1
|
Liao Z, Zeng X, Guo X, Shi Q, Tang Z, Li P, Chen C, Chen M, Chen J, Xu J, Cai Y. Targeting the aryl hydrocarbon receptor with FICZ regulates IL-2 and immune infiltration to alleviate Hashimoto's thyroiditis in mice. Eur J Pharmacol 2024; 973:176588. [PMID: 38621508 DOI: 10.1016/j.ejphar.2024.176588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Hashimoto's thyroiditis (HT) is the most frequent autoimmune disorder. Growing work points to the involvement of aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, in the regulation of immune homeostasis. However, the roles of AhR and its ligands in HT remains unclear. In this study, we leveraged public human database analyses to postulate that the AhR expression was predominantly in thyroid follicular cells, correlating significantly with the thyroid infiltration levels of multiple immune cells in HT patients. Using a thyroglobulin-induced HT mouse model and in vitro thyroid follicular epithelial cell cultures, we found a significant downregulation of AhR expression in thyrocytes both in vivo and in vitro. Conversely, activating AhR by FICZ, a natural AhR ligand, mitigated inflammation and apoptosis in thyrocytes in vitro and conferred protection against HT in mice. RNA sequencing (RNA-seq) of thyroid tissues indicated that AhR activation moderated HT-associated immune or inflammatory signatures. Further, immunoinfiltration analysis indicated that AhR activation regulated immune cell infiltration in the thyroid of HT mice, such as suppressing cytotoxic CD8+ T cell infiltration and promoting anti-inflammatory M2 macrophage polarization. Concomitantly, the expression levels of interleukin-2 (IL-2), a lymphokine that downregulates immune responses, were typically decreased in HT but restored upon AhR activation. In silico validation substantiated the binding interaction between AhR and IL-2. In conclusion, targeting the AhR with FICZ regulates IL-2 and immune infiltration to alleviate experimental HT, shedding new light on the therapeutic intervention of this prevalent disease.
Collapse
Affiliation(s)
- Zhengzheng Liao
- Department of Pharmacy, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xianzhong Zeng
- Department of Endocrinology, Ganzhou People's Hospital, Ganzhou, 341000, People's Republic of China
| | - Xiaoling Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qing Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ziyun Tang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ping Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Cuiyun Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Mengxia Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Jianrong Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China.
| | - Yaojun Cai
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
2
|
Li P, Tian Y, Shang Q, Tang C, Hou Z, Li Y, Cao L, Xue S, Bian J, Luo C, Wu D, Li Z, Ding H. Discovery of a highly potent NPAS3 heterodimer inhibitor by covalently modifying ARNT. Bioorg Chem 2023; 139:106676. [PMID: 37352720 DOI: 10.1016/j.bioorg.2023.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Neuronal PAS domain protein 3 (NPAS3), a basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) family member, is a pivotal transcription factor in neuronal regeneration, development, and related diseases, regulating the expression of downstream genes. Despite several modulators of certain bHLH-PAS family proteins being identified, the NPAS3-targeted compound has yet to be reported. Herein, we discovered a hit compound BI-78D3 that directly blocks the NPAS3-ARNT heterodimer formation by covalently binding to the aryl hydrocarbon receptor nuclear translocator (ARNT) subunit. Further optimization based on the hit scaffold yielded a highly potent Compound 6 with a biochemical EC50 value of 282 ± 61 nM and uncovered the 5-nitrothiazole-2-sulfydryl as a cysteine-targeting covalent warhead. Compound 6 effectively down-regulated NPAS3's transcriptional function by disrupting the interface of NPAS3-ARNT complexes at cellular level. In conclusion, our study identifies the 5-nitrothiazole-2-sulfydryl as a cysteine-modified warhead and provides a strategy that blocks the NPAS3-ARNT heterodimerization by covalently conjugating ARNT Cys336 residue. Compound 6 may serve as a promising chemical probe for exploring NPAS3-related physiological functions.
Collapse
Affiliation(s)
- Peizhuo Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qinghong Shang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Cailing Tang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zeng Hou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310053, China
| | - Yuanqing Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Liyuan Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shengyu Xue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
4
|
Vogeley C, Rolfes KM, Krutmann J, Haarmann-Stemmann T. The Aryl Hydrocarbon Receptor in the Pathogenesis of Environmentally-Induced Squamous Cell Carcinomas of the Skin. Front Oncol 2022; 12:841721. [PMID: 35311158 PMCID: PMC8927079 DOI: 10.3389/fonc.2022.841721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most frequent malignancies in humans and academia as well as public authorities expect a further increase of its incidence in the next years. The major risk factor for the development of SCC of the general population is the repeated and unprotected exposure to ultraviolet (UV) radiation. Another important risk factor, in particular with regards to occupational settings, is the chronic exposure to polycyclic aromatic hydrocarbons (PAH) which are formed during incomplete combustion of organic material and thus can be found in coal tar, creosote, bitumen and related working materials. Importantly, both exposomal factors unleash their carcinogenic potential, at least to some extent, by activating the aryl hydrocarbon receptor (AHR). The AHR is a ligand-dependent transcription factor and key regulator in xenobiotic metabolism and immunity. The AHR is expressed in all cutaneous cell-types investigated so far and maintains skin integrity. We and others have reported that in response to a chronic exposure to environmental stressors, in particular UV radiation and PAHs, an activation of AHR and downstream signaling pathways critically contributes to the development of SCC. Here, we summarize the current knowledge about AHR's role in skin carcinogenesis and focus on its impact on defense mechanisms, such as DNA repair, apoptosis and anti-tumor immune responses. In addition, we discuss the possible consequences of a simultaneous exposure to different AHR-stimulating environmental factors for the development of cutaneous SCC.
Collapse
Affiliation(s)
- Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
5
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
6
|
Polymorphisms within the ARNT2 and CX3CR1 Genes Are Associated with the Risk of Developing Invasive Aspergillosis. Infect Immun 2020; 88:IAI.00882-19. [PMID: 31964743 DOI: 10.1128/iai.00882-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Invasive aspergillosis (IA) is a life-threatening infection that affects an increasing number of patients undergoing chemotherapy or allo-transplantation, and recent studies have shown that genetic factors contribute to disease susceptibility. In this two-stage, population-based, case-control study, we evaluated whether 7 potentially functional single nucleotide polymorphisms (SNPs) within the ARNT2 and CX3CR1 genes influence the risk of IA in high-risk hematological patients. We genotyped selected SNPs in a cohort of 500 hematological patients (103 of those had been diagnosed with proven or probable IA), and we evaluated their association with the risk of developing IA. The association of the most interesting markers of IA risk was then validated in a replication population, including 474 subjects (94 IA and 380 non-IA patients). Functional experiments were also performed to confirm the biological relevance of the most interesting markers. The meta-analysis of both populations showed that carriers of the ARNT2 rs1374213G, CX3CR1 rs7631529A, and CX3CR1 rs9823718G alleles (where the RefSeq identifier appears as a subscript) had a significantly increased risk of developing IA according to a log-additive model (P value from the meta-analysis [P Meta] = 9.8 · 10-5, P Meta = 1.5 · 10-4, and P Meta =7.9 · 10-5, respectively). Haplotype analysis also confirmed the association of the CX3CR1 haplotype with AG CGG with an increased risk of IA (P = 4.0 · 10-4). Mechanistically, we observed that monocyte-derived macrophages (MDM) from subjects carrying the ARNTR2 rs1374213G allele or the GG genotype showed a significantly impaired fungicidal activity but that MDM from carriers of the ARNT2 rs1374213G and CX3CR1 rs9823718G or CX3CR1 rs7631529A alleles had deregulated immune responses to Aspergillus conidia. These results, together with those from expression quantitative trait locus (eQTL) data browsers showing a strong correlation of the CX3CR1 rs9823718G allele with lower levels of CX3CR1 mRNA in whole peripheral blood (P = 2.46 · 10-7) and primary monocytes (P = 4.31 · 10-7), highlight the role of the ARNT2 and CX3CR1 loci in modulating and predicting IA risk and provide new insights into the host immune mechanisms involved in IA development.
Collapse
|
7
|
Role of the Aryl Hydrocarbon Receptor in Environmentally Induced Skin Aging and Skin Carcinogenesis. Int J Mol Sci 2019; 20:ijms20236005. [PMID: 31795255 PMCID: PMC6928879 DOI: 10.3390/ijms20236005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
The skin is constantly exposed to a variety of environmental threats, including solar electromagnetic radiation, microbes, airborne particulate matter, and chemicals. Acute exposure to these environmental factors results in the activation of different signaling pathways that orchestrate adaptive stress responses to maintain cell and tissue homeostasis. Chronic exposure of skin to these factors, however, may lead to the accumulation of damaged macromolecules and loss of cell and tissue integrity, which, over time, may facilitate aging processes and the development of aging-related malignancies. One transcription factor that is expressed in all cutaneous cells and activated by various environmental stressors, including dioxins, polycyclic aromatic hydrocarbons, and ultraviolet radiation, is the aryl hydrocarbon receptor (AHR). By regulating keratinocyte proliferation and differentiation, epidermal barrier function, melanogenesis, and immunity, a certain degree of AHR activity is critical to maintain skin integrity and to adapt to acute stress situations. In contrast, a chronic activation of cutaneous AHR signaling critically contributes to premature aging and the development of neoplasms by affecting metabolism, extracellular matrix remodeling, inflammation, pigmentation, DNA repair, and apoptosis. This article provides an overview of the detrimental effects associated with sustained AHR activity in chronically stressed skin and pinpoints AHR as a promising target for chemoprevention.
