1
|
Besedovsky H, Del Rey A. A Glucocorticoid-Mediated Immunoregulatory Circuit Integrated at Brain Levels: Our Early Studies and a Present View. Neuroimmunomodulation 2024; 31:230-245. [PMID: 39504948 DOI: 10.1159/000542401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND It was known since the 1940s that pharmacological administration of glucocorticoids can inhibit inflammatory and immune processes, and these hormones are still today among the most widely used therapeutic tools to treat diseases with immune components. However, it became clear later that endogenous glucocorticoids can either support or restrain immune processes. SUMMARY Early studies showed that (a) endogenous levels of glucocorticoids can modulate immune cell activity; (b) the immune response itself can stimulate the hypothalamus-pituitary-adrenal (HPA) axis to release glucocorticoids to levels that can exert immunoregulatory effects; (c) immune products, later identified as cytokines, mediate this effect. On these bases, the existence of a glucocorticoid-mediated immunoregulatory circuit was proposed. It was also shown that increased levels of endogenous glucocorticoids exert protective effects during infections and other diseases with immune components. However, it was found in animal models and in humans that these effects can be blunted in several immune-linked diseases by defects at several levels, for example, by glucocorticoid resistance or by adrenal insufficiency. Evidence was later provided that the glucocorticoid-mediated immunoregulatory circuit can also be activated by cytokines produced not only as consequence of immune stimulation but also following psycho/sensorial and physical stimuli. Thus, this circuit can be integrated at brain levels and, besides stimulating the HPA axis, cytokines can also affect synaptic plasticity, most likely via a tripartite synapse, with astrocytes as neuro-immune cells acting as the third component. KEY MESSAGES It is now well established that the glucocorticoid-mediated immunoregulatory circuit plays a central role in maintaining health. However, several variables can condition the efficacy of the effect of endogenous glucocorticoids. Furthermore, since cytokines and other immune products have many other neuroendocrine and metabolic effects, other neuroendocrine-immune circuits could simultaneously operate or become predominant during different pathologies. The consideration of these aspects might help to implement strategies to eventually decrease therapeutic doses of exogenous glucocorticoids.
Collapse
Affiliation(s)
- Hugo Besedovsky
- Research Group Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| | - Adriana Del Rey
- Research Group Immunophysiology, Department Neurophysiology, Institute of Physiology and Pathophysiology, Marburg, Germany
| |
Collapse
|
2
|
Krug A, Saidane A, Martinello C, Fusil F, Michels A, Buchholz CJ, Ricci JE, Verhoeyen E. In vivo CAR T cell therapy against angioimmunoblastic T cell lymphoma. J Exp Clin Cancer Res 2024; 43:262. [PMID: 39272178 PMCID: PMC11401350 DOI: 10.1186/s13046-024-03179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND For angioimmunoblastic T cell lymphoma (AITL), a rare cancer, no specific treatments are available and survival outcome is poor. We previously developed a murine model for AITL that mimics closely human disease and allows to evaluate new treatments. As in human AITL, the murine CD4+ follicular helper T (Tfh) cells are drivers of the malignancy. Therefore, chimeric antigen receptor (CAR) T cell therapy might represent a new therapeutic option. METHODS To prevent fratricide among CAR T cells when delivering an CD4-specific CAR, we used a lentiviral vector (LV) encoding an anti-CD4 CAR, allowing exclusive entry into CD8 T cells. RESULTS These anti-CD4CAR CD8-targeted LVs achieved in murine AITL biopsies high CAR-expression levels in CD8 T cells. Malignant CD4 Tfh cells were eliminated from the mAITL lymphoma, while the CAR + CD8 T cells expanded upon encounter with the CD4 receptor and were shaped into functional cytotoxic cells. Finally, in vivo injection of the CAR + CD8-LVs into our preclinical AITL mouse model carrying lymphomas, significantly prolonged mice survival. Moreover, the in vivo generated functional CAR + CD8 T cells efficiently reduced neoplastic T cell numbers in the mAITL tumors. CONCLUSION This is the first description of in vivo generated CAR T cells for therapy of a T cell lymphoma. The strategy described offers a new therapeutic concept for patients suffering from CD4-driven T cell lymphomas.
