1
|
Bohórquez JA, Jagannath C, Xu H, Wang X, Yi G. T Cell Responses during Human Immunodeficiency Virus/ Mycobacterium tuberculosis Coinfection. Vaccines (Basel) 2024; 12:901. [PMID: 39204027 PMCID: PMC11358969 DOI: 10.3390/vaccines12080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Coinfection with Mycobacterium tuberculosis (Mtb) and the human immunodeficiency virus (HIV) is a significant public health concern. Individuals infected with Mtb who acquire HIV are approximately 16 times more likely to develop active tuberculosis. T cells play an important role as both targets for HIV infection and mediators of the immune response against both pathogens. This review aims to synthesize the current literature and provide insights into the effects of HIV/Mtb coinfection on T cell populations and their contributions to immunity. Evidence from multiple in vitro and in vivo studies demonstrates that T helper responses are severely compromised during coinfection, leading to impaired cytotoxic responses. Moreover, HIV's targeting of Mtb-specific cells, including those within granulomas, offers an explanation for the severe progression of the disease. Herein, we discuss the patterns of differentiation, exhaustion, and transcriptomic changes in T cells during coinfection, as well as the metabolic adaptations that are necessary for T cell maintenance and functionality. This review highlights the interconnectedness of the immune response and the pathogenesis of HIV/Mtb coinfection.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Center for Infectious Diseases and Translational Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Covington, LA 70112, USA; (H.X.); (X.W.)
| | - Guohua Yi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA;
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
| |
Collapse
|
2
|
Xu S. Modelling Role of Protective and Nonprotective HLA Allele Inducing Different HIV Infection Outcomes. Bull Math Biol 2024; 86:107. [PMID: 39003370 PMCID: PMC11246342 DOI: 10.1007/s11538-024-01334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Human immunodeficiency virus (HIV) infects CD4+ cells and causes progressive immune function failure, and CD8+ cells lyse infected CD4+ cell via recognising peptide presented by human leukocyte antigens (HLA). Variations in HLA allele lead to observed different HIV infection outcomes. Within-host HIV dynamics involves virus replication within infected cells and lysing of infected cells by CD8+ cells, but how variations in HLA alleles determine different infection outcomes was far from clear. Here, we used mathematical modelling and parameter inference with a new analysis of published virus inhibition assay data to estimate CD8+ cell lysing efficiency, and found that lysing efficiency fall in the gap between low bound (0.1-0.2 day-1 (Elemans et al. in PLoS Comput Biol 8(2):e1002381, 2012)) and upper boundary (6.5-8.4 day-1 (Wick et al. in J Virol 79(21):13579-13586, 2005)). Our outcomes indicate that both lysing efficiency and viral inoculum size jointly determine observed different infection outcomes. Low lysing rate associated with non-protective HLA alleles leads to monostable viral kinetic to high viral titre and oscillatory viral kinetics. High lysing rate associated with protective HLA alleles leads monostable viral kinetic to low viral titre and bistable viral kinetics; at a specific interval of CD8+ cell counts, small viral inoculum sizes are inhibited but not large viral inoculum sizes remain infectious. Further, with CD8+ cell recruitment, HIV kinetics always exhibit oscillatory kinetics, but lysing rate is negatively correlated with range of CD8+ cell count. Our finding highlights role of HLA allele determining different infection outcomes, thereby providing a potential mechanistic explanation for observed good and bad HIV infection outcomes induced by protective HLA allele.
Collapse
Affiliation(s)
- Shilian Xu
- Department of Environment and Genetics, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia.
- Department of Mathematical and Physical Sciences, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
3
|
Zhou Y, Jadlowsky J, Baiduc C, Klattenhoff AW, Chen Z, Bennett AD, Pumphrey NJ, Jakobsen BK, Riley JL. Chimeric antigen receptors enable superior control of HIV replication by rapidly killing infected cells. PLoS Pathog 2023; 19:e1011853. [PMID: 38100526 PMCID: PMC10773964 DOI: 10.1371/journal.ppat.1011853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Engineered T cells hold great promise to become part of an effective HIV cure strategy, but it is currently unclear how best to redirect T cells to target HIV. To gain insight, we generated engineered T cells using lentiviral vectors encoding one of three distinct HIV-specific T cell receptors (TCRs) or a previously optimized HIV-targeting chimeric antigen receptor (CAR) and compared their functional capabilities. All engineered T cells had robust, antigen-specific polyfunctional cytokine profiles when mixed with artificial antigen-presenting cells. However, only the CAR T cells could potently control HIV replication. TCR affinity enhancement did not augment HIV control but did allow TCR T cells to recognize common HIV escape variants. Interestingly, either altering Nef activity or adding additional target epitopes into the HIV genome bolstered TCR T cell anti-HIV activity, but CAR T cells remained superior in their ability to control HIV replication. To better understand why CAR T cells control HIV replication better than TCR T cells, we performed a time course to determine when HIV-specific T cells were first able to activate Caspase 3 in HIV-infected targets. We demonstrated that CAR T cells recognized and killed HIV-infected targets more rapidly than TCR T cells, which correlates with their ability to control HIV replication. These studies suggest that the speed of target recognition and killing is a key determinant of whether engineered T cell therapies will be effective against infectious diseases.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie Jadlowsky
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Caitlin Baiduc
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alex W. Klattenhoff
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhilin Chen
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | - Bent K. Jakobsen
- Adaptimmune Ltd, Abingdon, United Kingdom
- Immunocore Ltd., Abingdon, United Kingdom
| | - James L. Riley
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Cody JW, Ellis-Connell AL, O’Connor SL, Pienaar E. Mathematical modeling indicates that regulatory inhibition of CD8+ T cell cytotoxicity can limit efficacy of IL-15 immunotherapy in cases of high pre-treatment SIV viral load. PLoS Comput Biol 2023; 19:e1011425. [PMID: 37616311 PMCID: PMC10482305 DOI: 10.1371/journal.pcbi.1011425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/06/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Immunotherapeutic cytokines can activate immune cells against cancers and chronic infections. N-803 is an IL-15 superagonist that expands CD8+ T cells and increases their cytotoxicity. N-803 also temporarily reduced viral load in a limited subset of non-human primates infected with simian immunodeficiency virus (SIV), a model of HIV. However, viral suppression has not been observed in all SIV cohorts and may depend on pre-treatment viral load and the corresponding effects on CD8+ T cells. Starting from an existing mechanistic mathematical model of N-803 immunotherapy of SIV, we develop a model that includes activation of SIV-specific and non-SIV-specific CD8+ T cells by antigen, inflammation, and N-803. Also included is a regulatory counter-response that inhibits CD8+ T cell proliferation and function, representing the effects of immune checkpoint molecules and immunosuppressive cells. We simultaneously calibrate the model to two separate SIV cohorts. The first cohort had low viral loads prior to treatment (≈3-4 log viral RNA copy equivalents (CEQ)/mL), and N-803 treatment transiently suppressed viral load. The second had higher pre-treatment viral loads (≈5-7 log CEQ/mL) and saw no consistent virus suppression with N-803. The mathematical model can replicate the viral and CD8+ T cell dynamics of both cohorts based on different pre-treatment viral loads and different levels of regulatory inhibition of CD8+ T cells due to those viral loads (i.e. initial conditions of model). Our predictions are validated by additional data from these and other SIV cohorts. While both cohorts had high numbers of activated SIV-specific CD8+ T cells in simulations, viral suppression was precluded in the high viral load cohort due to elevated inhibition of cytotoxicity. Thus, we mathematically demonstrate how the pre-treatment viral load can influence immunotherapeutic efficacy, highlighting the in vivo conditions and combination therapies that could maximize efficacy and improve treatment outcomes.
Collapse
Affiliation(s)
- Jonathan W. Cody
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
5
|
Association between SARS-CoV-2 RNAemia and dysregulated immune response in acutely ill hospitalized COVID-19 patients. Sci Rep 2022; 12:19658. [PMID: 36385627 PMCID: PMC9667450 DOI: 10.1038/s41598-022-23923-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Severe/critical COVID-19 is associated with immune dysregulation and plasmatic SARS-CoV-2 detection (i.e. RNAemia). We detailed the association of SARS-CoV-2 RNAemia with immune responses in COVID-19 patients at the end of the first week of disease. We enrolled patients hospitalized in acute phase of ascertained SARS-CoV-2 pneumonia, and evaluated SARS-CoV-2 RNAemia, plasmatic cytokines, activated/pro-cytolytic T-cells phenotypes, SARS-CoV-2-specific cytokine-producing T-cells (IL-2, IFN-γ, TNF-α, IL-4, IL-17A), simultaneous Th1-cytokines production (polyfunctionality) and amount (iMFI). The humoral responses were assessed with anti-S1/S2 IgG, anti-RBD total-Ig, IgM, IgA, IgG1 and IgG3, neutralization and antibody-dependent cellular cytotoxicity (ADCC). Out of 54 patients, 27 had detectable viremia (viremic). Albeit comparable age and co-morbidities, viremic more frequently required ventilatory support, with a trend to higher death. Viremic displayed higher pro-inflammatory cytokines (IFN-α, IL-6), lower activated T-cells (HLA-DR+CD38+), lower functional SARS-CoV-2-specific T-cells (IFN-γ+CD4+, TNF-α+CD8+, IL-4+CD8+, IL-2+TNF-α+CD4+, and IL-2+TNF-α+CD4+ iMFI) and SARS-CoV-2-specific Abs (anti-S IgG, anti-RBD total-Ig, IgM, IgG1, IgG3; ID50, %ADCC). These data suggest a link between SARS-CoV-2 RNAemia at the end of the first stage of disease and immune dysregulation. Whether high ab initium viral burden and/or intrinsic host factors contribute to immune dysregulation in severe COVID-19 remains to be elucidated, to further inform strategies of targeted therapeutic interventions.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The quest for HIV-1 cure could take advantage of the study of rare individuals that control viral replication spontaneously (elite controllers) or after an initial course of antiretroviral therapy (posttreatment controllers, PTCs). In this review, we will compare back-to-back the immunological and virological features underlying viral suppression in elite controllers and PTCs, and explore their possible contributions to the HIV-1 cure research. RECENT FINDINGS HIV-1 control in elite controllers shows hallmarks of an effective antiviral response, favored by genetic background and possibly associated to residual immune activation. The immune pressure in elite controllers might select against actively transcribing intact proviruses, allowing the persistence of a small and poorly inducible reservoir. Evidence on PTCs is less abundant but preliminary data suggest that antiviral immune responses may be less pronounced. Therefore, these patients may rely on distinct mechanisms, not completely elucidated to date, suppressing HIV-1 transcription and replication. SUMMARY PTCs and elite controllers may control HIV replication using distinct pathways, the elucidation of which may contribute to design future interventional strategies aiming to achieve a functional cure.
