1
|
Zhong Y, Qin C, Wang Q, Ding M, Qiu C, Xu Y, Chen J. Inhibition of Foxp3 expression in the placenta of mice infected intraperitoneally by toxoplasma gondii tachyzoites: insights into the PPARγ/miR-7b-5p/Sp1 signaling pathway. Parasit Vectors 2024; 17:189. [PMID: 38632598 PMCID: PMC11025192 DOI: 10.1186/s13071-024-06262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Toxoplasma gondii, an obligate intracellular parasitic protozoa, infects approximately 30% of the global population. Contracting T. gondii at the primary infection of the mother can result in neonatal microcephaly, chorioretinitis, hydrocephalus, or mortality. Our previous study indicated that pregnant mice infected with T. gondii displayed a decrease in both the number and the suppressive ability of regulatory T cells, accompanied by the reduced Forkhead box P3 (Foxp3). Numerous studies have proved that microRNAs (miRNAs) are implicated in T. gondii infection, but there is meager evidence on the relationship between alterations of miRNAs and downregulation of Foxp3 induced by T. gondii. METHODS Quantitative reverse transcription polymerase chain reaction was utilized to detect the transcriptions of miRNAs and Foxp3. Protein blotting and immunofluorescence were used to detect the expressions of Foxp3 and related transcription factors. The structure of mouse placenta was observed by hematoxylin and eosin (HE) staining. To examine the activity of miR-7b promoter and whether miR-7b-5p targets Sp1 to suppress Foxp3 expression, we constructed recombinant plasmids containing the full-length/truncated/mutant miR-7b promoter sequence or wildtype/mutant of Sp1 3' untranslated region (3' UTR) to detect the fluorescence activity in EL4 cells. RESULTS In T. gondii-infected mice, miR-7b transcription was significantly elevated, while Foxp3 expression was decreased in the placenta. In vitro, miR-7b mimics downregulated Foxp3 expression, whereas its inhibitors significantly upregulated Foxp3 expression. miR-7b promoter activity was elevated upon the stimulation of T. gondii antigens, which was mitigated by co-transfection of mutant miR-7b promoter lacking peroxisome proliferator-activated receptor γ (PPARγ) target sites. Additionally, miR-7b mimics diminished Sp1 expression, while miR-7b inhibitors elevated its expression. miR-7b mimics deceased the fluorescence activity of Sp1 3' untranslated region (3' UTR), but it failed to impact the fluorescence activity upon the co-transfection of mutant Sp1 3' UTR lacking miR-7b target site. CONCLUSIONS T. gondii infection and antigens promote miR-7b transcription but inhibit Foxp3 protein and gene levels. T. gondii antigens promote miR-7b promoter activity by a PPARγ-dependent mechanism. miR-7b directly binds to Sp1 3' UTR to repress Sp1 expression. Understanding the regulatory functions by which T. gondii-induced miR-7b suppresses Foxp3 expression can provide new perspectives for the possible therapeutic avenue of T. gondii-induced adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yue Zhong
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Cheng Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qing Wang
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Maoyuan Ding
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Chong Qiu
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yunzhao Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Retana Moreira L, Steller Espinoza MF, Chacón Camacho N, Cornet-Gomez A, Sáenz-Arce G, Osuna A, Lomonte B, Abrahams Sandí E. Characterization of Extracellular Vesicles Secreted by a Clinical Isolate of Naegleria fowleri and Identification of Immunogenic Components within Their Protein Cargo. BIOLOGY 2022; 11:983. [PMID: 36101365 PMCID: PMC9312180 DOI: 10.3390/biology11070983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs) are small lipid vesicles released by both prokaryotic and eukaryotic cells, involved in intercellular communication, immunomodulation and pathogenesis. In this study, we performed a characterization of the EVs produced by trophozoites of a clinical isolate of the free-living amoeba Naegleria fowleri (N. fowleri). Size distribution, zeta potential, protein profile and protease activity were analyzed. Under our incubation conditions, EVs of different sizes were observed, with a predominant population ranging from 206 to 227 nm. SDS-PAGE revealed protein bands of 25 to 260 KDa. The presence of antigenic proteins was confirmed by Western blot, which evidenced strongest recognition by rat polyclonal antibodies raised against N. fowleri in the region close to 80 KDa and included peptidases, as revealed by zymography. Proteins in selected immunorecognized bands were further identified using nano-ESI-MS/MS. A preliminary proteomic profile of the EVs identified at least 184 proteins as part of the vesicles' cargo. Protease activity assays, in combination with the use of inhibitors, revealed the predominance of serine proteases. The present characterization uncovers the complexity of EVs produced by N. fowleri, suggesting their potential relevance in the release of virulence factors involved in pathogenicity. Owing to their cargo's diversity, further research on EVs could reveal new therapeutic targets or biomarkers for developing rapid and accurate diagnostic tools for lethal infections such as the one caused by this amoeba.
Collapse
Affiliation(s)
- Lissette Retana Moreira
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| | - María Fernanda Steller Espinoza
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Natalia Chacón Camacho
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
| | - Alberto Cornet-Gomez
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | | | - Antonio Osuna
- Grupo de Bioquímica y Parasitología Molecular (CTS 183), Departamento de Parasitología, Campus de Fuentenueva, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (A.C.-G.); (A.O.)
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica;
| | - Elizabeth Abrahams Sandí
- Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; (M.F.S.E.); (N.C.C.); (E.A.S.)
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
3
|
Ybañez RH, Nishikawa Y. Comparative Performance of Recombinant GRA6, GRA7, and GRA14 for the Serodetection of T. gondii Infection and Analysis of IgG Subclasses in Human Sera from the Philippines. Pathogens 2022; 11:pathogens11020277. [PMID: 35215219 PMCID: PMC8874886 DOI: 10.3390/pathogens11020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Highly specific and sensitive diagnostic methods are vital for the effective control and treatment of toxoplasmosis. Routine diagnosis is primarily serological because T. gondii infections stimulate persistently high IgG antibody responses. The sensitivity and specificity of methods are crucial factors for the proper diagnosis of toxoplasmosis, primarily dependent on the antigens used in different assays. In the present study, we compared the serodiagnostic performances of three recombinant dense granule antigens, namely, the GRA6, GRA7, and GRA14, to detect IgG antibodies against T. gondii in human sera from the Philippines. Moreover, we evaluated the IgG1, IgG2, IgG3, and IgG4 responses against the different recombinant antigens, which has not been performed previously. Our results revealed that the TgGRA7 has consistently displayed superior diagnostic capability, while TgGRA6 can be a satisfactory alternative antigen among the GRA proteins. Furthermore, IgG1 is the predominant subclass stimulated by the different recombinant antigens. This study's results provide options to researchers and manufacturers to choose recombinant antigens suitable for their purpose.
Collapse
Affiliation(s)
- Rochelle Haidee Ybañez
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
- Institute of Molecular Parasitology and Protozoan Diseases, Main Campus and College of Veterinary Medicine, Barili Campus, Cebu Technological University, Cebu City 6000, Philippines
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
- Correspondence:
| |
Collapse
|
4
|
Direct enzyme-linked aptamer assay (DELAA) for diagnosis of toxoplasmosis by detection of SAG1 protein in mice and humans. Acta Trop 2022; 226:106255. [PMID: 34843688 DOI: 10.1016/j.actatropica.2021.106255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii is a single-celled parasite commonly found in mammals and birds. Diagnosis of toxoplasmosis largely depends on measurements of the antibody and/or antigen and Toxoplasma DNAs due to the presence of tissue dwelling duplicating tachyzoites, or quiescent cysts in latent infection of the parasite. As a major surface antigen of T.gondii tachyzoites, SAG1 is a key molecule for laboratory diagnosis. However, there are no methods available yet for SAG1 detection using aptamer-based technology. Recombinant SAG1 (r-SAG1) of Toxoplasma WH3 strain (type Chinese 1) was expressed in E.coli and subjected to the synthetic oligonucleotide library for selection of nucleic acid aptamers which target the r-SAG1 antigen, with systematic evolution of ligands by exponential enrichment (SELEX) strategy. The specific aptamers were screened out and used in direct enzyme-linked aptamer assay (DELAA) for detection of native SAG1 (n-SAG1) obtained from tachyzoite lysates, mouse sera of acute infection, and human sera that had been verified for Toxoplasma DNAs by PCR amplification. As results, the soluble r-SAG1 protein was obtained from E.coli lysates by purification and identification with immunoblotting, followed by biotinylation. The selected aptamers were amplified by PCR and DNA sequencing. The results showed that the aptamer-2, with the highest affinity to n-SAG1 in the sera of animals with minimal difference in the four aptamer candidates, has a high specificity and sensitivity when used in detection of n-SAG1 in the sera of humans when compared with the commercial kit of ELISA for T.gondii circulating antigen test. We concluded that a new direct enzyme-linked aptamer assay (DELAA) was developed for the detection of the n-SAG1 protein of T. gondii. With increased sensitivity and specificity, stability, easy and cheap preparation, the aptamer-based technology is considered an efficient method for the diagnosis of active as well as reactivated toxoplasmosis.
Collapse
|
5
|
Maia MM, da Cruz AB, Taniwaki NN, Namiyama GM, Gava R, Gomes AHS, Kanamura CT, Barbo MLP, Pereira-Chioccola VL. Immunization with extracellular vesicles excreted by Toxoplasma gondii confers protection in murine infection, activating cellular and humoral responses. Int J Parasitol 2021; 51:559-569. [PMID: 33713649 DOI: 10.1016/j.ijpara.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
The study aim was to analyze whether microvesicles and exosomes, named extracellular vesicles (EVs), purified from Toxoplasma gondii are able to stimulate the protective immunity of experimental mice when administered, as challenge, a highly virulent strain. EVs excreted from T. gondii tachyzoites (RH strain) were purified by chromatography and used for immunization assays in inbred mouse groups (EV-IM). Chronic infected (CHR) and naive (NI) mice were used as control groups, since the immune response is well known. After immunizations, experimental groups were challenged with 100 tachyzoites. Next, parasitemias were determined by real-time PCR (qPCR), and survival levels were evaluated daily. The humoral response was analyzed by detection of IgM, IgG, IgG1 and IgG2a, and opsonization experiments. The cellular response was evaluated in situ by immunohistochemistry on IFN-γ, IL-10, TNF-α and IL-17 expression in cells of five organs (brain, heart, liver, spleen and skeletal muscles). EV immunization reduced parasitemia and increased the survival index in two mouse lineages (A/Sn and BALB/c) infected with a lethal T. gondii strain. EV-IM mice had higher IgG1 levels than IgM or IgG2a. IgGs purified from sera of EV-IM mice were able to opsonize tachyzoites (RH strain), and mice that received these parasites had lower parasitemias, and mortality was delayed 48 h, compared with the same results from those receiving parasites opsonized with IgG purified from NI mice. Brain and spleen cells from EV-IM mice more highly expressed IFN-γ, IL-10 and TNF-α. In conclusion, EV-immunization was capable of inducing immune protection, eliciting high production of IgG1, IFN-γ, IL-10 and TNF-α.
