1
|
Mrozewski L, Tharmalingam S, Michael P, Kumar A, Tai TC. C5a Induces Inflammatory Signaling and Apoptosis in PC12 Cells through C5aR-Dependent Signaling: A Potential Mechanism for Adrenal Damage in Sepsis. Int J Mol Sci 2024; 25:10673. [PMID: 39409001 PMCID: PMC11477224 DOI: 10.3390/ijms251910673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
The complement system is critically involved in the pathogenesis of sepsis. In particular, complement anaphylatoxin C5a is generated in excess during sepsis, leading to cellular dysfunction. Recent studies have shown that excessive C5a impairs adrenomedullary catecholamine production release and induces apoptosis in adrenomedullary cells. Currently, the mechanisms by which C5a impacts adrenal cell function are poorly understood. The PC12 cell model was used to examine the cellular effects following treatment with recombinant rat C5a. The levels of caspase activation and cell death, protein kinase signaling pathway activation, and changes in inflammatory protein expression were examined following treatment with C5a. There was an increase in apoptosis of PC12 cells following treatment with high-dose C5a. Ten inflammatory proteins, primarily involved in apoptosis, cell survival, and cell proliferation, were upregulated following treatment with high-dose C5a. Five inflammatory proteins, involved primarily in chemotaxis and anti-inflammatory functions, were downregulated. The ERK/MAPK, p38/MAPK, JNK/MAPK, and AKT protein kinase signaling pathways were upregulated in a C5aR-dependent manner. These results demonstrate an apoptotic effect and cellular signaling effect of high-dose C5a. Taken together, the overall data suggest that high levels of C5a may play a role in C5aR-dependent apoptosis of adrenal medullary cells in sepsis.
Collapse
Affiliation(s)
- Lucas Mrozewski
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - Paul Michael
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
| | - Aseem Kumar
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| | - T. C. Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (L.M.); (S.T.); (P.M.); (A.K.)
- Medical Science Division, NOSM University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
2
|
Wiese AV, Duhn J, Korkmaz RÜ, Quell KM, Osman I, Ender F, Schröder T, Lewkowich I, Hogan S, Huber-Lang M, Gumprecht F, König P, Köhl J, Laumonnier Y. C5aR1 activation in mice controls inflammatory eosinophil recruitment and functions in allergic asthma. Allergy 2023. [PMID: 36757006 DOI: 10.1111/all.15670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Pulmonary eosinophils comprise at least two distinct populations of resident eosinophils (rEOS) and inflammatory eosinophils (iEOS), the latter recruited in response to pulmonary inflammation. Here, we determined the impact of complement activation on rEOS and iEOS trafficking and function in two models of pulmonary inflammation. METHODS BALB/c wild-type and C5ar1-/- mice were exposed to different allergens or IL-33. Eosinophil populations in the airways, lung, or mediastinal lymph nodes (mLN) were characterized by FACS or immunohistochemistry. rEOS and iEOS functions were determined in vivo and in vitro. RESULTS HDM and IL-33 exposure induced a strong accumulation of iEOS but not rEOS in the airways, lungs, and mLNs. rEOS and iEOS expressed C3/C5 and C5aR1, which were significantly higher in iEOS. Initial pulmonary trafficking of iEOS was markedly reduced in C5ar1-/- mice and associated with less IL-5 production from ILC2 cells. Functionally, adoptively transferred pulmonary iEOS from WT but not from C5ar1-/- mice-induced airway hyperresponsiveness (AHR), which was associated with significantly reduced C5ar1-/- iEOS degranulation. Pulmonary iEOS but not rEOS were frequently associated with T cells in lung tissue. After HDM or IL-33 exposure, iEOS but not rEOS were found in mLNs, which were significantly reduced in C5ar1-/- mice. C5ar1-/- iEOS expressed less costimulatory molecules, associated with a decreased potency to drive antigen-specific T cell proliferation and differentiation into memory T cells. CONCLUSIONS We uncovered novel roles for C5aR1 in iEOS trafficking and activation, which affects key aspects of allergic inflammation such as AHR, ILC2, and T cell activation.
