1
|
Nguyen YTM, Sibley L, Przanowski P, Zhao XY, Kovacs M, Wang S, Jones MK, Cowan M, Liu W, Merchak AR, Gaultier A, Janes K, Zang C, Harris T, Ewald SE, Zong H. Toxoplasma gondii infection supports the infiltration of T cells into brain tumors. J Neuroimmunol 2024; 393:578402. [PMID: 38996717 PMCID: PMC11318612 DOI: 10.1016/j.jneuroim.2024.578402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
Few T cells infiltrate into primary brain tumors, fundamentally hampering the effectiveness of immunotherapy. We hypothesized that Toxoplasma gondii, a microorganism that naturally elicits a Th1 response in the brain, can promote T cell infiltration into brain tumors despite their immune suppressive microenvironment. Using a mouse genetic model for medulloblastoma, we found that T. gondii infection induced the infiltration of activatable T cells into the tumor mass and led to myeloid cell reprogramming toward a T cell-supportive state, without causing severe health issues in mice. The study provides a concrete foundation for future studies to take advantage of the immune modulatory capacity of T. gondii to facilitate brain tumor immunotherapy.
Collapse
Affiliation(s)
- Yen T M Nguyen
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lydia Sibley
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Piotr Przanowski
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xiao-Yu Zhao
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael Kovacs
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Shengyuan Wang
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Marieke K Jones
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Maureen Cowan
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Wenjie Liu
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrea R Merchak
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kevin Janes
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Chongzhi Zang
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA; Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tajie Harris
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Rebejac J, Eme-Scolan E, Rua R. Role of meningeal immunity in brain function and protection against pathogens. J Inflamm (Lond) 2024; 21:3. [PMID: 38291415 PMCID: PMC10829400 DOI: 10.1186/s12950-023-00374-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
The brain and spinal cord collectively referred to as the Central Nervous System (CNS) are protected by the blood-brain barrier that limits molecular, microbial and immunological trafficking. However, in the last decade, many studies have emphasized the protective role of 'border regions' at the surface of the CNS which are highly immunologically active, in contrast with the CNS parenchyma. In the steady-state, lymphoid and myeloid cells residing in the cranial meninges can affect brain function and behavior. Upon infection, they provide a first layer of protection against microbial neuroinvasion. The maturation of border sites over time enables more effective brain protection in adults as compared to neonates. Here, we provide a comprehensive update on the meningeal immune system and its role in physiological brain function and protection against infectious agents.
Collapse
Affiliation(s)
- Julie Rebejac
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Elisa Eme-Scolan
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Rejane Rua
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.
| |
Collapse
|
3
|
Eme-Scolan E, Arnaud-Paroutaud L, Haidar N, Roussel-Queval A, Rua R. Meningeal regulation of infections: A double-edged sword. Eur J Immunol 2023; 53:e2250267. [PMID: 37402972 DOI: 10.1002/eji.202250267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023]
Abstract
In the past 10 years, important discoveries have been made in the field of neuroimmunology, especially regarding brain borders. Indeed, meninges are protective envelopes surrounding the CNS and are currently in the spotlight, with multiple studies showing their involvement in brain infection and cognitive disorders. In this review, we describe the meningeal layers and their protective role in the CNS against bacterial, viral, fungal, and parasitic infections, by immune and nonimmune cells. Moreover, we discuss the neurological and cognitive consequences resulting from meningeal infections in neonates (e.g. infection with group B Streptococcus, cytomegalovirus, …) or adults (e.g. infection with Trypanosoma brucei, Streptococcus pneumoniae, …). We hope that this review will bring to light an integrated view of meningeal immune regulations during CNS infections and their neurological consequences.
Collapse
Affiliation(s)
- Elisa Eme-Scolan
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Laurie Arnaud-Paroutaud
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Narjess Haidar
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Annie Roussel-Queval
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Rejane Rua
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| |
Collapse
|
4
|
Rego S, Sanchez G, Da Mesquita S. Current views on meningeal lymphatics and immunity in aging and Alzheimer's disease. Mol Neurodegener 2023; 18:55. [PMID: 37580702 PMCID: PMC10424377 DOI: 10.1186/s13024-023-00645-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related form of dementia associated with the accumulation of pathological aggregates of amyloid beta and neurofibrillary tangles in the brain. These phenomena are accompanied by exacerbated inflammation and marked neuronal loss, which altogether contribute to accelerated cognitive decline. The multifactorial nature of AD, allied to our still limited knowledge of its etiology and pathophysiology, have lessened our capacity to develop effective treatments for AD patients. Over the last few decades, genome wide association studies and biomarker development, alongside mechanistic experiments involving animal models, have identified different immune components that play key roles in the modulation of brain pathology in AD, affecting its progression and severity. As we will relay in this review, much of the recent efforts have been directed to better understanding the role of brain innate immunity, and particularly of microglia. However, and despite the lack of diversity within brain resident immune cells, the brain border tissues, especially the meninges, harbour a considerable number of different types and subtypes of adaptive and innate immune cells. Alongside microglia, which have taken the centre stage as important players in AD research, there is new and exciting evidence pointing to adaptive immune cells, namely T and B cells found in the brain and its meninges, as important modulators of neuroinflammation and neuronal (dys)function in AD. Importantly, a genuine and functional lymphatic vascular network is present around the brain in the outermost meningeal layer, the dura. The meningeal lymphatics are directly connected to the peripheral lymphatic system in different mammalian species, including humans, and play a crucial role in preserving a "healthy" immune surveillance of the CNS, by shaping immune responses, not only locally at the meninges, but also at the level of the brain tissue. In this review, we will provide a comprehensive view on our current knowledge about the meningeal lymphatic vasculature, emphasizing its described roles in modulating CNS fluid and macromolecule drainage, meningeal and brain immunity, as well as glial and neuronal function in aging and in AD.