Collapse
|
7
|
Rout SS, Di Y, Dittmer U, Sutter K, Lavender KJ. Distinct effects of treatment with two different interferon-alpha subtypes on HIV-1-associated T-cell activation and dysfunction in humanized mice. AIDS 2022; 36:325-336. [PMID: 35084382 DOI: 10.1097/qad.0000000000003111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Interferon-alpha (IFN-α) has been associated with excessive immune activation and dysfunction during HIV-1 infection. However, evidence suggests specific IFN-α subtypes may be beneficial rather than detrimental. This study compared the effects of treatment with two different IFN-α subtypes on indicators of T-cell activation and dysfunction during HIV-1 infection. DESIGN Humanized mice were infected with HIV-1 for 5 weeks and then treated with two different IFN-α subtypes for an additional 3 weeks. Splenic T cells were assessed both immediately posttreatment and again 6 weeks after treatment cessation. METHODS HIV-1 infected triple-knockout bone marrow-liver-thymus mice received daily intraperitoneal injections of either IFN-α14 or the clinically approved subtype, IFN-α2. T cells were analysed directly ex vivo for indicators of activation and dysfunction or stimulated to determine their proliferative capacity and ability to produce functional mediators. RESULTS Unlike IFN-α2, IFN-α14 treatment reduced viremia and resulted in less activated CD4+ T cells and a lower naïve to effector CD8+ T-cell ratio. Despite exhibiting a reduced proliferative response, the frequency of CD8+ T cells from IFN-α14 treated mice that produced functional mediators and expressed markers of dysfunction was more similar to healthy controls than untreated and IFN-α2 treated mice. Frequencies of exhaustion marker expression remained higher in untreated and IFN-α2 treated mice 6 weeks posttreatment despite similar viral loads between groups at this timepoint. CONCLUSIONS Treatment with different IFN-α subtypes had distinctive effects on T cells during HIV-1 infection. IFN-α14 was associated with fewer indicators of T-cell dysfunction whereas IFN-α2 treatment had little impact.
Collapse
Affiliation(s)
- Saurav S Rout
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yunyun Di
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerry J Lavender
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Park S, Kirthika P, Jawalagatti V, Senevirathne A, Lee JH. Salmonella delivered Lawsonia intracellularis novel epitope-fusion vaccines enhance immunogenicity and confers protection against Lawsonia intracellularis in mice. Vet Microbiol 2021; 263:109264. [PMID: 34710766 DOI: 10.1016/j.vetmic.2021.109264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Abstract
Attenuated Salmonella-mediated vaccine constructs were designed by employing selected discontinuous immunodominant epitopes of LatA, FliC, and PAL antigens of Lawsonia intracellularis to create vaccines against porcine proliferative enteropathy (PPE). Whole protein sequences were subjected to in silico prediction of dominant epitopes, the stability of fusions, and hydropathicity and to ensure that the fused epitopes were feasible for expression in a Salmonella system. Two fusion constructs, one comprising LatA epitopes and the other FliC-PAL-FliC epitopes, were built into a prokaryotic constitutive expression system and transformed into the auxotrophic Salmonella host strain JOL1800. Epitope selection eliminated the majority of less immunodominant regions of target proteins and resulted in an efficient secretion platform that induced significant protective responses. Overall, our results demonstrated that the Salmonella-mediated LI- multi-epitope vaccines elicited significant humoral and cellular immune responses. Additionally, the challenge study suggested that the vaccinated mice were protected against experimental Lawsonia intracellularis infection. Based on the outcomes of the study, Salmonella-mediated LI- multi-epitope vaccines have the potential to prevent PPE.
Collapse
Affiliation(s)
- Sungwoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Perumalraja Kirthika
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Vijayakumar Jawalagatti
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
9
|
Isaguliants M, Krotova O, Petkov S, Jansons J, Bayurova E, Mezale D, Fridrihsone I, Kilpelainen A, Podschwadt P, Agapkina Y, Smirnova O, Kostic L, Saleem M, Latyshev O, Eliseeva O, Malkova A, Gorodnicheva T, Wahren B, Gordeychuk I, Starodubova E, Latanova A. Cellular Immune Response Induced by DNA Immunization of Mice with Drug Resistant Integrases of HIV-1 Clade A Offers Partial Protection against Growth and Metastatic Activity of Integrase-Expressing Adenocarcinoma Cells. Microorganisms 2021; 9:1219. [PMID: 34199989 PMCID: PMC8226624 DOI: 10.3390/microorganisms9061219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic DNA-vaccination against drug-resistant HIV-1 may hinder emergence and spread of drug-resistant HIV-1, allowing for longer successful antiretroviral treatment (ART) up-to relief of ART. We designed DNA-vaccines against drug-resistant HIV-1 based on consensus clade A integrase (IN) resistant to raltegravir: IN_in_r1 (L74M/E92Q/V151I/N155H/G163R) or IN_in_r2 (E138K/G140S/Q148K) carrying D64V abrogating IN activity. INs, overexpressed in mammalian cells from synthetic genes, were assessed for stability, route of proteolytic degradation, and ability to induce oxidative stress. Both were found safe in immunotoxicity tests in mice, with no inherent carcinogenicity: their expression did not enhance tumorigenic or metastatic potential of adenocarcinoma 4T1 cells. DNA-immunization of mice with INs induced potent multicytokine T-cell response mainly against aa 209-239, and moderate IgG response cross-recognizing diverse IN variants. DNA-immunization with IN_in_r1 protected 60% of mice from challenge with 4Tlluc2 cells expressing non-mutated IN, while DNA-immunization with IN_in_r2 protected only 20% of mice, although tumor cells expressed IN matching the immunogen. Tumor size inversely correlated with IN-specific IFN-γ/IL-2 T-cell response. IN-expressing tumors displayed compromised metastatic activity restricted to lungs with reduced metastases size. Protective potential of IN immunogens relied on their immunogenicity for CD8+ T-cells, dependent on proteasomal processing and low level of oxidative stress.
Collapse
Affiliation(s)
- Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Olga Krotova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Juris Jansons
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Dzeina Mezale
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Ilze Fridrihsone
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia; (J.J.); (D.M.); (I.F.)
| | - Athina Kilpelainen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Philip Podschwadt
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Yulia Agapkina
- Department of Chemistry and Belozersky Institute of Physicochemical Biology, Moscow State University, 119991 Moscow, Russia;
| | - Olga Smirnova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Mina Saleem
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
| | - Anastasia Malkova
- Institute of Medical Biological Research and Technologies, 143090 Krasnoznamensk, Russia;
| | | | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; (S.P.); (A.K.); (P.P.); (L.K.); (M.S.); (B.W.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 127994 Moscow, Russia
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Latanova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (O.K.); (E.B.); (O.S.); (O.L.); (O.E.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
10
|
Immunologic Control of HIV-1: What Have We Learned and Can We Induce It? Curr HIV/AIDS Rep 2021; 18:211-220. [PMID: 33709324 DOI: 10.1007/s11904-021-00545-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW A large amount of data now exists on the virus-specific immune response associated with spontaneous or induced immunologic control of lentiviruses. This review focuses on how the current understanding of HIV-specific immunity might be leveraged into induction of immunologic control and what further research is needed to accomplish this goal. RECENT FINDINGS During chronic infection, the function most robustly associated with immunologic control of HIV-1 is CD8+ T cell cytotoxic capacity. This function has proven difficult to restore in HIV-specific CD8+ T cells of chronically infected progressors in vitro and in vivo. However, progress has been made in inducing an effective CD8+ T cell response prior to lentiviral infection in the macaque model and during acute lentiviral infection in non-human primates. Further study will likely accelerate the ability to induce an effective CD8+ T cell response as part of prophylactic or therapeutic strategies.
Collapse
|
11
|
Abstract
HIV infection can be effectively treated by lifelong administration of combination antiretroviral therapy, but an effective vaccine will likely be required to end the HIV epidemic. Although the majority of current vaccine strategies focus on the induction of neutralizing antibodies, there is substantial evidence that cellular immunity mediated by CD8+ T cells can sustain long-term disease-free and transmission-free HIV control and may be harnessed to induce both therapeutic and preventive antiviral effects. In this Review, we discuss the increasing evidence derived from individuals who spontaneously control infection without antiretroviral therapy as well as preclinical immunization studies that provide a clear rationale for renewed efforts to develop a CD8+ T cell-based HIV vaccine in conjunction with B cell vaccine efforts. Further, we outline the remaining challenges in translating these findings into viable HIV prevention, treatment and cure strategies. Recently, antibody-mediated control of HIV infection has received considerable attention. Here, the authors discuss the importance of CD8+ T cells in HIV infection and suggest that efforts to develop vaccines that target these cells in conjunction with B cells should be renewed.
Collapse
|
12
|
Ram RR, Duatschek P, Margot N, Abram M, Geleziunas R, Hesselgesser J, Callebaut C. Activation of HIV-specific CD8+ T-cells from HIV+ donors by vesatolimod. Antivir Ther 2020; 25:163-169. [DOI: 10.3851/imp3359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
|
13
|
Nyanhete TE, Frisbee AL, Bradley T, Faison WJ, Robins E, Payne T, Freel SA, Sawant S, Weinhold KJ, Wiehe K, Haynes BF, Ferrari G, Li QJ, Moody MA, Tomaras GD. HLA class II-Restricted CD8+ T cells in HIV-1 Virus Controllers. Sci Rep 2019; 9:10165. [PMID: 31308388 PMCID: PMC6629643 DOI: 10.1038/s41598-019-46462-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
A paradigm shifting study demonstrated that induction of MHC class E and II-restricted CD8+ T cells was associated with the clearance of SIV infection in rhesus macaques. Another recent study highlighted the presence of HIV-1-specific class II-restricted CD8+ T cells in HIV-1 patients who naturally control infection (virus controllers; VCs). However, questions regarding class II-restricted CD8+ T cells ontogeny, distribution across different HIV-1 disease states and their role in viral control remain unclear. In this study, we investigated the distribution and anti-viral properties of HLA-DRB1*0701 and DQB1*0501 class II-restricted CD8+ T cells in different HIV-1 patient cohorts; and whether class II-restricted CD8+ T cells represent a unique T cell subset. We show that memory class II-restricted CD8+ T cell responses were more often detectable in VCs than in chronically infected patients, but not in healthy seronegative donors. We also demonstrate that VC CD8+ T cells inhibit virus replication in both a class I- and class II-dependent manner, and that in two VC patients the class II-restricted CD8+ T cells with an anti-viral gene signature expressed both CD4+ and CD8+ T cell lineage-specific genes. These data demonstrated that anti-viral memory class II-restricted CD8+ T cells with hybrid CD4+ and CD8+ features are present during natural HIV-1 infection.