Collapse
Affiliation(s)
- Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ibrahim Osman
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon Hogan
- Mary H. Weiser Food Allergy Center, Experimental Pathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, Ulm, Germany
| | | | - Peter König
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
3
|
Trivedi VS, Magnusen AF, Rani R, Marsili L, Slavotinek AM, Prows DR, Hopkin RJ, McKay MA, Pandey MK. Targeting the Complement-Sphingolipid System in COVID-19 and Gaucher Diseases: Evidence for a New Treatment Strategy. Int J Mol Sci 2022; 23:14340. [PMID: 36430817 PMCID: PMC9695449 DOI: 10.3390/ijms232214340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)-induced disease (COVID-19) and Gaucher disease (GD) exhibit upregulation of complement 5a (C5a) and its C5aR1 receptor, and excess synthesis of glycosphingolipids that lead to increased infiltration and activation of innate and adaptive immune cells, resulting in massive generation of pro-inflammatory cytokines, chemokines and growth factors. This C5a-C5aR1-glycosphingolipid pathway- induced pro-inflammatory environment causes the tissue damage in COVID-19 and GD. Strikingly, pharmaceutically targeting the C5a-C5aR1 axis or the glycosphingolipid synthesis pathway led to a reduction in glycosphingolipid synthesis and innate and adaptive immune inflammation, and protection from the tissue destruction in both COVID-19 and GD. These results reveal a common involvement of the complement and glycosphingolipid systems driving immune inflammation and tissue damage in COVID-19 and GD, respectively. It is therefore expected that combined targeting of the complement and sphingolipid pathways could ameliorate the tissue destruction, organ failure, and death in patients at high-risk of developing severe cases of COVID-19.
Collapse
Affiliation(s)
- Vyoma Snehal Trivedi
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Albert Frank Magnusen
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Reena Rani
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Luca Marsili
- Department of Neurology, James J. and Joan A. Gardner Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati, 3113 Bellevue Ave, Cincinnati, OH 45219, USA
| | - Anne Michele Slavotinek
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Daniel Ray Prows
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Robert James Hopkin
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Mary Ashley McKay
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| |
Collapse
|
4
|
Modulation of Neutrophil Activity by Soluble Complement Cleavage Products—An In-Depth Analysis. Cells 2022; 11:cells11203297. [PMID: 36291163 PMCID: PMC9600402 DOI: 10.3390/cells11203297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
The cellular and fluid phase-innate immune responses of many diseases predominantly involve activated neutrophil granulocytes and complement factors. However, a comparative systematic analysis of the early impact of key soluble complement cleavage products, including anaphylatoxins, on neutrophil granulocyte function is lacking. Neutrophil activity was monitored by flow cytometry regarding cellular (electro-)physiology, cellular activity, and changes in the surface expression of activation markers. The study revealed no major effects induced by C3a or C4a on neutrophil functions. By contrast, exposure to C5a or C5a des-Arg stimulated neutrophil activity as reflected in changes in membrane potential, intracellular pH, glucose uptake, and cellular size. Similarly, C5a and C5a des-Arg but no other monitored complement cleavage product enhanced phagocytosis and reactive oxygen species generation. C5a and C5a des-Arg also altered the neutrophil surface expression of several complement receptors and neutrophil activation markers, including C5aR1, CD62L, CD10, and CD11b, among others. In addition, a detailed characterization of the C5a-induced effects was performed with a time resolution of seconds. The multiparametric response of neutrophils was further analyzed by a principal component analysis, revealing CD11b, CD10, and CD16 to be key surrogates of the C5a-induced effects. Overall, we provide a comprehensive insight into the very early interactions of neutrophil granulocytes with activated complement split products and the resulting neutrophil activity. The results provide a basis for a better and, importantly, time-resolved and multiparametric understanding of neutrophil-related (patho-)physiologies.
Collapse
|
5
|
Gorman D, Li XX, Payne CD, Cui CS, Lee JD, Rosengren KJ, Woodruff TM, Clark RJ. Development of Synthetic Human and Mouse C5a: Application to Binding and Functional Assays In Vitro and In Vivo. ACS Pharmacol Transl Sci 2021; 4:1808-1817. [PMID: 34927012 PMCID: PMC8669711 DOI: 10.1021/acsptsci.1c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 11/28/2022]
Abstract
The complement activation peptide C5a is a key mediator of inflammation that is associated with numerous immune disorders. C5a binds and activates two seven-transmembrane receptors, C5aR1 and C5aR2. Experimentally, C5a is utilized to investigate C5a receptor biology and to screen for potential C5aR1/C5aR2 therapeutics. Currently, laboratory sources of C5a stem from either isolation of endogenous C5a from human serum or most predominantly via recombinant expression. An alternative approach to C5a production is chemical synthesis, which has several advantages, including the ability to introduce non-natural amino acids and site-specific modifications whilst also maintaining a lower probability of C5a being contaminated with microbial molecules or other endogenous proteins. Here, we describe the efficient synthesis of both human (hC5a) and mouse C5a (mC5a) without the need for ligation chemistry. We validate the synthetic peptides by comparing pERK1/2 signaling in CHO-hC5aR1 cells and primary human macrophages (for hC5a) and in RAW264.7 cells (for mC5a). C5aR2 activation was confirmed by measuring β-arrestin recruitment in C5aR2-transfected HEK293 cells. We also demonstrate the functionalization of synthetic C5a through the introduction of a lanthanide chelating cage to facilitate a screen for the binding of ligands to C5aR1. Finally, we verify that the synthetic ligands are functionally similar to recombinant or native C5a by assessing hC5a-induced neutrophil chemotaxis in vitro and mC5a-mediated neutrophil mobilization in vivo. We propose that the synthetic hC5a and mC5a described herein are valuable alternatives to recombinant or purified C5a for in vitro and in vivo applications and add to the growing complement reagent toolbox.