Collapse
Affiliation(s)
- Shanon Rego
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guadalupe Sanchez
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Post-baccalaureate Research Education Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Neuroscience Ph.D. Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Buenaventura RG, Harvey AC, Burns MP, Main BS. Traumatic brain injury induces an adaptive immune response in the meningeal transcriptome that is amplified by aging. Front Neurosci 2023; 17:1210175. [PMID: 37588516 PMCID: PMC10425597 DOI: 10.3389/fnins.2023.1210175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Traumatic Brain Injury (TBI) is a major cause of disability and mortality, particularly among the elderly, yet our mechanistic understanding of how age renders the post-traumatic brain vulnerable to poor clinical outcomes and susceptible to neurological disease remains poorly understood. It is well established that dysregulated and sustained immune responses contribute to negative outcomes after TBI, however our understanding of the interactions between central and peripheral immune reservoirs is still unclear. The meninges serve as the interface between the brain and the immune system, facilitating important bi-directional roles in healthy and disease settings. It has been previously shown that disruption of this system exacerbates inflammation in age related neurodegenerative disorders such as Alzheimer's disease, however we have an incomplete understanding of how the meningeal compartment influences immune responses after TBI. Here, we examine the meningeal tissue and its response to brain injury in young (3-months) and aged (18-months) mice. Utilizing a bioinformatic approach, high-throughput RNA sequencing demonstrates alterations in the meningeal transcriptome at sub-acute (7-days) and chronic (1 month) timepoints after injury. We find that age alone chronically exacerbates immunoglobulin production and B cell responses. After TBI, adaptive immune response genes are up-regulated in a temporal manner, with genes involved in T cell responses elevated sub-acutely, followed by increases in B cell related genes at chronic time points after injury. Pro-inflammatory cytokines are also implicated as contributing to the immune response in the meninges, with ingenuity pathway analysis identifying interferons as master regulators in aged mice compared to young mice following TBI. Collectively these data demonstrate the temporal series of meningeal specific signatures, providing insights into how age leads to worse neuroinflammatory outcomes in TBI.
Collapse
Affiliation(s)
| | | | | | - Bevan S. Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
6
|
Pereira JA, Lanzar Z, Clark JT, Hart AP, Douglas BB, Shallberg L, O’Dea K, Christian DA, Hunter CA. PD-1 and CTLA-4 exert additive control of effector regulatory T cells at homeostasis. Front Immunol 2023; 14:997376. [PMID: 36960049 PMCID: PMC10028286 DOI: 10.3389/fimmu.2023.997376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
At homeostasis, a substantial proportion of Foxp3+ T regulatory cells (Tregs) have an activated phenotype associated with enhanced TCR signals and these effector Treg cells (eTregs) co-express elevated levels of PD-1 and CTLA-4. Short term in vivo blockade of the PD-1 or CTLA-4 pathways results in increased eTreg populations, while combination blockade of both pathways had an additive effect. Mechanistically, combination blockade resulted in a reduction of suppressive phospho-SHP2 Y580 in eTreg cells which was associated with increased proliferation, enhanced production of IL-10, and reduced dendritic cell and macrophage expression of CD80 and MHC-II. Thus, at homeostasis, PD-1 and CTLA-4 function additively to regulate eTreg function and the ability to target these pathways in Treg cells may be useful to modulate inflammation.
Collapse
Affiliation(s)
- Joseph A. Pereira
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Zachary Lanzar
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph T. Clark
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew P. Hart
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Bonnie B. Douglas
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Lindsey Shallberg
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Keenan O’Dea
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Christian
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A. Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Neutzner M, Kohler C, Frank S, Killer HE, Neutzner A. Impact of aging on meningeal gene expression. Fluids Barriers CNS 2023; 20:12. [PMID: 36747230 PMCID: PMC9903605 DOI: 10.1186/s12987-023-00412-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The three-layered meninges cover and protect the central nervous system and form the interface between cerebrospinal fluid and the brain. They are host to a lymphatic system essential for maintaining fluid dynamics inside the cerebrospinal fluid-filled subarachnoid space and across the brain parenchyma via their connection to glymphatic structures. Meningeal fibroblasts lining and traversing the subarachnoid space have direct impact on the composition of the cerebrospinal fluid through endocytotic uptake as well as extensive protein secretion. In addition, the meninges are an active site for immunological processes and act as gatekeeper for immune cells entering the brain. During aging in mice, lymphatic drainage from the brain is less efficient contributing to neurodegenerative processes. Aging also affects the immunological status of the meninges, with increasing numbers of T cells, changing B cell make-up, and altered macrophage complement. METHODS We employed RNASeq to measure gene expression and to identify differentially expressed genes in meninges isolated from young and aged mice. Using Ingenuity pathway, GO term, and MeSH analyses, we identified regulatory pathways and cellular functions in meninges affected by aging. RESULTS Aging had profound impact on meningeal gene expression. Pathways related to innate as well as adaptive immunity were affected. We found evidence for increasing numbers of T and B lymphocytes and altered activity profiles for macrophages and other myeloid cells. Furthermore, expression of pro-inflammatory cytokine and chemokine genes increased with aging. Similarly, the complement system seemed to be more active in meninges of aged mice. Altered expression of solute carrier genes pointed to age-dependent changes in cerebrospinal fluid composition. In addition, gene expression for secreted proteins showed age-dependent changes, in particular, genes related to extracellular matrix composition and organization were affected. CONCLUSIONS Aging has profound effects on meningeal gene expression; thereby affecting the multifaceted functions meninges perform to maintain the homeostasis of the central nervous system. Thus, age-dependent neurodegenerative processes and cognitive decline are potentially in part driven by altered meningeal function.