Collapse
Affiliation(s)
- Tinashe E Nyanhete
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alyse L Frisbee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,University of Virginia Department of Microbiology, Immunology and Cancer Biology, 345 Crispell Drive, University of Virginia Health System, Charlottesville, Virginia, 22908, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - William J Faison
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Elizabeth Robins
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tamika Payne
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Stephanie A Freel
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sheetal Sawant
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kent J Weinhold
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Swathirajan CR, Vignesh R, Waldrop G, Shanmugasundaram U, Nandagopal P, Solomon SS, Pradeep A, Saravanan S, Murugavel KG. HIV-specific T-cell Responses and Generalized Activation in HIV-1 Infected Long-term Non-progressors and Progressors from South India. Curr HIV Res 2019; 16:302-314. [PMID: 30543175 PMCID: PMC6416489 DOI: 10.2174/1570162x17666181212122607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Background: Anti-viral cytokine expressions by cytotoxic T-cells and lower activation rates have been reported to correlate with suppressed HIV replication in long-term non-progressors (LTNP). Immune mechanisms underlying disease non-progression in LTNP might vary with HIV-1 subtype and geographical locations. Objective: This study evaluates cytokine expression and T-cells activation in relation to disease non-progression in LTNP. Methods: HIV-1 Subtype C infected LTNP (n=20) and progressors (n=15) were enrolled and flowcytometry assays were performed to study HIV-specific CD8 T-cells expressing IL-2, IFN-γ, TNF-α and MIP-1β against gag and env peptides. CD4+ T-cell activation was evaluated by surface expression of HLADR and CD38. Results: Proportions of cytokines studied did not differ significantly between LTNP and progressors, while contrasting correlations with disease progression markers were observed in LTNP. CD4+ T-cell activation rates were significantly lower in LTNP compared to progressors which indicate the potential role of T-cell activation rates in disease non-progression in LTNP. Conclusion: LTNP and progressors showed similar CD8+ T-cell responses, but final conclusions can be drawn only by comparing multiple immune factors in larger LTNP cohort with HIV-1 infected individuals at various levels of disease progression. A possible role of HIV-1 subtype variation and ethnic differences in addition to host-genetic and viral factors cannot be ruled out.
Collapse
Affiliation(s)
| | - Ramachandran Vignesh
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India.,UniKL-Royal College of Medicine Perak (UniKL-RCMP), Universiti Kuala Lumpur, 3, Jalan Greentown, 30450 Ipoh, Perak, Malaysia
| | - Greer Waldrop
- University of Maryland School of Medicine, College Park, MD 20742, United States
| | | | - Pannerselvam Nandagopal
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India
| | - Sunil Suhas Solomon
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India.,The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, United States
| | - Amrose Pradeep
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India
| | - Shanmugam Saravanan
- Y. R. Gaitonde Centre for AIDS Research and Education, VHS Hospital Campus, Taramani, Chennai, India
| | | |
Collapse
|
15
|
Moyo N, Borthwick NJ, Wee EG, Capucci S, Crook A, Dorrell L, Hanke T. Long-term follow up of human T-cell responses to conserved HIV-1 regions elicited by DNA/simian adenovirus/MVA vaccine regimens. PLoS One 2017; 12:e0181382. [PMID: 28719652 PMCID: PMC5515449 DOI: 10.1371/journal.pone.0181382] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Durability of vaccine-elicited immune responses is one of the key determinants for vaccine success. Our aim is to develop a vaccination strategy against the human immunodeficiency virus type 1 (HIV-1), which induces protective and durable CD8+ T-cell responses. The central theorem of our approach is to focus T cells on highly conserved regions of the HIV-1 proteome and this is achieved through the use of the first-generation conserved vaccine immunogen HIVconsv. This immunogen vectored by plasmid DNA, simian adenovirus and poxvirus MVA was tested in healthy, HIV-1-negative adults in UK and induced high magnitudes of HIVconsv-specific plurifunctional CD8+ T cells capable of in vitro HIV-1 inhibition. Here, we assessed the durability of these responses. METHODS Vaccine recipients in trial HIV-CORE 002 were invited to provide a blood sample at 1 and 2 years after vaccination. Their PBMCs were tested in IFN-γ ELISPOT, 25-analyte Luminex, CFSE proliferation and intracellular cytokine staining assays, the last enhanced by HLA-peptide dextramer analysis. RESULTS 12/12 (1 year) and 8/8 (2 years) returning subjects had median (range) of 990 (150-2495) and 763 (70-1745) IFN-γ SFU/106 PBMC specific for HIVconsv, respectively, and recognized 5 (1-6) out of 6 peptide pools at 2 years. Over one-half of the HIVconsv-specific cells expressed at least 3 functions IFN-γ, TNF-α and CD107a, and were capable of proliferation. Among dextramer-reactive cells, naïve, transitional, effector and terminally differentiated memory subsets were similarly represented. CONCLUSIONS First generation HIVconsv vaccine induced human T cells, which were plurifunctional and persisted for at least 2 years. TRIAL REGISTRATION ClinicalTrials.gov NCT01151319.
Collapse
Affiliation(s)
- Nathifa Moyo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola J Borthwick
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Silvia Capucci
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alison Crook
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lucy Dorrell
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Attayek PJ, Hunsucker SA, Sims CE, Allbritton NL, Armistead PM. Identification and isolation of antigen-specific cytotoxic T lymphocytes with an automated microraft sorting system. Integr Biol (Camb) 2016; 8:1208-1220. [PMID: 27853786 PMCID: PMC5138107 DOI: 10.1039/c6ib00168h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The simultaneous measurement of T cell function with recovery of individual T cells would greatly facilitate characterizing antigen-specific responses both in vivo and in model systems. We have developed a microraft array methodology that automatically measures the ability of individual T cells to kill a population of target cells and viably sorts specific cells into a 96-well plate for expansion. A human T cell culture was generated against the influenza M1p antigen. Individual microrafts on a 70 × 70 array were loaded with on average 1 CD8+ cell from the culture and a population of M1p presenting target cells. Target cell killing, measured by fluorescence microscopy, was quantified in each microraft. The rates of target cell death among the individual CD8+ T cells varied greatly; however, individual T cells maintained their rates of cytotoxicity throughout the time course of the experiment enabling rapid identification of highly cytotoxic CD8+ T cells. Microrafts with highly active CD8+ T cells were individually transferred to wells of a 96-well plate, using a needle-release device coupled to the microscope. Three sorted T cells clonally expanded. All of these expressed high-avidity T cell receptors for M1p/HLA*02:01 tetramers, and 2 of the 3 receptors were sequenced. While this study investigated single T cell cytotoxicity rates against simple targets with subsequent cell sorting, future studies will involve measuring T cell mediated cytotoxicity in more complex cellular environments, enlarging the arrays to identify very rare antigen specific T cells, and measuring single cell CD4+ and CD8+ T cell proliferation.
Collapse
Affiliation(s)
- Peter J. Attayek
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill NC and North Carolina State University, Raleigh NC
| | - Sally A. Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Nancy L. Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill NC and North Carolina State University, Raleigh NC
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Chemistry, University of North Carolina, Chapel Hill, NC
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
17
|
Younes SA, Freeman ML, Mudd JC, Shive CL, Reynaldi A, Panigrahi S, Estes JD, Deleage C, Lucero C, Anderson J, Schacker TW, Davenport MP, McCune JM, Hunt PW, Lee SA, Serrano-Villar S, Debernardo RL, Jacobson JM, Canaday DH, Sekaly RP, Rodriguez B, Sieg SF, Lederman MM. IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection. J Clin Invest 2016; 126:2745-56. [PMID: 27322062 PMCID: PMC4922693 DOI: 10.1172/jci85996] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/04/2016] [Indexed: 11/17/2022] Open
Abstract
In HIV-1-infected patients, increased numbers of circulating CD8+ T cells are linked to increased risk of morbidity and mortality. Here, we identified a bystander mechanism that promotes CD8 T cell activation and expansion in untreated HIV-1-infected patients. Compared with healthy controls, untreated HIV-1-infected patients have an increased population of proliferating, granzyme B+, CD8+ T cells in circulation. Vβ expression and deep sequencing of CDR3 revealed that in untreated HIV-1 infection, cycling memory CD8 T cells possess a broad T cell repertoire that reflects the repertoire of the resting population. This suggests that cycling is driven by bystander activation, rather than specific antigen exposure. Treatment of peripheral blood mononuclear cells with IL-15 induced a cycling, granzyme B+ phenotype in CD8+ T cells. Moreover, elevated IL-15 expression in the lymph nodes of untreated HIV-1-infected patients correlated with circulating CD8+ T cell counts and was normalized in these patients following antiretroviral therapy. Together, these results suggest that IL-15 drives bystander activation of CD8+ T cells, which predicts disease progression in untreated HIV-1-infected patients and suggests that elevated IL-15 may also drive CD8+ T cell expansion that is linked to increased morbidity and mortality in treated patients.
Collapse
Affiliation(s)
- Souheil-Antoine Younes
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Michael L. Freeman
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Joseph C. Mudd
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carey L. Shive
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Arnold Reynaldi
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | - Soumya Panigrahi
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carissa Lucero
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jodi Anderson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miles P. Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Peter W. Hunt
- HIV/AIDS Division, Department of Medicine, UCSF, San Francisco, California, USA
| | - Sulggi A. Lee
- HIV/AIDS Division, Department of Medicine, UCSF, San Francisco, California, USA
| | | | | | - Jeffrey M. Jacobson
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - David H. Canaday
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | | | - Benigno Rodriguez
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Scott F. Sieg
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Michael M. Lederman
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
18
|
HIV-Specific CD8+ T Cell-Mediated Viral Suppression Correlates With the Expression of CD57. J Acquir Immune Defic Syndr 2016; 71:8-16. [PMID: 26761268 DOI: 10.1097/qai.0000000000000837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Virus-specific CD8(+) T-cell responses are believed to play an important role in the control of HIV-1 infection; however, what constitutes an effective HIV-1 CD8(+) T-cell response remains a topic of debate. The ex vivo viral suppressive capacity was measured of CD8(+) T cells from 44 HIV-1-positive individuals. The phenotypic and cytokine profiles, and also the specificity of the CD8(+) T cells, were correlated with the suppression of HIV-1 replication. We also aimed to determine whether antiretroviral therapy (ART) had any positive effect on the HIV-1 suppressive CD8(+) T cells. METHOD Ex vivo suppression assay was used to evaluate the ability of CD8(+) T cells to suppress HIV-1 replication in autologous CD4(+) T cells. The CD107a, interferon-γ, interleukin-2, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-1β (MIP-1β) responses to HIV-1 were evaluated by intracellular staining. The phenotypic profile of CD8(+) T cells was determined by whole blood staining. RESULTS The expression of CD57 on effector CD8(+) T cells correlated with the suppression of HIV-1 replication and to the duration of ART. CD107a and tumor necrosis factor-α expression levels were significantly higher in individuals with ex vivo suppressive activity compared with individuals without suppressive activity. CONCLUSIONS Standard in vitro assays measuring one or several cytokines do not correlate with the functional viral suppressive capacity of CD8(+) T cells from HIV-1-positive individuals. The best correlation of viral suppression was found to be CD57 expression. CD57 expression correlated with the duration of ART, suggesting that ART restores the cytotoxic capacity of CD8(+) T lymphocytes.