Collapse
|
8
|
Girolami F, Badino P, Spalenza V, Manzini L, Renzone G, Salzano AM, Dal Piaz F, Scaloni A, Rychen G, Nebbia C. Identification of candidate biomarkers of the exposure to PCBs in contaminated cattle: A gene expression- and proteomic-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:22-30. [PMID: 29852444 DOI: 10.1016/j.scitotenv.2018.05.284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Dioxins and polychlorinated biphenyls (PCBs) are widespread and persistent contaminants. Through a combined gene expression/proteomic-based approach, candidate biomarkers of the exposure to such environmental pollutants in cattle subjected to a real eco-contamination event were identified. Animals were removed from the polluted area and fed a standard ration for 6 months. The decontamination was monitored by evaluating dioxin and PCB levels in pericaudal fat two weeks after the removal from the contaminated area (day 0) and then bimonthly for six months (days 59, 125 and 188). Gene expression measurements demonstrated that CYP1B1 expression was significantly higher in blood lymphocytes collected in contaminated animals (day 0), and decreased over time during decontamination. mRNA levels of interleukin 2 showed an opposite quantitative trend. MALDI-TOF-MS polypeptide profiling of serum samples ascertained a progressive decrease (from day 0 to 188) of serum levels of fibrinogen β-chain and serpin A3-7-like fragments, apolipoprotein (APO) C-II and serum amyloid A-4 protein, along with an augmented representation of transthyretin isoforms, as well as APOC-III and APOA-II proteins during decontamination. When differentially represented species were combined with serum antioxidant, acute phase and proinflammatory protein levels already ascertained in the same animals (Cigliano et al., 2016), bioinformatics unveiled an interaction network linking together almost all components. This suggests the occurrence of a complex PCB-responsive mechanism associated with animal contamination/decontamination, including a cohort of protein/polypeptide species involved in blood redox homeostasis, inflammation and lipid transport. All together, these results suggest the use in combination of such biomarkers for identifying PCB-contaminated animals, and for monitoring the restoring of their healthy condition following a decontamination process.
Collapse
Affiliation(s)
- F Girolami
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - P Badino
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - V Spalenza
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - L Manzini
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - G Renzone
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Via Argine 1085, Napoli, Italy
| | - A M Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Via Argine 1085, Napoli, Italy
| | - F Dal Piaz
- Department of Medicine and Surgery, University of Salerno, Via Giovanni Paolo II 132, Fisciano, Italy
| | - A Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Via Argine 1085, Napoli, Italy
| | - G Rychen
- Unité de Recherches Animal et Fonctionnalités des Produits Animaux, INRA-Université de Lorraine, 2 av de la forêt de Haye, Vandoeuvre-lès-Nancy Cedex, France
| | - C Nebbia
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, Grugliasco, Italy.
| |
Collapse
|
9
|
Ligand-mediated cytoplasmic retention of the Ah receptor inhibits macrophage-mediated acute inflammatory responses. J Transl Med 2017; 97:1471-1487. [PMID: 28892097 PMCID: PMC5711556 DOI: 10.1038/labinvest.2017.92] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 12/25/2022] Open
Abstract
The Ah receptor (AHR) has been shown to exhibit both inflammatory and anti-inflammatory activity in a context-specific manner. In vivo macrophage-driven acute inflammation models were utilized here to test whether the selective Ah receptor modulator 1-allyl-7-trifluoromethyl-1H-indazol-3-yl]-4-methoxyphenol (SGA360) would reduce inflammation. Exposure to SGA360 was capable of significantly inhibiting lipopolysaccharide (LPS)-mediated endotoxic shock in a mouse model, both in terms of lethality and attenuating inflammatory signaling in tissues. Topical exposure to SGA360 was also able to mitigate joint edema in a monosodium urate (MSU) crystal gout mouse model. Inhibition was dependent on the expression of the high-affinity allelic AHR variant in both acute inflammation models. Upon peritoneal MSU crystal exposure SGA360 pretreatment inhibited neutrophil and macrophage migration into the peritoneum. RNA-seq analysis revealed that SGA360 attenuated the expression of numerous inflammatory genes and genes known to be directly regulated by AHR in thioglycolate-elicited primary peritoneal macrophages treated with LPS. In addition, expression of the high-affinity allelic AHR variant in cultured macrophages was necessary for SGA360-mediated repression of inflammatory gene expression. Mechanistic studies revealed that SGA360 failed to induce nuclear translocation of the AHR and actually enhanced cytoplasmic localization. LPS treatment of macrophages enhanced the occupancy of the AHR and p65 to the Ptgs2 promoter, whereas SGA360 attenuated occupancy. AHR ligand activity was detected in peritoneal exudates isolated from MSU-treated mice, thus suggesting that the anti-inflammatory activity of SGA360 is mediated at least in part through AHR antagonism of endogenous agonist activity. These results underscore an important role of the AHR in participating in acute inflammatory signaling and warrants further investigations into possible clinical applications.
Collapse
|
10
|
Ehrlich AK, Pennington JM, Tilton S, Wang X, Marshall NB, Rohlman D, Funatake C, Punj S, O’Donnell E, Yu Z, Kolluri SK, Kerkvliet NI. AhR activation increases IL-2 production by alloreactive CD4 + T cells initiating the differentiation of mucosal-homing Tim3 + Lag3 + Tr1 cells. Eur J Immunol 2017; 47:1989-2001. [PMID: 28833046 PMCID: PMC5927372 DOI: 10.1002/eji.201747121] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/15/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023]
Abstract
Activation of the aryl hydrocarbon receptor (AhR) by immunosuppressive ligands promotes the development of regulatory T (Treg) cells. Although AhR-induced Foxp3+ Treg cells have been well studied, much less is known about the development and fate of AhR-induced Type 1 Treg (AhR-Tr1) cells. In the current study, we identified the unique transcriptional and functional changes in murine CD4+ T cells that accompany the differentiation of AhR-Tr1 cells during the CD4+ T-cell-dependent phase of an allospecific cytotoxic T lymphocyte (allo-CTL) response. AhR activation increased the expression of genes involved in T-cell activation, immune regulation and chemotaxis, as well as a global downregulation of genes involved in cell cycling. Increased IL-2 production was responsible for the early AhR-Tr1 activation phenotype previously characterized as CD25+ CTLA4+ GITR+ on day 2. The AhR-Tr1 phenotype was further defined by the coexpression of the immunoregulatory receptors Lag3 and Tim3 and non-overlapping expression of CCR4 and CCR9. Consistent with the increased expression of CCR9, real-time imaging showed enhanced migration of AhR-Tr1 cells to the lamina propria of the small intestine and colon. The discovery of mucosal imprinting of AhR-Tr1 cells provides an additional mechanism by which therapeutic AhR ligands can control immunopathology.
Collapse
Affiliation(s)
- Allison K. Ehrlich
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Jamie M. Pennington
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Susan Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Xisheng Wang
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Nikki B. Marshall
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Diana Rohlman
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Castle Funatake
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Sumit Punj
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Edmond O’Donnell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Zhen Yu
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Siva K. Kolluri
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| | - Nancy I. Kerkvliet
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis OR 97331
| |
Collapse
|
11
|
Hermann-Kleiter N, Baier G. Orphan nuclear receptor NR2F6 acts as an essential gatekeeper of Th17 CD4+ T cell effector functions. Cell Commun Signal 2014; 12:38. [PMID: 24919548 PMCID: PMC4066320 DOI: 10.1186/1478-811x-12-38] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/06/2014] [Indexed: 12/21/2022] Open
Abstract
Members of the evolutionarily conserved family of the chicken ovalbumin upstream promoter transcription factor NR2F/COUP-TF orphan receptors have been implicated in lymphocyte biology, ranging from activation to differentiation and elicitation of immune effector functions. In particular, a CD4+ T cell intrinsic and non-redundant function of NR2F6 as a potent and selective repressor of the transcription of the pro-inflammatory cytokines interleukin (Il) 2, interferon y (ifng) and consequently of T helper (Th)17 CD4+ T cell-mediated autoimmune disorders has been discovered. NR2F6 serves as an antigen receptor signaling threshold-regulated barrier against autoimmunity where NR2F6 is part of a negative feedback loop that limits inflammatory tissue damage induced by weakly immunogenic antigens such as self-antigens. Under such low affinity antigen receptor stimulation, NR2F6 appears as a prototypical repressor that functions to “lock out” harmful Th17 lineage effector transcription. Mechanistically, only sustained high affinity antigen receptor-induced protein kinase C (PKC)-mediated phosphorylation has been shown to inactivate NR2F6, thereby displacing pre-bound NR2F6 from the DNA and, subsequently, allowing for robust NFAT/AP-1- and RORγt-mediated cytokine transcription. The NR2F6 target gene repertoire thus identifies a general anti-inflammatory gatekeeper role for this orphan receptor. Investigating these signaling pathway(s) will enable a greater knowledge of the genetic, immune, and environmental mechanisms that lead to chronic inflammation and of certain autoimmune disorders in a given individual.