Collapse
Affiliation(s)
- Melanie Neutzner
- grid.6612.30000 0004 1937 0642Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Corina Kohler
- grid.6612.30000 0004 1937 0642Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Stephan Frank
- grid.6612.30000 0004 1937 0642Department of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Hanspeter E. Killer
- grid.6612.30000 0004 1937 0642Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland.
| |
Collapse
|
8
|
Abdelbaky HH, Mitsuhashi S, Watanabe K, Ushio N, Miyakawa M, Furuoka H, Nishikawa Y. Involvement of chemokine receptor CXCR3 in the defense mechanism against Neospora caninum infection in C57BL/6 mice. Front Microbiol 2023; 13:1045106. [PMID: 36704563 PMCID: PMC9873264 DOI: 10.3389/fmicb.2022.1045106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
C-X-C motif chemokine receptor 3 (CXCR3) is an important receptor controlling the migration of leukocytes, although there is no report regarding its role in Neospora caninum infection. Herein, we investigated the relevance of CXCR3 in the resistance mechanism to N. caninum infection in mice. Wild-type (WT) C57BL/6 mice and CXCR3-knockout (CXCR3KO) mice were used in all experiments. WT mice displayed a high survival rate (100%), while 80% of CXCR3KO mice succumbed to N. caninum infection within 50 days. Compared with WT mice, CXCR3KO mice exhibited significantly lower body weights and higher clinical scores at the subacute stage of infection. Flow cytometric analysis revealed CXCR3KO mice as having significantly increased proportions and numbers of CD11c-positive cells compared with WT mice at 5 days post infection (dpi). However, levels of interleukin-6 and interferon-γ in serum and ascites were similar in all groups at 5 dpi. Furthermore, no differences in parasite load were detected in brain, spleen, lungs or liver tissue of CXCR3KO and WT mice at 5 and 21 dpi. mRNA analysis of brain tissue collected from infected mice at 30 dpi revealed no changes in expression levels of inflammatory response genes. Nevertheless, the brain tissue of infected CXCR3KO mice displayed significant necrosis and microglial activation compared with that of WT mice at 21 dpi. Interestingly, the brain tissue of CXCR3KO mice displayed significantly lower numbers of FoxP3+ cells compared with the brain tissue of WT mice at 30 dpi. Accordingly, our study suggests that the lack of active regulatory T cells in brain tissue of infected CXCR3KO mice is the main cause of these mice having severe necrosis and lower survival compared with WT mice. Thus, CXCR3+ regulatory T cells may play a crucial role in control of neosporosis.
Collapse
Affiliation(s)
- Hanan H. Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Shuichiro Mitsuhashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kenichi Watanabe
- Division of Pathobiological Science, Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Nanako Ushio
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Miku Miyakawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hidefumi Furuoka
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan,*Correspondence: Yoshifumi Nishikawa, ✉
| |
Collapse
|
9
|
Cassidy BR, Logan S, Farley JA, Owen DB, Sonntag WE, Drevets DA. Progressive cognitive impairment after recovery from neuroinvasive and non-neuroinvasive Listeria monocytogenes infection. Front Immunol 2023; 14:1146690. [PMID: 37143648 PMCID: PMC10151798 DOI: 10.3389/fimmu.2023.1146690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
Background Neuro-cognitive impairment is a deleterious complication of bacterial infections that is difficult to treat or prevent. Listeria monocytogenes (Lm) is a neuroinvasive bacterial pathogen and commonly used model organism for studying immune responses to infection. Antibiotic-treated mice that survive systemic Lm infection have increased numbers of CD8+ and CD4+ T-lymphocytes in the brain that include tissue resident memory (TRM) T cells, but post-infectious cognitive decline has not been demonstrated. We hypothesized that Lm infection would trigger cognitive decline in accord with increased numbers of recruited leukocytes. Methods Male C57BL/6J mice (age 8 wks) were injected with neuroinvasive Lm 10403s, non-neuroinvasive Δhly mutants, or sterile saline. All mice received antibiotics 2-16d post-injection (p.i.) and underwent cognitive testing 1 month (mo) or 4 mo p.i. using the Noldus PhenoTyper with Cognition Wall, a food reward-based discrimination procedure using automated home cage based observation and monitoring. After cognitive testing, brain leukocytes were quantified by flow cytometry. Results Changes suggesting cognitive decline were observed 1 mo p.i. in both groups of infected mice compared with uninfected controls, but were more widespread and significantly worse 4 mo p.i. and most notably after Lm 10403s. Impairments were observed in learning, extinction of prior learning and distance moved. Infection with Lm 10403s, but not Δhly Lm, significantly increased numbers of CD8+ and CD4+ T-lymphocytes, including populations expressing CD69 and TRM cells, 1 mo p.i. Numbers of CD8+, CD69+CD8+ T-lymphocytes and CD8+ TRM remained elevated at 4 mo p.i. but numbers of CD4+ cells returned to homeostatic levels. Higher numbers of brain CD8+ T-lymphocytes showed the strongest correlations with reduced cognitive performance. Conclusions Systemic infection by neuroinvasive as well as non-neuroinvasive Lm triggers a progressive decline in cognitive impairment. Notably, the deficits are more profound after neuroinvasive infection that triggers long-term retention of CD8+ T-lymphocytes in the brain, than after non-neuroinvasive infection, which does not lead to retained cells in the brain. These results support the conclusion that systemic infections, particularly those that lead to brain leukocytosis trigger a progressive decline in cognitive function and implicate CD8+ T-lymphocytes, including CD8+TRM in the etiology of this impairment.