Collapse
|
19
|
Papasavvas E, Foulkes A, Yin X, Joseph J, Ross B, Azzoni L, Kostman JR, Mounzer K, Shull J, Montaner LJ. Plasmacytoid dendritic cell and functional HIV Gag p55-specific T cells before treatment interruption can inform set-point plasma HIV viral load after treatment interruption in chronically suppressed HIV-1(+) patients. Immunology 2015; 145:380-90. [PMID: 25684333 DOI: 10.1111/imm.12452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
The identification of immune correlates of HIV control is important for the design of immunotherapies that could support cure or antiretroviral therapy (ART) intensification-related strategies. ART interruptions may facilitate this task through exposure of an ART partially reconstituted immune system to endogenous virus. We investigated the relationship between set-point plasma HIV viral load (VL) during an ART interruption and innate/adaptive parameters before or after interruption. Dendritic cell (DC), natural killer (NK) cell and HIV Gag p55-specific T-cell functional responses were measured in paired cryopreserved peripheral blood mononuclear cells obtained at the beginning (on ART) and at set-point of an open-ended interruption from 31 ART-suppressed chronically HIV-1(+) patients. Spearman correlation and linear regression modeling were used. Frequencies of plasmacytoid DC (pDC), and HIV Gag p55-specific CD3(+) CD4(-) perforin(+) IFN-γ(+) cells at the beginning of interruption associated negatively with set-point plasma VL. Inclusion of both variables with interaction into a model resulted in the best fit (adjusted R(2) = 0·6874). Frequencies of pDC or HIV Gag p55-specific CD3(+) CD4(-) CSFE(lo) CD107a(+) cells at set-point associated negatively with set-point plasma VL. The dual contribution of pDC and anti-HIV T-cell responses to viral control, supported by our models, suggests that these variables may serve as immune correlates of viral control and could be integrated in cure or ART-intensification strategies.
Collapse
Affiliation(s)
| | - Andrea Foulkes
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | | - Brian Ross
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Jay R Kostman
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA, USA
| | - Karam Mounzer
- Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA, USA
| | - Jane Shull
- Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA, USA
| | | |
Collapse
|
20
|
Pombo C, Wherry EJ, Gostick E, Price DA, Betts MR. Elevated Expression of CD160 and 2B4 Defines a Cytolytic HIV-Specific CD8+ T-Cell Population in Elite Controllers. J Infect Dis 2015; 212:1376-86. [PMID: 25883386 DOI: 10.1093/infdis/jiv226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/06/2015] [Indexed: 01/30/2023] Open
Abstract
During chronic human immunodeficiency virus (HIV) infection, virus-specific CD8(+) T cells become functionally exhausted. Unlike most chronically infected individuals, elite controllers of HIV retain CD8(+) T-cell polyfunctionality and cytolytic capacity. It remains unclear whether elite controllers manifest T-cell exhaustion similar to subjects with chronic progression of HIV infection. Here we assessed coexpression of PD-1, Lag-3, CD160, and 2B4 as a measure of T-cell exhaustion in a cohort of elite controllers and in chronic progressors. We found that elite controllers have a high proportion of potentially exhausted (PD1(+)CD160(+)2B4(+)) HIV-specific CD8(+) T cells that is comparable to the proportion in chronic progressors. However, elite controllers also harbor a population of HIV-specific CD160(+)2B4(+) CD8(+) T cells that correlates with cytolytic capacity, as measured by perforin expression, a population not commonly present in chronic progressors. We therefore propose that coexpression of CD160 and 2B4 delineates a population of cytolytic CD8(+) T cells important for the control of HIV.
Collapse
Affiliation(s)
- Carolina Pombo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - E John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Emma Gostick
- Institute of Infection and Immunity, Cardiff University School of Medicine, United Kingdom
| | - David A Price
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland Institute of Infection and Immunity, Cardiff University School of Medicine, United Kingdom
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
21
|
Reguzova AY, Karpenko LI, Mechetina LV, Belyakov IM. Peptide-MHC multimer-based monitoring of CD8 T-cells in HIV-1 infection and AIDS vaccine development. Expert Rev Vaccines 2014; 14:69-84. [PMID: 25373312 DOI: 10.1586/14760584.2015.962520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of MHC multimers allows precise and direct detecting and analyzing of antigen-specific T-cell populations and provides new opportunities to characterize T-cell responses in humans and animals. MHC-multimers enable us to enumerate specific T-cells targeting to viral, tumor and vaccine antigens with exceptional sensitivity and specificity. In the field of HIV/SIV immunology, this technique provides valuable information about the frequencies of HIV- and SIV-specific CD8(+) cytotoxic T lymphocytes (CTLs) in different tissues and sites of infection, AIDS progression, and pathogenesis. Peptide-MHC multimer technology remains a very sensitive tool in detecting virus-specific T -cells for evaluation of the immunogenicity of vaccines against HIV-1 in preclinical trials. Moreover, it helps to understand how immune responses are formed following vaccination in the dynamics from priming point until T-cell memory is matured. Here we review a diversity of peptide-MHC class I multimer applications for fundamental immunological studies in different aspects of HIV/SIV infection and vaccine development.
Collapse
Affiliation(s)
- Alena Y Reguzova
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | | | | | | |
Collapse
|
22
|
Casetti R, De Simone G, Sacchi A, Bordoni V, Viola D, Rinaldi A, Agrati C, Gioia C, Martini F. Modulation of polyfunctional HIV-specific CD8 T cells in patients responding differently to antiretroviral therapy. Int J Immunopathol Pharmacol 2014; 27:291-7. [PMID: 25004842 DOI: 10.1177/039463201402700218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Antiretroviral therapy allows a restoration of immune cell homeostasis associated with a normal immune competence. Our goal was to analyze the modulation of polyfunctional HIV-specific CD8+ T-cell responses during antiretroviral therapy. HIV-infected individuals were divided into four groups according to CD4+ cell count and viral load at the moment of recruitment. Whole blood was stimulated with a pool of CD8-specific HIV-antigens to assess cytokine/chemokine production and cytotoxicity activity by using flow cytometry. The groups show different modulation in HIV-specific CD8+ T-cell responses. In particular, immunological failure showed different distributions of polyfunctional HIVspecific CD8+ responses, mainly due to an increase of cells producing CD107alpha/IFNgamma/IL-2/MIP-1beta. Our results indicate that this particular 4+ functional subset is a possible correlate of immunological failure. Considering the complexity of interactions among HAART, immune system and HIV, work is in progress to find correlates of therapy efficacy.
Collapse
Affiliation(s)
- R Casetti
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani I.R.C.C.S, Rome, Italy
| | - G De Simone
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani I.R.C.C.S, Rome, Italy
| | - A Sacchi
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani I.R.C.C.S, Rome, Italy
| | - V Bordoni
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani I.R.C.C.S, Rome, Italy
| | - D Viola
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani I.R.C.C.S, Rome, Italy
| | - A Rinaldi
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani I.R.C.C.S, Rome, Italy
| | - C Agrati
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani I.R.C.C.S, Rome, Italy
| | - C Gioia
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani I.R.C.C.S, Rome, Italy
| | - F Martini
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases Lazzaro Spallanzani I.R.C.C.S, Rome, Italy
| |
Collapse
|
23
|
Faller EM, McVey MJ, MacPherson PA. IL-7 receptor recovery on CD8 T-cells isolated from HIV+ patients is inhibited by the HIV Tat protein. PLoS One 2014; 9:e102677. [PMID: 25033393 PMCID: PMC4102547 DOI: 10.1371/journal.pone.0102677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/23/2014] [Indexed: 01/11/2023] Open
Abstract
Expression of the IL-7 receptor α-chain (CD127) is decreased on CD8 T-cells in HIV infected patients and partially recovers in those receiving antiretroviral therapy with sustained viral suppression. We have shown that soluble HIV Tat protein down regulates CD127 expression on CD8 T-cells isolated from healthy HIV-negative individuals. Tat is taken up by CD8 T-cells via endocytosis, exits the endosome and then translocates to the inner leaflet of the cell membrane where it binds to the cytoplasmic tail of CD127 inducing receptor internalization and degradation by the proteasome. This down regulation of CD127 by Tat results in impaired CD8 T-cell function. Interestingly, suppression of CD127 by Tat is reversible and requires the continual presence of Tat in the culture media. We thus questioned whether the low IL-7 receptor expression evident on CD8 T-cells in HIV+ patients was similarly reversible and if suppression of the receptor could be maintained ex vivo by Tat protein alone. We show here that when CD8 T-cells isolated from HIV+ patients are incubated alone in fresh medium, low CD127 expression on the cell surface recovers to normal levels. This recovery of CD127, however, is completely inhibited by the addition of HIV Tat protein to the culture media. This study then provides evidence that soluble factor(s) are responsible for low CD127 expression on circulating CD8 T-cells in HIV+ individuals and further implicates Tat in suppressing this receptor essential to CD8 T-cell proliferation and function.
Collapse
Affiliation(s)
- Elliott M. Faller
- Ottawa Hospital Research Institute, Chronic Disease, Ottawa, Ontario, Canada
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mark J. McVey
- Ottawa Hospital Research Institute, Chronic Disease, Ottawa, Ontario, Canada
| | - Paul A. MacPherson
- Ottawa Hospital Research Institute, Chronic Disease, Ottawa, Ontario, Canada
- Division of Infectious Diseases, Ottawa Hospital General Campus, Ottawa, Ontario, Canada
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
24
|
Saez-Cirion A, Jacquelin B, Barré-Sinoussi F, Müller-Trutwin M. Immune responses during spontaneous control of HIV and AIDS: what is the hope for a cure? Philos Trans R Soc Lond B Biol Sci 2014; 369:20130436. [PMID: 24821922 PMCID: PMC4024229 DOI: 10.1098/rstb.2013.0436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
HIV research has made rapid progress and led to remarkable achievements in recent decades, the most important of which are combination antiretroviral therapies (cART). However, in the absence of a vaccine, the pandemic continues, and additional strategies are needed. The 'towards an HIV cure' initiative aims to eradicate HIV or at least bring about a lasting remission of infection during which the host can control viral replication in the absence of cART. Cases of spontaneous and treatment-induced control of infection offer substantial hope. Here, we describe the scientific knowledge that is lacking, and the priorities that have been established for research into a cure. We discuss in detail the immunological lessons that can be learned by studying natural human and animal models of protection and spontaneous control of viraemia or of disease progression. In particular, we describe the insights we have gained into the immune mechanisms of virus control, the impact of early virus-host interactions and why chronic inflammation, a hallmark of HIV infection, is an obstacle to a cure. Finally, we enumerate current interventions aimed towards improving the host immune response.
Collapse
Affiliation(s)
| | | | | | - M. Müller-Trutwin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| |
Collapse
|
25
|
Bahr GM. Immune deficiency in HIV-1 infection: novel therapeutic approaches targeting innate and adaptive responses. Expert Rev Clin Immunol 2014; 1:529-47. [DOI: 10.1586/1744666x.1.4.529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Betts MR, Gray CM, Cox JH, Ferrari G. Antigen-specific T-cell-mediated immunity after HIV-1 infection: implications for vaccine control of HIV development. Expert Rev Vaccines 2014; 5:505-16. [PMID: 16989631 DOI: 10.1586/14760584.5.4.505] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The definition of immune correlates of protection in HIV-1 infection is pivotal to the design of successful vaccine candidates and strategies. Although significant methodological and conceptual strides have been made in our understanding of HIV-specific cellular immunity, we have not yet defined those parameters that have a role in controlling the spread of HIV infection. This review discusses the basis of our understanding of HIV-specific cellular immunity and identifies its shortcomings. Furthermore, potential protective characteristics will be proposed that may ultimately be required for an effective vaccine designed to stimulate cellular immunity against HIV-1.