Collapse
Affiliation(s)
- Natascha Hermann-Kleiter
- Department for Pharmacology and Genetics, Translational Cell Genetics, Medical University of Innsbruck, Peter Mayr Str, 1a, A-6020, Innsbruck, Austria.
| | | |
Collapse
|
12
|
Fardel O. Cytokines as molecular targets for aryl hydrocarbon receptor ligands: implications for toxicity and xenobiotic detoxification. Expert Opin Drug Metab Toxicol 2012; 9:141-52. [PMID: 23230817 DOI: 10.1517/17425255.2013.738194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor historically known for regulating expression of several important drug-detoxifying proteins. Besides drug metabolism pathways, cytokines have been recently recognized as targeted by the AhR signaling cascade, which may contribute to toxicity and changes in xenobiotic detoxification caused by AhR agonists. AREAS COVERED This article summarizes the nature of the main cytokines regulated by AhR ligands and reviews their involvement in toxic effects of AhR ligands, especially in relation with inflammation. The article also discusses the potential implications for drug detoxification pathways. EXPERT OPINION Even if various cytokines, including inflammatory ones, have already been demonstrated to constitute robust targets for AhR, the exact role played by AhR with respect to inflammation remains to be determined. Further studies are also required to better characterize the molecular mechanisms implicated in regulation of cytokines by AhR ligands and to determine the role that may play AhR-targeted cytokines in alteration of xenobiotic detoxification. Finally, changes in cytokine receptor expression triggered by AhR ligands have additionally to be taken into account to better and more extensively comprehend the role played by AhR in the cytokine/inflammation area.
Collapse
Affiliation(s)
- Olivier Fardel
- Institut de Recherche en Environnement, Santé et Travail (IRSET)/INSERM U 1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France.
| |
Collapse
|
13
|
Schulz VJ, Smit JJ, Bol-Schoenmakers M, van Duursen MBM, van den Berg M, Pieters RHH. Activation of the aryl hydrocarbon receptor reduces the number of precursor and effector T cells, but preserves thymic CD4+CD25+Foxp3+ regulatory T cells. Toxicol Lett 2012; 215:100-9. [PMID: 23041608 DOI: 10.1016/j.toxlet.2012.09.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Aryl hydrocarbon receptor (AhR) activation suppresses immune responses, including allergic sensitization, by increasing the percentage of regulatory (Treg) cells. Furthermore, AhR activation is known to affect thymic precursor T cells. However, the effect of AhR activation on intrathymic CD4+CD25+Foxp3+ Treg cells is unknown. Therefore, we investigated the effect of AhR activation on the percentage and number of CD4+CD25+Foxp3+ Treg cells during allergic sensitization in relevant immunological organs. C3H/HeOuJ mice were treated on day 0 with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and subsequently sensitized to peanut. On day 8, mice were sacrificed and thymus, spleen and mesenteric lymph nodes (MLN) were isolated. TCDD treatment decreased the number of CD4-CD8-, CD4+CD8+, CD4+CD8- and CD4-CD8+ precursor T cells, but not the number of thymic CD4+CD25+Foxp3+ Treg cells. TCDD treatment increased the number of splenic CD4+CD25+Foxp3+ Treg cells and decreased Th1, Th2 and cytotoxic T cells in the spleen. This appeared to be independent of allergic sensitization. In MLN, TCDD treatment suppressed the increase of the number of CD4+CD25+Foxp3+ Treg cells, Th1, Th2 and cytotoxic T cells induced by peanut sensitization. Together, TCDD treatment preserves thymic CD4+CD25+Foxp3+ Treg cells and decreases peripheral T helper and cytotoxic T cells. This effect of TCDD may contribute to the increased influence of CD4+CD25+Foxp3+ Treg cells on immune mediated responses and to the understanding of how AhR activation modulates immune mediated diseases, including food allergy.
Collapse
Affiliation(s)
- V J Schulz
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508 TD Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Quintana FJ, Jin H, Burns EJ, Nadeau M, Yeste A, Kumar D, Rangachari M, Zhu C, Xiao S, Seavitt J, Georgopoulos K, Kuchroo VK. Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat Immunol 2012; 13:770-7. [PMID: 22751139 DOI: 10.1038/ni.2363] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/04/2012] [Indexed: 12/12/2022]
Abstract
CD4(+) interleukin 17 (IL-17)-producing helper T cells (T(H)17 cells) are instrumental in the immune response to pathogens. However, an overactive T(H)17 response results in tissue inflammation and autoimmunity, and therefore it is important to identify the molecular mechanisms that control the development of T(H)17 cells. IL-2 suppresses such development, but how IL-2 production is actively suppressed during T(H)7 differentiation is not understood. Here we report that under T(H)17-polarizing conditions, the transcription factors STAT3 and AhR upregulated the expression of Aiolos, a member of the Ikaros family of transcription factors. Using Aiolos-deficient mice, we demonstrated that Aiolos silenced the Il2 locus, promoting T(H)17 differentiation in vitro and in vivo. Thus, we have identified a module in the transcriptional program of T(H)17 cells that actively limits IL-2 production and promotes their differentiation.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kadow S, Jux B, Zahner SP, Wingerath B, Chmill S, Clausen BE, Hengstler J, Esser C. Aryl hydrocarbon receptor is critical for homeostasis of invariant gammadelta T cells in the murine epidermis. THE JOURNAL OF IMMUNOLOGY 2011; 187:3104-10. [PMID: 21844385 DOI: 10.4049/jimmunol.1100912] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An immunoregulatory role of aryl hydrocarbon receptor (AhR) has been shown in conventional αβ and γδ T cells, but its function in skin γδ T cells (dendritic epidermal T cells [DETC]) is unknown. In this study, we demonstrate that DETC express AhR in wild-type mice, and are specifically absent in the epidermis of AhR-deficient mice (AhR-KO). We show that DETC precursors are generated in the thymus and home to the skin. Proliferation of DETC in the skin was impaired in AhR-KO mice, resulting in a >90% loss compared with wild type. Surprisingly, DETC were not replaced by αβ T cells or conventional γδ T cells, suggesting a limited time frame for seeding this niche. We found that DETC from AhR-KO mice failed to express the receptor tyrosine kinase c-Kit, a known growth factor for γδ T cells in the gut. Moreover, we found that c-kit is a direct target of AhR, and propose that AhR-dependent c-Kit expression is potentially involved in DETC homeostasis. DETC are a major source of GM-CSF in the skin. Recently, we had shown that impaired Langerhans cell maturation in AhR-KO is related to low GM-CSF levels. Our findings suggest that the DETCs are necessary for LC maturation, and provide insights into a novel role for AhR in the maintenance of skin-specific γδ T cells, and its consequences for the skin immune network.
Collapse
Affiliation(s)
- Stephanie Kadow
- Molecular Immunology, Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tomita S, Kihira Y, Imanishi M, Fukuhara Y, Imamura Y, Ishizawa K, Ikeda Y, Tsuchiya K, Tamaki T. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery:inflammatory responses of hypoxia-inducible factor 1α (HIF-1α) in T cells observed in development of vascular remodeling. J Pharmacol Sci 2011; 115:433-9. [PMID: 21422726 DOI: 10.1254/jphs.10r22fm] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Recent studies have shown that the cellular immune response to the hypoxic microenvironment constructed by vascular remodeling development modulates the resulting pathologic alterations. A major mechanism mediating adaptive responses to reduced oxygen availability is the regulation of transcription by hypoxia-inducible factor 1 (HIF-1). Impairment of HIF-1-dependent inflammatory responses in T cells causes an augmented vascular remodeling induced by arterial injury, which is shown as prominent neointimal hyperplasia and increase in infiltration of inflammatory cells at the adventitia in mice lacking Hif-1α specifically in T cells. Studies to clarify the mechanism of augmented vascular remodeling in the mutant mice have shown enhanced production of cytokines in activated T cells and augmented antibody production in response to a T-dependent antigen in the mutant mice. This minireview shows that HIF-1α in T cells plays a crucial role in vascular inflammation and remodeling in response to cuff injury as a negative regulator of the T cell-mediated immune response and suggests potential new therapeutic strategies that target HIF-1α.
Collapse
Affiliation(s)
- Shuhei Tomita
- Department of Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kerkvliet NI, Steppan LB, Vorachek W, Oda S, Farrer D, Wong CP, Pham D, Mourich DV. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes. Immunotherapy 2011; 1:539-47. [PMID: 20174617 DOI: 10.2217/imt.09.24] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ligand-activated transcription factor, aryl hydrocarbon receptor (AHR), is a novel inducer of adaptive Tregs. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most potent AHR ligand, induces adaptive CD4+CD25+ Tregs during an acute graft-versus-host (GvH) response and prevents the generation of allospecific cytotoxic T lymphocytes. TCDD also suppresses the induction of experimental autoimmune encephalitis in association with an expanded population of Foxp3+ Tregs. In this study, we show that chronic treatment of NOD mice with TCDD potently suppresses the development of autoimmune Type 1 diabetes in parallel with greatly reduced pancreatic islet insulitis and an expanded population of CD4+CD25+Foxp3+ cells in the pancreatic lymph nodes. When treatment with TCDD was terminated after 15 weeks (23 weeks of age), mice developed diabetes over the next 8 weeks in association with lower numbers of Tregs and decreased activation of AHR. Analysis of the expression levels of several genes associated with inflammation, T-cell activation and/or Treg function in pancreatic lymph node cells failed to reveal any differences associated with TCDD treatment. Taken together, the data suggest that AHR activation by TCDD-like ligands may represent a novel avenue for treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Nancy I Kerkvliet
- Oregon State University, Department of Microbiology, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ndebele K, Graham B, Tchounwou PB. Estrogenic activity of coumestrol, DDT, and TCDD in human cervical cancer cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:2045-56. [PMID: 20623010 PMCID: PMC2898035 DOI: 10.3390/ijerph7052045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/30/2010] [Accepted: 04/03/2010] [Indexed: 11/16/2022]
Abstract
Endogenous estrogens have dramatic and differential effects on classical endocrine organ and proliferation. Xenoestrogens are environmental estrogens that have endocrine impact, acting as both estrogen agonists and antagonists, but whose effects are not well characterized. In this investigation we sought to delineate effects of xenoestrogens. Using human cervical cancer cells (HeLa cells) as a model, the effects of representative xenoestrogens (Coumestrol-a phytoestrogen, tetrachlorodioxin (TCDD)-a herbicide and DDT-a pesticide) on proliferation, cell cycle, and apoptosis were examined. These xenoestrogens and estrogen inhibited the proliferation of Hela cells in a dose dependent manner from 20 to 120 nM suggesting, that 17-beta-estrtadiol and xenoestrogens induced cytotoxic effects. Coumestrol produced accumulation of HeLa cells in G2/M phase, and subsequently induced apoptosis. Similar effects were observed in estrogen treated cells. These changes were associated with suppressed bcl-2 protein and augmented Cyclins A and D proteins. DDT and TCDD exposure did not induce apoptosis. These preliminary data taken together, suggest that xenoestrogens have direct, compound-specific effects on HeLa cells. This study further enhances our understanding of environmental modulation of cervical cancer.