Collapse
Affiliation(s)
- Benjamin R. Cassidy
- Department of Internal Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Sreemathi Logan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Julie A. Farley
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Daniel B. Owen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - William E. Sonntag
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Douglas A. Drevets
- Department of Internal Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
- *Correspondence: Douglas A. Drevets,
| |
Collapse
|
10
|
T cell surveillance of Toxoplasma gondii: Basic insights into how T cells operate in the central nervous system. Curr Opin Neurobiol 2022; 77:102640. [PMID: 36240583 DOI: 10.1016/j.conb.2022.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/10/2023]
Abstract
The ability of T cells to operate in the central nervous system (CNS) is required for resistance to multiple pathogens that affect this tissue. The intracellular parasite Toxoplasma gondii has evolved to persist in the CNS and poses unique challenges to the immune system with the need to control parasite replication while balancing the adverse pathology associated with local inflammation. This article reviews the models used to study the response to T. gondii during toxoplasmic encephalitis and highlights some of the broader lessons that are relevant to understanding how T cells function in the CNS.
Collapse
|
11
|
Audshasai T, Coles JA, Panagiotou S, Khandaker S, Scales HE, Kjos M, Baltazar M, Vignau J, Brewer JM, Kadioglu A, Yang M. Streptococcus pneumoniae Rapidly Translocate from the Nasopharynx through the Cribriform Plate to Invade the Outer Meninges. mBio 2022; 13:e0102422. [PMID: 35924840 PMCID: PMC9426477 DOI: 10.1128/mbio.01024-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
The entry routes and translocation mechanisms of microorganisms or particulate materials into the central nervous system remain obscure We report here that Streptococcus pneumoniae (pneumococcus), or polystyrene microspheres of similar size, appear in the meninges of the dorsal cortex of mice within minutes of inhaled delivery. Recovery of viable bacteria from dissected tissue and fluorescence microscopy show that up to at least 72 h, pneumococci and microspheres were predominantly found in the outer of the two meninges: the pachymeninx. No pneumococci were found in blood or cerebrospinal fluid. Intravital imaging through the skull, aligned with flow cytometry showed recruitment and activation of LysM+ cells in the dorsal pachymeninx at 5 and 10 hours following intranasal infection. Imaging of the cribriform plate suggested that both pneumococci and microspheres entered through the foramina via an inward flow of fluid connecting the nose to the pachymeninx. Our findings bring new insight into the varied mechanisms of pneumococcal invasion of the central nervous system, but they are also pertinent to the delivery of drugs to the brain and the entry of airborne particulate matter into the cranium. IMPORTANCE Using two-photon imaging, we show that pneumococci translocate from the nasopharynx to the dorsal meninges of a mouse in the absence of any bacteria found in blood or cerebrospinal fluid. Strikingly, this takes place within minutes of inhaled delivery of pneumococci, suggesting the existence of an inward flow of fluid connecting the nasopharynx to the meninges, rather than a receptor-mediated mechanism. We also show that this process is size dependent, as microspheres of the same size as pneumococci can translocate along the same pathway, while larger size microspheres cannot. Furthermore, we describe the host response to invasion of the outer meninges. Our study provides a completely new insight into the key initial events that occur during the translocation of pneumococci directly from the nasal cavity to the meninges, with relevance to the development of intranasal drug delivery systems and the investigations of brain damage caused by inhaled air pollutants.
Collapse
Affiliation(s)
- Teerawit Audshasai
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Jonathan A. Coles
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Stavros Panagiotou
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Shadia Khandaker
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Hannah E. Scales
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Murielle Baltazar
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Julie Vignau
- Centre de Recherche en Cancérologie et Immunologie Nantes Angers, Université de Nantes, Nantes, France
| | - James M. Brewer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Aras Kadioglu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Marie Yang
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Malko D, Elmzzahi T, Beyer M. Implications of regulatory T cells in non-lymphoid tissue physiology and pathophysiology. Front Immunol 2022; 13:954798. [PMID: 35936011 PMCID: PMC9354719 DOI: 10.3389/fimmu.2022.954798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Treg cells have been initially described as gatekeepers for the control of autoimmunity, as they can actively suppress the activity of other immune cells. However, their role goes beyond this as Treg cells further control immune responses during infections and tumor development. Furthermore, Treg cells can acquire additional properties for e.g., the control of tissue homeostasis. This is instructed by a specific differentiation program and the acquisition of effector properties unique to Treg cells in non-lymphoid tissues. These tissue Treg cells can further adapt to their tissue environment and acquire distinct functional properties through specific transcription factors activated by a combination of tissue derived factors, including tissue-specific antigens and cytokines. In this review, we will focus on recent findings extending our current understanding of the role and differentiation of these tissue Treg cells. As such we will highlight the importance of tissue Treg cells for tissue maintenance, regeneration, and repair in adipose tissue, muscle, CNS, liver, kidney, reproductive organs, and the lung.