Collapse
Affiliation(s)
- Marta Marques Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | | | - Ricardo Gava
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | - Maria Lourdes Peris Barbo
- Departamento de Morfologia e Patologia, Faculdade de Ciências Médicas e Saúde, Pontifícia Universidade Católica, São Paulo, Brazil
| | | |
Collapse
|
6
|
Mévélec MN, Lakhrif Z, Dimier-Poisson I. Key Limitations and New Insights Into the Toxoplasma gondii Parasite Stage Switching for Future Vaccine Development in Human, Livestock, and Cats. Front Cell Infect Microbiol 2020; 10:607198. [PMID: 33324583 PMCID: PMC7724089 DOI: 10.3389/fcimb.2020.607198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a parasitic disease affecting human, livestock and cat. Prophylactic strategies would be ideal to prevent infection. In a One Health vaccination approach, the objectives would be the prevention of congenital disease in both women and livestock, prevention/reduction of T. gondii tissue cysts in food-producing animals; and oocyst shedding in cats. Over the last few years, an explosion of strategies for vaccine development, especially due to the development of genetic-engineering technologies has emerged. The field of vaccinology has been exploring safer vaccines by the generation of recombinant immunogenic proteins, naked DNA vaccines, and viral/bacterial recombinants vectors. These strategies based on single- or few antigens, are less efficacious than recombinant live-attenuated, mostly tachyzoite T. gondii vaccine candidates. Reflections on the development of an anti-Toxoplasma vaccine must focus not only on the appropriate route of administration, capable of inducing efficient immune response, but also on the choice of the antigen (s) of interest and the associated delivery systems. To answer these questions, the choice of the animal model is essential. If mice helped in understanding the protection mechanisms, the data obtained cannot be directly transposed to humans, livestock and cats. Moreover, effectiveness vaccines should elicit strong and protective humoral and cellular immune responses at both local and systemic levels against the different stages of the parasite. Finally, challenge protocols should use the oral route, major natural route of infection, either by feeding tissue cysts or oocysts from different T. gondii strains. Effective Toxoplasma vaccines depend on our understanding of the (1) protective host immune response during T. gondii invasion and infection in the different hosts, (2) manipulation and modulation of host immune response to ensure survival of the parasites able to evade and subvert host immunity, (3) molecular mechanisms that define specific stage development. This review presents an overview of the key limitations for the development of an effective vaccine and highlights the contributions made by recent studies on the mechanisms behind stage switching to offer interesting perspectives for vaccine development.
Collapse
Affiliation(s)
| | - Zineb Lakhrif
- Team BioMAP, Université de Tours, INRAE, ISP, Tours, France
| | | |
Collapse
|
7
|
Kim HJ, Ahn HJ, Kang H, Park J, Oh SG, Choi S, Lee WK, Nam HW. Secretome Analysis of Host Cells Infected with Toxoplasma gondii after Treatment of Human Epidermal Growth Factor Receptor 2/4 Inhibitors. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:249-255. [PMID: 32615738 PMCID: PMC7338902 DOI: 10.3347/kjp.2020.58.3.249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii, a ubiquitous, intracellular parasite of the phylum Apicomplexa, infects an estimated one-third of the human population as well as a broad range of warm-blooded animals. We have observed that some tyrosine kinase inhibitors suppressed the growth of T. gondii within host ARPE-10 cells. Among them, afatinib, human epithermal growth factor receptor 2 and 4 (HER2/4) inhibitor, may be used as a therapeutic agent for inhibiting parasite growth with minimal adverse effects on host. In this report, we conducted a proteomic analysis to observe changes in host proteins that were altered via infection with T. gondii and the treatment of HER2/4 inhibitors. Secreting proteins were subjected to a procedure of micor basic reverse phase liquid chromatography, nano-liquid chromatography-mass spectrometry, and ingenuity pathway analysis serially. As a result, the expression level of heterogeneous nuclear ribonucleoprotein K, semaphorin 7A, a GPI membrane anchor, serine/threonine-protein phosphatase 2A, and calpain small subunit 1 proteins were significantly changed, and which were confirmed further by western blot analysis. Changes in various proteins, including these 4 proteins, can be used as a basis for explaining the effects of T. gondii infections and HER2/4 inhibitors.
Collapse
Affiliation(s)
- Hye-Jung Kim
- New Drug Development Center, OSONG Biomedical Innovation Foundation, Cheongju 28160, Korea
| | - Hye-Jin Ahn
- Deptartment of Parasitology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| | - Hyeweon Kang
- New Drug Development Center, OSONG Biomedical Innovation Foundation, Cheongju 28160, Korea.,College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Jaehui Park
- New Drug Development Center, OSONG Biomedical Innovation Foundation, Cheongju 28160, Korea.,College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Seul Gi Oh
- New Drug Development Center, OSONG Biomedical Innovation Foundation, Cheongju 28160, Korea.,College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Saehae Choi
- New Drug Development Center, OSONG Biomedical Innovation Foundation, Cheongju 28160, Korea
| | - Won-Kyu Lee
- New Drug Development Center, OSONG Biomedical Innovation Foundation, Cheongju 28160, Korea
| | - Ho-Woo Nam
- Deptartment of Parasitology, College of Medicine, Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
8
|
Ybañez RHD, Ybañez AP, Nishikawa Y. Review on the Current Trends of Toxoplasmosis Serodiagnosis in Humans. Front Cell Infect Microbiol 2020; 10:204. [PMID: 32457848 PMCID: PMC7227408 DOI: 10.3389/fcimb.2020.00204] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
Toxoplasmosis is a widely distributed zoonotic infection caused by the obligate intracellular apicomplexan parasite Toxoplasma gondii. It is mainly transmitted through the ingestion of oocysts shed by an infected cat acting as its definitive host. The key to effective control and treatment of toxoplasmosis is prompt and accurate detection of T. gondii infection. Several laboratory diagnostic methods have been established, including the most commonly used serological assays such as the dye test (DT), direct or modified agglutination test (DAT/MAT), indirect hemagglutination test (IHA), latex agglutination test (LAT), indirect immunofluorescent test (IFAT), enzyme-linked immunosorbent assays (ELISA), immunochromatographic tests (ICT), and the western blot. Nonetheless, creating specific and reliable approaches for serodiagnosis of T. gondii infection, and differentiating between acute and chronic phases of infection remains a challenge. This review provides information on the current trends in the serodiagnosis of human toxoplasmosis. It highlights the advantages of the use of recombinant proteins for serological testing and provides insight into the possible future direction of these methods.
Collapse
Affiliation(s)
- Rochelle Haidee D. Ybañez
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Adrian P. Ybañez
- Institute of Molecular Parasitology and Protozoan Diseases at Main and College of Veterinary Medicine, Cebu Technological University, Cebu City, Philippines
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
9
|
Human extracellular vesicles and correlation with two clinical forms of toxoplasmosis. PLoS One 2020; 15:e0229602. [PMID: 32126572 PMCID: PMC7054008 DOI: 10.1371/journal.pone.0229602] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/10/2020] [Indexed: 01/28/2023] Open
Abstract
Aim This study analyzed microvesicles and exosomes, called as extracellular vesicles (EVs) excreted in serum and cerebrospinal fluid (CSF) from patients with cerebral or gestational toxoplasmosis. Methods Clinical samples from 83 individuals were divided into four groups. Group I, 20 sera from healthy individuals and pregnant women (seronegative for toxoplasmosis); group II, 21 sera from seropositive patients for toxoplasmosis (cerebral or gestational forms); group III, 26 CSF samples from patients with cerebral toxoplasmosis/HIV co-infection (CT/HIV) (seropositive for toxoplasmosis); and group IV, 16 CSF samples from seronegative patients for toxoplasmosis, but with HIV infection and other opportunistic infections (OI/HIV). Serum and CSF samples were ultracentrifuged to recover EVs. Next, vesicle size and concentration were characterized by Nanoparticle Tracking Analysis (NTA). Results Concentrations of serum-derived EVs from toxoplasmosis patients (mean: 2.4 x 1010 EVs/mL) were statically higher than of non-infected individuals (mean: 5.9 x 109 EVs/mL). Concentrations of CSF-derived EVs were almost similar in both groups. CT/HIV (mean: 2.9 x 109 EVs/mL) and OI/HIV (mean: 4.8 x 109 EVs/mL). Analyses by NTA confirmed that CSF-derived EVs and serum-derived EVs had size and shape similar to microvesicles and exosomes. The mean size of EVs was similar in serum and CSF. Thus, the concentration, and not size was able distinguish patients with toxoplasmosis than healthy individuals. Presence of exosomes was also confirmed by transmission electron microscopy and evidence of tetraspanins CD63 and CD9 in immunoblotting. Relative expressions of miR-146a-5p, miR-155-5p, miR-21-5p, miR-29c-3p and miR-125b-5p were estimated in exosomal miRNA extracted of EVs. Serum-derived EVs from group II (cerebral and gestational toxoplasmosis) up-expressed miR-125b-5p and miR-146a-5p. CSF-derived EVs from CT/HIV patients) up-expressed miR-155-5p and miR-21-5p and were unable to express miR-29c-3p. Conclusion These data suggest the participation of EVs and exosomal miRNAs in unbalance of immune response as elevation of TNF-α, IL-6; and downregulation of IFN-γ in cerebral and gestational forms of toxoplasmosis.