Collapse
Affiliation(s)
- Kenneth Ndebele
- The Laboratory of Cancer Immunology, Target Identification and Validation, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA; E-Mails:
(K.N.);
(B.G.)
| | - Barbara Graham
- The Laboratory of Cancer Immunology, Target Identification and Validation, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA; E-Mails:
(K.N.);
(B.G.)
| | - Paul B. Tchounwou
- Molecular Toxicology Research Laboratory, NIH- Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, P.O. Box 18540, Jackson, MS 39217, USA
- Author to whom correspondence should be addressed; E-Mail:
; Tel.:+1-601-979-0777; Fax: +1-601-979-0570
| |
Collapse
|
19
|
Marshall NB, Kerkvliet NI. Dioxin and immune regulation: emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells. Ann N Y Acad Sci 2010; 1183:25-37. [PMID: 20146706 DOI: 10.1111/j.1749-6632.2009.05125.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The immune toxicity of the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), commonly referred to as dioxin, has been studied for over 35 years but only recently has the profound immune suppression induced by TCDD exposure been linked to induction of regulatory T cells (Tregs). The effects of TCDD are mediated through its binding to the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor. The subsequent AHR-dependent effects on immune responses are determined by the cell types involved, their activation status, and the type of antigenic stimulus. Collectively, studies indicate that TCDD inhibits CD4+ T cell differentiation into T helper (Th)1, Th2, and Th17 effector cells, while inducing Foxp3-negative and/or preserving Foxp3+ Tregs. Although it is not yet clear how activation of AHR by TCDD induces Tregs, there is a potential therapeutic role for alternative AHR ligands in the treatment of immune-mediated disorders.
Collapse
Affiliation(s)
- Nikki B Marshall
- Department of Microbiology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
20
|
The unexpected role for the aryl hydrocarbon receptor on susceptibility to experimental toxoplasmosis. J Biomed Biotechnol 2010; 2010:505694. [PMID: 20111744 PMCID: PMC2810477 DOI: 10.1155/2010/505694] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 10/15/2009] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is part of a signaling system that is mainly triggered by xenobiotic agents. Increasing evidence suggests that AhR may regulate immunity to infections. To determine the role of AhR in the outcome of toxoplasmosis, we used AhR−/− and wild-type (WT) mice. Following an intraperitoneal infection with Toxoplasma gondii (T. gondii), AhR−/− mice succumbed significantly faster than WT mice and displayed greater liver damage as well as higher serum levels of tumor necrosis factor (TNF)-α, nitric oxide (NO), and IgE but lower IL-10 secretion. Interestingly, lower numbers of cysts were found in their brains. Increased mortality was associated with reduced expression of GATA-3, IL-10, and 5-LOX mRNA in spleen cells but higher expression of IFN-γ mRNA. Additionally, peritoneal exudate cells from AhR−/− mice produced higher levels of IL-12 and IFN-γ but lower TLR2 expression than WT mice. These findings suggest a role for AhR in limiting the inflammatory response during toxoplasmosis.
Collapse
|
21
|
Kurobe H, Urata M, Ueno M, Ueki M, Ono S, Izawa-Ishizawa Y, Fukuhara Y, Lei Y, Ripen AM, Kanbara T, Aihara KI, Ishizawa K, Akaike M, Gonzalez FJ, Tamaki T, Takahama Y, Yoshizumi M, Kitagawa T, Tomita S. Role of hypoxia-inducible factor 1alpha in T cells as a negative regulator in development of vascular remodeling. Arterioscler Thromb Vasc Biol 2009; 30:210-7. [PMID: 20007912 DOI: 10.1161/atvbaha.109.192666] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies have shown that the cellular immune response in the development of vascular remodeling modulates the resulting pathological alterations. We show that hypoxia-inducible factor 1 (Hif-1) (specifically expressed in T cells) is involved in the immune response to vascular remodeling that accompanies arteriosclerosis. METHODS AND RESULTS To study the role of T cells in the development of vascular remodeling, femoral arterial injury induced by an external vascular polyethylene cuff was examined in mice lacking Hif-1 (specifically in T cells). We found that cuff placement caused prominent neointimal hyperplasia of the femoral artery in Hif-1- (T-cell)-deficient mice compared with that in control mice and that infiltration of inflammatory cells at the adventitia was markedly increased in the mutant mice. Studies to clarify the mechanism of augmented vascular remodeling in the mutant mice showed enhanced production of cytokines by activated T cells and augmented antibody production in response to a T-dependent antigen in the mutant mice. CONCLUSIONS The results of this study revealed that Hif-1alpha in T cells plays a crucial role in vascular inflammation and remodeling in response to cuff injury as a negative regulator of T cell-mediated immune response. Potential new therapeutic strategies that target Hif-1alpha are described.
Collapse
Affiliation(s)
- Hirotsugu Kurobe
- epartment of Cardiovascular Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The aryl hydrocarbon receptor in immunity. Trends Immunol 2009; 30:447-54. [PMID: 19699679 DOI: 10.1016/j.it.2009.06.005] [Citation(s) in RCA: 337] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/26/2009] [Accepted: 06/11/2009] [Indexed: 12/16/2022]
Abstract
Low-molecular-weight chemicals or xenobiotics might contribute to the increasing prevalence of allergies and autoimmunity. Certain chemicals can alter immune responses via their action on the cytosolic transcription factor aryl hydrocarbon receptor (AhR). AhR recognizes numerous small xenobiotic and natural molecules, such as dioxin and the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. Although AhR is best known for mediating dioxin toxicity, knockout studies have indicated that AhR also plays a role in normal physiology, including certain immune responses. In particular, Th17 cells and dendritic cells express high levels of AhR. We review here current evidence for the physiological role of AhR in the immune system, focussing in particular on T-cell biology.
Collapse
|
23
|
Jux B, Kadow S, Esser C. Langerhans Cell Maturation and Contact Hypersensitivity Are Impaired in Aryl Hydrocarbon Receptor-Null Mice. THE JOURNAL OF IMMUNOLOGY 2009; 182:6709-17. [DOI: 10.4049/jimmunol.0713344] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Abstract
Osteocyte apoptosis is spatially and temporally linked to bone fatigue-induced microdamage and to subsequent intracortical remodeling. Specifically, osteocytes surrounding fatigue microcracks in bone undergo apoptosis, and those regions containing apoptotic osteocytes co-localize exactly with areas subsequently resorbed by osteoclasts. Here we tested the hypothesis that osteocyte apoptosis is a key controlling step in the activation and/or targeting of osteoclastic resorption after bone fatigue. We carried out in vivo fatigue loading of ulna from 4- to 5-mo-old Sprague-Dawley rats treated with an apoptosis inhibitor (the pan-caspase inhibitor Q-VD-OPh) or with vehicle. Intracortical bone remodeling and osteocyte apoptosis were quantitatively assessed by standard histomorphometric techniques on day 14 after fatigue. Continuous exposure to Q-VD-OPh completely blocked both fatigue-induced apoptosis and the activation of osteoclastic resorption, whereas short-term caspase inhibition during only the first 2 days after fatigue resulted in >50% reductions in both osteocyte apoptosis and bone resorption. These results (1) show that osteocyte apoptosis is necessary to initiate intracortical bone remodeling in response to fatigue microdamage, (2) indicate a possible dose-response relationship between the two processes, and (3) suggest that early apoptotic events after fatigue-induced microdamage may play a substantial role in determining the subsequent course of tissue remodeling.
Collapse
|
25
|
Funatake CJ, Marshall NB, Kerkvliet NI. 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters the differentiation of alloreactive CD8+ T cells toward a regulatory T cell phenotype by a mechanism that is dependent on aryl hydrocarbon receptor in CD4+ T cells. J Immunotoxicol 2009; 5:81-91. [PMID: 18382861 DOI: 10.1080/15476910802019037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Activation of aryl hydrocarbon receptor (AhR) by 2,3,7,8-tetracholordibenzo- p-dioxin (TCDD) during an acute graft-versus-host response induces a population of alloreactive donor CD4+CD25+ regulatory T (Treg)-like cells that have potent suppressive activity in vitro. In the present studies, we show that TCDD induced a similar population of donor CD8+CD25+ T-cells with suppressive activity in vitro. Like the CD4+ Treg cells, donor CD8+CD25+ T-cells also expressed higher levels of CD28, glucocorticoid-induced TNFR (GITR) and CTLA-4 along with low levels of CD62L. These TCDD-induced phenotypic changes were not observed if donor T-cells were obtained from AhR-KO mice. When CD4+ and CD8+ donor T-cells from AhR-WT and AhR-KO mice were injected in various combinations into F1 mice, the enhanced expression of CD25 on CD8+ T-cells required AhR in donor CD4+ T-cells, while down-regulation of CD62L required AhR in the donor CD8+ T-cells themselves. Changes in GITR and CTLA-4 on donor CD8+ T-cells were partially mediated by AhR in both T-cells subsets. In contrast, all phenotypic changes in donor CD4+ T-cells were dependent on the presence of AhR in the CD4+ T-cells themselves. These findings suggest that the direct effects of AhR-mediated signaling in CD8+ T-cells are more limited than the direct effects in CD4+ T-cells, and that AhR signaling in CD4+ T-cells may be a unique pathway for the induction of both CD4+ and CD8+ adaptive Treg.