Collapse
Affiliation(s)
- Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Aymen Saidane
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | | | - Floriane Fusil
- CIRI - International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France
| | - Alexander Michels
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
- Frankfurt-Cancer-Institute (FCI), Goethe-University, Frankfurt, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- Equipe Labellisée Ligue Contre Le Cancer, 06204, Nice, France.
- CIRI - International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France.
| |
Collapse
|
3
|
Soluble factors from TLR4- or TCR-activated cells contribute to stability of the resting phenotype and increase the expression of CXCR4 of human memory CD4 T cells. Immunol Res 2022; 71:388-403. [PMID: 36539634 DOI: 10.1007/s12026-022-09345-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
It has been proposed that cytokines can induce activation of resting T cells in an antigen-independent manner. However, experimental conditions have included the use of fetal serum and nanogram concentrations of added cytokines. To evaluate the effect of cytokines and chemokines generated by activated immune cells on the phenotypic profile of human memory CD4 T cells, the cells were cultured in FBS-free conditions in the presence of IL-15 and 5% of hAB serum and incubated with conditioned medium (CM) obtained from PBMC activated through the TCR using anti-CD3/CD28/CD2 antibodies (TCR-CM) or through TLR4 using bacterial LPS (TLR4-CM). Cytokines and chemokines present in the CMs were evaluated by ProcartaPlex immunoassay. Cell viability, proliferation, and surface markers were determined by flow cytometry on day 2, 5, and 8 of culture. Cell viability was maintained by TLR4-CM plus IL-15 for 8 days but decreased in the presence of the TCR-CM plus IL-15. In combination with IL-15, the TLR4-CM, but not the TCR-CM, maintained the expression of CD3 and CD4 stable. Both conditions stabilized the expression of CD45RO and CCR5. Thus, the TLR4-CM better supported the viability and stability of the memory phenotype. None of the CMs induced proliferation or expression of activation markers; however, they induced an increased expression of CXCR4. This study indicates that resting memory CD4 T cells are not activated by, but may be sensitive to soluble factors produced by antigen or PAMP-stimulated cells, which may contribute to their homeostasis and favor the CXCR4 expression.
Collapse
|
4
|
Christie Monteiro Titon S, Titon Junior B, Cobo de Figueiredo A, Rangel Floreste F, Siqueira Lima A, Cunha Cyrino J, Ribeiro Gomes F. Plasma steroids and immune measures vary with restraint duration in a toad (Rhinella icterica). Gen Comp Endocrinol 2022; 318:113987. [PMID: 35131311 DOI: 10.1016/j.ygcen.2022.113987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 11/04/2022]
Abstract
Immunoenhancing effects have been widely described following acute stressors in several vertebrates, and valuable contributions have been made from studies on acute stress to understand hormonal-immune interactions. However, most studies focus on hormonal and immune responses after standardized time lapses, neglecting potential influence of duration of exposition to stressor. Herein, we investigate fluctuations of plasma hormone concentrations (corticosterone and testosterone) and immunity (neutrophil to lymphocyte ratio, phagocytosis of blood cells, and plasma bacterial killing ability) in a toad species (Rhinella icterica) in response to six different periods of exposure to restraint stress. We observed increased plasma corticosterone concentrations following restraint in all sampled times (0.5 to 48 h), with the highest values being observed during the first hour (0.5 to 1 h). Restraint-induced increases in the neutrophil to lymphocyte ratio and phagocytosis percentage were observed from the first 0.5 h, gradually increasing after that with the time of restraint. We also observed decreased testosterone plasma concentrations in response to a more prolonged restraint (24 and 48 h). No changes were observed in plasma bacterial killing ability following restraint. Together, our results demonstrate dynamic time-related hormonal and immune changes. These results point to the fact that for some species measuring hormonal and immune variables at single time points following a stressor might work better when preceded by a study of the temporal changes of the response variables to the stimuli applied. Also, time of response needs to be considered when different variables are used as proxies of stress.