Collapse
|
10
|
Silva VO, Maia MM, Torrecilhas AC, Taniwaki NN, Namiyama GM, Oliveira KC, Ribeiro KS, Toledo MDS, Xander P, Pereira-Chioccola VL. Extracellular vesicles isolated fromToxoplasma gondiiinduce host immune response. Parasite Immunol 2018; 40:e12571. [DOI: 10.1111/pim.12571] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/05/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Valeria Oliveira Silva
- Laboratório de Biologia Molecular de Parasitas e Fungos; Instituto Adolfo Lutz; Sao Paulo Brazil
| | - Marta Marques Maia
- Laboratório de Biologia Molecular de Parasitas e Fungos; Instituto Adolfo Lutz; Sao Paulo Brazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas; Campus Diadema; Universidade Federal de Sao Paulo; Sao Paulo Brazil
| | | | | | - Katia Cristina Oliveira
- Disciplina de Parasitologia; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; Sao Paulo Brazil
| | - Kleber Silva Ribeiro
- Departamento de Ciências Farmacêuticas; Campus Diadema; Universidade Federal de Sao Paulo; Sao Paulo Brazil
| | - Maytê dos Santos Toledo
- Departamento de Ciências Farmacêuticas; Campus Diadema; Universidade Federal de Sao Paulo; Sao Paulo Brazil
| | - Patricia Xander
- Departamento de Ciências Farmacêuticas; Campus Diadema; Universidade Federal de Sao Paulo; Sao Paulo Brazil
| | | |
Collapse
|
11
|
Naeem H, Sana M, Islam S, Khan M, Riaz F, Zafar Z, Akbar H, Shehzad W, Rashid I. Induction of Th1 type-oriented humoral response through intranasal immunization of mice with SAG1-Toxoplasma gondii polymeric nanospheres. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:1025-1034. [PMID: 29873522 DOI: 10.1080/21691401.2018.1478421] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
About one-third of the world population is prone to have infection with T. gondii, which can cause toxoplasmosis in the developing fetus and in people whose immune system is compromised through disease or chemotherapy. Surface antigen-1 (SAG1) is the candidate of vaccine against toxoplasmosis. Recent advances in biotechnology and nano-pharmaceuticals have made possible to formulate nanospheres of recombinant protein, which are suitable for sub-unit vaccine delivery. In current study, the local strain was obtained from cat feces as toxoplasma oocysts. Amplified 957 bp of SAG1 was cloned into pGEM-T and further sub-cloned into pET28-SAG1. BL21 bacteria were induced at different concentrations of isopropyl β-d-1-thiogalactopyranoside for the expression of rSAG1 protein. An immunoblot was developed for the confirmation of recombinant protein expression at 35 kDa that was actually recognized by anti-HIS antibodies and sera were collected from infected mice. PLGA encapsulated nanospheres of recombinant SAG1 were characterized through scanning electron microscopy. Experimental mice were intraperitoneally immunized with rSAG1 protein and intra-nasally immunized with nanosphere. The immune response was evaluated by indirect ELISA. In results intra-nasally administered rSAG1 in nanospheres appeared to elicit elevated responses of specific IgA and IgG2a than in control. Nanospheres of rSAG1 are found to be a bio-compatible candidate for the development of vaccine against T. gondii.
Collapse
Affiliation(s)
- Huma Naeem
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Madiha Sana
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Saher Islam
- b Institute of Biochemistry and Biotechnology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Matiullah Khan
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Farooq Riaz
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Zunaira Zafar
- b Institute of Biochemistry and Biotechnology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Haroon Akbar
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Wasim Shehzad
- b Institute of Biochemistry and Biotechnology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Imran Rashid
- a Department of Parasitology , University of Veterinary and Animal Sciences , Lahore , Pakistan
| |
Collapse
|
12
|
Qiu J, Wang L, Zhang R, Ge K, Guo H, Liu X, Liu J, Kong D, Wang Y. Identification of a TNF-α inducer MIC3 originating from the microneme of non-cystogenic, virulent Toxoplasma gondii. Sci Rep 2016; 6:39407. [PMID: 28000706 PMCID: PMC5175157 DOI: 10.1038/srep39407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022] Open
Abstract
Toxoplasma gondii is an opportunistic parasite with avirulent cystogenic and highly virulent non-cystogenic isolates. Although non-cystogenic strains are considered the most virulent, there are also marked genetic and virulence differences among these strains. Excretory-secretory antigens (ESAs) of T. gondii are critical for the invasion process and the immune response of the host. To better understand the differences in virulence between non-cystogenic T. gondii isolates, we studied ESAs of the RH strain (Type I), and the very prevalent in China, but less virulent TgCtwh3 strain (Chinese 1). ESAs of RH and TgCtwh3 triggered different levels of TNF-α production and macrophage M1 polarization. Using iTRAQ analysis, 27 differentially expressed proteins originating from secretory organelles and surface were quantified. Of these proteins, 11 microneme-associated proteins (MICs), 6 rhoptry proteins, 2 dense granule proteins and 5 surface proteins were more abundant in RH than in TgCtwh3. The protein-protein correlation network was employed to identify the important functional node protein MIC3, which was upregulated 5-fold in RH compared with TgCtwh3. MIC3 was experimentally confirmed to evoke a TNF-α secretory response, and it also induced macrophage M1 polarization. This result suggests that MIC3 is a potentially useful immunomodulator that induces TNF-α secretion and macrophage M1 polarization.
Collapse
Affiliation(s)
- Jingfan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Lijuan Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Rong Zhang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Ge
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Hongfei Guo
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Jinfeng Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Delong Kong
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Yong Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
13
|
Evaluation of Protective Immune Responses Induced by Recombinant TrxLp and ENO2 Proteins against Toxoplasma gondii Infection in BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3571962. [PMID: 27803923 PMCID: PMC5075593 DOI: 10.1155/2016/3571962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasitic protozoan that can infect almost all species of warm-blooded animals. As any chemical-based drugs could not act against the tissue cyst stage of T. gondii, vaccination may be one of the ideal control strategies. In the present study, two new vaccine candidates, named TgENO2 and TgTrxLp, were purified from Escherichia coli with pET-30a(+) expression system and then were injected into BALB/c mice to evaluate the protective efficacy against acute and chronic toxoplasmosis. The results showed that both the recombinant proteins, either alone or in combination, could elicit strong humoral and cellular immune responses with a higher level of IgG antibodies, IFN-γ, IL-2, CD4+, and CD8+ T cells as compared to those in mice from control groups. After acute challenge with tachyzoites of the GJS strain, mice immunized with rTgTrxLp (8 ± 2.77 d), rTgENO2 (7.4 ± 1.81 d), and rTgTrxLp + rTgENO2 (8.38 ± 4.57 d) proteins showed significantly longer survival time than those that received Freund's adjuvant (6.78 ± 2.08 d) and PBS (6.38 ± 4.65 d) (χ2 = 9.687, df = 4, P = 0.046). The protective immunity of rTgTrxLp, rTgENO2, and rTgTrxLp + rTgENO2 proteins against chronic T. gondii infection showed 69.77%, 58.14%, and 20.93% brain cyst reduction as compared to mice that received PBS. The present study suggested that both TgENO2 and TgTrxLp were potential candidates for the development of multicomponent vaccines against toxoplasmosis.
Collapse
|
14
|
Identification and characterization of an immunogenic antigen, enolase 2, among excretory/secretory antigens (ESA) of Toxoplasma gondii. Protein Expr Purif 2016; 127:88-97. [PMID: 27450536 DOI: 10.1016/j.pep.2016.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 12/30/2022]
Abstract
An immunogenic protein, enolase 2, was identified among the secreted excretory/secretory antigens (ESAs) from Toxoplasma gondii strain RH using immunoproteomics based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Enolase 2 was cloned, sequenced, and heterologously expressed. BLAST analysis revealed 75-96% similarity with enolases from other parasites. Immunoblotting demonstrated good immunoreactivity of recombinant T. gondii enolase (Tg-enolase 2) to T. gondii-infected animal serum. Purified Tg-enolase 2 was found to catalyze dehydration of 2-phospho-d-glycerate to phosphoenolpyruvate. In vitro studies revealed maximal activity at pH 7.5 and 37 °C, and activity was inhibited by K(+), Ni(2+), Al(3+), Na(+), Cu(2+) and Cr(3+). A monoclonal antibody against Tg-enolase 2 was prepared, 1D6, with the isotype IgG2a/κ. Western blotting revealed that 1D6 reacts with Tg-enolase 2 and native enolase 2, present among T. gondii ESAs. The indirect immunofluorescence assays showed that enolase 2 could be specifically detected on the growing T. gondii tachyzoites. Immunoelectron microscopy revealed the surface and intracellular locations of enolase 2 on T. gondii cells. In conclusion, our results clearly show that the enzymatic activity of T. gondii enolase 2 is ion dependent and that it could be influenced by environmental factors. We also provide evidence that enolase 2 is an important immunogenic protein of ESAs from T. gondii and that it is a surface-exposed protein with strong antigenicity and immunogenicity. Our findings indicate that enolase 2 could play important roles in metabolism, immunogenicity and pathogenicity and that it may serve as a novel drug target and candidate vaccine against T. gondii infection.
Collapse
|
15
|
Bastos LM, Macêdo AG, Silva MV, Santiago FM, Ramos ELP, Santos FAA, Pirovani CP, Goulart LR, Mineo TWP, Mineo JR. Toxoplasma gondii-Derived Synthetic Peptides Containing B- and T-Cell Epitopes from GRA2 Protein Are Able to Enhance Mice Survival in a Model of Experimental Toxoplasmosis. Front Cell Infect Microbiol 2016; 6:59. [PMID: 27313992 PMCID: PMC4888622 DOI: 10.3389/fcimb.2016.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022] Open
Abstract
Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2) is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN), as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b), mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-α and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii.
Collapse
Affiliation(s)
- Luciana M Bastos
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de UberlândiaUberlândia, Brazil; Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de UberlândiaUberlândia, Brazil
| | - Arlindo G Macêdo
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Murilo V Silva
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Fernanda M Santiago
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Eliezer L P Ramos
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Fabiana A A Santos
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Carlos P Pirovani
- Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz Ilhéus, Brazil
| | - Luiz R Goulart
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - Tiago W P Mineo
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| | - José R Mineo
- Laboratório de Imunoparasitologia "Dr. Mário Endsfeldz Camargo", Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia Uberlândia, Brazil
| |
Collapse
|
16
|
Zhang NZ, Wang M, Xu Y, Petersen E, Zhu XQ. Recent advances in developing vaccines against Toxoplasma gondii: an update. Expert Rev Vaccines 2015; 14:1609-21. [PMID: 26467840 DOI: 10.1586/14760584.2015.1098539] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii, a significant public health risk, is able to infect almost all warm-blooded animals including humans, and it results in economic losses in production animals. In the last three years, a large number of vaccination experiments have been performed to control T. gondii infection, with the target of limiting the acute infection and reducing or eliminating tissue cysts in the intermediate hosts. In this paper, we summarize the latest results of the veterinary vaccines against T. gondii infection since 2013. Immunization with live-attenuated whole organisms of non-reverting mutants has been shown to induce remarkably potent immune responses associated with control of acute and chronic toxoplasmosis. The non-cyst-forming mutants are promising new tools for the development of veterinary vaccines against T. gondii infection.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Meng Wang
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| | - Ying Xu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China.,b Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine , China Agricultural University , Beijing , PR China
| | - Eskild Petersen
- c Department of Infectious Diseases, Clinical Institute, Faculty of Health Sciences , Aarhus University , Aarhus , Denmark
| | - Xing-Quan Zhu
- a State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Sciences , Lanzhou , PR China
| |
Collapse
|
17
|
Abdollahi SH, Ayoobi F, Khorramdelazad H, Nasiri Ahmadabadi B, Rezayati M, Kazemi Arababadi M, Zare-Bidaki M. Levels of Transforming Growth Factor-Beta After Immunization of Mice With in vivo prepared Toxoplasma gondii Excretory/Secretory Proteins. Jundishapur J Microbiol 2015; 8:e17802. [PMID: 26060564 PMCID: PMC4458350 DOI: 10.5812/jjm.8(5)2015.17802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Zoonotic parasite Toxoplasma gondii has a high prevalence in human populations. A suitable vaccine for animals can stop the transmission of infection between animal and human. OBJECTIVES The aim of this study was to evaluate in vivo prepared excretory/secretory antigens (E/SA) as a potential candidate for immunization against the parasite and its effect on the production of transforming growth factor-beta (TGF-β). MATERIALS AND METHODS Toxoplasma gondii tachyzoites were inoculated in the peritoneal cavity of mice and E/SA was harvested and used in animal immunization with and without adjuvant. Serum levels of anti-E/SA antibodies and TGF-β were measured in days 0, 3, 7, 14, 28 and 56 after immunization using ELISA technique. The measurements were statistically analyzed. RESULTS Our results showed that the serum levels of anti-E/SA immunoglobulins significantly increased in all of the immunized groups. The differences of the serum levels of TGF-β between the groups were statistically significant at days 28 and 56 after immunization with E/SA. CONCLUSIONS Based on our study, in vivo prepared E/SA may be considered as a good candidate for animal immunization.