Collapse
Affiliation(s)
- Michael R Betts
- University of Pennsylvania, Department of Microbiology, 522E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
27
|
Demers KR, Reuter MA, Betts MR. CD8(+) T-cell effector function and transcriptional regulation during HIV pathogenesis. Immunol Rev 2013; 254:190-206. [PMID: 23772621 PMCID: PMC3693771 DOI: 10.1111/imr.12069] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A detailed understanding of the immune response to human immunodeficiency virus (HIV) infection is needed to inform prevention and therapeutic strategies that aim to contain the acquired immunodeficiency syndrome (AIDS) pandemic. The cellular immune response plays a critical role in controlling viral replication during HIV infection and will likely need to be a part of any vaccine approach. The qualitative feature of the cellular response most closely associated with immunological control of HIV infection is CD8(+) T-cell cytotoxic potential, which is responsible for mediating the elimination of infected CD4(+) T cells. Understanding the underlying mechanisms involved in regulating the elicitation and maintenance of this kind of effector response can provide guidance for vaccine design. In this review, we discuss the evidence for CD8(+) T cells as correlates of protection, the means by which their antiviral capacity is evaluated, and transcription factors responsible for their function, or dysfunction, during HIV infection.
Collapse
Affiliation(s)
- Korey R. Demers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Morgan A. Reuter
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael R. Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Kunwar P, Hawkins N, Dinges WL, Liu Y, Gabriel EE, Swan DA, Stevens CE, Maenza J, Collier AC, Mullins JI, Hertz T, Yu X, Horton H. Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design. PLoS One 2013; 8:e64405. [PMID: 23741326 PMCID: PMC3669284 DOI: 10.1371/journal.pone.0064405] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022] Open
Abstract
A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced responses or (ii) increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS) by three different methods (prevalence, entropy and conseq) on clade-B and group-M sequence alignments. The majority of CD8+ T cell responses were directed against variable epitopes (p<0.01). Interestingly, increasing breadth of CD8+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009). Moreover, subjects possessing CD8+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021). The association between viral control and the breadth of conserved CD8+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215). The associations with viral control were independent of functional avidity of CD8+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus on strategies that can elicit CD8+ T cell responses to multiple conserved epitopes of HIV-1.
Collapse
Affiliation(s)
- Pratima Kunwar
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Natalie Hawkins
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Warren L. Dinges
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Polyclinic Infectious Disease, Seattle, Washington, United States of America
| | - Yi Liu
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Erin E. Gabriel
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David A. Swan
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Claire E. Stevens
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Janine Maenza
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Ann C. Collier
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Tomer Hertz
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Xuesong Yu
- Statistical Center for HIV Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Helen Horton
- Viral Vaccine Program, Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Global Health, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
29
|
Krotova O, Starodubova E, Petkov S, Kostic L, Agapkina J, Hallengärd D, Viklund A, Latyshev O, Gelius E, Dillenbeck T, Karpov V, Gottikh M, Belyakov IM, Lukashov V, Isaguliants MG. Consensus HIV-1 FSU-A integrase gene variants electroporated into mice induce polyfunctional antigen-specific CD4+ and CD8+ T cells. PLoS One 2013; 8:e62720. [PMID: 23667513 PMCID: PMC3648577 DOI: 10.1371/journal.pone.0062720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/25/2013] [Indexed: 02/06/2023] Open
Abstract
Our objective is to create gene immunogens targeted against drug-resistant HIV-1, focusing on HIV-1 enzymes as critical components in viral replication and drug resistance. Consensus-based gene vaccines are specifically fit for variable pathogens such as HIV-1 and have many advantages over viral genes and their expression-optimized variants. With this in mind, we designed the consensus integrase (IN) of the HIV-1 clade A strain predominant in the territory of the former Soviet Union and its inactivated derivative with and without mutations conferring resistance to elvitegravir. Humanized IN gene was synthesized; and inactivated derivatives (with 64D in the active site mutated to V) with and without elvitegravir-resistance mutations were generated by site-mutagenesis. Activity tests of IN variants expressed in E coli showed the consensus IN to be active, while both D64V-variants were devoid of specific activities. IN genes cloned in the DNA-immunization vector pVax1 (pVaxIN plasmids) were highly expressed in human and murine cell lines (>0.7 ng/cell). Injection of BALB/c mice with pVaxIN plasmids followed by electroporation generated potent IFN-γ and IL-2 responses registered in PBMC by day 15 and in splenocytes by day 23 after immunization. Multiparametric FACS demonstrated that CD8+ and CD4+ T cells of gene-immunized mice stimulated with IN-derived peptides secreted IFN-γ, IL-2, and TNF-α. The multi-cytokine responses of CD8+ and CD4+ T-cells correlated with the loss of in vivo activity of the luciferase reporter gene co-delivered with pVaxIN plasmids. This indicated the capacity of IN-specific CD4+ and CD8+ T-cells to clear IN/reporter co-expressing cells from the injection sites. Thus, the synthetic HIV-1 clade A integrase genes acted as potent immunogens generating polyfunctional Th1-type CD4+ and CD8+ T cells. Generation of such response is highly desirable for an effective HIV-1 vaccine as it offers a possibility to attack virus-infected cells via both MHC class I and II pathways.
Collapse
Affiliation(s)
- Olga Krotova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Elizaveta Starodubova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linda Kostic
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Agapkina
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alecia Viklund
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Vadim Karpov
- WA Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Marina Gottikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor M. Belyakov
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, and the Department of Internal Medicine, University of Michigan, School of Medicine, Ann Arbor, Michigan, United States of America
| | - Vladimir Lukashov
- DI Ivanovsky Institute of Virology, Moscow, Russia
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria G. Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- DI Ivanovsky Institute of Virology, Moscow, Russia
- * E-mail:
| |
Collapse
|
30
|
Imami N, Westrop SJ, Grageda N, Herasimtschuk AA. Long-Term Non-Progression and Broad HIV-1-Specific Proliferative T-Cell Responses. Front Immunol 2013; 4:58. [PMID: 23459797 PMCID: PMC3585435 DOI: 10.3389/fimmu.2013.00058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/17/2013] [Indexed: 12/30/2022] Open
Abstract
Complex mechanisms underlying the maintenance of fully functional, proliferative, HIV-1-specific T-cell responses involve processes from early T-cell development through to the final stages of T-cell differentiation and antigen recognition. Virus-specific proliferative CD4 and CD8 T-cell responses, important for the control of infection, are observed in some HIV-1(+) patients during early stages of disease, and are maintained in long-term non-progressing subjects. In the vast majority of HIV-1(+) patients, full immune functionality is lost when proliferative HIV-1-specific T-cell responses undergo a variable progressive decline throughout the course of chronic infection. This appears irreparable despite administration of potent combination antiretroviral therapy, which to date is non-curative, necessitating life-long administration and the development of effective, novel, therapeutic interventions. While a sterilizing cure, involving clearance of virus from the host, remains a primary aim, a "functional cure" may be a more feasible goal with considerable impact on worldwide HIV-1 infection. Such an approach would enable long-term co-existence of host and virus in the absence of toxic and costly drugs. Effective immune homeostasis coupled with a balanced response appropriately targeting conserved viral antigens, in a manner that avoids hyperactivation and exhaustion, may prove to be the strongest correlate of durable viral control. This review describes novel concepts underlying full immune functionality in the context of HIV-1 infection, which may be utilized in future strategies designed to improve upon existing therapy. The aim will be to induce long-term non-progressor or elite controller status in every infected host, through immune-mediated control of viremia and reduction of viral reservoirs, leading to lower HIV-1 transmission rates.
Collapse
Affiliation(s)
- Nesrina Imami
- Department of Medicine, Imperial College LondonLondon, UK
| | | | | | | |
Collapse
|
31
|
Sáez-Cirión A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, Potard V, Versmisse P, Melard A, Prazuck T, Descours B, Guergnon J, Viard JP, Boufassa F, Lambotte O, Goujard C, Meyer L, Costagliola D, Venet A, Pancino G, Autran B, Rouzioux C. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog 2013; 9:e1003211. [PMID: 23516360 PMCID: PMC3597518 DOI: 10.1371/journal.ppat.1003211] [Citation(s) in RCA: 816] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/09/2013] [Indexed: 02/06/2023] Open
Abstract
Combination antiretroviral therapy (cART) reduces HIV-associated morbidities and mortalities but cannot cure the infection. Given the difficulty of eradicating HIV-1, a functional cure for HIV-infected patients appears to be a more reachable short-term goal. We identified 14 HIV patients (post-treatment controllers [PTCs]) whose viremia remained controlled for several years after the interruption of prolonged cART initiated during the primary infection. Most PTCs lacked the protective HLA B alleles that are overrepresented in spontaneous HIV controllers (HICs); instead, they carried risk-associated HLA alleles that were largely absent among the HICs. Accordingly, the PTCs had poorer CD8+ T cell responses and more severe primary infections than the HICs did. Moreover, the incidence of viral control after the interruption of early antiretroviral therapy was higher among the PTCs than has been reported for spontaneous control. Off therapy, the PTCs were able to maintain and, in some cases, further reduce an extremely low viral reservoir. We found that long-lived HIV-infected CD4+ T cells contributed poorly to the total resting HIV reservoir in the PTCs because of a low rate of infection of naïve T cells and a skewed distribution of resting memory CD4+ T cell subsets. Our results show that early and prolonged cART may allow some individuals with a rather unfavorable background to achieve long-term infection control and may have important implications in the search for a functional HIV cure.