Collapse
Affiliation(s)
| | - Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Felipe Rangel Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Alan Siqueira Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - João Cunha Cyrino
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| |
Collapse
|
5
|
Koga MM, Engel A, Pigni M, Lavanchy C, Stevanin M, Laversenne V, Schneider BL, Acha-Orbea H. IL10- and IL35-Secreting MutuDC Lines Act in Cooperation to Inhibit Memory T Cell Activation Through LAG-3 Expression. Front Immunol 2021; 12:607315. [PMID: 33679743 PMCID: PMC7925845 DOI: 10.3389/fimmu.2021.607315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells involved in the initiation of immune responses. We generated a tolerogenic DC (tolDC) line that constitutively secretes interleukin-10 (IL10-DCs), expressed lower levels of co-stimulatory and MHCII molecules upon stimulation, and induced antigen-specific proliferation of T cells. Vaccination with IL10-DCs combined with another tolDC line that secretes IL-35, reduced antigen-specific local inflammation in a delayed-type hypersensitivity assay independently on regulatory T cell differentiation. In an autoimmune model of rheumatoid arthritis, vaccination with the combined tolDCs after the onset of the disease impaired disease development and promoted recovery of mice. After stable memory was established, the tolDCs promoted CD4 downregulation and induced lymphocyte activation gene 3 (LAG-3) expression in reactivated memory T cells, reducing T cell activation. Taken together, our findings indicate the benefits of combining anti-inflammatory cytokines in an antigen-specific context to treat excessive inflammation when memory is already established.
Collapse
Affiliation(s)
- Marianna M Koga
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Adrien Engel
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Matteo Pigni
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Christine Lavanchy
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Mathias Stevanin
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Vanessa Laversenne
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernard L Schneider
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Bertarelli Platform for Gene Therapy, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, Center of Immunity and Infection Lausanne, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Andreone L, Gimeno ML, Perone MJ. Interactions Between the Neuroendocrine System and T Lymphocytes in Diabetes. Front Endocrinol (Lausanne) 2018; 9:229. [PMID: 29867762 PMCID: PMC5966545 DOI: 10.3389/fendo.2018.00229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
It is well established that there is a fine-tuned bidirectional communication between the immune and neuroendocrine tissues in maintaining homeostasis. Several types of immune cells, hormones, and neurotransmitters of different chemical nature are involved as communicators between organs. Apart of being key players of the adaptive arm of the immune system, it has been recently described that T lymphocytes are involved in the modulation of metabolism of several tissues in health and disease. Diabetes may result mainly from lack of insulin production (type 1 diabetes) or insufficient insulin and insulin resistance (type 2 diabetes), both influenced by genetic and environmental components. Herein, we discuss accumulating data regarding the role of the adaptive arm of the immune system in the pathogenesis of diabetes; including the action of several hormones and neurotransmitters influencing on central and peripheral T lymphocytes development and maturation, particularly under the metabolic burden triggered by diabetes. In addition, we comment on the role of T-effector lymphocytes in adipose and liver tissues during diabetes, which together enhances pancreatic β-cell stress aggravating the disease.
Collapse
|
7
|
Luo Z, Li Z, Martin L, Wan Z, Meissner EG, Espinosa E, Wu H, Yu X, Fu P, Julia Westerink MA, Kilby JM, Wu J, Huang L, Heath SL, Li Z, Jiang W. Pathological Role of Anti-CD4 Antibodies in HIV-Infected Immunologic Nonresponders Receiving Virus-Suppressive Antiretroviral Therapy. J Infect Dis 2017; 216:82-91. [PMID: 28498953 DOI: 10.1093/infdis/jix223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Increased mortality and morbidity occur among human immunodeficiency virus (HIV)-infected patients in whom CD4+ T-cell counts do not increase despite viral suppression with antiretroviral therapy (ART). Here we identified an underlying mechanism. Significantly elevated plasma levels of anti-CD4 immunoglobulin G (IgG) were found in HIV-positive immunologic nonresponders (ie, HIV-positive individuals with CD4+ T-cell counts of ≤350 cells/μL), compared with levels in HIV-positive immunologic responders (ie, HIV-positive individuals with CD4+ T-cell counts of ≥500 cells/μL) and healthy controls. Higher plasma level of anti-CD4 IgG correlated with blunted CD4+ T-cell recovery. Furthermore, purified anti-CD4 IgG from HIV-positive immunologic nonresponders induced natural killer (NK) cell-dependent CD4+ T-cell cytolysis and apoptosis through antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro. We also found that anti-CD4 IgG-mediated ADCC exerts greater apoptosis of naive CD4+ T cells relative to memory CD4+ T cells. Consistently, increased frequencies of CD107a+ NK cells and profound decreases of naive CD4+ T cells were observed in immunologic nonresponders as compared to responders and healthy controls ex vivo. These data indicate that autoreactive anti-CD4 IgG may play an important role in blunted CD4+ T-cell reconstitution despite effective ART.