Collapse
Affiliation(s)
- Seyed Hossein Abdollahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Fateme Ayoobi
- Physiology and Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Behzad Nasiri Ahmadabadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Mohammadtaghi Rezayati
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
| | - Mohammad Zare-Bidaki
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran
- Corresponding author: Mohammad Zare-Bidaki, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, IR Iran. Tel: +98-3915234003, Fax: +98-3915225209, E-mail:
| |
Collapse
|
18
|
Lee WK, Ahn HJ, Baek JH, Lee CH, Yu YG, Nam HW. Comprehensive Proteome Analysis of the Excretory/Secretory Proteins of Toxoplasma gondii. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.10.3071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Bras-Gonçalves R, Petitdidier E, Pagniez J, Veyrier R, Cibrelus P, Cavaleyra M, Maquaire S, Moreaux J, Lemesre JL. Identification and characterization of new Leishmania promastigote surface antigens, LaPSA-38S and LiPSA-50S, as major immunodominant excreted/secreted components of L. amazonensis and L. infantum. INFECTION GENETICS AND EVOLUTION 2014; 24:1-14. [PMID: 24614507 DOI: 10.1016/j.meegid.2014.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/11/2022]
Abstract
We have previously demonstrated that sera from dogs vaccinated with excreted/secreted antigens (ESA) of Leishmania infantum promastigotes (LiESAp) mainly recognized an immunodominant antigen of 54 kDa. An anti-LiESAp-specific IgG2 humoral response was observed and associated to Th1-type response in vaccinated dogs. This response was highly correlated with a long-lasting and strong LiESAp-vaccine protection toward L. infantum experimental infection. In addition, it was also shown that dogs from the vaccinated group developed a selective IgG2 response against an immunodominant antigen of 45 kDa of Leishmania amazonensis ESA promastigotes (LaESAp). In order to identify and characterize these immunodominant antigens, a mouse monoclonal antibody (mAb F5) was produced by immunization against LaESAp. It was found to recognize the major antigenic targets of both LaESAp and LiESAp. Analysis with mAb F5 of L. amazonensis amastigote and promastigote cDNA expression libraries enabled the identification of clones encoding proteins with significant structural homology to the promastigote surface antigens named PSA-2/gp-46. Among them, one clone presented a full-length cDNA and encoded a novel L. amazonensis protein of 38.6 kDa calculated molecular mass (LaPSA-38S) sharing an amino acid sequence consistent with that of the PSA polymorphic family and a N-terminal signal peptide, characteristic of a secreted protein. We then screened a L. infantum promastigote DNA cosmid library using a cDNA probe derived from the LaPSA-38S gene and identified a full-length clone of a novel excreted/secreted protein of L. infantum with a calculated molecular mass of 49.2 kDa and named LiPSA-50S. The fact that a significant immunological reactivity was observed against PSA, suggests that these newly identified proteins could have an important immunoregulatory influence on the immune response. This hypothesis is supported by the fact that (i) these proteins were naturally excreted/secreted by viable Leishmania promastigotes and amastigotes, and (ii) they are selectively recognized by vaccinated and protected dogs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/immunology
- Antigens, Surface/immunology
- Base Sequence
- Dog Diseases/immunology
- Dog Diseases/parasitology
- Dogs/blood
- Dogs/parasitology
- Immunodominant Epitopes/immunology
- Immunoglobulin G/immunology
- Leishmania infantum/immunology
- Leishmania mexicana/immunology
- Leishmaniasis Vaccines
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/prevention & control
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/prevention & control
- Molecular Sequence Data
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Vaccination
Collapse
Affiliation(s)
- Rachel Bras-Gonçalves
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France.
| | - Elodie Petitdidier
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Julie Pagniez
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Renaud Veyrier
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Prisca Cibrelus
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Mireille Cavaleyra
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Sarah Maquaire
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Jérôme Moreaux
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Jean-Loup Lemesre
- Institut de Recherche pour le Développement, UMR177 IRD/CIRAD "Interactions Hôtes-Vecteurs-Parasites dans les maladies infectieuses à trypanosomatidae", 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| |
Collapse
|
20
|
Kur J, Holec-Gąsior L, Hiszczyńska-Sawicka E. Current status of toxoplasmosis vaccine development. Expert Rev Vaccines 2014; 8:791-808. [DOI: 10.1586/erv.09.27] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Immunization with excreted–secreted antigens reduces tissue cyst formation in pigs. Parasitol Res 2013; 112:3835-42. [DOI: 10.1007/s00436-013-3571-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023]
|
22
|
Meira CS, Vidal JE, Costa-Silva TA, Motoie G, Gava R, Hiramoto RM, Pereira-Chioccola VL. IgG4 specific to Toxoplasma gondii excretory/secretory antigens in serum and/or cerebrospinal fluid support the cerebral toxoplasmosis diagnosis in HIV-infected patients. J Immunol Methods 2013; 395:21-8. [PMID: 23811152 DOI: 10.1016/j.jim.2013.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
Cerebral toxoplasmosis is the most common neurological opportunistic disease manifested in HIV infected patients. Excretory/secretory antigens (ESA) are serological markers for the diagnosis of reactivation of the infection in HIV-infected patients with cerebral toxoplasmosis. Immunosuppressed patients develop high antibody titers for ESA. However, little is known about the humoral response for these antigens. The present study analyzed the profile of antibody recognition against ESA in comparison with tachyzoite lysate antigen (TLA) in 265 sera and 270 cerebrospinal fluid (CSF) samples from infected patients with Toxoplasma gondii and or HIV and in sera of 50 healthy individuals. The samples of sera and CSF were organized in 8 groups. The sera sample groups were: Group I - Se/CT/AIDS (patients with cerebral toxoplasmosis/AIDS) with 58 samples; Group II - Se/ONinf/AIDS/PosT (patients with AIDS/other neuroinfections/positive toxoplasmosis) with 49 samples; Group III - Se/ONinf/AIDS/NegT (patients with AIDS/other neuroinfections/negative toxoplasmosis) with 58 samples; Group IV - Se/PosT/NegHIV (individuals with asymptomatic toxoplasmosis/negative HIV) with 50 samples and Group V - Se/NegT/NegHIV (healthy individuals/negative toxoplasmosis and HIV) with 50 samples. The CSF sample groups were: Group VI - CSF/CT/AIDS (patients with cerebral toxoplasmosis/AIDS) with 99 samples; Group VII - CSF/ONinf/AIDS/PosT (patients with AIDS/other neuroinfections/positive toxoplasmosis) with 112 samples, and Group VIII - CSF/ONinf/AIDS/NegT (patients with AIDS/other neuroinfections/negative toxoplasmosis) with 59 samples. Levels of IgM, IgA, IgE, IgG and subclasses were determined by ELISA against TLA and ESA antigens. IgM, IgA or IgE antibodies against ESA or TLA were not detected in sera from patients with toxoplasmosis suggesting that all patients were in chronic phase of the infection. High levels of IgG1 against TLA were found in sera samples from groups I, II and IV and in CSF samples from groups VI and VII; whereas IgG2, IgG3 and IgG4 levels were not detected in the same sera or CSF sample groups. However, patients from groups I and VI, that had tachyzoites circulating in blood and CSF respectively, produced a mix of IgG1 and IgG4 antibodies against ESA. IgG2 against ESA were predominant in serum from patients with the latent (non-active) T. gondii infection/HIV negative and in CSF samples from patients with other neuroinfections and positive toxoplasmosis (groups IV and VII, respectively). IgG4 levels against ESA were found to be significantly (P<0.05 and P<0.005) higher in patients with cerebral toxoplasmosis (groups I and VI, respectively) in comparison with groups II, IV and VII. This data suggest that IgG4 can be valuable for supporting the diagnosis of focal brain lesions, caused by T. gondii infection, in HIV-infected patients. This approach might be useful, mainly when molecular investigation to detect parasites is not available.
Collapse
Affiliation(s)
- Cristina S Meira
- Laboratorio de Parasitologia do Instituto Adolfo Lutz, Sao Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Evaluation of Toxoplasma gondii-recombinant dense granular protein (GRA2) for serodiagnosis by western blot. Parasitol Res 2012; 112:1229-36. [PMID: 23274488 DOI: 10.1007/s00436-012-3255-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Toxoplasma gondii infects all warm-blooded animals including humans, causing serious public health problems and great economic loss in the food industry. Commonly used serological tests involve preparation of whole Toxoplasma lysate antigens from tachyzoites which are costly and hazardous. An alternative method for better antigen production involving the prokaryotic expression system was therefore used in this study. Recombinant dense granular protein, GRA2, was successfully cloned, expressed, and purified in Escherichia coli, BL21 (DE3) pLysS. The potential of this purified antigen for diagnosis of human infections was evaluated through western blot analysis against 100 human serum samples. Results showed that the rGRA2 protein has 100 and 61.5 % sensitivity towards acute and chronic infection, respectively, in T. gondii-infected humans, indicating that this protein is useful in differentiating present and past infections. Therefore, it is suitable to be used as a sensitive and specific molecular marker for the serodiagnosis of Toxoplasma infection in both humans and animals.
