chinese population. This finding furthers the role of TLR-9 in the development and occurrence of OA in general.
Collapse
Affiliation(s)
- Xiaoqing Yi
- 1 Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Erdi Xu
- 1 Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanfeng Xiao
- 1 Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Cai
- 2 Department of Orthopaedic Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
42
|
Yang H, Yu HB, Bhinder G, Ryz NR, Lee J, Yang H, Fotovati A, Gibson DL, Turvey SE, Reid GS, Vallance BA. TLR9 limits enteric antimicrobial responses and promotes microbiota-based colonisation resistance during Citrobacter rodentium infection. Cell Microbiol 2019; 21:e13026. [PMID: 30893495 DOI: 10.1111/cmi.13026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/15/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022]
Abstract
Mammalian cells express an array of toll-like receptors to detect and respond to microbial pathogens, including enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC). These clinically important attaching and effacing (A/E) pathogens infect the apical surface of intestinal epithelial cells, causing inflammation as well as severe diarrheal disease. Because EPEC and EHEC are human-specific, the related murine pathogen Citrobacter rodentium has been widely used to define how hosts defend against A/E pathogens. This study explored the role of TLR9, a receptor that recognises unmethylated CpG dinucleotides present in bacterial DNA, in promoting host defence against C. rodentium. Infected Tlr9-/- mice suffered exaggerated intestinal damage and carried significantly higher (10-100 fold) pathogen burdens in their intestinal tissues as compared with wild type (WT) mice. C. rodentium infection also induced increased antimicrobial responses, as well as hyperactivation of NF-κB signalling in the intestines of Tlr9-/- mice. These changes were associated with accelerated depletion of the intestinal microbiota in Tlr9-/- mice as compared with WT mice. Notably, antibiotic-based depletion of the gut microbiota in WT mice prior to infection increased their susceptibility to the levels seen in Tlr9-/- mice. Our results therefore indicate that TLR9 signalling suppresses intestinal antimicrobial responses, thereby promoting microbiota-mediated colonisation resistance against C. rodentium infection.
Collapse
Affiliation(s)
- Hyungjun Yang
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hong B Yu
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Ganive Bhinder
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Natasha R Ryz
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Lee
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Hong Yang
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Abbas Fotovati
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Deanna L Gibson
- Department of Biology, The Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregor S Reid
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce A Vallance
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Scarozza P, Schmitt H, Monteleone G, Neurath MF, Atreya R. Oligonucleotides-A Novel Promising Therapeutic Option for IBD. Front Pharmacol 2019; 10:314. [PMID: 31068803 PMCID: PMC6491809 DOI: 10.3389/fphar.2019.00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Diseases (IBD), whose denomination comprehends Crohn's Disease (CD) and Ulcerative Colitis (UC), are intestinal chronic diseases that often require lifelong medical therapy. In the last two decades monoclonal antibodies against the cytokine TNF have become integral parts in the treatment of IBD patients, however there are unwanted side-effects and one third of patients show primary non-response while another subgroup loses response over time. Finding novel drugs which could act as therapies against precise pro-inflammatory molecular targets to avoid unwanted systemic side effects and additionally the process of immunization, represents an important aim for subsequent therapeutic approaches. Oligonucleotide based therapies represent a promising novel concept for the treatment of IBD. The molecular action of oligonucleotides ranges from inhibition of the translational process of mRNA transcripts of pro-inflammatory molecules, to mimicking bacterial DNA which can activate cellular targets for immunomodulation. Alicaforsen, selectively targets ICAM-1 mRNA. ICAM-1 is an adhesion molecule which is upregulated on endothelial cells during IBD, thereby mediating the adhesion and migration of leucocytes from blood to sites of active inflammation. In CD parenteral application of alicaforsen did not show therapeutic efficacy in phase II trials, but it demonstrated an improved efficacy as a topical enema in distal UC. Topical application of alicaforsen might represent a therapeutic perspective for refractory pouchitis as well. SMAD7 is a protein that inhibits the signaling of TGFβ, which is the mainstay of a regulatory counterpart in cellular immune responses. An antisense oligonucleotide against SMAD7 mRNA (mongersen) demonstrated pre-clinical and phase II efficacy in CD, but a phase III clinical trial was stopped due to lack of efficacy. Cobitolimod is a single strand oligonucleotide, which mimics bacterial DNA as its CpG dinucleotide sequences can be recognized by the Toll-like receptor 9 on different immune cells thereby causing induction of different cytokines, for example IL10 and IFNα. Topical application of cobitolimod was studied in UC patients. We will also discuss two other novel oligonucleotides which act on the GATA3 transcription factor (SB012) and on carbohydrate sulfotransferase 15 (STNM01), which could both represent novel promising therapeutic options for the treatment of UC.