Collapse
Affiliation(s)
- Zhenwu Luo
- Department of Microbiology and Immunology
| | - Zhen Li
- Department of Microbiology and Immunology.,Beijing You'an Hospital, Capital Medical University
| | - Lisa Martin
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston
| | - Zhuang Wan
- Department of Microbiology and Immunology
| | - Eric G Meissner
- Department of Microbiology and Immunology.,Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston
| | - Enrique Espinosa
- Department of Integrative in Immunology, National Institute for Respiratory Diseases, Mexico City, Mexico
| | - Hao Wu
- Beijing You'an Hospital, Capital Medical University
| | - Xiaocong Yu
- Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Pingfu Fu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
| | - Maria Anna Julia Westerink
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston
| | - J Michael Kilby
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston
| | | | - Lei Huang
- Treatment and Research Center for Infectious Diseases, 302nd Hospital of the PLA, Beijing, China
| | - Sonya L Heath
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham
| | - Zihai Li
- Department of Microbiology and Immunology
| | - Wei Jiang
- Department of Microbiology and Immunology.,Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston
| |
Collapse
|
8
|
Hardy RS, Raza K, Cooper MS. Glucocorticoid metabolism in rheumatoid arthritis. Ann N Y Acad Sci 2014; 1318:18-26. [DOI: 10.1111/nyas.12389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rowan S. Hardy
- Rheumatology Research Group; University of Birmingham; Birmingham United Kingdom
| | - Karim Raza
- Rheumatology Research Group; University of Birmingham; Birmingham United Kingdom
| | - Mark S. Cooper
- ANZAC Research Institute; Concord Repatriation General Hospital; University of Sydney; Sydney Australia
| |
Collapse
|
9
|
Spies CM, Strehl C, van der Goes MC, Bijlsma JWJ, Buttgereit F. Glucocorticoids. Best Pract Res Clin Rheumatol 2013; 25:891-900. [PMID: 22265268 DOI: 10.1016/j.berh.2011.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/14/2011] [Indexed: 01/10/2023]
Abstract
Glucocorticoids remain part of the treatment strategy in many rheumatic diseases, because of their anti-inflammatory and immunosuppressive actions. Unfortunately, their clinically desired effects are linked to adverse effects, especially at higher dosages and longer duration of treatment. In this review, we describe new insights into the mechanisms of anti-inflammatory glucocorticoid actions and provide an update on recent approaches to improve the risk/benefit ratio of glucocorticoid therapy. Improved knowledge of the immunomodulatory role of endogenous glucocorticoids has evolved, and we report on the therapeutic potential of targeting glucocorticoid pre-receptor metabolism for metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Cornelia M Spies
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.