Collapse
|
24
|
Costa-Silva TA, Borges MM, Galhardo CS, Pereira-Chioccola VL. Immunization with excreted/secreted proteins in AS/n mice activating cellular and humoral response against Toxoplasma gondii infection. Acta Trop 2012; 124:203-9. [PMID: 22940015 DOI: 10.1016/j.actatropica.2012.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/31/2012] [Accepted: 08/09/2012] [Indexed: 11/26/2022]
Abstract
This study investigated how Toxoplasma gondii excretory-secretory antigens (ESA) stimulate the humoral and cellular response in infected hosts. We evaluated IFN-γ, IL-4 TNF-α, and IL-10 levels as well as humoral response of ESA-immunized AS/n mice. T. gondii lysate antigen (TLA), a crude antigen, was used in all experiments to evaluate the immune response. Chronic infected and naive mice were used as control groups, since the immune response is well known. The challenge experiments showed the parasitemia levels, determined by real time PCR and survival index. The naive group had early mortality and higher parasitemia than the ESA-immunized mouse group. In addition the chronic infected group had no parasitemia and mortality. Both ESA-immunized and chronic infected mice produced a similar level of IFN-γ and TNF-α. ESA, also, activated cells from immunized mice to produce IL-4 and IL-10 in lower levels compared to those cells collected from chronic mice but sufficient to modulate IFN-γ and TNF-α synthesis, preventing an excessive immune response that could cause extensive inflammation and host tissue damage. After 6 weeks, ESA-immunized mice had low IgM and IgG2a levels and high IgG1 levels. Purified anti-ESA IgG were able to opsonize tachyzoites (RH strain), and mice that received these parasites had lower parasitemia, and mortality was delayed 48 h, compared with the same results from those receiving parasites opsonized with IgG purified from naive mice. The protective immune response in the chronic infection was efficient in protecting the host against infection caused by other T. gondii strain and ESA participate in stimulating the host humoral and cellular responses. The immunization assays showed that ESA can elicit high IgG1, IFN-γ and TNF-α production and, a lower amount of IgM, IgG2, IL-10 and IL-4, suggesting a mixed Th1/Th2 profile.
Collapse
|
25
|
Meira CS, Vidal JE, Costa-Silva TA, Frazatti-Gallina N, Pereira-Chioccola VL. Immunodiagnosis in cerebrospinal fluid of cerebral toxoplasmosis and HIV-infected patients using Toxoplasma gondii excreted/secreted antigens. Diagn Microbiol Infect Dis 2011; 71:279-85. [DOI: 10.1016/j.diagmicrobio.2011.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/08/2011] [Accepted: 07/25/2011] [Indexed: 01/24/2023]
|
26
|
Araújo PRB, Ferreira AW. High diagnostic efficiency of IgM-ELISA with the use of multiple antigen peptides (MAP1) from T. gondii ESA (SAG-1, GRA-1 and GRA-7), in acute toxoplasmosis. Rev Inst Med Trop Sao Paulo 2010; 52:63-8. [PMID: 20464125 DOI: 10.1590/s0036-46652010000200001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/18/2010] [Indexed: 11/21/2022] Open
Abstract
The main serological marker for the diagnosis of recent toxoplasmosis is the specific IgM antibody, along with IgG antibodies of low avidity. However, in some patients these antibodies may persist long after the acute/recent phase, contributing to misdiagnosis in suspected cases of toxoplasmosis. In the present study, the diagnostic efficiency of ELISA was evaluated, with the use of peptides derived from T. gondii ESA antigens, named SAG-1, GRA-1 and GRA-7. In the assay referred to, we studied each of these peptides individually, as well as in four different combinations, as Multiple Antigen Peptides (MAP), aiming to establish a reliable profile for the acute/recent toxoplasmosis with only one patient serum sample. The diagnostic performance of the assay using MAP1, with the combination of SAG-1, GRA-1 and GRA-7 peptides, demonstrated better discrimination of the acute/recent phase from non acute/recent phase of toxoplasmosis. Our results show that IgM antibodies to MAP1 may be useful as a serological marker, enhancing the diagnostic efficiency of the assay for acute/recent phase of toxoplasmosis.
Collapse
|
27
|
Crawford J, Lamb E, Wasmuth J, Grujic O, Grigg ME, Boulanger MJ. Structural and functional characterization of SporoSAG: a SAG2-related surface antigen from Toxoplasma gondii. J Biol Chem 2010; 285:12063-70. [PMID: 20164173 DOI: 10.1074/jbc.m109.054866] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii, the etiological agent of toxoplasmosis, utilizes stage-specific expression of antigenically distinct glycosylphosphatidylinositol-tethered surface coat proteins to promote and establish chronic infection. Of the three infective stages of T. gondii, sporozoites are encapsulated in highly infectious oocysts that have been linked to large scale outbreaks of toxoplasmosis. SporoSAG (surface antigen glycoprotein) is the dominant surface coat protein expressed on the surface of sporozoites. Using a bioinformatic approach, we show that SporoSAG clusters with the SAG2 subfamily of the SAG1-related superfamily (SRS) and is non-polymorphic among the 11 haplogroups of T. gondii strains. In contrast to the immunodominant SAG1 protein expressed on tachyzoites, SporoSAG is non-immunogenic during natural infection. We report the 1.60 A resolution crystal structure of SporoSAG solved using cadmium single anomalous dispersion. SporoSAG crystallized as a monomer and displays unique features of the SRS beta-sandwich fold relative to SAG1 and BSR4. Intriguingly, the structural diversity is localized to the upper sheets of the beta-sandwich fold and may have important implications for multimerization and host cell ligand recognition. The structure of SporoSAG also reveals an unexpectedly acidic surface that contrasts with the previously determined SAG1 and BSR4 structures where a basic surface is predicted to play a role in binding negatively charged glycosaminoglycans. Our structural and functional characterization of SporoSAG provides a rationale for the evolutionary divergence of this key SRS family member.
Collapse
Affiliation(s)
- Joanna Crawford
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Nam HW. GRA proteins of Toxoplasma gondii: maintenance of host-parasite interactions across the parasitophorous vacuolar membrane. THE KOREAN JOURNAL OF PARASITOLOGY 2010; 47 Suppl:S29-37. [PMID: 19885333 DOI: 10.3347/kjp.2009.47.s.s29] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 09/28/2009] [Accepted: 09/28/2009] [Indexed: 01/23/2023]
Abstract
The dense granule of Toxoplasma gondii is a secretory vesicular organelle of which the proteins participate in the modification of the parasitophorous vacuole (PV) and PV membrane for the maintenance of intracellular parasitism in almost all nucleated host cells. In this review, the archives on the research of GRA proteins are reviewed on the foci of finding GRA proteins, characterizing molecular aspects, usefulness in diagnostic antigen, and vaccine trials in addition to some functions in host-parasite interactions.
Collapse
Affiliation(s)
- Ho-Woo Nam
- Department of Parasitology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea.
| |
Collapse
|
29
|
Pereira-Chioccola VL, Vidal JE, Su C. Toxoplasma gondii infection and cerebral toxoplasmosis in HIV-infected patients. Future Microbiol 2009; 4:1363-79. [DOI: 10.2217/fmb.09.89] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cerebral toxoplasmosis is a major cause of morbidity and mortality among HIV-infected patients, particularly from developing countries. This article summarizes current literature on cerebral toxoplasmosis. It focuses on: Toxoplasma gondii genetic diversity and its possible relationship with disease presentation; host responses to the parasite antigens; host immunosupression in HIV and cerebral toxoplasmosis as well as different diagnostic methods; clinical and radiological features; treatment; and the direction that studies on cerebral toxoplasmosis will likely take in the future.
Collapse
Affiliation(s)
- Vera Lucia Pereira-Chioccola
- Laboratório de Parasitologia, Instituto Adolfo Lutz, Av. Dr Arnaldo, 351, 8 andar, CEP 01246-902, São Paulo, SP, Brazil
| | - José Ernesto Vidal
- Departamento de Neurologia, Instituto de Infectologia Emílio Ribas, Av. Dr Arnaldo, 165 CEP 05411-000, Sao Paulo, SP, BrazilandServiço de Extensão ao atendimento de Pacientes HIV/AIDS, Divisão de Moléstias Infecciosas e Parasitárias, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo, Rua Frei Caneca 557, Sao Paulo, SP, Brazil
| | - Chunlei Su
- Department of Microbiology F409, Walters Life Sciences Building, The University of Tennessee, 1414 W. Cumberland Ave., Knoxville, TN 37996-0845, USA
| |
Collapse
|
30
|
Holec-Gasior L, Kur J. Toxoplasma gondii: Recombinant GRA5 antigen for detection of immunoglobulin G antibodies using enzyme-linked immunosorbent assay. Exp Parasitol 2009; 124:272-8. [PMID: 19874823 DOI: 10.1016/j.exppara.2009.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/23/2009] [Accepted: 10/21/2009] [Indexed: 01/12/2023]
Abstract
In this study, for the first time, the evaluation of Toxoplasma gondii full-length recombinant GRA5 antigen for the serodiagnosis of human toxoplasmosis is shown. The recombinant GRA5 antigen as a fusion protein containing His-tag at both terminals was obtained using an Escherichia coli expression system. The usefulness of rGRA5 for the diagnosis of toxoplasmosis in an ELISA was tested on a total of 189 sera from patients with different stages of the infection and 31 sera from sero-negative individuals, obtained during routine diagnostic tests. Anti-GRA5 IgG antibodies were detected in 70.9% of all seropositive serum samples. This result was comparable to ELISA using a Toxoplasma lysate antigen (TLA) and six combinations of recombinant antigens. The sensitivity of IgG ELISA calculated from all positive serum samples was similar for TLA (94.2%), rMAG1+rSAG1+rGRA5 (92.6%), rGRA2+rSAG1+rGRA5 (93.1%) and rROP1+rSAG1+rGRA5 (94.2%) cocktails, whereas the sensitivity of cocktails without rGRA5 antigens was lower giving 82.0%, 86.2% and 87.8%, respectively. Thus, the present study showed that the full-length rGRA5 is suitable for use as a component of an antigen cocktail for the detection of anti-T. gondii IgG antibodies.