Collapse
Affiliation(s)
- Darya Malko
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Tarek Elmzzahi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Platform foR SinglE Cell GenomIcS and Epigenomics (PRECISE), Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Estrada Brull A, Panetti C, Joller N. Moving to the Outskirts: Interplay Between Regulatory T Cells and Peripheral Tissues. Front Immunol 2022; 13:864628. [PMID: 35572535 PMCID: PMC9099010 DOI: 10.3389/fimmu.2022.864628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) restrain excessive immune responses and dampen inflammation. In addition to this classical immune suppressive role, Tregs in non-lymphoid tissues also promote tissue homeostasis, regeneration and repair. In this review, we outline our current understanding of how Tregs migrate to peripheral tissues and the factors required for their maintenance at these sites. We discuss the tissue-specific adaptations of Tregs at barrier and immuno-privileged sites and the mechanisms that regulate their function within these organs. Furthermore, we outline what is known about the interactions of Tregs with non-immune cells in the different peripheral tissues at steady state and upon challenge or tissue damage. A thorough understanding of the tissue-specific adaptations and functions of Tregs will potentially pave the way for therapeutic approaches targeting their regenerative role.
Collapse
|
14
|
Warunek J, Jin RM, Blair SJ, Garis M, Marzullo B, Wohlfert EA. Tbet Expression by Regulatory T Cells Is Needed to Protect against Th1-Mediated Immunopathology during Toxoplasma Infection in Mice. Immunohorizons 2021; 5:931-943. [PMID: 34893511 DOI: 10.4049/immunohorizons.2100080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/19/2022] Open
Abstract
Toxoplasma gondii infection has proven to be an ideal model to understand the delicate balance between protective immunity and immune-mediated pathology during infection. Lethal infection causes a collapse of T regulatory cells (Tregs) mediated by the loss of IL-2 and conversion of Tregs to IFN-γ-producing cells. Importantly, these Tregs highly express the Th1 transcription factor Tbet. To determine the role of Tbet in Tregs, we infected Tbx21f/f -Foxp3YFPCre and control Foxp3YFPCre mice with the type II strain of T. gondii, ME49. The majority of Tbx21f/f -Foxp3YFPCre mice succumbed to a nonlethal dose. Notably, parasite burden was reduced in Tbx21f/f -Foxp3YFPCre compared with Foxp3YFPCre control mice. We found that Tbx21f/f -Foxp3YFPCre mice have significantly higher serum levels of proinflammatory cytokines IFN-γ and TNF-α, suggestive of a heightened immune response. To test if CD4+ T cells were driving immunopathology, we treated Tbx21f/f -Foxp3YFPCre mice with anti-CD4-depleting Abs and partially rescued these mice. Broad-spectrum antibiotic treatment also improved survival, demonstrating a role for commensal flora in immunopathology in Tbx21f/f -Foxp3YFPCre mice. RNA sequencing analysis reinforced that Tbet regulates several key cellular pathways, including leukocyte activation, regulation of lymphocyte activation, and cell cycle progression, that help to maintain fitness in Tregs during Th1 responses. Taken together, our data show an important role for Tbet in Tregs in preventing lethal immunopathology during T. gondii infection, further highlighting the protective role of Treg plasticity in controlling immune responses to infection and the microbiota.
Collapse
Affiliation(s)
- Jordan Warunek
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Amherst, NY; and
| | - Richard M Jin
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Amherst, NY; and
| | - Sarah J Blair
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Amherst, NY; and
| | - Matthew Garis
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Amherst, NY; and
| | - Brandon Marzullo
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Amherst, NY
| | - Elizabeth A Wohlfert
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Amherst, NY; and
| |
Collapse
|
15
|
Sjaastad LE, Owen DL, Tracy SI, Farrar MA. Phenotypic and Functional Diversity in Regulatory T Cells. Front Cell Dev Biol 2021; 9:715901. [PMID: 34631704 PMCID: PMC8495164 DOI: 10.3389/fcell.2021.715901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
The concept that a subset of T cells exists that specifically suppresses immune responses was originally proposed over 50 years ago. It then took the next 30 years to solidify the concept of regulatory T cells (Tregs) into the paradigm we understand today - namely a subset of CD4+ FOXP3+ T-cells that are critical for controlling immune responses to self and commensal or environmental antigens that also play key roles in promoting tissue homeostasis and repair. Expression of the transcription factor FOXP3 is a defining feature of Tregs, while the cytokine IL2 is necessary for robust Treg development and function. While our initial conception of Tregs was as a monomorphic lineage required to suppress all types of immune responses, recent work has demonstrated extensive phenotypic and functional diversity within the Treg population. In this review we address the ontogeny, phenotype, and function of the large number of distinct effector Treg subsets that have been defined over the last 15 years.