Collapse
Affiliation(s)
- Castle J Funatake
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, USA.
| | | | | |
Collapse
|
26
|
Esser C. The immune phenotype of AhR null mouse mutants: Not a simple mirror of xenobiotic receptor over-activation. Biochem Pharmacol 2009; 77:597-607. [DOI: 10.1016/j.bcp.2008.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
|
27
|
Choi JM, Kim HJ, Lee KY, Choi HJ, Lee IS, Kang BY. Increased IL-2 production in T cells by xanthohumol through enhanced NF-AT and AP-1 activity. Int Immunopharmacol 2009; 9:103-7. [DOI: 10.1016/j.intimp.2008.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
28
|
Kerkvliet NI. AHR-mediated immunomodulation: the role of altered gene transcription. Biochem Pharmacol 2008; 77:746-60. [PMID: 19100241 DOI: 10.1016/j.bcp.2008.11.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 12/14/2022]
Abstract
The immune system is a sensitive target for aryl hydrocarbon receptor (AHR)-mediated transcriptional regulation. Most of the cells that participate in immune responses express AHR protein, and many genes involved in their responses contain multiple DRE sequences in their promoters. However, the potential involvement of many of these candidate genes in AHR-mediated immunomodulation has never been investigated. Many obstacles to understanding the transcriptional effects of AHR activation exist, owing to the complexities of pathogen-driven inflammatory and adaptive immune responses, and to the fact that activation of AHR often influences the expression of genes that are already being regulated by other transcriptional events in responding cells. Studies with TCDD as the most potent, non-metabolized AHR ligand indicate that AHR activation alters many inflammatory signals that shape the adaptive immune response, contributing to altered differentiation of antigen-specific CD4(+) T helper (TH) cells and altered adaptive immune responses. With TCDD, most adaptive immune responses are highly suppressed, which has been recently linked to the AHR-dependent induction of CD4(+)CD25(+) regulatory T cells. However activation of AHR by certain non-TCDD ligands may result in other immune outcomes, as a result of metabolism of the ligand to active metabolites or to unknown ligand-specific effects on AHR-mediated gene transcription. Based on studies using AHR(-/-) mice, evidence for a role of endogenous AHR ligands in regulation of the immune response is growing, with bilirubin and lipoxinA4 representing two promising candidates.
Collapse
Affiliation(s)
- Nancy I Kerkvliet
- Department of Environmental and Molecular Toxicology and Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
29
|
Marshall NB, Vorachek WR, Steppan LB, Mourich DV, Kerkvliet NI. Functional characterization and gene expression analysis of CD4+ CD25+ regulatory T cells generated in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. THE JOURNAL OF IMMUNOLOGY 2008; 181:2382-91. [PMID: 18684927 DOI: 10.4049/jimmunol.181.4.2382] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are mediated through binding and activation of the aryl hydrocarbon receptor (AhR), the subsequent biochemical and molecular changes that confer immune suppression are not well understood. Mice exposed to TCDD during an acute B6-into-B6D2F1 graft-vs-host response do not develop disease, and recently this has been shown to correlate with the generation of CD4(+) T cells that express CD25 and demonstrate in vitro suppressive function. The purpose of this study was to further characterize these CD4(+) cells (TCDD-CD4(+) cells) by comparing and contrasting them with both natural regulatory CD4(+) T cells (T-regs) and vehicle-treated cells. Cellular anergy, suppressive functions, and cytokine production were examined. We found that TCDD-CD4(+) cells actively proliferate in response to various stimuli but suppress IL-2 production and the proliferation of effector T cells. Like natural T-regs, TCDD-CD4(+) cells do not produce IL-2 and their suppressive function is contact dependent but abrogated by costimulation through glucocorticoid-induced TNFR (GITR). TCDD-CD4(+) cells also secrete significant amounts of IL-10 in response to both polyclonal and alloantigen stimuli. Several genes were significantly up-regulated in TCDD-CD4(+) cells including TGF-beta3, Blimp-1, and granzyme B, as well as genes associated with the IL12-Rb2 signaling pathway. TCDD-CD4(+) cells demonstrated an increased responsiveness to IL-12 as indicated by the phosphorylation levels of STAT4. Only 2% of TCDD-CD4(+) cells express Foxp3, suggesting that the AhR does not rely on Foxp3 for suppressive activity. The generation of CD4(+) cells with regulatory function mediated through activation of the AhR by TCDD may represent a novel pathway for the induction of T-regs.
Collapse
Affiliation(s)
- Nikki B Marshall
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | |
Collapse
|
30
|
Kung T, Murphy KA, White LA. The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism. Biochem Pharmacol 2008; 77:536-46. [PMID: 18940186 DOI: 10.1016/j.bcp.2008.09.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 01/07/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is an orphan receptor in the basic helix-loop-helix PAS family of transcriptional regulators. Although the endogenous regulator of this pathway has not been identified, the AhR is known to bind and be activated by a variety of compounds ranging from environmental contaminants to flavanoids. The function of this receptor is still unclear; however, animal models indicate that the AhR is important for normal development. One hypothesis is that the AhR senses cellular stress and initiates the cellular response by altering gene expression and inhibiting cell cycle progression and that activation of the AhR by exogenous environmental chemicals results in the dysregulation of this normal function. In this review we will examine the role of the AhR in the regulation of genes and proteins involved in cell adhesion and matrix remodeling, and discuss the implications of these changes in development and disease. In addition, we will discuss evidence suggesting that the AhR pathway is responsive to changes in matrix composition as well as cell-cell and cell-matrix interactions.
Collapse
Affiliation(s)
- Tiffany Kung
- Department of Biochemistry and Microbiology, Rutgers, The State University of NJ, New Brunswick, NJ 08901, USA
| | | | | |
Collapse
|
31
|
Haarmann-Stemmann T, Bothe H, Abel J. Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol 2008; 77:508-20. [PMID: 18848820 DOI: 10.1016/j.bcp.2008.09.013] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/12/2008] [Accepted: 09/12/2008] [Indexed: 01/02/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental pollutant, which causes a variety of severe health effects, e.g. immunosuppression, hepatotoxicity, and carcinogenesis. The main mediator of TCDD toxicity is the arylhydrocarbon receptor (AhR), which, upon activation, translocates into the nucleus and enforces gene expression. Since most of the pleiotropic effects caused by TCDD are associated with alterations in cell growth and differentiation, the analysis of the interference of the AhR with factors controlling these cellular functions seems to be a promising target regarding the prevention and treatment of chemical-provoked diseases. Cell growth and differentiation are regulated by numerous growth factors and cytokines. These multifunctional peptides promote or inhibit cell growth and regulate differentiation and other cellular processes, depending on cell-type and developmental stage. They are involved in the regulation of a broad range of physiological processes, including immune response, hematopoiesis, neurogenesis, and tissue remodeling. The complex network of growth factors and cytokines is accurately regulated and disturbances of this system are associated with adverse health effects. The molecular mechanisms by which the AhR interferes with this signaling network are multifaceted and the physiological consequences of this cross-talk are quite enigmatic. The investigation of this complex interaction is an exciting task, especially with respect to the recently described non-genomic and/or ligand-independent activities of AhR. Therefore, we summarize the current knowledge about the interaction of the AhR with three cytokine-/growth factor-related signal transducers -- the epidermal growth factor (EGF) family, tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta (TGF-beta) -- with regard to pathophysiological findings.
Collapse
|
32
|
Gomez-Duran A, Carvajal-Gonzalez JM, Mulero-Navarro S, Santiago-Josefat B, Puga A, Fernandez-Salguero PM. Fitting a xenobiotic receptor into cell homeostasis: how the dioxin receptor interacts with TGFbeta signaling. Biochem Pharmacol 2008; 77:700-12. [PMID: 18812170 DOI: 10.1016/j.bcp.2008.08.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 02/06/2023]
Abstract
As our knowledge on the mechanisms that control cell function increases, more complex signaling pathways and quite intricate cross-talks among regulatory proteins are discovered. Establishing accurate interactions between cellular networks is essential for a healthy cell and different alterations in signaling are known to underline human disease. Transforming growth factor beta (TGFbeta) is an extracellular cytokine that regulates such critical cellular responses as proliferation, apoptosis, differentiation, angiogenesis and migration, and it is assumed that the latency-associated protein LTBP-1 plays a relevant role in TGFbeta targeting and activation in the extracellular matrix (ECM). The dioxin receptor (AhR) is a unique intracellular protein long studied because of its critical role in xenobiotic-induced toxicity and carcinogenesis. Yet, a large set of studies performed in cellular systems and in vivo animal models have suggested important xenobiotic-independent functions for AhR in cell proliferation, differentiation and migration and in tissue homeostasis. Remarkably, AhR activity converges with TGFbeta-dependent signaling through LTBP-1 since cells lacking AhR expression have phenotypic alterations that can be explained, at least in part, by the coordinated regulation of both proteins. Here, we will discuss the existence of functional interactions between AhR and TGFbeta signaling. We will focus on regulatory and functional aspects by analyzing how AhR status determines TGFbeta activity and by proposing a mechanism through which LTBP-1, a novel AhR target gene, mediates such effects. We will integrate ECM proteases in the AhR-LTBP-1-TGFbeta axis and suggest a model that could help explain some in vivo phenotypes associated to AhR deficiency.