Collapse
Affiliation(s)
- Lucyna Holec-Gasior
- Gdańsk University of Technology, Chemical Faculty, Department of Microbiology, Narutowicza 11/12 Str., 80-233 Gdańsk, Poland
| | | |
Collapse
|
31
|
Xue M, He S, Cui Y, Yao Y, Wang H. Evaluation of the immune response elicited by multi-antigenic DNA vaccine expressing SAG1, ROP2 and GRA2 against Toxoplasma gondii. Parasitol Int 2008; 57:424-9. [DOI: 10.1016/j.parint.2008.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
|
32
|
Costa-Silva TA, Meira CS, Ferreira IM, Hiramoto RM, Pereira-Chioccola VL. Evaluation of immunization with tachyzoite excreted–secreted proteins in a novel susceptible mouse model (A/Sn) for Toxoplasma gondii. Exp Parasitol 2008; 120:227-34. [DOI: 10.1016/j.exppara.2008.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/18/2008] [Accepted: 07/22/2008] [Indexed: 12/13/2022]
|
33
|
Meira CS, Costa-Silva TA, Vidal JE, Ferreira IMR, Hiramoto RM, Pereira-Chioccola VL. Use of the serum reactivity against Toxoplasma gondii excreted–secreted antigens in cerebral toxoplasmosis diagnosis in human immunodeficiency virus-infected patients. J Med Microbiol 2008; 57:845-850. [DOI: 10.1099/jmm.0.47687-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Cristina S. Meira
- Department of Parasitology, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | | | - José E. Vidal
- Department of Neurology, Instituto de Infectologia Emílio Ribas, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
34
|
Araújo PRB, Ferreira AW. Avidity of IgG antibodies against excreted/secreted antigens of Toxoplasma gondii: immunological marker for acute recent toxoplasmosis. Rev Soc Bras Med Trop 2008; 41:142-7. [DOI: 10.1590/s0037-86822008000200002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 03/11/2008] [Indexed: 11/21/2022] Open
Abstract
Detection of anti-toxoplasma IgM antibodies has frequently been used as a serological marker for diagnosing recently acquired toxoplasmosis. However, the persistence of these antibodies in some patients has complicated the interpretation of serological results when toxoplasmosis is suspected. The purpose of the present study was to evaluate the avidity of IgG antibodies against excreted/secreted antigens of Toxoplasma gondii by means of immunoblot, to establish a profile for acute recent infection in a single serum sample and confirm the presence of residual IgM antibodies obtained in automated assays. When we evaluated the avidity of IgG antibodies against excreted/secreted antigens of Toxoplasma gondii by means of immunoblot, we observed phase-specific reactivity, i.e. cases of acute recent toxoplasmosis presented low avidity and cases of non-acute recent toxoplasmosis presented high avidity towards the 30kDa protein fraction, which probably corresponds to the SAG-1 surface antigen. Our results suggest that the avidity of IgG antibodies against excreted/secreted antigens of Toxoplasma gondii is an important immunological marker for distinguishing between recent infections and for determining the presence of residual IgM antibodies obtained from automated assays.
Collapse
|
35
|
Golkar M, Rafati S, Abdel-Latif MS, Brenier-Pinchart MP, Fricker-Hidalgo H, Sima BK, Babaie J, Pelloux H, Cesbron-Delauw MF, Mercier C. The dense granule protein GRA2, a new marker for the serodiagnosis of acute Toxoplasma infection: comparison of sera collected in both France and Iran from pregnant women. Diagn Microbiol Infect Dis 2007; 58:419-26. [PMID: 17509806 DOI: 10.1016/j.diagmicrobio.2007.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 03/05/2007] [Accepted: 03/05/2007] [Indexed: 11/19/2022]
Abstract
GRA2 is a highly immunogenic protein secreted from the dense granules of Toxoplasma gondii. Recent success in purifying full-length, soluble GRA2 from bacteria as a thioredoxin (TRX)-(Hisx6) fusion protein led to investigate the antigenicity of the recombinant protein against human sera. On immunoblots, TRX-(Hisx6)-GRA2 was recognized by sera collected in Iran from T. gondii-infected pregnant women. An IgG enzyme-linked immunosorbent assay was developed to evaluate the reactivity of sera, collected from pregnant women both in France and Iran, to the TRX-(Hisx6)-GRA2 fusion protein. Specificity of the test was 96.4%. Sensitivity of the GRA2 enzyme-linked immunosorbent assay ranged from 95.8% (sera collected in France) to 100% (sera collected in Iran) for sera of acute infection and from 65.7% (sera collected in France) to 71.4% (sera collected in Iran) for sera of chronic infection. The recombinant GRA2 could thus advantageously complement previously described T. gondii antigens for the serodiagnosis of acute Toxoplasma infection.
Collapse
Affiliation(s)
- Majid Golkar
- CNRS UMR 5163, UFR de Biologie, Institut Jean Roget, Université Joseph Fourier, Campus Santé, Domaine de la Merci, and Parasitology and Mycology Laboratory, Grenoble Teaching Hospital A. Michallon, Grenoble cedex 09, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lemesre JL, Holzmuller P, Gonçalves RB, Bourdoiseau G, Hugnet C, Cavaleyra M, Papierok G. Long-lasting protection against canine visceral leishmaniasis using the LiESAp-MDP vaccine in endemic areas of France: double-blind randomised efficacy field trial. Vaccine 2007; 25:4223-34. [PMID: 17395339 DOI: 10.1016/j.vaccine.2007.02.083] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 02/22/2007] [Accepted: 02/28/2007] [Indexed: 11/21/2022]
Abstract
Vaccination against visceral leishmaniasis has received limited attention compared with cutaneous leishmaniasis, although the need for an effective vaccine against visceral leishmaniasis is pressing. Dogs constitute the major reservoir of Leishmania infantum/chagasi responsible for human visceral leishmaniasis. We have recently demonstrated that the combination of naturally excreted/secreted antigens, easily purified from culture supernatant of Leishmania infantum promastigotes (LiESAp) as vaccine antigen in formulation with muramyl dipeptide (MDP) as adjuvant, conferred 100% protection to dogs experimentally infected with L. infantum by inducing in vaccinees a significant, stable and long-lasting Th1-type cell response [Lemesre JL, Holzmuller P, Cavaleyra M, Bras Gonçalves R, Hottin G, Papierok G. Protection against experimental visceral leishmaniasis infection in dogs immunised with purified excreted secreted antigens of L. infantum promastigotes. Vaccine 2005; 23:2825-2840; Holzmuller P, Cavaleyra M, Moreaux J, Kovacic R, Vincendeau P, Papierok G, Lemesre JL. Lymphocytes of dogs immunised with purified excreted secreted antigens of L. infantum co-incubated with Leishmania-infected macrophages produce IFN-gamma resulting in nitric oxide-mediated amastigote apoptosis. Vet. Immunol. Immunopathol. 2005, 106:247-257]. In this report, protection against visceral leishmaniasis is investigated in naturally exposed dogs of endemic areas of the South of France vaccinated with LiESAp/MDP vaccine. A double-blind randomised efficacy field trial was developed on a large-scale dog population composed of vaccinees (n=205) and placebo-treated animals (n=209), which were prospectively studied for a 2-year period. 0f the initial 414 enrolled dogs, 340 (175 controls and 165 vaccinees) were analysed for clinical, serological and parasitological studies at 24 months post-vaccination, after two sand fly seasons. Strong seroconversion disclosed by an L. infantum indirect immunofluorescence antibody test (IFAT) associated with suspicious clinical symptoms, considered an indication that the animals had an established progressive infection, was only observed in the placebo group. The seropositive and/or symptomatic dogs were selected for further examination for possible Leishmania infection by culturing parasites from bone-marrow aspirate. The presence of leishmanial infection was also evaluated by means of the PCR analysis of bone marrow samples in all enrolled dogs prior to vaccination and in all evaluated animals (175 controls and 165 vaccinees) at 24 months post-vaccination. After two transmission cycles completed, the Leishmania infection rate was 0.61% (1/165) in vaccinated dogs and 6.86% (12/175) in the placebo group. The efficacy of the vaccine was calculated to be 92% (P=0.002). A clear difference between the dogs that received vaccine and those that received placebo was also established by the results of their immune status. Increased anti-LiESAp IgG2 reactivity and significant enhanced NO-mediated anti-leishmanial activity of canine macrophages in response to higher IFN-gamma production by T cells were almost exclusively revealed in vaccinees. The LiESAp-MDP vaccine induced a significant, long-lasting and strong protective effect against canine visceral leishmaniasis in the field.
Collapse
Affiliation(s)
- Jean-Loup Lemesre
- Institut de Recherche pour le Développement, UR 008 Pathogénie des Trypanosomatidae, Equipe 1, 911 avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Guglietta S, Beghetto E, Spadoni A, Buffolano W, Del Porto P, Gargano N. Age-dependent impairment of functional helper T cell responses to immunodominant epitopes of Toxoplasma gondii antigens in congenitally infected individuals. Microbes Infect 2007; 9:127-33. [PMID: 17223600 DOI: 10.1016/j.micinf.2006.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 10/26/2006] [Indexed: 11/22/2022]
Abstract
Human infection with Toxoplasma gondii is generally asymptomatic in immunocompetent adults while it causes significant morbidity in congenitally infected children. Cell mediated immunity plays the main role in host resistance to T. gondii infection and a Th1 cytokine profile is necessary for protection and control of infection. The present work focused on comparing the helper T cell response to the GRA1 antigen of the parasite between children with congenital toxoplasmosis and healthy adults with acquired infection. We demonstrated that in young children with congenital infection the specific T cell response to parasite antigens is impaired and that such hypo-responsiveness is restored during childhood. Also, we provided clear evidence that in individuals with congenital toxoplasmosis the acquisition of functional helper T cell responses is disease-unrelated and indistinguishable in terms of strength, epitope specificity, and cytokine profile from the corresponding responses in immunocompetent adults with asymptomatic acquired T. gondii infection.
Collapse
Affiliation(s)
- Silvia Guglietta
- Department of Cellular and Developmental Biology, University of Rome La Sapienza, Via dei Sardi 70, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Prigione I, Chiesa S, Taverna P, Ceccarelli R, Frulio R, Morandi F, Bocca P, Cesbron-Delauw MF, Pistoia V. T cell mediated immune responses to Toxoplasma gondii in pregnant women with primary toxoplasmosis. Microbes Infect 2006; 8:552-60. [PMID: 16324868 DOI: 10.1016/j.micinf.2005.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/27/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate T cell immunity to Toxoplasma gondii (Tg) in pregnant women with primary toxoplasmosis. This issue has never been addressed before in humans and available information derives from murine models. Peripheral blood mononuclear cells (PBMC) from pregnant women with primary Tg infection were stimulated with Tg tachyzoites, excretory-secretory antigens (ESA) or recombinant surface antigen-1 (rSAG-1), and tested for proliferation, immunophenotype, cytokine production and antigen specific cytotoxic activity. Pregnant women with primary toxoplasmosis displayed a significant decrease of the CD4/CD8 T cell ratio and a significant increase of circulating T cell receptor (TCR) gammadelta+ cells as compared to their uninfected counterparts. T cells from Tg infected pregnant women proliferated to Tg tachyzoites, ESA or rSAG-1. Most tachyzoite and ESA specific T cell blasts were CD4+, whereas SAG-1 specific blasts were CD4+ and CD8+. ESA and tachyzoite specific T cell blasts displayed a Th1 or Th0 cytokine profile with overexpression of IFN-gamma. This pattern was unchanged upon in vitro exposure of T cells to progesterone, tested at a concentration close to that reached in vivo at the maternal-fetal interface. Finally, tachyzoite or ESA specific T cell blasts lysed, through a granule exocytosis dependent mechanism, autologous lymphoblastoid cell lines presenting Tg antigens. In conclusion, pregnant women with primary toxoplasmosis mounted in vitro Tg-specific Th1/Th0 responses whose impact on neonatal infection warrants further investigation.