Collapse
Affiliation(s)
- Louisa E. Sjaastad
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - David L. Owen
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Sean I. Tracy
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Michael A. Farrar
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Elsheikha HM, Marra CM, Zhu XQ. Epidemiology, Pathophysiology, Diagnosis, and Management of Cerebral Toxoplasmosis. Clin Microbiol Rev 2021; 34:e00115-19. [PMID: 33239310 PMCID: PMC7690944 DOI: 10.1128/cmr.00115-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is known to infect a considerable number of mammalian and avian species and a substantial proportion of the world's human population. The parasite has an impressive ability to disseminate within the host's body and employs various tactics to overcome the highly regulatory blood-brain barrier and reside in the brain. In healthy individuals, T. gondii infection is largely tolerated without any obvious ill effects. However, primary infection in immunosuppressed patients can result in acute cerebral or systemic disease, and reactivation of latent tissue cysts can lead to a deadly outcome. It is imperative that treatment of life-threatening toxoplasmic encephalitis is timely and effective. Several therapeutic and prophylactic regimens have been used in clinical practice. Current approaches can control infection caused by the invasive and highly proliferative tachyzoites but cannot eliminate the dormant tissue cysts. Adverse events and other limitations are associated with the standard pyrimethamine-based therapy, and effective vaccines are unavailable. In this review, the epidemiology, economic impact, pathophysiology, diagnosis, and management of cerebral toxoplasmosis are discussed, and critical areas for future research are highlighted.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Christina M Marra
- Departments of Neurology and Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People's Republic of China
| |
Collapse
|
17
|
Salvioni A, Belloy M, Lebourg A, Bassot E, Cantaloube-Ferrieu V, Vasseur V, Blanié S, Liblau RS, Suberbielle E, Robey EA, Blanchard N. Robust Control of a Brain-Persisting Parasite through MHC I Presentation by Infected Neurons. Cell Rep 2020; 27:3254-3268.e8. [PMID: 31189109 DOI: 10.1016/j.celrep.2019.05.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/03/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Control of CNS pathogens by CD8 T cells is key to avoid fatal neuroinflammation. Yet, the modalities of MHC I presentation in the brain are poorly understood. Here, we analyze the antigen presentation mechanisms underlying CD8 T cell-mediated control of the Toxoplasma gondii parasite in the CNS. We show that MHC I presentation of an efficiently processed model antigen (GRA6-OVA), even when not expressed in the bradyzoite stage, reduces cyst burden and dampens encephalitis in C57BL/6 mice. Antigen presentation assays with infected primary neurons reveal a correlation between lower MHC I presentation of tachyzoite antigens by neurons and poor parasite control in vivo. Using conditional MHC I-deficient mice, we find that neuronal MHC I presentation is required for robust restriction of T. gondii in the CNS during chronic phase, showing the importance of MHC I presentation by CNS neurons in the control of a prevalent brain pathogen.
Collapse
Affiliation(s)
- Anna Salvioni
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Marcy Belloy
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Aurore Lebourg
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Emilie Bassot
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Vincent Cantaloube-Ferrieu
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Virginie Vasseur
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Sophie Blanié
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Roland S Liblau
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Elsa Suberbielle
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France
| | - Ellen A Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicolas Blanchard
- Center for Pathophysiology Toulouse-Purpan (CPTP), INSERM, CNRS, University of Toulouse, 31024 Toulouse, France.
| |
Collapse
|
18
|
O’Brien CA, Harris TH. ICOS-deficient and ICOS YF mutant mice fail to control Toxoplasma gondii infection of the brain. PLoS One 2020; 15:e0228251. [PMID: 31978191 PMCID: PMC6980566 DOI: 10.1371/journal.pone.0228251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Resistance to chronic Toxoplasma gondii infection requires ongoing recruitment of T cells to the brain. Thus, the factors that promote, sustain, and regulate the T cell response to the parasite in the brain are of great interest. The costimulatory molecule ICOS (inducible T cell costimulator) has been reported to act largely through the PI3K pathway in T cells, and can play pro-inflammatory or pro-regulatory roles depending on the inflammatory context and T cell type being studied. During infection with T. gondii, ICOS promotes early T cell responses, while in the chronic stage of infection ICOS plays a regulatory role by limiting T cell responses in the brain. We sought to characterize the role of ICOS signaling through PI3K during chronic infection using two models of ICOS deficiency: total ICOS knockout (KO) mice and ICOS YF mice that are unable to activate PI3K signaling. Overall, ICOS KO and ICOS YF mice had similar severe defects in parasite-specific IgG production and parasite control compared to WT mice. Additionally, we observed expanded effector T cell populations and a loss of Treg frequency in the brains of both ICOS KO and ICOS YF mice. When comparing the remaining Treg populations in infected mice, ICOS KO Tregs expressed WT levels of Foxp3 and CD25, while ICOS YF Tregs expressed significantly less Foxp3 and CD25 compared to both WT and ICOS KO mice. Together, these results suggest that PI3K-independent signaling downstream of ICOS plays an important role in Treg stability in the context of chronic inflammation.