| | | | | | | | | |
Collapse
|
10
|
Mifsud KR, Gutièrrez-Mecinas M, Trollope AF, Collins A, Saunderson EA, Reul JMHM. Epigenetic mechanisms in stress and adaptation. Brain Behav Immun 2011; 25:1305-15. [PMID: 21704151 DOI: 10.1016/j.bbi.2011.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/26/2011] [Accepted: 06/07/2011] [Indexed: 12/22/2022] Open
Abstract
Epigenetic mechanisms are processes at the level of the chromatin that control the expression of genes but their role in neuro-immuno-endocrine communication is poorly understood. This review focuses on epigenetic modifications induced by a range of stressors, both physical and psychological, and examines how these variations can affect the biological activity of cells. It is clear that epigenetic modifications are critical in explaining how environmental factors, which have no effect on the DNA sequence, can have such profound, long-lasting influences on both physiology and behavior. A signaling pathway involving activation of MEK-ERK1/2, MSK1, and Elk-1 signaling molecules has been identified in the hippocampus which results in the phospho-acetylation of histone H3 and modification of gene expression including up-regulation of immediate early genes such as c-Fos. This pathway can be induced by a range of challenging experiences including forced swimming, Morris water maze learning, fear conditioning and exposure to the radial maze. Glucocorticoid (GC) hormones, released as part of the stress response and acting via glucocorticoid receptors (GRs), enhance signaling through the ERK1/2/MSK1-Elk-1 pathway and thereby increase the impact on epigenetic and gene expression mechanisms. The role of synergetic interactions between these pathways in adaptive responses to stress and learning and memory paradigms is discussed, in addition we speculate on their potential role in immune function.
Collapse
Affiliation(s)
- Karen R Mifsud
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Buttgereit F, Burmester GR, Straub RH, Seibel MJ, Zhou H. Exogenous and endogenous glucocorticoids in rheumatic diseases. ACTA ACUST UNITED AC 2010; 63:1-9. [DOI: 10.1002/art.30070] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Rimexolone inhibits proliferation, cytokine expression and signal transduction of human CD4+ T-cells. Immunol Lett 2010; 131:24-32. [DOI: 10.1016/j.imlet.2010.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/14/2010] [Accepted: 03/28/2010] [Indexed: 11/24/2022]
|
13
|
Prendergast BJ, Kampf-Lassin A, Yee JR, Galang J, McMaster N, Kay LM. Winter day lengths enhance T lymphocyte phenotypes, inhibit cytokine responses, and attenuate behavioral symptoms of infection in laboratory rats. Brain Behav Immun 2007; 21:1096-108. [PMID: 17728099 PMCID: PMC2693110 DOI: 10.1016/j.bbi.2007.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 05/18/2007] [Accepted: 05/19/2007] [Indexed: 10/22/2022] Open
Abstract
Annual variations in day length (photoperiod) trigger changes in the immune and reproductive system of seasonally-breeding animals. The purpose of this study was to determine whether photoperiodic changes in immunity depend on concurrent photoperiodic responses in the reproductive system, or whether immunological responses to photoperiod occur independent of reproductive responses. Here we report photoperiodic changes in enumerative, functional, and behavioral aspects of the immune system, and in immunomodulatory glucocorticoid secretion, in reproductively non-photoperiodic Wistar rats. T-cell numbers (CD3+, CD8+, CD8+CD25+, CD4+CD25+) were higher in the blood of rats housed in short as opposed to long-day lengths for 10 weeks. Following a simulated bacterial infection (Escherichia coli LPS; 125 microg/kg) the severity of several acute-phase sickness behaviors (anorexia, cachexia, neophobia, and social withdrawal) were attenuated in short days. LPS-stimulated IL-1beta and IL-6 production were comparable between photoperiods, but plasma TNFalpha was higher in long-day relative to short-day rats. In addition, corticosterone concentrations were higher in short-day relative to long-day rats. The data are consistent with the hypothesis that photoperiodic regulation of the immune system can occur entirely independently of photoperiodic regulation of the reproductive system. In the absence of concurrent reproductive responses, short days increase the numbers of leukocytes capable of immunosurveillance and inhibition of inflammatory responses, increase proinflammatory cytokine production, increase immunomodulatory glucocorticoid secretion, and ultimately attenuate behavioral responses to infection. Seasonal changes in the host immune system, endocrine system, and behavior may contribute to the seasonal variability in disease outcomes, even in reproductively non-photoperiodic mammals.