Collapse
Affiliation(s)
- Asier Sáez-Cirión
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Charline Bacchus
- Université Pierre et Marie Curie, INSERM UMR-S 945 Immunité et Infection, Hôpital Pitié-Salpêtrière, Paris, France
| | - Laurent Hocqueloux
- Centre Hospitalier Régional d'Orléans, Service des Maladies Infectieuses et Tropicales, Orléans, France
| | - Véronique Avettand-Fenoel
- AP-HP, CHU Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
- EA 3620, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Girault
- INSERM U1012, Université Paris-Sud 11, Le Kremlin Bicêtre, France
| | - Camille Lecuroux
- INSERM U1012, Université Paris-Sud 11, Le Kremlin Bicêtre, France
| | - Valerie Potard
- UPMC Univ Paris 06, UMR_S 943, Paris, France
- INSERM, U943, Paris, France
| | - Pierre Versmisse
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Adeline Melard
- AP-HP, CHU Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Thierry Prazuck
- Centre Hospitalier Régional d'Orléans, Service des Maladies Infectieuses et Tropicales, Orléans, France
| | - Benjamin Descours
- Université Pierre et Marie Curie, INSERM UMR-S 945 Immunité et Infection, Hôpital Pitié-Salpêtrière, Paris, France
| | - Julien Guergnon
- Université Pierre et Marie Curie, INSERM UMR-S 945 Immunité et Infection, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Paul Viard
- EA 3620, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- AP-HP, Hôtel-Dieu, Paris, France
| | - Faroudy Boufassa
- INSERM U1018, Université Paris-Sud 11, Le Kremlin Bicêtre, France
| | - Olivier Lambotte
- INSERM U1012, Université Paris-Sud 11, Le Kremlin Bicêtre, France
- AP-HP, Hôpital de Bicêtre, Service de Médecine Interne, Le Kremlin Bicêtre, France
| | - Cécile Goujard
- INSERM U1018, Université Paris-Sud 11, Le Kremlin Bicêtre, France
- AP-HP, Hôpital de Bicêtre, Service de Médecine Interne, Le Kremlin Bicêtre, France
| | - Laurence Meyer
- INSERM U1018, Université Paris-Sud 11, Le Kremlin Bicêtre, France
- AP-HP, Hôpital de Bicêtre, Département d'épidémiologie, Le Kremlin Bicêtre, France
| | - Dominique Costagliola
- UPMC Univ Paris 06, UMR_S 943, Paris, France
- INSERM, U943, Paris, France
- AP-HP, Groupe hospitalier Pitié-Salpétrière, Service de Maladies Infectieuses et Tropicales, Paris, France
| | - Alain Venet
- INSERM U1012, Université Paris-Sud 11, Le Kremlin Bicêtre, France
| | - Gianfranco Pancino
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Brigitte Autran
- Université Pierre et Marie Curie, INSERM UMR-S 945 Immunité et Infection, Hôpital Pitié-Salpêtrière, Paris, France
| | - Christine Rouzioux
- AP-HP, CHU Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
- EA 3620, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
32
|
Bershteyn A, Eckhoff PA. A model of HIV drug resistance driven by heterogeneities in host immunity and adherence patterns. BMC SYSTEMS BIOLOGY 2013; 7:11. [PMID: 23379669 PMCID: PMC3643872 DOI: 10.1186/1752-0509-7-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 01/16/2013] [Indexed: 12/27/2022]
Abstract
Background Population transmission models of antiretroviral therapy (ART) and pre-exposure prophylaxis (PrEP) use simplistic assumptions – typically constant, homogeneous rates – to represent the short-term risk and long-term effects of drug resistance. In contrast, within-host models of drug resistance allow for more detailed dynamics of host immunity, latent reservoirs of virus, and drug PK/PD. Bridging these two levels of modeling detail requires an understanding of the “levers” – model parameters or combinations thereof – that change only one independent observable at a time. Using the example of accidental tenofovir-based pre-exposure prophyaxis (PrEP) use during HIV infection, we will explore methods of implementing host heterogeneities and their long-term effects on drug resistance. Results We combined and extended existing models of virus dynamics by incorporating pharmacokinetics, pharmacodynamics, and adherence behavior. We identified two “levers” associated with the host immune pressure against the virus, which can be used to independently modify the setpoint viral load and the shape of the acute phase viral load peak. We propose parameter relationships that can explain differences in acute and setpoint viral load among hosts, and demonstrate their influence on the rates of emergence and reversion of drug resistance. The importance of these dynamics is illustrated by modeling long-lived latent reservoirs of virus, through which past intervals of drug resistance can lead to failure of suppressive drug regimens. Finally, we analyze assumptions about temporal patterns of drug adherence and their impact on resistance dynamics, finding that with the same overall level of adherence, the dwell times in drug-adherent versus not-adherent states can alter the levels of drug-resistant virus incorporated into latent reservoirs. Conclusions We have shown how a diverse range of observable viral load trajectories can be produced from a basic model of virus dynamics using immunity-related “levers”. Immune pressure, in turn, influences the dynamics of drug resistance, with increased immune activity delaying drug resistance and driving more rapid return to dominance of drug-susceptible virus after drug cessation. Both immune pressure and patterns of drug adherence influence the long-term risk of drug resistance. In the case of accidental PrEP use during infection, rapid transitions between adherence states and/or weak immunity fortifies the “memory” of previous PrEP exposure, increasing the risk of future drug resistance. This model framework provides a means for analyzing individual-level risks of drug resistance and implementing heterogeneities among hosts, thereby achieving a crucial prerequisite for improving population-level models of drug resistance.
Collapse
Affiliation(s)
- Anna Bershteyn
- Epidemiological Modeling Group, Intellectual Ventures Laboratory, Washington, USA.
| | | |
Collapse
|
33
|
Poor HIV control in HLA-B*27 and B*57/58 noncontrollers is associated with limited number of polyfunctional Gag p24-specific CD8+ T cells. AIDS 2013; 27:17-27. [PMID: 23079801 DOI: 10.1097/qad.0b013e32835ac0e1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Analysis of immune response in HIV controllers, a unique group of infected individuals who are able to control HIV naturally, has provided us a chance to investigate the roles of host immune responses in HIV control. DESIGN In this study, the functional quality of HIV Gag p24-specific CD8 T-cell responses was assessed in two groups of clinically distinct, HLA-B*27, HLA-B*57/58-matched individuals, viremic controllers [plasma HIV load (pVL) ≤ 2000 copies/ml) and noncontrollers (pVL >2000 copies/ml) to determine its impacts on natural HIV clinical outcome. METHODS An ex-vivo interferon (IFN)-γ ELISpot assay was used to screen for each individual's HIV Gag p24-specific T-cell responses. Intracellular cytokine staining assay was used to determine their functional quality (as number of cytokine being produced). RESULTS We found that, in contrast to previous studies, all Thai volunteers with HLA-B*5801 were uniformly noncontrollers. Viremic controllers were observed with a significantly larger number of high functional quality p24-specific CD8 T cells than noncontrollers (P < 0.05). This superior quality of responses was observed at both total p24 and epitope-specific level. Moreover, the absolute number of high functional quality Gag p24-specific CD8 T cells was significantly in a negative correlation with pVL (r = -0.6984, P = 0.0006) and also in a positive correlation with CD4 T-cell count (r = 0.5648, P = 0.0095). CONCLUSION We concluded that an adequate number of high functional quality Gag p24-specific CD8 T cells is strongly associated with a natural HIV controller status.
Collapse
|
34
|
High-dimensional immunomonitoring models of HIV-1-specific CD8 T-cell responses accurately identify subjects achieving spontaneous viral control. Blood 2012; 121:801-11. [PMID: 23233659 DOI: 10.1182/blood-2012-06-436295] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED The development of immunomonitoring models to determine HIV-1 vaccine efficacy is a major challenge. Studies suggest that HIV-1–specific CD8 T cells play a critical role in subjects achieving spontaneous viral control (HIV-1 controllers) and that they will be important in immune interventions. However, no single CD8 T-cell function is uniquely associated with controller status and the heterogeneity of responses targeting different epitopes further complicates the discovery of determinants of protective immunity. In the present study, we describe immunomonitoring models integrating multiple functions of epitope-specific CD8 T cells that distinguish controllers from subjects with treated or untreated progressive infection. Models integrating higher numbers of variables and trained with the least absolute shrinkage and selection operator (LASSO) variant of logistic regression and 10-fold cross-validation produce “diagnostic tests” that display an excellent capacity to delineate subject categories. The test accuracy reaches 75% area under the receiving operating characteristic curve in cohorts matched for prevalence of protective alleles. Linear mixed-effects model analyses show that the proliferative capacity, cytokine production, and kinetics of cytokine secretion are associated with HIV-1 control. Although proliferative capacity is the strongest single discriminant, integrated modeling of different dimensions of data leverages individual associations. This strategy may have important applications in predictive model development and immune monitoring of HIV-1 vaccine trials. KEY POINTS Immune monitoring models integrating multiple functions of HIV-1-specific CD8 T cells distinguish controllers from subjects with progressive HIV-1 infection. This strategy may have important applications in predictive model development and immune monitoring of HIV-1 vaccine trials.
Collapse
|
35
|
Qualitative host factors associated with immunological control of HIV infection by CD8 T cells. Curr Opin HIV AIDS 2012; 1:28-33. [PMID: 19372780 DOI: 10.1097/01.coh.0000194108.14601.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Despite significant technical advances that have permitted an increasingly more quantitative and detailed study of virus-specific cellular immunity over the past few years, our understanding of the nature of immunological control in rare cases of non-progressive HIV infection and diminished control in the majority of untreated chronically infected patients remains incomplete. This review will summarize recent findings and points of controversy within areas of active investigation of the cellular immune response to HIV. RECENT FINDINGS It is now appreciated that high frequencies of virus-specific CD8 T cells are readily detectable in chronic HIV infection, but do not restrict viral replication. For this reason, attention has shifted to qualitative features of the host immune response that might accurately determine the restriction of viral replication. A number of qualitative changes in the phenotype, cytokine secretion, and proliferative capacity of HIV-specific CD8 T cells of progressors have recently been described. SUMMARY Given that the desired response to the majority of vaccines in pre-clinical or clinical testing is to stimulate cellular immunity in an attempt to alter disease progression, understanding these qualitative features is of particular relevance. Further study will probably yield critical information for the means to stimulate effective immunity in vaccinees, prevent the loss of control of viral replication upon infection of vaccinees, or induce durable immunological control in humans already infected with HIV.
Collapse
|
36
|
Simonov M, Rawlings RA, Comment N, Reed SE, Shi X, Nelson PW. Modeling adaptive regulatory T-cell dynamics during early HIV infection. PLoS One 2012; 7:e33924. [PMID: 22536321 PMCID: PMC3334930 DOI: 10.1371/journal.pone.0033924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/20/2012] [Indexed: 11/18/2022] Open
Abstract
Regulatory T-cells (Tregs) are a subset of CD4(+) T-cells that have been found to suppress the immune response. During HIV viral infection, Treg activity has been observed to have both beneficial and deleterious effects on patient recovery; however, the extent to which this is regulated is poorly understood. We hypothesize that this dichotomy in behavior is attributed to Treg dynamics changing over the course of infection through the proliferation of an 'adaptive' Treg population which targets HIV-specific immune responses. To investigate the role Tregs play in HIV infection, a delay differatial equation model was constructed to examine (1) the possible existence of two distinct Treg populations, normal (nTregs) and adaptive (aTregs), and (2) their respective effects in limiting viral load. Sensitivity analysis was performed to test parameter regimes that show the proportionality of viral load with adaptive regulatory populations and also gave insight into the importance of downregulation of CD4(+) cells by normal Tregs on viral loads. Through the inclusion of Treg populations in the model, a diverse array of viral dynamics was found. Specifically, oscillatory and steady state behaviors were both witnessed and it was seen that the model provided a more accurate depiction of the effector cell population as compared with previous models. Through further studies of adaptive and normal Tregs, improved treatments for HIV can be constructed for patients and the viral mechanisms of infection can be further elucidated.