Collapse
Affiliation(s)
- Carleigh A. O’Brien
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
| | - Tajie H. Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Papadopoulos Z, Herz J, Kipnis J. Meningeal Lymphatics: From Anatomy to Central Nervous System Immune Surveillance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:286-293. [PMID: 31907271 PMCID: PMC7061974 DOI: 10.4049/jimmunol.1900838] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022]
Abstract
At steady state, the CNS parenchyma has few to no lymphocytes and less potent Ag-presentation capability compared with other organs. However, the meninges surrounding the CNS host diverse populations of immune cells that influence how CNS-related immune responses develop. Interstitial and cerebrospinal fluid produced in the CNS is continuously drained, and recent advances have emphasized that this process is largely taking place through the lymphatic system. To what extent this fluid process mobilizes CNS-derived Ags toward meningeal immune cells and subsequently the peripheral immune system through the lymphatic vessel network is a question of significant clinical importance for autoimmunity, tumor immunology, and infectious disease. Recent advances in understanding the role of meningeal lymphatics as a communicator between the brain and peripheral immunity are discussed in this review.
Collapse
Affiliation(s)
- Zachary Papadopoulos
- Center for Brain Immunology and Glia, Neuroscience Graduate Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Jasmin Herz
- Center for Brain Immunology and Glia, Neuroscience Graduate Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Neuroscience Graduate Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
20
|
Handschuh J, Amore J, Müller AJ. From the Cradle to the Grave of an Infection: Host-Pathogen Interaction Visualized by Intravital Microscopy. Cytometry A 2019; 97:458-470. [PMID: 31777152 DOI: 10.1002/cyto.a.23938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/12/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
During infections, interactions between host immune cells and the pathogen occur in distinct anatomical locations and along defined time scales. This can best be assessed in the physiological context of an infection in the living tissue. Consequently, intravital imaging has enabled us to dissect the critical phases and events throughout an infection in real time in living tissues. Specifically, advances in visualizing specific cell types and individual pathogens permitted tracking the early events of tissue invasion of the pathogen, cellular interactions involved in the induction of the immune response as well the events implicated in clearance of the infection. In this respect, two vantage points have evolved since the initial employment of this technique in the field of infection biology. On the one hand, strategies acquired by the pathogen to establish within the host and circumvent or evade the immune defenses have been elucidated. On the other hand, analyzing infections from the immune system's perspective has led to insights into the dynamic cellular interactions that are involved in the initial recognition of the pathogen, immune induction as well as effector function delivery and immunopathology. Furthermore, an increasing interest in probing functional parameters in vivo has emerged, such as the analysis of pathogen reactivity to stress conditions imposed by the host organism in order to mediate clearance upon pathogen encounter. Here, we give an overview on recent intravital microscopy findings of host-pathogen interactions along the course of an infection, from both the immune system's and pathogen's perspectives. We also discuss recent developments and future perspectives in extracting intravital information beyond the localization of pathogens and their interaction with immune cells. Such reporter systems on the pathogen's physiological state and immune cell functions may prove useful in dissecting the functional dynamics of host-pathogen interactions. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Juliane Handschuh
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Jonas Amore
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| |
Collapse
|
21
|
Tuladhar S, Kochanowsky JA, Bhaskara A, Ghotmi Y, Chandrasekaran S, Koshy AA. The ROP16III-dependent early immune response determines the subacute CNS immune response and type III Toxoplasma gondii survival. PLoS Pathog 2019; 15:e1007856. [PMID: 31648279 PMCID: PMC6812932 DOI: 10.1371/journal.ppat.1007856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is an intracellular parasite that persistently infects the CNS and that has genetically distinct strains which provoke different acute immune responses. How differences in the acute immune response affect the CNS immune response is unknown. To address this question, we used two persistent Toxoplasma strains (type II and type III) and examined the CNS immune response at 21 days post infection (dpi). Contrary to acute infection studies, type III-infected mice had higher numbers of total CNS T cells and macrophages/microglia but fewer alternatively activated macrophages (M2s) and regulatory T cells (Tregs) than type II-infected mice. By profiling splenocytes at 5, 10, and 21 dpi, we determined that at 5 dpi type III-infected mice had more M2s while type II-infected mice had more pro-inflammatory macrophages and that these responses flipped over time. To test how these early differences influence the CNS immune response, we engineered the type III strain to lack ROP16 (IIIΔrop16), the polymorphic effector protein that drives the early type III-associated M2 response. IIIΔrop16-infected mice showed a type II-like neuroinflammatory response with fewer infiltrating T cells and macrophages/microglia and more M2s and an unexpectedly low CNS parasite burden. At 5 dpi, IIIΔrop16-infected mice showed a mixed inflammatory response with more pro-inflammatory macrophages, M2s, T effector cells, and Tregs, and decreased rates of infection of peritoneal exudative cells (PECs). These data suggested that type III parasites need the early ROP16-associated M2 response to avoid clearance, possibly by the Immunity-Related GTPases (IRGs), which are IFN-γ- dependent proteins essential for murine defenses against Toxoplasma. To test this possibility, we infected IRG-deficient mice and found that IIIΔrop16 parasites now maintained parental levels of PECs infection. Collectively, these studies suggest that, for the type III strain, rop16III plays a key role in parasite persistence and influences the subacute CNS immune response. Toxoplasma is a ubiquitous intracellular parasite that establishes an asymptomatic brain infection in immunocompetent individuals. However, in the immunocompromised and the developing fetus, Toxoplasma can cause problems ranging from fever to chorioretinitis to severe toxoplasmic encephalitis. Emerging evidence suggests that the genotype of the infecting Toxoplasma strain may influence these outcomes, possibly through the secretion of Toxoplasma strain-specific polymorphic effector proteins that trigger different host cell signaling pathways. While such strain-specific modulation of host cell signaling has been shown to affect acute immune responses, it is unclear how these differences influence the subacute or chronic responses in the CNS, the major organ affected in symptomatic disease. This study shows that genetically distinct strains of Toxoplasma provoke strain-specific CNS immune responses and that, for one strain (type III), acute and subacute immune responses and parasite survival are heavily influenced by a polymorphic parasite gene (rop16III).