Collapse
Affiliation(s)
- Aurea Gomez-Duran
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
33
|
Hillegass JM, Murphy KA, Villano CM, White LA. The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease. Biol Chem 2008; 387:1159-73. [PMID: 16972783 DOI: 10.1515/bc.2006.144] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aryl hydrocarbon receptor (AhR) was identified as the receptor for polycyclic aromatic hydrocarbons and related compounds. However, novel data indicate that the AhR binds a variety of unrelated endogenous and exogenous compounds. Although AhR knockout mice demonstrate that this receptor has a role in normal development and physiology, the function of this receptor is still unclear. Recent evidence suggests that AhR signaling also alters the expression of genes involved in matrix metabolism, specifically the matrix metalloproteinases (MMPs). MMP expression and activity is critical to normal physiological processes that require tissue remodeling, as well as in mediating the progression of a variety of diseases. MMPs not only degrade structural proteins, but are also important mediators of cell signaling near or at the cell membrane through exposure of cryptic sites, release of growth factors, and cleavage of receptors. Therefore, AhR modulation of MMP expression and activity may be critical, not only in pathogenesis, but also in understanding the endogenous function of the AhR. In this review we will examine the data indicating a role for the AhR-signaling pathway in the regulation of matrix remodeling, and discuss potential molecular mechanisms.
Collapse
Affiliation(s)
- Jedd M Hillegass
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Dr., New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
34
|
Kitamura M, Kasai A. Cigarette smoke as a trigger for the dioxin receptor-mediated signaling pathway. Cancer Lett 2007; 252:184-94. [PMID: 17189671 DOI: 10.1016/j.canlet.2006.11.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 11/17/2022]
Abstract
Dioxins and dioxin-like chemicals cause a wide range of pathologies including carcinogenesis, immune dysfunction, and developmental/reproductive abnormalities. Most of these toxic effects are mediated by aryl hydrocarbon receptor (AhR; also called the dioxin receptor), a ligand-activated transcription factor. Constitutive activation of AhR via genetic manipulation causes development of cancers, inflammation and immune abnormality in mice even without exposure to xenobiotic ligands. Recent investigation disclosed that cigarette smoke contains high levels of agonists for AhR and strongly activates the dioxin signaling pathway. In this review, we describe and discuss possible roles of AhR activation in cigarette smoke-related pathologies, especially focusing on carcinogenesis, inflammation, atherosclerosis, immune dysfunction and teratogenesis.
Collapse
Affiliation(s)
- Masanori Kitamura
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan.
| | | |
Collapse
|
35
|
Bock KW, Köhle C. Ah receptor: Dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem Pharmacol 2006; 72:393-404. [PMID: 16545780 DOI: 10.1016/j.bcp.2006.01.017] [Citation(s) in RCA: 264] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 01/28/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and member of the bHLH/PAS (basic Helix-Loop-Helix/Per-Arnt-Sim) family of chemosensors and developmental regulators. It represents a multifunctional molecular switch regulating endo- and xenobiotic metabolism as well as cell proliferation and differentiation. Physiologic functions of the AhR are beginning to be understood, including functions in vascular development, and in detoxification of endo- and xenobiotics. The AhR is also recognized as the culprit for most toxic responses observed after exposure to dioxins and related compounds such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The non-metabolizable AhR agonist TCDD has to be distinguished from the myriad of metabolizable agonists present as dietary contaminants and plant constituents as well as endogenous toxins. The hypothesis is emerging that the diverse tissue-specific, TCDD-mediated toxicities are due to sustained and inappropriate AhR activation leading to deregulated physiologic functions. In support of this hypothesis recent observations in the context of some TCDD-mediated toxic responses are discussed, such as chloracne, cleft palate, thymus involution and in particular carcinogenesis. Major open questions are addressed, such as ligand-independent AhR activation by phosphorylation and the large differences in species-dependent susceptibility to toxic responses. Though important issues remain unresolved, the commentary is intended to stimulate efforts to understand dioxin-mediated toxic responses with emphasis on carcinogenesis in comparison with AhR-mediated physiologic functions.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany.
| | | |
Collapse
|
36
|
Abstract
The thymus is a very sensitive target for environmental pollutants, which can affect this organ as well as thymocyte differentiation. A failure in thymocyte development can be due to the exacerbation of apoptosis, arrest of thymocyte maturation, generation of autoreactive T cells, and inhibition or stimulation of the output of recent thymic emigrants to the periphery. Recent data demonstrate that the immune system has the potential to maintain homeostasis under conditions of elevated risk, and the thymus plays a crucial role in this process. Environmental xenobiotics can exert their effects through receptor-mediated interactions or independently on receptor involvement. Under natural conditions organisms are exposed to a variety of xenobiotics. The final effect of such exposure is not related to the action of a single chemical, but to the action of a mixture of chemicals. The toxic effect of environmental xenobiotics on the generation and functions of immune cells may result in suppression or stimulation of the immune response. The most intensive studies have been done on halogenated aromatic hydrocarbons, heavy metals and various chemicals acting as endocrine disrupters. Recently, special interest has focused on the action of air particulate matter.
Collapse
Affiliation(s)
- Nadzieja Drela
- Department of Immunology, Warsaw University, Warsaw, Poland.
| |
Collapse
|
37
|
N'Diaye M, Le Ferrec E, Lagadic-Gossmann D, Corre S, Gilot D, Lecureur V, Monteiro P, Rauch C, Galibert MD, Fardel O. Aryl hydrocarbon receptor- and calcium-dependent induction of the chemokine CCL1 by the environmental contaminant benzo[a]pyrene. J Biol Chem 2006; 281:19906-15. [PMID: 16679317 DOI: 10.1074/jbc.m601192200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely distributed immunotoxic environmental contaminants well known to regulate expression of pro-inflammatory cytokines such as interleukine-1beta and tumor necrosis factor-alpha. In the present study, we demonstrated that the chemokine CCL1, notably involved in cardiovascular diseases and inflammatory or allergic processes, constitutes a new molecular target for PAHs. Indeed, exposure to PAHs such as benzo[a]pyrene (BP) markedly increased mRNA expression and secretion of CCL1 in primary human macrophage cultures. Moreover, intranasal administration of BP to mice enhanced mRNA levels of TCA3, the mouse orthologue of CCL1, in lung. CCL1 induction in cultured human macrophages was fully prevented by targeting the aryl hydrocarbon receptor (AhR) through chemical inhibition or small interfering RNA-mediated down-modulation of its expression. In addition, BP and the potent AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin were found to enhance activity of a CCL1 promoter sequence containing a consensus xenobiotic-responsive element known to specifically interact with AhR. Moreover, 2,3,7,8-tetrachlorodibenzo-p-dioxin triggered AhR binding to this CCL1 promoter element as revealed by chromatin immunoprecipitation experiments and electrophoretic mobility shift assays. In an attempt to further characterize the mechanism of CCL1 induction, we demonstrated that BP was able to induce an early and transient increase of intracellular calcium concentration in human macrophages. Inhibition of this calcium increase, using the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or the calcium store-operated channel inhibitor 2-aminoethoxydiphenyl borate, fully blocked CCL1 up-regulation. Taken together, these results bring the first demonstration that PAHs induce expression of the chemokine CCL1 in an AhR- and calcium-dependent manner.
Collapse
Affiliation(s)
- Monique N'Diaye
- INSERM U620, Unité Mixte de Recherche 6061, Laboratoire de Génétique et Développement, Facultéde Médecine, Université de Rennes 1, IFR140, 35043 Rennes Cedex
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Funatake CJ, Marshall NB, Steppan LB, Mourich DV, Kerkvliet NI. Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+ CD25+ cells with characteristics of regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:4184-8. [PMID: 16177056 DOI: 10.4049/jimmunol.175.7.4184] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activation of the aryl hydrocarbon receptor (AhR) by its most potent ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), leads to immune suppression in mice. Although the underlying mechanisms responsible for AhR-mediated immune suppression are not known, previous studies have shown that activation of the AhR must occur within the first 3 days of an immune response and that CD4+ T cells are primary targets. Using the B6-into-B6D2F1 model of an acute graft-vs-host response, we show that activation of AhR in donor T cells leads to the generation of a subpopulation of CD4+ T cells that expresses high levels of CD25, along with CD62L(low), CTLA-4, and glucocorticoid-induced TNFR. These donor-derived CD4+ CD25+ cells also display functional characteristics of regulatory T cells in vitro. These findings suggest a novel role for AhR in the induction of regulatory T cells and provide a new perspective on the mechanisms that underlie the profound immune suppression induced by exposure to TCDD.