Collapse
Affiliation(s)
- Ignazia Prigione
- Laboratory of Oncology, Department of Experimental and Laboratory Medicine, G. Gaslini Scientific Institute, Largo G. Gaslini 5, 16148 Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chenik M, Lakhal S, Ben Khalef N, Zribi L, Louzir H, Dellagi K. Approaches for the identification of potential excreted/secreted proteins of Leishmania major parasites. Parasitology 2006; 132:493-509. [PMID: 16388694 DOI: 10.1017/s0031182005009546] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/28/2005] [Accepted: 10/14/2005] [Indexed: 11/07/2022]
Abstract
Leishmania parasites are able to survive in host macrophages despite the harsh phagolysosomal vacuoles conditions. This could reflect, in part, their capacity to secrete proteins that may play an essential role in the establishment of infection and serve as targets for cellular immune responses. To characterize Leishmania major proteins excreted/secreted early after promastigote entry into the host macrophage, we have generated antibodies against culture supernatants of stationary-phase promastigotes collected 6 h after incubation in conditions that partially reproduce those prevailing in the parasitophorous vacuole. The screening of an L. major cDNA library with these antibodies led us to isolate 33 different cDNA clones that we report here. Sequence analysis revealed that the corresponding proteins could be classified in 3 groups: 9 proteins have been previously described as excreted/secreted in Leishmania and/or other species; 11 correspond to known proteins already characterized in Leishmania and/or other species although it is unknown whether they are excreted/secreted and 13 code for unknown proteins. Interestingly, the latter are transcribed as shown by RT-PCR and some of them are stage regulated. The L. major excreted/secreted proteins may constitute putative virulence factors, vaccine candidates and/or new drug targets.
Collapse
Affiliation(s)
- M Chenik
- WHO Collaborating Center for Research and Training in Leishmaniasis, Laboratoire d'Immunopathologie, Vaccinologie et Génétique Moléculaire, Institut Pasteur de Tunis, 13, Place Pasteur 1002 Tunis-Belvédére, Tunisia.
| | | | | | | | | | | |
Collapse
|
40
|
Hoe LN, Wan KL, Nathan S. Construction and characterization of recombinant single-chain variable fragment antibodies against Toxoplasma gondii MIC2 protein. Parasitology 2005; 131:759-68. [PMID: 16336729 DOI: 10.1017/s0031182005008450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 04/14/2005] [Accepted: 05/24/2005] [Indexed: 11/06/2022]
Abstract
The protozoan parasite Toxoplasma gondii produces a family of microneme proteins that are thought to play diverse roles in aiding the parasite's intracellular existence. Among these, TgMIC2 has a putative function in parasite adhesion to the host cell to initiate the invasion process. The invasion process may be localized and inhibited by monoclonal antibodies against the protein(s) involved. Here we report on the construction of a phage-displayed single-chain variable fragment (scFv) library from mice immunized with whole T. gondii parasites. The library was subsequently panned against recombinant TgMIC2 (rpTgMIC2) and 2 different groups of antibody clones were obtained, based on fingerprinting and sequencing data. The expressed recombinant scFv antibody was able to recognize rpTgMIC2 in a Western blot detection experiment. These results show that the phage display technology allows quick and effective production of monoclonal antibodies against parasite antigens. By panning the scFv-displayed library, we should be able to obtain a plethora of multi-functional scFv antibodies towards T. gondii proteins.
Collapse
Affiliation(s)
- L-N Hoe
- Centre for Gene Analysis and Technology, School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D. E., Malaysia
| | | | | |
Collapse
|
41
|
Ahn HJ, Kim S, Nam HW. Host cell binding of GRA10, a novel, constitutively secreted dense granular protein from Toxoplasma gondii. Biochem Biophys Res Commun 2005; 331:614-20. [PMID: 15850804 DOI: 10.1016/j.bbrc.2005.03.218] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Indexed: 11/24/2022]
Abstract
Monoclonal antibodies (mAbs) against Toxoplasma gondii, Tg378 and Tg556 clones, are specifically observed to localize to the dense granules of tachyzoites by immunofluorescence microscopy. mAb Tg556 is directed against GRA3, a previously described 30kDa dense granular protein. mAb Tg378 is directed against a novel 36kDa dense granular protein, which we refer to as GRA10. These are major proteins in the excretory/secretory proteins from T. gondii before the parasite's entry into host cells, and they are released into the parasitophorous vacuole (PV) during or shortly after invasion to be associated with the PV membrane. GRA10 binds to the membrane of the host cells regardless of its anchorage-dependence or -independence. The cDNA sequence encoding GRA10 was determined by screening a T. gondii cDNA expression library with mAb Tg378. The deduced amino acid sequence of GRA10 consists of a polypeptide of 364 amino acids, and it has no significant homology to any other known proteins. The sequence contains amino terminal signal peptides and two potential transmembrane domains in the middle of sequence that are not near the carboxy terminus. GRA10 has a RGD motif between the two potential transmembrane domains.
Collapse
Affiliation(s)
- Hye-Jin Ahn
- Department of Parasitology, Catholic Institute of Parasitic Diseases, College of Medicine, Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | |
Collapse
|
42
|
Kim SK, Boothroyd JC. Stage-Specific Expression of Surface Antigens byToxoplasma gondiias a Mechanism to Facilitate Parasite Persistence. THE JOURNAL OF IMMUNOLOGY 2005; 174:8038-48. [PMID: 15944311 DOI: 10.4049/jimmunol.174.12.8038] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Toxoplasma persists in the face of a functional immune system. This success critically depends on the ability of parasites to activate a strong adaptive immune response during acute infection with tachyzoites that eliminates most of the parasites and to undergo stage conversion to bradyzoites that encyst and persist predominantly in the brain. A dramatic change in antigenic composition occurs during stage conversion, such that tachyzoites and bradyzoites express closely related but antigenically distinct sets of surface Ags belonging to the surface Ag 1 (SAG1)-related sequence (SRS) family. To test the contribution of this antigenic switch to parasite persistence, we engineered parasites to constitutively express the normally bradyzoite-specific SRS9 (SRS9(c)) mutants and tachyzoite-specific SAG1 (SAG1(c)) mutants. SRS9(c) but not wild-type parasites elicited a SRS9-specific immune response marked by IFN-gamma production, suggesting that stage-specificity of SRS Ags determines their immunogenicity in infection. The induction of a SRS9-specific immune response correlated with a continual decrease in the number of SRS9(c) cysts persisting in the brain. In contrast, SAG1(c) mutants produced reduced brain cyst loads early in chronic infection, but these substantially increased over time accompanying a hyperproduction of IFN-gamma, TNF-alpha, and IL-10, and severe encephalitis. We conclude that stage-specific expression of SRS Ags is among the key mechanisms by which optimal parasite persistency is established and maintained.
Collapse
MESH Headings
- Animals
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/genetics
- Antigens, Protozoan/physiology
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Antigens, Surface/physiology
- Cells, Cultured
- Chronic Disease
- Cytokines/biosynthesis
- Female
- Host-Parasite Interactions/genetics
- Host-Parasite Interactions/immunology
- Interferon-gamma/biosynthesis
- Interleukin-10/biosynthesis
- Mice
- Mice, Inbred CBA
- Mutation
- Protozoan Proteins/biosynthesis
- Protozoan Proteins/genetics
- Protozoan Proteins/physiology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Spleen/immunology
- Spleen/metabolism
- Spleen/parasitology
- Toxoplasma/genetics
- Toxoplasma/growth & development
- Toxoplasma/immunology
- Toxoplasmosis, Animal/immunology
- Toxoplasmosis, Animal/mortality
- Toxoplasmosis, Animal/parasitology
- Toxoplasmosis, Animal/prevention & control
- Toxoplasmosis, Cerebral/immunology
- Toxoplasmosis, Cerebral/mortality
- Toxoplasmosis, Cerebral/parasitology
- Toxoplasmosis, Cerebral/prevention & control
Collapse
Affiliation(s)
- Seon-Kyeong Kim
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
43
|
Gubbels MJ, Striepen B, Shastri N, Turkoz M, Robey EA. Class I major histocompatibility complex presentation of antigens that escape from the parasitophorous vacuole of Toxoplasma gondii. Infect Immun 2005; 73:703-11. [PMID: 15664908 PMCID: PMC547086 DOI: 10.1128/iai.73.2.703-711.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii, the causative agent of toxoplasmosis, induces a protective CD8 T-cell response in its host; however, the mechanisms by which T. gondii proteins are presented by the class I major histocompatibility complex remain largely unexplored. T. gondii resides within a specialized compartment, the parasitophorous vacuole, that sequesters the parasite and its secreted proteins from the host cell cytoplasm, suggesting that an alternative cross-priming pathway might be necessary for class I presentation of T. gondii antigens. Here we used a strain of T. gondii expressing yellow fluorescent protein and a secreted version of the model antigen ovalbumin to investigate this question. We found that presentation of ovalbumin secreted by the parasite requires the peptide transporter TAP (transporter associated with antigen processing) and occurs primarily in actively infected cells rather than bystander cells. We also found that dendritic cells are a major target of T. gondii infection in vivo and account for much of the antigen-presenting activity in the spleen. Finally, we obtained evidence that Cre protein secreted by T. gondii can mediate recombination in the nucleus of the host cell. Together, these results indicate that Toxoplasma proteins can escape from the parasitophorous vacuole into the host cytoplasm and be presented by the endogenous class I pathway, leading to direct recognition of infected cells by CD8 T cells.
Collapse
Affiliation(s)
- Marc-Jan Gubbels
- Department of Molecular and Cell Biology, 471 Life Sciences Addition, University of California-Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
44
|
Rachinel N, Buzoni-Gatel D, Dutta C, Mennechet FJD, Luangsay S, Minns LA, Grigg ME, Tomavo S, Boothroyd JC, Kasper LH. The induction of acute ileitis by a single microbial antigen of Toxoplasma gondii. THE JOURNAL OF IMMUNOLOGY 2004; 173:2725-35. [PMID: 15294991 DOI: 10.4049/jimmunol.173.4.2725] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of specific microbial Ags in the induction of experimental inflammatory bowel disease is poorly understood. Oral infection of susceptible C57BL/6 mice with Toxoplasma gondii results in a lethal ileitis within 7-9 days postinfection. An immunodominant Ag of T. gondii (surface Ag 1 (SAG1)) that induces a robust B and T cell-specific response has been identified and a SAG1-deficient parasite (Deltasag1) engineered. We investigated the ability of Deltasag1 parasite to induce a lethal intestinal inflammatory response in susceptible mice. C57BL/6 mice orally infected with Deltasag1 parasites failed to develop ileitis. In vitro, the mutant parasites replicate in both enterocytes and dendritic cells. In vivo, infection with the mutant parasites was associated with a decrease in the chemokine and cytokine production within several compartments of the gut-associated cell population. RAG-deficient (RAG1(-/-)) mice are resistant to the development of the ileitis after T. gondii infection. Adoptive transfer of Ag-specific CD4(+) effector T lymphocytes isolated from C57BL/6-infected mice into RAG(-/-) mice conferred susceptibility to the development of the intestinal disease. In contrast, CD4(+) effector T lymphocytes from mice infected with the mutant Deltasag1 strain failed to transfer the pathology. In addition, resistant mice (BALB/c) that fail to develop ileitis following oral infection with T. gondii were rendered susceptible following intranasal presensitization with the SAG1 protein. This process was associated with a shift toward a Th1 response. These findings demonstrate that a single Ag (SAG1) of T. gondii can elicit a lethal inflammatory process in this experimental model of pathogen-driven ileitis.