Collapse
Affiliation(s)
- Brian J Prendergast
- Department of Psychology, Institute for Mind and Biology, University of Chicago, 940 E. 57th Street, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Vanbesien-Mailliot CCA, Wolowczuk I, Mairesse J, Viltart O, Delacre M, Khalife J, Chartier-Harlin MC, Maccari S. Prenatal stress has pro-inflammatory consequences on the immune system in adult rats. Psychoneuroendocrinology 2007; 32:114-24. [PMID: 17240075 DOI: 10.1016/j.psyneuen.2006.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/20/2006] [Accepted: 11/20/2006] [Indexed: 11/30/2022]
Abstract
The in utero environment is critical for initiating the ontogeny of several physiological systems, including the immune surveillance. Yet, little is known about adverse early experiences on the offspring's immunity and vulnerability to disease. The present work aimed at investigating the impact of restraint prenatal stress (PS) on the development and responsiveness of in vitro and in vivo cellular and humoral immunity of male progeny aged 7 weeks and 6 months. In adult 6-month-old rats, we detected increased circulating CD8(+)-expressing and NK cells in PS rats as compared to controls, associated with higher mRNA expression of IFN-gamma. In addition, in vitro stimulation with phytohemagglutinin-A induced an increase in both the proliferation of T lymphocytes and the secretion of IFN-gamma in PS rats. Interestingly, these alterations were undetectable in younger PS rats (7-week old), except for a slight increase in the mRNA expression of several pro-inflammatory cytokines in peripheral blood mononuclear cells. Moreover, in vivo neutralization of IFN-gamma in young rats had no effects in PS group. In conclusion, we report for the first time long-lasting pro-inflammatory consequences of PS in rats.
Collapse
|
15
|
Abstract
Autoimmune thyroid diseases (AITD) are the far most common autoimmune disorders, their prevalence in Western countries exceeding 5% of the general population. In the large majority of individual cases the clinical impact of AITD is not severe, however, their widespread diffusion renders them a significant health problem. AITD are heterogeneous in their clinical presentation: the two main forms are autoimmune thyroiditis (AT) and Graves' disease (GD). Although they probably share, at least in part, a common genetic background and may occur in the same family as well as in the same individual, they are definitely two distinct diseases both in their clinical presentation and their pathophysiology. In fact, AT causes structural thyroid damage (mainly via cell-mediated immune destruction of thyroid follicular cells) which results, as a rule, in functional impairment (hypothyroidism); however, depending on clinical variants, evolution towards hypothyroidism may be very low, or thyroid function impairment occurs after an initial phase of mild thyrotoxicosis due to relatively rapid gland destruction. GD patients have hyperthyroidism, often severe, due to autoantibody-mediated thyrotropin receptor stimulation, with thyroid cell hyperplasia and hyperfunction. Such a functional heterogeneity is a key feature for the clinical management: as a matter of fact, therapy of AITD is mainly therapy of thyroid dysfunction. Moreover, since hyperthyroidism is quite early perceived by the patient as a cause of discomfort, the timing of the natural history of GD is relatively well defined; on the other hand, AT may be asymptomatic for a long time and defining its natural history in a single patient may be difficult. In some AITD patients (mainly, but not exclusively, with GD), clinical features not directly related to thyroid dysfunction, such as orbitopathy, are present. Graves' orbitopathy is probably related, at least in part, to autoantibodies directed to thyrotropin receptor; it may be, in a minority of patients, severe and sight-threatening, and represents an independent clinical problem.