Collapse
Affiliation(s)
- Patrizio Scarozza
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Heike Schmitt
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Giovanni Monteleone
- Department of Systems Medicine, Gastroenterology, University of Tor Vergata, Rome, Italy
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
44
|
Protective Effect of Cashew Gum (Anacardium occidentale L.) on 5-Fluorouracil-Induced Intestinal Mucositis. Pharmaceuticals (Basel) 2019; 12:ph12020051. [PMID: 30987265 PMCID: PMC6630449 DOI: 10.3390/ph12020051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Cashew gum (CG) has been reported as a potent anti-inflammatory agent. In the present study, we aimed to evaluate the effect of CG extracted from the exudate of Anacardium occidentale L. on experimental intestinal mucositis induced by 5-FU. Swiss mice were randomly divided into seven groups: Saline, 5-FU, CG 30, CG 60, CG 90, Celecoxib (CLX), and CLX + CG 90 groups. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH), and immunohistochemical analysis of interleukin 1 beta (IL-1β) and cyclooxygenase-2 (COX-2). 5-FU induced intense weight loss and reduction in villus height compared to the saline group. CG 90 prevented 5-FU-induced histopathological changes and decreased oxidative stress through decrease of MDA levels and increase of GSH concentration. CG attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. Our findings suggest that CG at a concentration of 90 mg/kg reverses the effects of 5-FU-induced intestinal mucositis.
Collapse
|
45
|
Liu M, Hu Y, Yuan Y, Tian Z, Zhang C. γδT Cells Suppress Liver Fibrosis via Strong Cytolysis and Enhanced NK Cell-Mediated Cytotoxicity Against Hepatic Stellate Cells. Front Immunol 2019; 10:477. [PMID: 30930903 PMCID: PMC6428727 DOI: 10.3389/fimmu.2019.00477] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is the excessive accumulation of extracellular matrix proteins, resulting from maladaptive wound healing responses to chronic liver injury. γδT cells are important in chronic liver injury pathogenesis and subsequent liver fibrosis; however, their role and underlying mechanisms are not fully understood. The present study aims to assess whether γδT cells contribute to liver fibrosis regression. Using a carbon tetrachloride (CCl4)-induced murine model of liver fibrosis in wild-type (WT) and γδT cell deficient (TCRδ−/−) mice, we demonstrated that γδT cells protected against liver fibrosis and exhibited strong cytotoxicity against activated hepatic stellate cells (HSCs). Further study show that chronic liver inflammation promoted hepatic γδT cells to express NKp46, which contribute to the direct killing of activated HSCs by γδT cells. Moreover, we identified that an IFNγ-producing γδT cell subset (γδT1) cells exhibited stronger cytotoxicity against activated HSCs than the IL-17-producing subset (γδT17) cells upon chronic liver injury. In addition, γδT cells promoted the anti-fibrotic ability of conventional natural killer (cNK) cells and liver-resident NK (lrNK) cells by enhancing their cytotoxicity against activated HSCs. The cell crosstalk between γδT and NK cells was shown to depend partly on co-stimulatory receptor 4-1BB (CD137) engagement. In conclusion, our data confirmed the protective effects of γδT cells, especially the γδT1 subset, by directly killing activated HSCs and increasing NK cell-mediated cytotoxicity against activated HSCs in CCl4-induced liver fibrosis, which suggest valuable therapeutic targets to treat liver fibrosis.