Collapse
Affiliation(s)
- Michael Simonov
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Renata A. Rawlings
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nick Comment
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Scott E. Reed
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaoyu Shi
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Patrick W. Nelson
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
37
|
Elemans M, Seich al Basatena NK, Asquith B. The efficiency of the human CD8+ T cell response: how should we quantify it, what determines it, and does it matter? PLoS Comput Biol 2012; 8:e1002381. [PMID: 22383867 PMCID: PMC3285570 DOI: 10.1371/journal.pcbi.1002381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Multidisciplinary techniques, in particular the combination of theoretical and experimental immunology, can address questions about human immunity that cannot be answered by other means. From the turnover of virus-infected cells in vivo, to rates of thymic production and HLA class I epitope prediction, theoretical techniques provide a unique insight to supplement experimental approaches. Here we present our opinion, with examples, of some of the ways in which mathematics has contributed in our field of interest: the efficiency of the human CD8+ T cell response to persistent viruses.
Collapse
Affiliation(s)
- Marjet Elemans
- Section of Immunology, Imperial College School of Medicine, London, United Kingdom
| | | | - Becca Asquith
- Section of Immunology, Imperial College School of Medicine, London, United Kingdom
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The goal of this study is to review key recent findings related to the immunopathogenesis of hepatitis C virus (HCV) infection, especially in regards to T lymphocytes. It aims to complement other reviews in this issue on the roles of host genetics (IL-28B), acute HCV infection (when disease outcome is determined) and other factors that may influence fibrosis progression (microbial translocation). The main focus is on specific immunity and T cells in the context of success and failure to control viral infection. RECENT FINDINGS This review focuses on two areas of intense interest in the recent literature: the relationship between the human leukocyte antigen (HLA), class I-restricted T-cell responses and the evolution of the virus and the role of inhibitory markers on T cells in the immunopathogenesis of HCV. When appropriate, we compare findings from studies of HIV-specific immunity. SUMMARY From examining the virus and the mutational changes associated with T-cell responses and from analyzing the markers on T cells, there have been numerous advances in the understanding of immune evasion mechanisms employed by HCV.
Collapse
|
39
|
Mothe B, Llano A, Ibarrondo J, Zamarreño J, Schiaulini M, Miranda C, Ruiz-Riol M, Berger CT, Herrero MJ, Palou E, Plana M, Rolland M, Khatri A, Heckerman D, Pereyra F, Walker BD, Weiner D, Paredes R, Clotet B, Felber BK, Pavlakis GN, Mullins JI, Brander C. CTL responses of high functional avidity and broad variant cross-reactivity are associated with HIV control. PLoS One 2012; 7:e29717. [PMID: 22238642 PMCID: PMC3251596 DOI: 10.1371/journal.pone.0029717] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) responses targeting specific HIV proteins, in particular Gag, have been associated with relative control of viral replication in vivo. However, Gag-specific CTL can also be detected in individuals who do not control the virus and it remains thus unclear how Gag-specific CTL may mediate the beneficial effects in some individuals but not in others. Here, we used a 10mer peptide set spanning HIV Gag-p24 to determine immunogen-specific T-cell responses and to assess functional properties including functional avidity and cross-reactivity in 25 HIV-1 controllers and 25 non-controllers without protective HLA class I alleles. Our data challenge the common belief that Gag-specific T cell responses dominate the virus-specific immunity exclusively in HIV-1 controllers as both groups mounted responses of comparable breadths and magnitudes against the p24 sequence. However, responses in controllers reacted to lower antigen concentrations and recognized more epitope variants than responses in non-controllers. These cross-sectional data, largely independent of particular HLA genetics and generated using direct ex-vivo samples thus identify T cell responses of high functional avidity and with broad variant reactivity as potential functional immune correlates of relative HIV control.
Collapse
Affiliation(s)
- Beatriz Mothe
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Javier Ibarrondo
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Jennifer Zamarreño
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Mattia Schiaulini
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Miranda
- Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Christoph T. Berger
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - M. José Herrero
- Department of Immunology, LIRAD-Banc de Sang i Teixits, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Eduard Palou
- Department of Immunology, LIRAD-Banc de Sang i Teixits, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Montse Plana
- AIDS Research Group-IDIBAPS, Hospital Clinic, HIVACAT, University of Barcelona, Barcelona, Spain
| | - Morgane Rolland
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ashok Khatri
- Massachusetts General Hospital, Peptide/Protein Core Facility, Boston, Massachusetts, United States of America
| | - David Heckerman
- Microsoft Research, Redmond, Washington, United States of America
| | - Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - David Weiner
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Christian Brander
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
40
|
Hodges-Mameletzis I, De Bree GJ, Rowland-Jones SL. An underestimated lentivirus model: what can HIV-2 research contribute to the development of an effective HIV-1 vaccine? Expert Rev Anti Infect Ther 2011; 9:195-206. [PMID: 21342067 DOI: 10.1586/eri.10.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of an HIV-1 vaccine that would be effective against all existing subtypes and circulating recombinant forms remains one of the great scientific and public health challenges of our generation. One of the major barriers to HIV-1 vaccine development is a lack of understanding of the correlates of protective immunity against the virus. In this context, research has focused on the rare phenomenon of spontaneous control of HIV-1 infection, in groups referred to as 'long-term nonprogressors' and 'elite controllers', together with models of nonprogressive sooty mangabey simian immunodeficiency (SIV) infection in African nonhuman primate hosts such as sooty mangabeys and African green monkeys, in which the majority of animals tolerate high levels of viral replication without development of immunodeficiency or disease. Much less attention has been given to humans infected with the nonpandemic strain HIV-2, derived from the SIV in West Africa, most of whom behave as long-term nonprogressors or viral controllers, while a minority develop disease clinically indistinguishable from AIDS caused by HIV-1. This apparent dichotomous outcome is, based on the evidence accumulated to date, more clearly related to the host immune response than the good clinical outcome of HIV-1 controllers. We propose that complementing research into HIV-1 controllers and nonpathogenic SIV models with the prioritization of HIV-2 research could enhance the HIV-1 vaccine research effort. The absence of disease progression or detectable plasma viral replication in the presence of an effective immune response in most patients living with HIV-2 represents an opportunity to unravel the virus' evolutionary adaptation in human hosts and to establish the correlates of such a protective response.
Collapse
|
41
|
Xu H, Wang X, Morici LA, Pahar B, Veazey RS. Early divergent host responses in SHIVsf162P3 and SIVmac251 infected macaques correlate with control of viremia. PLoS One 2011; 6:e17965. [PMID: 21464951 PMCID: PMC3064595 DOI: 10.1371/journal.pone.0017965] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 02/21/2011] [Indexed: 11/22/2022] Open
Abstract
We previously showed intravaginal inoculation with SHIVsf162p3 results in transient viremia followed by undetectable viremia in most macaques, and some displayed subsequent immunity to superinfection with pathogenic SIVmac251. Here we compare early T cell activation, proliferation, and plasma cytokine/chemokine responses in macaques intravaginally infected with either SHIVsf162p3 or SIVmac251 to determine whether distinct differences in host responses may be associated with early viral containment. The data show SIVmac251 infection results in significantly higher levels of T cell activation, proliferation, and a mixed cytokine/chemokine “storm” in plasma in primary infection, whereas infection with SHIVsf162p3 resulted in significantly lower levels of T cell activation, proliferation, and better preservation of memory CD4+ T cells in early infection which immediately preceded control of viremia. These results support the hypothesis that early systemic immune activation, T cell proliferation, and a more prominent and broader array of cytokine/chemokine responses facilitate SIV replication, and may play a key role in persistence of infection, and the progression to AIDS. In contrast, immune unresponsiveness may be associated with eventual clearance of virus, a concept that may have key significance for therapy and vaccine design.
Collapse
Affiliation(s)
- Huanbin Xu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Xiaolei Wang
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
42
|
Migueles SA, Rood JE, Berkley AM, Guo T, Mendoza D, Patamawenu A, Hallahan CW, Cogliano NA, Frahm N, Duerr A, McElrath MJ, Connors M. Trivalent adenovirus type 5 HIV recombinant vaccine primes for modest cytotoxic capacity that is greatest in humans with protective HLA class I alleles. PLoS Pathog 2011; 7:e1002002. [PMID: 21383976 PMCID: PMC3044701 DOI: 10.1371/journal.ppat.1002002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/21/2010] [Indexed: 01/19/2023] Open
Abstract
If future HIV vaccine design strategies are to succeed, improved understanding of the mechanisms underlying protection from infection or immune control over HIV replication remains essential. Increased cytotoxic capacity of HIV-specific CD8+ T-cells associated with efficient elimination of HIV-infected CD4+ T-cell targets has been shown to distinguish long-term nonprogressors (LTNP), patients with durable control over HIV replication, from those experiencing progressive disease. Here, measurements of granzyme B target cell activity and HIV-1-infected CD4+ T-cell elimination were applied for the first time to identify antiviral activities in recipients of a replication incompetent adenovirus serotype 5 (Ad5) HIV-1 recombinant vaccine and were compared with HIV-negative individuals and chronically infected patients, including a group of LTNP. We observed readily detectable HIV-specific CD8+ T-cell recall cytotoxic responses in vaccinees at a median of 331 days following the last immunization. The magnitude of these responses was not related to the number of vaccinations, nor did it correlate with the percentages of cytokine-secreting T-cells determined by ICS assays. Although the recall cytotoxic capacity of the CD8+ T-cells of the vaccinee group was significantly less than that of LTNP and overlapped with that of progressors, we observed significantly higher cytotoxic responses in vaccine recipients carrying the HLA class I alleles B*27, B*57 or B*58, which have been associated with immune control over HIV replication in chronic infection. These findings suggest protective HLA class I alleles might lead to better outcomes in both chronic infection and following immunization due to more efficient priming of HIV-specific CD8+ T-cell cytotoxic responses.
Collapse
Affiliation(s)
- Stephen A. Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julia E. Rood
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy M. Berkley
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiffany Guo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Mendoza
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andy Patamawenu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Claire W. Hallahan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy A. Cogliano
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ann Duerr
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division and the HIV Vaccine Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
43
|
Pashov A, Garimalla S, Monzavi-Karbassi B, Kieber-Emmons T. Carbohydrate targets in HIV vaccine research: lessons from failures. Immunotherapy 2011; 1:777-94. [PMID: 20636023 DOI: 10.2217/imt.09.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Learning from the successes of other vaccines that enhance natural and existing protective responses to pathogens, the current effort in HIV vaccine research is directed toward inducing cytotoxic responses. Nevertheless, antibodies are fundamental players in vaccine development and are still considered in the context of passive specific immunotherapy of HIV, especially since several broadly neutralizing monoclonals are available. Special interest is directed toward antibodies binding to the glycan array on gp120 since they have the potential of broader reactivity and cross-clade neutralizing capacity. Humoral responses to carbohydrate antigens have proven effective against other pathogens, why not HIV? The variability of the epitope targets on HIV may not be the only problem to developing active or passive immunotherapeutic strategies. The dynamics of the infected immune system leads to ambiguous effects of most of the effector mechanisms calling for new approaches; some may already be available, while others are in the making.