Collapse
Affiliation(s)
- Castle J Funatake
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis 97331, USA
| | | | | | | | | |
Collapse
|
39
|
Rodríguez-Sosa M, Elizondo G, López-Durán RM, Rivera I, Gonzalez FJ, Vega L. Over-production of IFN-gamma and IL-12 in AhR-null mice. FEBS Lett 2005; 579:6403-10. [PMID: 16289099 DOI: 10.1016/j.febslet.2005.10.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 10/12/2005] [Accepted: 10/14/2005] [Indexed: 12/14/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates toxicity of environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin. The exposure to AhR agonists results in profound suppression of cellular and humoral immune responses and compromises host to infectious disease. Therefore, to define the role of AhR in the immune response, spleen cells from ovalbumin (OVA)-immunized and naïve mice were removed and stimulated in vitro with either OVA or mitogen concanavalin-A (Con A), respectively. Proliferation, CD19+, F4/80+, CD4+ and CD8+ T cells expansion and cytokines production were measured in C57BL/6-AhR-/- mice (AhR-/-) and compared with immune response in similarly immunized age-matched wild type (AhR+/+) mice. In response to OVA immunization, AhR-/- mice had similar levels of serum OVA-specific IgG2a, IgG1, and IgG2b compared with AhR+/+ animals. However, AhR-/- mice showed splenomegalia and an increase in B cells. No changes were observed on proliferation and IL-4 secretion, although AhR-/- cells produced more IFN-gamma and IL-12 than AhR+/+ cells. Similar results were observed with Con A stimulation, a decrease on IL-5 and no change on IL-2 secretion were observed on AhR-/- cells compared with AhR+/+ cells in response to Con A stimulation. High levels of IFN-gamma mRNA were detected in AhR-/- lymphocytes, but IL-4 mRNA levels in AhR-/- cells were similar to those in AhR+/+ mice. These data suggest that AhR may play an important role in the normal development and function of immune system by down-regulating IFN-gamma and IL-12 expression.
Collapse
Affiliation(s)
- Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, C.P. 54090 Estado de México, Mexico
| | | | | | | | | | | |
Collapse
|
40
|
Majora M, Frericks M, Temchura V, Reichmann G, Esser C. Detection of a novel population of fetal thymocytes characterized by preferential emigration and a TCRγδ+ T cell fate after dioxin exposure. Int Immunopharmacol 2005; 5:1659-74. [PMID: 16102516 DOI: 10.1016/j.intimp.2005.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/02/2005] [Accepted: 02/21/2005] [Indexed: 10/25/2022]
Abstract
T cell maturation into TCRalphabeta(+) or TCRgammadelta(+) cells from common immature CD4(-)CD8(-)(DN) precursors occurs in the thymus, and is controlled through ordered regulation of genes. The aryl hydrocarbon receptor (AHR), a latent cytoplasmic transcription factor, affects thymocyte maturation and differentiation at several stages, also including DN cells. We analyzed in murine fetal thymus organ cultures (FTOC) the outcome of AHR-signaling and found a higher frequency of DN TCRgammadelta(+) cells in the presence of the AHR-activating ligand TCDD. We detected a novel population of CD25(int/lo)CD44(hi) cells associated with preferential emigration and a TCRgammadelta(+) T cell fate of thymocytes. Sorted DN TCRgammadelta(+) emigrants could proliferate if IL-2 was available. Moreover, they suppressed the proliferation of co-cultivated, activated CD4(+) T cells. Gene expression profiles of purified DN emigrants from TCDD*FTOC revealed 295 modulated genes, 10% of which are genes of the immune system. For instance, RAG-1, TdT, and Gfi-1 were downregulated, yet genes indicative of mature thymocytes were upregulated. In conclusion, we have detected changes in the differentiation programme of fetal DN thymocytes after ligand-activation of the AHR. In particular, we observed a higher frequency of DN TCRgammadelta(+) cells with high emigration potential, and possible regulatory functions.
Collapse
Affiliation(s)
- Marc Majora
- Institute for Environmental Medical Research (IUF) at the Heinrich-Heine University of Düsseldorf, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
41
|
Temchura VV, Frericks M, Nacken W, Esser C. Role of the aryl hydrocarbon receptor in thymocyte emigration in vivo. Eur J Immunol 2005; 35:2738-47. [PMID: 16114106 DOI: 10.1002/eji.200425641] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent member of the PAS-bHLH-family of nuclear receptors. Anthropogenic ligands include environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Over-activation of the AHR causes thymus atrophy and immunosuppression. Signaling via the AHR changes the thymocyte differentiation program at several checkpoints, in particular within the CD4-CD8- double-negative (DN) thymocyte subset. Here, we show that AHR over-activation led to the preferential emigration of DN thymocytes to the periphery and accumulation in the spleen. Some of these recent thymic emigrants (RTE) had a novel "activated immature" phenotype (CD3-TCRbeta-CD25+/intCD44-CD45RB+/intCD62L+CD69- cells). Gene expression profiling of DN RTE revealed 15 genes that were up-regulated more than threefold by TCDD, including the S100A9 gene. Exposure of S100A9 null mice to TCDD showed a role for this protein in AHR-mediated thymic egress.
Collapse
Affiliation(s)
- Vladimir V Temchura
- Institute for Environmental Medical Research (IUF), Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | | | | | | |
Collapse
|
42
|
Iwanowicz LR, Lerner DT, Blazer VS, McCormick SD. Aqueous exposure to Aroclor 1254 modulates the mitogenic response of Atlantic salmon anterior kidney T-cells: indications of short- and long-term immunomodulation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 72:305-14. [PMID: 15848250 DOI: 10.1016/j.aquatox.2005.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 01/07/2005] [Accepted: 01/18/2005] [Indexed: 05/02/2023]
Abstract
Polychlorinated biphenyls (PCBs) exist as persistent organic pollutants in numerous river systems in the United States. Unfortunately, some of these rivers are sites of active Atlantic salmon restoration programs, and polychlorinated biphenyls have been implicated as ancillary factors contributing to failed salmon restoration. Here, we investigate the immediate and chronic effects of intermediate duration aqueous PCB exposure (1 or 10 microgL-1 Aroclor 1254) on the mitogen-stimulated lymphoproliferative response of Atlantic salmon anterior kidney leukocytes (AKLs). A short-term study was designed to examine immunomodulation in Atlantic salmon smolts immediately following 21 days of aqueous exposure, while a long-term study evaluated chronic impacts in the mitogen response in parr 15 months post-exposure as larvae. The proliferative response of AKLs to the mitogens concanavalin A (CON A), phytohemaglutinnin-P (PHA-P), pokeweed mitogen (PWM), and lipopolysaccharide were used as an indice of immunomodulation. The proliferative response to the T-cell mitogens CON A and PHA-P was significantly increased in the 10 microgL-1 group (n=10; P=0.043 and 0.002, respectively) immediately following exposure of smolts. Additionally, The PHA-P response was significantly increased in the 1 microgL-1 exposure group (n=10, P=0.036). In fish treated as larvae and tested 15 months later, the PHA-P sensitive populations exhibited elevated proliferation in the 1 and 10 microgL-1 groups (n=12, P<0.04) relative to the vehicle control while the PWM response was significantly increased (n=12, P=0.036) only in the 10 microgL-1 treated groups. These results demonstrate an immunomodulatory effect of PCBs on T-cell mitogen sensitive populations of lymphocytes in Atlantic salmon as well as long-term immunomodulation in PHA-P and PWM sensitive populations.
Collapse
Affiliation(s)
- Luke R Iwanowicz
- Department of Natural Resources Conservation, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | |
Collapse
|
43
|
Esser C, Temchura V, Majora M, Hundeiker C, Schwärzler C, Günthert U. Signaling via the AHR leads to enhanced usage of CD44v10 by murine fetal thymic emigrants: possible role for CD44 in emigration. Int Immunopharmacol 2004; 4:805-18. [PMID: 15135321 DOI: 10.1016/j.intimp.2004.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 02/24/2004] [Accepted: 03/15/2004] [Indexed: 01/04/2023]
Abstract
Signaling via the endogenous arylhydrocarbon receptor (AHR) affects proliferation, differentiation, function and gene expression of thymocytes. In the present study, we show that treatment of mouse fetal thymus lobes in organ culture (FTOC) with AHR ligands results in (a) a drastic decrease in the emigration of thymocytes in terms of numbers and types of cells, and (b) preferential emigration of CD4-CD8- (DN) cells expressing CD44v7- and CD44v10-containing isoforms on the cell surface. Moreover, a higher level of transcripts of various other CD44 variant isoforms (CD44v) could be detected by RT-PCR in emigrants from fetal thymi exposed to either AHR-agonist during culture. Expression of CD44v9-10-containing isoforms could be exclusively detected in DN thymic emigrants. Thus, signaling via AHR by ligands alters CD44v expression patterns in a thymocyte subpopulation. Furthermore, emigration could be decreased by the addition of anti-panCD44 antibodies to TCDD-treated FTOCs, suggesting a role for CD44 in emigration.
Collapse
Affiliation(s)
- Charlotte Esser
- Institute of Environmental Medical Research (IUF), University of Düsseldorf, Auf'm Hennekamp 50, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Fisher MT, Nagarkatti M, Nagarkatti PS. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Enhances Negative Selection of T Cells in the Thymus but Allows Autoreactive T Cells to Escape Deletion and Migrate to the Periphery. Mol Pharmacol 2004; 67:327-35. [PMID: 15492116 DOI: 10.1124/mol.104.005868] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental pollutant, has been shown to cause thymic atrophy and apoptosis. However, whether TCDD alters the process of T-cell selection in the thymus is not clear. To this end, we investigated the effects of TCDD in the context of the HY-T-cell receptor (TCR) transgenic (Tg) mouse model. We noted that negatively selecting male HY-TCR Tg mice were significantly more sensitive to the thymotoxic effects of TCDD relative to positively selecting female HY-TCR Tg mice, including increased reduction in cellularity and increased induction of apoptosis. TCDD exposure also altered the thymocyte subset composition in HY-TCR Tg male but not female mice. In addition, TCDD treatment resulted in increased extracellularly regulated kinase phosphorylation and lymphocyte-specific protein tyrosine kinase expression in thymocytes of HY-TCR Tg male but not female mice. The increase in proportion of CD8+ mature thymocytes noted in HY-TCR Tg male mice was reflected in the periphery, with TCDD-exposed HY-TCR Tg male mice having increased numbers of CD8+ T cells. Finally, we noted that the proliferative response of HY-TCR Tg male T cells to HY(self)-Ag was enhanced after exposure to TCDD, whereas that of HY-TCR Tg female mice was decreased. Taken together, these data suggest that TCDD alters the process of thymic selection, possibly by enhancing negative thymocyte selection, whereas at the same time allowing autoreactive T cells to escape deletion in the thymus and immigrate to the periphery.