Collapse
Affiliation(s)
- Shraddha Tuladhar
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Joshua A. Kochanowsky
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Apoorva Bhaskara
- Bio5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Yarah Ghotmi
- Bio5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Undergraduate Biology Research Program (UBRP), University of Arizona, Tucson, Arizona, United States of America
| | | | - Anita A. Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- Bio5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
22
|
De Niz M, Nacer A, Frischknecht F. Intravital microscopy: Imaging host-parasite interactions in the brain. Cell Microbiol 2019; 21:e13024. [PMID: 30830993 DOI: 10.1111/cmi.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/14/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Abstract
Intravital fluorescence microscopy (IVM) is a powerful technique for imaging multiple organs, including the brain of living mice and rats. It enables the direct visualisation of cells in situ providing a real-life view of biological processes that in vitro systems cannot. In addition, to the technological advances in microscopy over the last decade, there have been supporting innovations in data storage and analytical packages that enable the visualisation and analysis of large data sets. Here, we review the advantages and limitations of techniques predominantly used for brain IVM, including thinned skull windows, open skull cortical windows, and a miniaturised optical system based on microendoscopic probes that can be inserted into deep tissues. Further, we explore the relevance of these techniques for the field of parasitology. Several protozoan infections are associated with neurological symptoms including Plasmodium spp., Toxoplasma spp., and Trypanosoma spp. IVM has led to crucial findings on these parasite species, which are discussed in detail in this review.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasglow, UK
| | - Adéla Nacer
- Division of Bacteriology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, EN63QG, Potters Bar, UK
| | - Friedrich Frischknecht
- Parasitology-Centre for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
23
|
O'Brien CA, Batista SJ, Still KM, Harris TH. IL-10 and ICOS Differentially Regulate T Cell Responses in the Brain during Chronic Toxoplasma gondii Infection. THE JOURNAL OF IMMUNOLOGY 2019; 202:1755-1766. [PMID: 30718297 DOI: 10.4049/jimmunol.1801229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Control of chronic CNS infection with the parasite Toxoplasma gondii requires ongoing T cell responses in the brain. Immunosuppressive cytokines are also important for preventing lethal immunopathology during chronic infection. To explore the loss of suppressive cytokines exclusively during the chronic phase of infection, we blocked IL-10R in chronically infected mice. Consistent with previous reports, IL-10R blockade led to severe, fatal tissue destruction associated with widespread changes in the inflammatory response, including increased APC activation, expansion of CD4+ T cells, and neutrophil recruitment to the brain. We then sought to identify regulatory mechanisms contributing to IL-10 production, focusing on ICOS, a molecule implicated in IL-10 production. Unexpectedly, ICOS ligand (ICOSL) blockade led to a local expansion of effector T cells in the brain without affecting IL-10 production or APC activation. Instead, we found that ICOSL blockade led to changes in T cells associated with their proliferation and survival. We observed increased expression of IL-2-associated signaling molecules CD25, STAT5 phosphorylation, Ki67, and Bcl-2 in T cells in the brain, along with decreased apoptosis. Interestingly, increases in CD25 and Bcl-2 were not observed following IL-10R blockade. Also, unlike IL-10R blockade, ICOSL blockade led to an expansion of both CD8+ and CD4+ T cells in the brain, with no expansion of peripheral T cells or neutrophil recruitment to the brain and no severe tissue destruction. Overall, these results suggest that IL-10 and ICOS differentially regulate T cell responses in the brain during chronic T. gondii infection.
Collapse
Affiliation(s)
- Carleigh A O'Brien
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Samantha J Batista
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Katherine M Still
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Tajie H Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
24
|
Wohlfert EA, Blader IJ, Wilson EH. Brains and Brawn: Toxoplasma Infections of the Central Nervous System and Skeletal Muscle. Trends Parasitol 2017; 33:519-531. [PMID: 28483381 PMCID: PMC5549945 DOI: 10.1016/j.pt.2017.04.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/29/2017] [Accepted: 04/08/2017] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is a widespread parasitic pathogen that infects over a third of the world's population. Following an acute infection, the parasite can persist within its mammalian host as intraneuronal or intramuscular cysts. Cysts will occasionally reactivate, and - depending on the host's immune status and site of reactivation - encephalitis or myositis can develop. Because these diseases have high levels of morbidity and can be lethal, it is important to understand how Toxoplasma traffics to these tissues, how the immune response controls parasite burden and contributes to tissue damage, and what mechanisms underlie neurological and muscular pathologies that toxoplasmosis patients present with. This review aims to summarize recent important developments addressing these critical topics.
Collapse
Affiliation(s)
- Elizabeth A Wohlfert
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, NY, USA.
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
25
|
Klein RS, Hunter CA. Protective and Pathological Immunity during Central Nervous System Infections. Immunity 2017; 46:891-909. [PMID: 28636958 PMCID: PMC5662000 DOI: 10.1016/j.immuni.2017.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege.
Collapse
Affiliation(s)
- Robyn S Klein
- Departments of Medicine, Pathology and Immunology, Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|