Collapse
Affiliation(s)
- Anastas Pashov
- Department of Pathology & Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, #824 Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
44
|
Increased HIV-specific CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood 2011; 117:3799-808. [PMID: 21289310 DOI: 10.1182/blood-2010-12-322727] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent data suggest that CD8+ T-cell effector activity is an important component in the control of HIV replication in elite controllers (ECs). One critical element of CD8+ T-cell effector function and differentiation is the T-box transcription factor T-bet. In the present study, we assessed T-bet expression, together with the effector proteins perforin, granzyme A (Grz A), granzyme B (Grz B), and granulysin, in HIV-specific CD8+ T cells from ECs (n = 20), chronically infected progressors (CPs; n = 18), and highly active antiretroviral therapy (HAART)-suppressed individuals (n = 19). Compared with the other cohort groups, HIV-specific CD8+ T cells among ECs demonstrated a superior ability to express perforin and Grz B, but with no detectable difference in the levels of Grz A or granulysin. We also observed higher levels of T-bet in HIV-specific CD8+ T cells from ECs, with an ensuing positive correlation between T-bet and levels of both perforin and Grz B. Moreover, HIV-specific CD8+ T cells in ECs up-regulated T-bet to a greater extent than CPs after in vitro expansion, with concomitant up-regulation of perforin and Grz B. These results suggest that T-bet may play an important role in driving effector function, and its modulation may lead to enhanced effector activity against HIV.
Collapse
|
45
|
Epitope mapping of HIV-specific CD8+ T cell responses by multiple immunological readouts reveals distinct specificities defined by function. J Virol 2010; 85:1275-86. [PMID: 21084478 DOI: 10.1128/jvi.01707-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The limited success of HIV vaccine candidates to date highlights our need to better characterize protective cell-mediated immunity (CMI). While HIV-specific CD8(+) T cell responses have been defined largely by measuring gamma interferon (IFN-γ), these responses are not always protective, and it is unclear whether the same epitopes would predominate if other functional parameters were examined. Here, we assessed the epitope specificity of HIV-specific CD8(+) T cell responses by multiparametric flow cytometry, measuring five CD8(+) T cell functions (IFN-γ, macrophage inflammatory protein 1β [MIP-1β], tumor necrosis factor alpha [TNF-α], interleukin-2 [IL-2], and proliferative capacity) in 24 chronically HIV-infected individuals. Sixty-nine epitope-specific responses to 50 epitopes within p24 were measured. Surprisingly, most epitope-specific responses were IFN-γ negative (50/69 responses). Many responses had polyfunctional (33%) and proliferative (19%) components. An inverse association between IL-2 and proliferation responses was also observed, contrary to what was described previously. We confirm that long-term nonprogressors (LTNP) have more polyfunctional responses and also have higher-magnitude and broader p24-specific proliferation and higher levels of IL-2 and TNF-α production than do progressing controls. Together, these data suggest that the specificity of CD8(+) T cell responses differs depending on the immunological readout, with a 3.5-fold increase in breadth detected by including multiple parameters. Furthermore, the identification of epitopes that elicit polyfunctional responses reinforces the need for the comprehensive evaluation of HIV vaccine candidates, and these epitopes may represent novel targets for CMI-based vaccines.
Collapse
|
46
|
Abstract
Human immunodeficiency virus (HIV) infection is generally characterized by inefficient viral transmission; an acute phase of intense viral replication and dissemination to lymphoid tissues; a chronic, often asymptomatic phase of sustained immune activation and viral replication; and an advanced phase of marked depletion of CD4(+) T cells that leads to acquired immune deficiency syndrome. Major insight into HIV transmission and each phase of infection has been gained from studies on blood and tissue specimens obtained from HIV-infected individuals, as well as from animal and ex vivo models. Not only has the introduction of effective antiretroviral therapy greatly diminished the morbidity and mortality associated with HIV disease progression, it has also provided new avenues of research toward delineating the mechanisms of HIV-induced pathogenesis. Further advances in therapeutics and informative technologies, combined with a better understanding of the immunologic and virologic components of HIV disease, hold promise for new preventative and even curative strategies.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
47
|
Feng YM, Wan YM, Liu LX, Qiu C, Ma PF, Peng H, Ruan YH, Han LF, Hong KX, Xing H, Shao YM. HIV-specific IL-2(+) and/or IFN-γ(+) CD8(+) T cell responses during chronic HIV-1 infection in former blood donors. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2010; 23:391-401. [PMID: 21112488 DOI: 10.1016/s0895-3988(10)60081-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 08/12/2010] [Indexed: 05/30/2023]
Abstract
OBJECTIVE Conflicting data have been generated from previous studies to determine which kind of relationship exists between HIV-1 specific CD8 Tcell responses and HIV-1 viral load or CD4 count over the course of infection. In this study, 153 HIV-1 infected LTNPs were enrolled to investigate the role of HIV-1 specific CD8 T-cell responses in chronic HIV-1 infection among HIV-1 infected former blood donors. METHODS The patients were stratified into three groups according to CD4 count: CD4≥500 cells/μL; 350 cells/μL≤CD4<500 cells/μL; CD4<350 cells/μL. PBMCs were isolated from the patients' anticoagulated blood samples. IL-2 and IFN-γ secretions of CD 8 T cells against 17 HIV-1 consensus B full peptide pools were analyzed by using ICS assay. RESULTS An overall inverse correlation were observed between CD4 count and plasma viral load. Although no significant difference was observed during the comparisons of frequency/breadth of HIV-1 specific CD8 T cell responses, CD4 count stratification analysis showed that different correlation pattern existed in three strata: as for patients whose CD4 counts were less than 350 cells/μL, no significant correlations were identified between frequency/breadth of HIV-1 specific CD8 T cell responses and CD4 count/viral load; as for patients whose CD4 counts ranged from 350 cells/μL to 500 cells/μL, significant correlation was only observed between the response breadth of IL-2+IFN-γ+ CD8 T cells and CD4 count; however, as for patients whose CD4 counts were more than 500 cells/μL, direct correlations were identified between IL-2+IFN-γ+/IL-2+/IFN-γ+ CD8 T cells and viral load or CD4 count. CONCLUSIONS Universal consistent inverse correlation was only indentified between CD4 count and viral load. The relationship between HIV-1 specific CD8 T cell responses and CD4 count/viral load varied in different CD4 strata, which showed that better preserved CD4 T cells were correlated with better CD8 T cell functions.
Collapse
Affiliation(s)
- Yan-Meng Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kim GJ, Lee HS, Hong KJ, Kim SS. Dynamic correlation between CTL response and viral load in primary human immunodeficiency virus-1 infected Koreans. Virol J 2010; 7:239. [PMID: 20846412 PMCID: PMC2949841 DOI: 10.1186/1743-422x-7-239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022] Open
Abstract
Background HIV-1 specific cytotoxic T lymphocytes (CTLs) have an important role as antiviral effector cells for controlling HIV-1 infection. Methods To investigate CTL response during the early stage of HIV infection, we measured immunity-related factors including CD4+ T cell counts, CD8+ T cell counts, HIV-1 RNA viral loads and IFN-γ secretion according to CTL response in 78 selected primary HIV-1-infected Koreans. Results The CTL response was strongly induced by HIV-1 specific Gag and Nef peptides (p = 0.016) compared with induction by Tat or Env peptides. These results suggest that the major antiviral factors inducing strong HIV-specific CTL responses are associated with the Gag and Nef viral regions in primary HIV-1 infected Koreans. The relationship between viral load and CTL response showed varying correlations with time following HIV infection. CTL response was inversely correlated with viral loads at preseroconversion stage I (r = -0.224 to -0.33) and changed to a positive correlation at the preseroconversion stage II (r = 0.132 to 0.854). Finally, it changed to an inverse correlation again after seroconversion until a viral set point was established on serological profiling (r = -0.195 to -0.407). Conclusions These findings demonstrate a dynamic correlation between viral load and subsequent CTL responses during early HIV infection.
Collapse
Affiliation(s)
- Gab Jung Kim
- Division of AIDS, Center for Immunology and Pathology, Korea National Institute of Health, Seoul, Korea
| | | | | | | |
Collapse
|
49
|
Evolution of the functional profile of HIV-specific CD8+ T cells in patients with different progression of HIV infection over 4 years. J Acquir Immune Defic Syndr 2010; 55:29-38. [PMID: 20634703 DOI: 10.1097/qai.0b013e3181e69609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is a lack of information about the stability of these responses over time in subjects experiencing differences in HIV disease progression. The functional profile of Gag-specific and Nef-specific CD8T-cell responses based on the simultaneous production macrophage inflammatory protein (MIP)-1beta, interleukin (IL)-2, and tumor necrosis factor (TNF)-alpha was longitudinally assessed using flow cytometry over 4 years in 8 elite controllers (EC), 8 viremic controllers, 10 antiretroviral-naive typical progressors, and 10 patients with virological suppression (VS) on antiretroviral therapy. CD8 T-cell subsets with 2 functions tended to decline, whereas subsets with 1 function tended to increase over time in typical progressors. In viremic controller, Gag and Nef responses evolved differently. In EC, the functional profile of Gag-specific CD8T-cell responses evolved increasing polyfunctionality over time. Finally, Nef-specific responses in VS increased in the MIP+TNF-IL2- CD8 T-cell subset while Gag-specific responses did not change. The functional profile of HIV-specific CD8T-cell responses may evolve in different ways depending of the targeted HIV protein and the ability to control virus replication. In patients with uncontrolled HIV replication, the functionality of Gag-specific CD8T-cell responses tends to diminish over time, whereas in EC, there is an increase in polyfunctional subsets. Interestingly, VS do not seem to restore the polyfunctional profile of HIV-specific CD8T-cell responses.
Collapse
|
50
|
Fiorentini S, Giagulli C, Caccuri F, Magiera AK, Caruso A. HIV-1 matrix protein p17: a candidate antigen for therapeutic vaccines against AIDS. Pharmacol Ther 2010; 128:433-44. [PMID: 20816696 DOI: 10.1016/j.pharmthera.2010.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
The success in the development of anti-retroviral therapies (HAART) that contain human immunodeficiency virus type 1 (HIV-1) infection is challenged by the cost of this lifelong therapy and by its toxicity. Immune-based therapeutic strategies that boost the immune response against HIV-1 proteins or protein subunits have been recently proposed to control virus replication in order to provide protection from disease development, reduce virus transmission, and help limit the use of anti-retroviral treatments. HIV-1 matrix protein p17 is a structural protein that is critically involved in most stages of the life cycle of the retrovirus. Besides its well established role in the virus life cycle, increasing evidence suggests that p17 may also be active extracellularly in deregulating biological activities of many different immune cells that are directly or indirectly involved in AIDS pathogenesis. Thus, p17 might represent a promising target for developing a therapeutic vaccine as a contribution to combating AIDS. In this article we review the biological characteristics of HIV-1 matrix protein p17 and we describe why a synthetic peptide representative of the p17 functional epitope may work as a vaccine molecule capable of inducing anti-p17 neutralizing response against p17 derived from divergent HIV-1 strains.
Collapse
Affiliation(s)
- Simona Fiorentini
- Section of Microbiology, Department of Experimental and Applied Medicine, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | |
Collapse
|