Collapse
Affiliation(s)
- Meifang Liu
- School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University, Jinan, China
| | - Yuan Hu
- School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University, Jinan, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University, Jinan, China
| | - Zhigang Tian
- School of Life Sciences, Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Cai Zhang
- School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University, Jinan, China
| |
Collapse
|
46
|
Knockdown of TLR4 attenuates high glucose-induced podocyte injury via the NALP3/ASC/Caspase-1 signaling pathway. Biomed Pharmacother 2018; 107:1393-1401. [DOI: 10.1016/j.biopha.2018.08.134] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 01/20/2023] Open
|
47
|
Lv J, Su W, Yu Q, Zhang M, Di C, Lin X, Wu M, Xia Z. Heme oxygenase-1 protects airway epithelium against apoptosis by targeting the proinflammatory NLRP3-RXR axis in asthma. J Biol Chem 2018; 293:18454-18465. [PMID: 30333233 DOI: 10.1074/jbc.ra118.004950] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/05/2018] [Indexed: 12/19/2022] Open
Abstract
Asthma is thought to be caused by malfunction of type 2 T helper cell (Th2)-mediated immunity, causing excessive inflammation, mucus overproduction, and apoptosis of airway epithelial cells. Heme oxygenase-1 (HO-1) functions in heme catabolism and is both cytoprotective and anti-inflammatory. We hypothesized that this dual function may be related to asthma's etiology. Using primary airway epithelial cells (pAECs) and an asthma mouse model, we demonstrate that severe lung inflammation is associated with rapid pAEC apoptosis. Surprisingly, NOD-like receptor protein 3 (NLRP3) inhibition, retinoid X receptor (RXR) deficiency, and HO-1 induction were associated with abrogated apoptosis. MCC950, a selective small-molecule inhibitor of canonical and noncanonical NLRP3 activation, reduced RXR expression, leading to decreased pAEC apoptosis that was reversed by the RXR agonist adapalene. Of note, HO-1 induction in a mouse model of ovalbumin-induced eosinophilic asthma suppressed Th2 responses and reduced apoptosis of pulmonary pAECs. In vitro, HO-1 induction desensitized cultured pAECs to ovalbumin-induced apoptosis, confirming the in vivo observations. Critically, the HO-1 products carbon monoxide and bilirubin suppressed the NLRP3-RXR axis in pAECs. Furthermore, HO-1 impaired production of NLRP3-RXR-induced cytokines (interleukin [IL]-25, IL-33, thymic stromal lymphopoietin, and granulocyte-macrophage colony-stimulating factor) in pAECs and lungs. Finally, we demonstrate that HO-1 binds to the NACHT domain of NLRP3 and the RXRα and RXRβ subunits and that this binding is not reversed by Sn-protoporphyrin. Our findings indicate that HO-1 and its products are essential for pAEC survival to maintain airway epithelium homeostasis during NLRP3-RXR-mediated apoptosis and inflammation.
Collapse
Affiliation(s)
- Jiajia Lv
- From the Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Wen Su
- From the Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Qianying Yu
- From the Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Meng Zhang
- From the Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Caixia Di
- From the Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Xiaoliang Lin
- From the Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Min Wu
- the School of Medicine & Health Sciences, Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota 58202
| | - Zhenwei Xia
- From the Department of Pediatrics and Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| |
Collapse
|
48
|
Günther J, Seyfert HM. The first line of defence: insights into mechanisms and relevance of phagocytosis in epithelial cells. Semin Immunopathol 2018; 40:555-565. [PMID: 30182191 PMCID: PMC6223882 DOI: 10.1007/s00281-018-0701-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/09/2018] [Indexed: 12/16/2022]
Abstract
Epithelial tissues cover most of the external and internal surfaces of the body and its organs. Inevitably, these tissues serve as first line of defence against inorganic, organic, and microbial intruders. Epithelial cells are the main cell type of these tissues. Besides their function as cellular barrier, there is growing evidence that epithelial cells are of particular relevance as initial sensors of danger and also as executers of adequate defence responses. These cells feature various essential functions to maintain tissue integrity in health and disease. In this review, we survey some of the different innate immune functions of epithelial cells in mucosal tissues being constantly exposed to a plethora of harmless contaminants but also of pathogens. We discuss how epithelial cells avoid inadequate immune responses in such conditions. In particular, we will focus on the diverse types and mechanisms of phagocytosis used by epithelial cells to not only maintain homeostasis but to also harness the host response against invading pathogens.