Collapse
|
16
|
Erlacher M, Knoflach M, Stec IEM, Böck G, Wick G, Wiegers GJ. TCR signaling inhibits glucocorticoid-induced apoptosis in murine thymocytes depending on the stage of development. Eur J Immunol 2005; 35:3287-96. [PMID: 16224812 DOI: 10.1002/eji.200526279] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Signaling by either the TCR or glucocorticoid receptor (GR) induces apoptosis in thymocytes. Interestingly, it has been shown previously that hybridoma T cells escape apoptosis induced by either TCR or GR when both of these receptors signal simultaneously. Whether such mutual antagonism is present in primary thymocytes was the subject of the present study. Both glucocorticoids (GC) and anti-TCR/CD28 (or anti-CD3/CD28) mAb induced apoptosis in total thymocytes. When these signals were present at the same time, GC-induced apoptosis was partially inhibited by TCR/CD3 signaling. Costimulation by anti-CD28 enhanced the inhibitory effects of anti-CD3 on GC-induced apoptosis about 30-fold. However, subset analysis revealed that most cells rescued from GC-induced apoptosis were mature CD4+ and CD8+ thymocytes, and these cells were resistant to TCR/CD3-induced apoptosis in the absence of GC. Similar results were obtained with mature splenic CD4+ and CD8+ T cells. TCR/CD3 signaling alone, while inducing apoptosis in CD4+(CD8+)TCRlow thymocytes, rescued a small subset of CD4+(CD8+)TCRlow thymocytes from GC-induced apoptosis. Thus, TCR signaling increasingly reverses GC-induced apoptosis as thymocyte development progresses. As GC are infinitely present in vivo, these findings support a model wherein TCR signaling may be required to prevent GC-induced apoptosis both under basal and immune challenging conditions.
Collapse
Affiliation(s)
- Miriam Erlacher
- Division of Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Austria
| | | | | | | | | | | |
Collapse
|
17
|
The hypothalamic–pituitary–adrenal axis as a dynamically organized system: lessons from exercising mice. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Glucocorticoids and the immune response. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Chung IY, Dong HF, Zhang X, Hassanein NMA, Howard OMZ, Oppenheim JJ, Chen X. Effects of IL-7 and dexamethasone: Induction of CD25, the high affinity IL-2 receptor, on human CD4+ cells. Cell Immunol 2004; 232:57-63. [PMID: 15922716 DOI: 10.1016/j.cellimm.2005.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 12/28/2004] [Accepted: 01/31/2005] [Indexed: 11/25/2022]
Abstract
Since we have previously shown that dexamethasone (Dex) enhances the proportion of murine Treg cells, we tested the effect of IL-7, a promoter of T cell survival, together with Dex on human CD4+CD25+ Treg cells in an in vitro setting. The results showed that IL-7 in concert with Dex markedly augmented the generation of CD4+CD25+ T cells. To discern the origin of the induced CD4+CD25+ T cells, MACS-purified CD4+CD25-, and CD4+CD25+ cells were cultured in the presence of Dex and/or IL-7 for 4 days. Although two thirds of CD4+CD25- T cells became CD4+CD25+ T cells, they had no suppressive activity. In contrast, the original CD4+CD25+ T cells maintained suppressive activity after Dex/IL-7 treatment, however, there was not a significant expansion in their cell number. Dex and IL-7 did not induce additional Treg cells, but additively induced the expression of the activation marker CD25 by CD4+CD25- T cells. This combination may provide a novel means of priming CD4 T cells to respond to IL-2 and may prove useful in up-regulation of normal immune responses in immune deficient diseases.
Collapse
Affiliation(s)
- Il Yup Chung
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Bailey M, Engler H, Hunzeker J, Sheridan JF. The hypothalamic-pituitary-adrenal axis and viral infection. Viral Immunol 2003; 16:141-57. [PMID: 12828866 DOI: 10.1089/088282403322017884] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays an important immunomodulatory role during viral infection. Activation of the HPA axis ultimately leads to elevated plasma levels of glucocorticoid (GC) hormones with the ability to mediate adaptive behavioral, metabolic, cardiovascular and immune system effects. In this review, we focus on the modulation of anti-viral immunity and viral pathogenesis by the HPA axis.