Collapse
Affiliation(s)
- Nicolas Rachinel
- Department of Medicine, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Di Cristina M, Del Porto P, Buffolano W, Beghetto E, Spadoni A, Guglietta S, Piccolella E, Felici F, Gargano N. The Toxoplasma gondii bradyzoite antigens BAG1 and MAG1 induce early humoral and cell-mediated immune responses upon human infection. Microbes Infect 2004; 6:164-71. [PMID: 14998514 DOI: 10.1016/j.micinf.2003.11.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 11/05/2003] [Indexed: 11/26/2022]
Abstract
Infection of humans by Toxoplasma gondii leads to an acute systemic phase, in which tachyzoites disseminate throughout the body, followed by a chronic phase characterized by the presence of tissue cysts, containing bradyzoites, in brain, heart and skeletal muscles. This work focused on studying the antigenic regions of bradyzoite-specific proteins involved in human B- and T-cell responses. To this aim, we constructed a phage-display library of DNA fragments derived from the bradyzoite-specific genes BAG1, MAG1, SAG2D, SAG4, BSR4, LDH2, ENO1 and p-ATPase. Challenge of the bradyzoite library with sera of infected individuals led to the identification of antigenic regions within BAG1 and MAG1 gene products. Analysis of the humoral and lymphoproliferative responses to recombinant antigens demonstrated that the BAG1 fragment induced T-cell proliferation in 34% of T. gondii-exposed individuals, while 50% of them had specific IgG. In the same subjects, the MAG1 fragment was recognized by T cells from 17% of the exposed donors and by antibodies from 73% of them. A detailed analysis of the antibody response against BAG1 and MAG1 antigen fragments demonstrated that the immune response against bradyzoites occurs early after infection in humans. Finally, we provide evidence that the T-cell response against BAG1 is associated with the production of interferon-gamma, suggesting that bradyzoite antigens should be considered in the design of potential vaccines in humans.
Collapse
|
46
|
Fatoohi AF, Cozon GJN, Gonzalo P, Mayencon M, Greenland T, Picot S, Peyron F. Heterogeneity in cellular and humoral immune responses against Toxoplasma gondii antigen in humans. Clin Exp Immunol 2004; 136:535-41. [PMID: 15147357 PMCID: PMC1809048 DOI: 10.1111/j.1365-2249.2004.02466.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Protection against Toxoplasma gondii in infected patients is mainly attributed to cellular immunity. We here attempt to improve the characterization of the proteins that induce cellular immunity in naturally infected patients. Cellular immunity was evaluated by flow cytometry after 7 days of blood culture from 31 chronically T. gondii infected and 8 noninfected pregnant women, in the presence of soluble T. gondii antigen (ST-Ag) or fractionated proteins from ST-Ag, separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Blood cultures from infected patients with ST-Ag induced 39.5 +/- 12.7% of activated (CD25+) CD4+ T cells using flow cytometry. This contrasts with the absence of activated CD4+ T cells after either culture with PBS or in blood cultures from noninfected women. The protein fraction between 21 and 41.9 kD induced the highest response (14.7 +/- 10.0%). Blood samples from 20 infected and 5 uninfected women were cultured in presence of 12 protein subfractions of 2-208 kD. The highest frequencies of response among infected patients were seen with fractions (Fr) 26-31.9 kD (C.I. 85-100%) and Fr 32-36.9 kD (C.I. 77-100%). Although we note a good concordance between cellular and humoral response, Western blot analysis of ST-Ag does not completely predict the panel of proteins recognized by cellular immunity. Two-dimensional separation of the ST-Ag revealed more than 200 protein spots in these fractions. However, only two proteins in the 20-40 kD range induced a significant humoral response. Further studies are necessary to determine which proteins in the Fr 26-31.9 kD and 32-36.9 kD are superior immunogens for cellular responses.
Collapse
Affiliation(s)
- A F Fatoohi
- E.A. 3087 Parasitologie, Faculté de Médecine Lyon Nord, and Laboratoire d'Immunologie, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Assossou O, Besson F, Rouault JP, Persat F, Ferrandiz J, Mayençon M, Peyron F, Picot S. Characterization of an excreted/secreted antigen form of 14-3-3 protein inToxoplasma gondiitachyzoites. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09508.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Fatoohi AF, Cozon GJN, Greenland T, Ferrandiz J, Bienvenu J, Picot S, Peyron F. Cellular immune responses to recombinant antigens in pregnant women chronically infected with Toxoplasma gondii. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:704-7. [PMID: 11986281 PMCID: PMC120002 DOI: 10.1128/cdli.9.3.704-707.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The parasite Toxoplasma gondii can infect most mammals and birds, sometimes causing severe pathology. Primary infection during pregnancy can result in abortion or fetal defects. Host immunity, particularly cellular immunity towards antigenic peptides, can control infection, but an efficient vaccine is not yet available. We have evaluated T-cell responses to a crude soluble toxoplasma antigen (ST-Ag) and to five recombinant peptide antigens of cells in whole-blood cultures from 22 pregnant women with preexisting infections and from 7 pregnant negative controls. Cells from all infected patients but from none of the controls responded specifically to ST-Ag by expressing surface CD25 on culture. Responses to the recombinant antigens showed considerable variation between individuals. rGRA1 elicited a response in 16 of the 22 samples (73%), rSAG1 in 13, rGRA7 in 9, rGRA6-CT in 4, and rGRA6-NT in only 1. Most responding cells were CD4(+). Cells from infected subjects cultured with ST-Ag all released high levels of gamma interferon (IFN-gamma) into the culture supernatant (4,343 +/- 2,536 pg/ml). Cells from 12 patients released IFN-gamma after culture with rGRA1 (130 +/- 98 pg/ml), those from 10 patients released it after culture with rSAG1 (183 +/- 128 pg/ml), and those from 4 patients released it after culture with rGRA7 (324 +/- 374 pg/ml). Intensity of IFN-gamma production in response to the latter two recombinant antigens correlated with responses to ST-Ag (r = 0.61 and 0.53, respectively; P < 0.01). Interleukin-4 was always absent from supernatants of cells stimulated with toxoplasma antigens. The heterogeneity of human responses to individual recombinant toxoplasma antigens should be considered in the design of potential vaccines.
Collapse
Affiliation(s)
- A F Fatoohi
- E. A. 3087 Parasitologie, Faculté de Médecine Lyon Nord, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Reichmann G, Długońska H, Fischer HG. Characterization of TgROP9 (p36), a novel rhoptry protein of Toxoplasma gondii tachyzoites identified by T cell clone. Mol Biochem Parasitol 2002; 119:43-54. [PMID: 11755185 DOI: 10.1016/s0166-6851(01)00397-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
T cell clone 3Tx19 detects a Toxoplasma gondii tachyzoite protein which, in high resolution 2D gel electrophoresis, runs at 36 kDa apparent MW with two spots of pI 5.9 and 6.5, thus exhibiting a migration pattern distinct from those of other known Toxoplasma antigens. The sequences of peptide fragments from tryptic digestion of the more prominent protein spot allowed the design of oligonucleotide primers to obtain the coding cDNA sequence. Sequence analysis of cDNA from strain BK revealed a 363 amino acid open reading frame, defined by all nine peptide sequences determined. The deduced protein sequence contains two hydrophobic segments, one near the N-terminus including a predicted signal peptide and a shorter second at the carboxy terminus, but homology to any other known protein is lacking. With synthetic peptides covering the complete primary structure, the epitope for clone 3Tx19 was mapped within the deduced partial sequence, which had remained unconfirmed by tryptic peptides. Antibodies raised against another, putative B cell epitope peptide detected the same two protein spots in 2D gel, indicating that they are antigenically related isoforms. The protein p36 is expressed by T. gondii isolates of all three intraspecies subgroups, but not in the bradyzoite stage. In intracellular tachyzoites, p36 colocalizes with rhoptry proteins and has a distribution pattern disparate from that of dense granule and microneme proteins. Subcellular fractionation indicated that p36 is a soluble constituent of tachyzoites. We suggest that this T cell-stimulatory novel rhoptry protein of T. gondii be named ROP9. It represents a marker of the tachyzoite stage.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/analysis
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Base Sequence
- Blotting, Western
- Cell Line
- Cloning, Molecular
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Expression Regulation, Developmental
- Humans
- Membrane Proteins/analysis
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Microscopy, Fluorescence
- Molecular Sequence Data
- Polymerase Chain Reaction
- Protozoan Proteins/analysis
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Reproducibility of Results
- T-Lymphocytes/immunology
- Toxoplasma/chemistry
- Toxoplasma/genetics
- Toxoplasma/growth & development
- Toxoplasma/immunology
Collapse
Affiliation(s)
- Gaby Reichmann
- Institute for Medical Microbiology and Virology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | | | | |
Collapse
|
50
|
Beghetto E, Pucci A, Minenkova O, Spadoni A, Bruno L, Buffolano W, Soldati D, Felici F, Gargano N. Identification of a human immunodominant B-cell epitope within the GRA1 antigen of Toxoplasma gondii by phage display of cDNA libraries. Int J Parasitol 2001; 31:1659-68. [PMID: 11730793 DOI: 10.1016/s0020-7519(01)00288-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Excreted secreted antigens of the protozoan parasite Toxoplasma gondii play a key role in stimulating the host immune system during acute and chronic infection. With the aim of identifying the immunodominant epitopes of T. gondii antigens involved in the human B-cell response against the parasite, we employed a novel immunological approach. A library of cDNA fragments from T. gondii tachyzoites was displayed as fusion proteins to the amino-terminus of lambda bacteriophage capsid protein D. The lambda D-tachyzoite library was then affinity-selected by using a panel of sera of pregnant women, all infected with the parasite. Some of the clones identified through this procedure matched the sequence of the dense granule GRA1 protein (p24), allowing us to identify its antigenic regions. In particular, the analysis of human antibody response against the recombinant GRA1 antigen fragments revealed the existence of an immunodominant epitope (epi-24 peptide).
Collapse
|