Collapse
Affiliation(s)
- Michael T Fisher
- Department of Pharmacology and Toxicology, PO Box 980613, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
45
|
Neff-LaFord HD, Vorderstrasse BA, Lawrence BP. Fewer CTL, not enhanced NK cells, are sufficient for viral clearance from the lungs of immunocompromised mice. Cell Immunol 2004; 226:54-64. [PMID: 14746808 DOI: 10.1016/j.cellimm.2003.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation of the aryl hydrocarbon receptor (AhR) causes numerous defects in anti-viral immunity, including suppressed CTL generation and impaired host resistance. However, despite a reduced CTL response, mice that survive infection clear the virus. Therefore, we examined the contribution of NK cells and pro-inflammatory cytokines to viral clearance in influenza virus-infected mice exposed to TCDD, the most potent AhR agonist. Infection caused transient increases in pulmonary TNFalpha, IL-1, and IFNalpha/beta levels, but neither the kinetics nor magnitude of this response was affected by AhR activation. No IL-18 was detected at any time point examined. Exposure to TCDD enhanced NK cell numbers in the lung but did not affect their IFNgamma production. Furthermore, depletion of NK cells did not alter anti-viral cytolytic activity. In contrast, removal of CD8+ T cells ablated virus-specific cytolytic activity. These results demonstrate that the pulmonary CTL response to influenza virus is robust and few CTL are necessary for viral clearance.
Collapse
Affiliation(s)
- Haley D Neff-LaFord
- Department of Pharmaceutical Sciences and the Pharmacology/Toxicology Graduate Program, College of Pharmacy, Washington State University, Pullman, WA 99164, USA
| | | | | |
Collapse
|
46
|
Tamaki A, Hayashi H, Nakajima H, Takii T, Katagiri D, Miyazawa K, Hirose K, Onozaki K. Polycyclic aromatic hydrocarbon increases mRNA level for interleukin 1 beta in human fibroblast-like synoviocyte line via aryl hydrocarbon receptor. Biol Pharm Bull 2004; 27:407-10. [PMID: 14993811 DOI: 10.1248/bpb.27.407] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by proliferation of synoviocytes that produce proinflammatory cytokines, which is implicated in the pathogenesis of the disease. Among the cytokines, IL-1 is the critical mediator of the disease. When human fibroblast-like synoviocytes line, MH7A, was treated with 3-methylcholanthrene (3-MC), a polycyclic aromatic hydrocarbon (PAH), mRNA of IL-1beta was up-regulated. MH7A cells express functional aryl hydrocarbon receptor (AhR) as shown by 3-MC-inducible CYP1A1 mRNA expression. The effect of 3-MC was inhibited by alpha-napthoflavone, an AhR antagonist, indicating that the effect of 3-MC is mediated via AhR. Benzo[a]pyrene (B[a]P) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) also up-regulated mRNA level of IL-1beta in the cells via AhR. As PAHs are much contained in cigarette smoke, these findings provide the possible basis for epidemiological studies indicating a strong association between heavy cigarette smoking and outcome of RA.
Collapse
Affiliation(s)
- Ayako Tamaki
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tomita S, Jiang HB, Ueno T, Takagi S, Tohi K, Maekawa SI, Miyatake A, Furukawa A, Gonzalez FJ, Takeda J, Ichikawa Y, Takahama Y. T cell-specific disruption of arylhydrocarbon receptor nuclear translocator (Arnt) gene causes resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced thymic involution. THE JOURNAL OF IMMUNOLOGY 2004; 171:4113-20. [PMID: 14530333 DOI: 10.4049/jimmunol.171.8.4113] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The arylhydrocarbon receptor nuclear translocator (ARNT) is a member of the basic helix-loop-helix, PER-ARNT-SIM family of heterodimeric transcription factors, and serves as a dimerization partner for arylhydrocarbon receptor (AHR) and hypoxia-inducible factor-1alpha. To assess the function of ARNT in T cells, we disrupted the Arnt gene specifically in T cells of mice by conditional gene targeting using T cell-specific p56(lck)-Cre (Lck-Cre) transgenic Arnt-floxed mice. Thus generated, T cell-specific Arnt-disrupted mice (Lck-Cre;Arnt(flox/Delta) transgenic mice) exhibited complete loss of the expression of ARNT protein only in T cells, and were viable and appeared normal. The Arnt-disrupted T cells in the thymus were phenotypically and histologically normal. The Arnt-deficient T cells in the spleen were capable of responding to TCR stimulation in vitro. However, unlike normal mice in which exposure to the environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an AHR ligand, resulted in thymic involution, the thymus of Lck-Cre;Arnt(flox/Delta) mice were resistant to TCDD treatment in vivo. In contrast, benzo(a)pyrene, another AHR ligand, still caused thymic involution in Lck-Cre;Arnt(flox/Delta) mice. Finally, fetal thymus organ culture using Lck-Cre;Arnt(flox/Delta) and K5-Cre;Arnt(flox/Delta) (epithelial cell-specific Arnt-disrupted mice) showed that thymocytes rather than thymic epithelial cells are predominantly responsible for TCDD-induced thymic atrophy. Our results indicate that ARNT in T lineage cells is essential for TCDD-mediated thymic involution.
Collapse
Affiliation(s)
- Shuhei Tomita
- Department of Biochemistry, Kagawa Medical University, Kagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang C, Boucher F, Tremblay A, Michaud JL. Regulatory interaction between arylhydrocarbon receptor and SIM1, two basic helix-loop-helix PAS proteins involved in the control of food intake. J Biol Chem 2003; 279:9306-12. [PMID: 14660629 DOI: 10.1074/jbc.m307927200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basic helix-loop-helix PAS (bHLH-PAS) transcription factors SIM1 and arylhydrocarbon receptor (AHR) are involved in the control of feeding behavior. Sim1 haploinsufficiency causes hyperphagia in mice and humans, most likely by perturbing the hypothalamus function. The administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AHR, causes severe anorexia, which also appears to be of central origin. Both SIM1 and AHR require heterodimerization either with ARNT or ARNT2 to function. Here, we characterize the promoter for Sim1 and show that a consensus AHR-ARNT/2 binding site positively regulates its activity in the context of transfection experiments in Neuro-2A cells. A gel shift assay indicated that AHR-ARNT/2 can bind its putative site in the Sim1 promoter. Overexpression of Arnt, Arnt2, or Ahr increased the activity of a reporter construct containing the Sim1 promoter by 1.8-, 1.5-, and 2.2-fold, respectively, but failed to do so when the AHR-ARNT/2 binding site was mutated. Similarly, TCDD increased the activity of the reporter construct by 1.8-fold but not that of its mutated version. Finally, we found that TCDD increased Sim1 expression in Neuro-2A cells and in mouse kidney and hypothalamus by 4-, 3-, and 2-fold, respectively. We conclude that Sim1 expression is regulated by AHR-ARNT/2. This result raises the possibility that Sim1 mediates the effect of TCDD on feeding and points to a complex network of regulatory interactions between bHLH-PAS proteins.
Collapse
Affiliation(s)
- Chun Yang
- Research Center, Hôpital Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | | | | | | |
Collapse
|
49
|
Effects of Xenoestrogens on T Lymphocytes: Modulation of bcl-2, p53, and Apoptosis. Int J Mol Sci 2003. [DOI: 10.3390/i4020045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Hayashibara T, Yamada Y, Mori N, Harasawa H, Sugahara K, Miyanishi T, Kamihira S, Tomonaga M. Possible involvement of aryl hydrocarbon receptor (AhR) in adult T-cell leukemia (ATL) leukemogenesis: constitutive activation of AhR in ATL. Biochem Biophys Res Commun 2003; 300:128-34. [PMID: 12480531 DOI: 10.1016/s0006-291x(02)02793-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human T-cell leukemia virus type 1 is the etiologic agent of adult T-cell leukemia (ATL), although the precise mechanism involved in the transformation process has not yet been defined. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that can influence cell proliferation and differentiation. We investigated the expression and activation of AhR in ATL. RT-PCR and Western blot analyses showed high expression levels of AhR in ATL cell lines. The elevated expression of AhR was in part attributable to the action of the viral transactivator protein, Tax. Interestingly, activation of the AhR was found in ATL cell lines in the absence of apparent exogenous ligands. Importantly, the increased expression and activation of AhR were also observed in some primary ATL cells. To our best knowledge, this is the first report to show the lymphoid malignancy having constitutive activation of AhR. A possible link between increased AhR expression and leukemogenesis in ATL is discussed.
Collapse
MESH Headings
- Aryl Hydrocarbon Receptor Nuclear Translocator
- DNA-Binding Proteins
- Gene Expression
- Gene Products, tax/genetics
- Gene Products, tax/metabolism
- HL-60 Cells
- Humans
- Jurkat Cells
- Leukemia-Lymphoma, Adult T-Cell/etiology
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Toshihisa Hayashibara
- Department of Biochemistry, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Japan
| | | | | | | | | | | | | | | |
Collapse
|