Collapse
Affiliation(s)
- Michael Bailey
- Section of Oral Biology, Colleges of Dentistry, Medicine and Public Health, The Ohio University Health Sciences Center, Columbus, Ohio 43218-2357, USA
| | | | | | | |
Collapse
|
21
|
Refojo D, Kovalovsky D, Young JI, Rubinstein M, Holsboer F, Reul JMHM, Low MJ, Arzt E. Increased splenocyte proliferative response and cytokine production in beta-endorphin-deficient mice. J Neuroimmunol 2002; 131:126-34. [PMID: 12458044 DOI: 10.1016/s0165-5728(02)00268-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We used beta-endorphin-deficient mice as a novel approach to confirm the physiological role that opioid peptides play in the development or regulation of the immune system. We found that mice lacking beta-endorphin possessed an enhanced immune response, measured in terms of splenocyte proliferation and interleukin (IL)-2 mRNA levels, in vitro production of the splenic macrophage inflammatory cytokines IL-6 and Tumor Necrosis Factor (TNF)-alpha and plasma IL-6 following lipopolysaccharide (LPS) administration. beta-Endorphin-deficient mice had attenuated increases of plasma ACTH and corticosterone levels in response to LPS. These results are consistent with a postulated inhibitory role of endogenous beta-endorphin on the immune system at multiple levels.
Collapse
Affiliation(s)
- Damian Refojo
- Laboratorio de Fisiología y Biología Molecular, Departamento de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, C1428EHA, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kong FK, Chen CLH, Cooper MD. Reversible disruption of thymic function by steroid treatment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6500-5. [PMID: 12055271 DOI: 10.4049/jimmunol.168.12.6500] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of steroid treatment on the thymic output of T cells was examined in an avian model. Recent thymic emigrants in chickens transiently express the chicken T cell Ag 1 thymocyte marker, and thymic function can be monitored indirectly by measuring the levels of TCR gene rearrangement excision circles in peripheral T cells. Both parameters were used to show that intensive steroid treatment induces thymic involution and a profound reduction in the supply of naive T cells to the periphery. Conversely, resident T cells in the peripheral lymphocyte pool were relatively spared. Thymopoiesis immediately recovered following cessation of steroid treatment, concurrent with restoration of the thymic output of newly formed T cells. Repopulation of the peripheral T cell pool recapitulated the ontogenetic pattern of gamma delta T cell replenishment before alpha beta T cell reseeding, thereby indicating the complete recovery of thymic function after a course of steroid treatment.
Collapse
Affiliation(s)
- Fan-Kun Kong
- Division of Developmental and Clinical Immunology, Department of Microbiology, University of Alabama, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
23
|
Popovich PG, Stuckman S, Gienapp IE, Whitacre CC. Alterations in immune cell phenotype and function after experimental spinal cord injury. J Neurotrauma 2001; 18:957-66. [PMID: 11565606 DOI: 10.1089/089771501750451866] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Traumatic injury to the spinal cord initiates a cascade of inflammatory-mediated injury and repair processes within the nervous system. In parallel, spinal injury could influence peripheral mechanisms of host defense (e.g., wound healing, antibody production) by altering lymphocyte phenotype and function. The goal of this study was to evaluate the physiological impact of spinal contusion injury on phenotypic and functional indices of lymphocyte activation. A flow cytometric time-course analysis of lymphocytes isolated from lymph node and spleen revealed an increase in CD4+ and a decrease in CD8+ lymphocytes during the first week post injury. The functional potential of lymphocytes was also evaluated based on their ability to proliferate in the presence of a biologically relevant antigen (myelin basic protein, MBP) or a lymphocyte mitogen. The data revealed increased proliferation to MBP by 3 days postinjury in lymphocytes isolated from lymph node but not spleen. By 1 week postinjury, increased proliferation to mitogen was noted in both the lymph node and the spleen suggesting a general increase in lymphocyte reactivity during this time interval. Circulating corticosterone (CORT), an endogenous glucocorticoid with significant effects on lymphocyte phenotype and function, was elevated within 24 h after spinal cord injury (SCI) and remained above control levels throughout the duration of our studies (up to 1 month postinjury). The present data suggest injury-associated changes in immune cell phenotype and function paralleled by the activation of the hypothalamic-pituitary-adrenal (HPA) axis.
Collapse
Affiliation(s)
- P G Popovich
- Department of Molecular Virology, Immunology & Medical Genetics, Ohio State University College of Medicine and Public Health, Columbus, 43210, USA.
| | | | | | | |
Collapse
|