Collapse
Affiliation(s)
- Juliane Günther
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, 18196, Dummerstorf, Germany.
| | - Hans-Martin Seyfert
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, 18196, Dummerstorf, Germany
| |
Collapse
|
49
|
Intestinal Lamina Propria CD4 + T Cells Promote Bactericidal Activity of Macrophages via Galectin-9 and Tim-3 Interaction during Salmonella enterica Serovar Typhimurium Infection. Infect Immun 2018; 86:IAI.00769-17. [PMID: 29844236 DOI: 10.1128/iai.00769-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
The intestinal immune system is crucial for protection from pathogenic infection and maintenance of mucosal homeostasis. We studied the intestinal immune microenvironment in a Salmonella enterica serovar Typhimurium intestinal infection mouse model. Intestinal lamina propria macrophages are the main effector cells in innate resistance to intracellular microbial pathogens. We found that S Typhimurium infection augmented Tim-3 expression on intestinal lamina propria CD4+ T cells and enhanced galectin-9 expression on F4/80+ CD11b+ macrophages. Moreover, CD4+ T cells promoted the activation and bactericidal activity of intestinal F4/80+ CD11b+ macrophages via the Tim-3/galectin-9 interaction during S Typhimurium infection. Blocking the Tim-3/galectin-9 interaction with α-lactose significantly attenuated the bactericidal activity of intracellular S Typhimurium by macrophages. Furthermore, the Tim-3/galectin-9 interaction promoted the formation and activation of inflammasomes, which led to caspase-1 cleavage and interleukin 1β (IL-1β) secretion. The secretion of active IL-1β further improved bactericidal activity of macrophages and galectin-9 expression on macrophages. These results demonstrated the critical role of the cross talk between CD4+ T cells and macrophages, particularly the Tim-3/galectin-9 interaction, in antimicrobial immunity and the control of intestinal pathogenic infections.
Collapse
|
50
|
O'Sullivan KM, Ford SL, Longano A, Kitching AR, Holdsworth SR. Intrarenal Toll-like receptor 4 and Toll-like receptor 2 expression correlates with injury in antineutrophil cytoplasmic antibody-associated vasculitis. Am J Physiol Renal Physiol 2018; 315:F1283-F1294. [PMID: 29923769 DOI: 10.1152/ajprenal.00040.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In antineutrophil cytoplasmic antibody-associated vasculitis (AAV), Toll-like receptors (TLRs) may be engaged by infection-associated patterns and by endogenous danger signals, linking infection and innate inflammation with this autoimmune disease. This study examined intrarenal TLR2, TLR4, and TLR9 expression and renal injury in AAV, testing the hypothesis that increased TLR expression correlates with renal injury. Patients with AAV exhibited both glomerular and tubulointerstitial expression of TLR2, TLR4, and TLR9, with TLR4 being the most prominent in both compartments. Glomerular TLR4 expression correlated with glomerular segmental necrosis and cellular crescents, with TLR2 expression correlating with glomerular segmental necrosis. The extent and intensity of glomerular and tubulointerstitial TLR4 expression and the intensity of glomerular TLR2 expression inversely correlated with the presenting estimated glomerular filtration rate. Although myeloid cells within the kidney expressed TLR2, TLR4, and TLR9, TLR2 and TLR4 colocalized with endothelial cells and podocytes, whereas TLR9 was expressed predominantly by podocytes. The functional relevance of intrarenal TLR expression was further supported by the colocalization of TLRs with their endogenous ligands high-mobility group box 1 and fibrinogen. Therefore, in AAV, the extent of intrarenal TLR4 and TLR2 expression and their correlation with renal injury indicates that TLR4, and to a lesser degree TLR2, may be potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Kim M O'Sullivan
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia
| | - Sharon L Ford
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia
| | - Anthony Longano
- Department of Pathology, Monash Health, Clayton, Victoria , Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia.,Department of Nephrology, Monash Health, Clayton, Victoria , Australia.,Department of Paediatric Nephrology, Monash Health, Clayton, Victoria , Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Monash University Department of Medicine , Clayton, Victoria , Australia.,Department of Nephrology, Monash Health, Clayton, Victoria , Australia
| |
Collapse
|