Collapse
Affiliation(s)
- Declan
M. Gorman
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Xaria X. Li
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Colton D. Payne
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Cedric S. Cui
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - John D. Lee
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - K. Johan Rosengren
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
| | - Trent M. Woodruff
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
- Queensland
Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Richard J. Clark
- School
of Biomedical Sciences, The University of
Queensland, Brisbane, Queensland 4072, Australia
- Institute
for Molecular Bioscience, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Raza F, Babasyan S, Larson EM, Freer HS, Schnabel CL, Wagner B. Peripheral blood basophils are the main source for early interleukin-4 secretion upon in vitro stimulation with Culicoides allergen in allergic horses. PLoS One 2021; 16:e0252243. [PMID: 34038479 PMCID: PMC8153460 DOI: 10.1371/journal.pone.0252243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
Interleukin-4 (IL-4) is a key cytokine secreted by type 2 T helper (Th2) cells that orchestrates immune responses during allergic reactions. Human and mouse studies additionally suggest that basophils have a unique role in the regulation of allergic diseases by providing initial IL-4 to drive T cell development towards the Th2 phenotype. Equine Culicoides hypersensitivity (CH) is a seasonal immunoglobulin E (IgE)-mediated allergic dermatitis in horses in response to salivary allergens from Culicoides (Cul) midges. Here, we analyzed IL-4 production in peripheral blood mononuclear cells (PBMC) of CH affected (n = 8) and healthy horses (n = 8) living together in an environment with natural Cul exposure. During Cul exposure when allergic horses had clinical allergy, IL-4 secretion from PBMC after stimulation with Cul extract was similar between healthy and CH affected horses. In contrast, allergic horses had higher IL-4 secretion from PBMC than healthy horses during months without allergen exposure. In addition, allergic horses had increased percentages of IL-4+ cells after Cul stimulation compared to healthy horses, while both groups had similar percentages of IL-4+ cells following IgE crosslinking. The IL-4+ cells were subsequently characterized using different cell surface markers as basophils, while very few allergen-specific CD4+ cells were detected in PBMC after Cul extract stimulation. Similarly, IgE crosslinking by anti-IgE triggered basophils to produce IL-4 in all horses. PMA/ionomycin consistently induced high percentages of IL-4+ Th2 cells in both groups confirming that T cells of all horses studied were capable of IL-4 production. In conclusion, peripheral blood basophils produced high amounts of IL-4 in allergic horses after stimulation with Cul allergens, and allergic horses also maintained higher basophil percentages throughout the year than healthy horses. These new findings suggest that peripheral blood basophils may play a yet underestimated role in innate IL-4 production upon allergen activation in horses with CH. Basophil-derived IL-4 might be a crucial early signal for immune induction, modulating of immune responses towards Th2 immunity and IgE production.
Collapse
Affiliation(s)
- Fahad Raza
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Susanna Babasyan
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Elisabeth M. Larson
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Heather S. Freer
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Christiane L. Schnabel
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Bettina Wagner
- Departments of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Silva de França F, Villas-Boas IM, Cogliati B, Woodruff TM, Reis EDS, Lambris JD, Tambourgi DV. C5a-C5aR1 Axis Activation Drives Envenomation Immunopathology by the Snake Naja annulifera. Front Immunol 2021; 12:652242. [PMID: 33936074 PMCID: PMC8082402 DOI: 10.3389/fimmu.2021.652242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
Systemic complement activation drives a plethora of pathological conditions, but its role in snake envenoming remains obscure. Here, we explored complement's contribution to the physiopathogenesis of Naja annulifera envenomation. We found that N. annulifera venom promoted the generation of C3a, C4a, C5a, and the soluble Terminal Complement Complex (sTCC) mediated by the action of snake venom metalloproteinases. N. annulifera venom also induced the release of lipid mediators and chemokines in a human whole-blood model. This release was complement-mediated, since C3/C3b and C5a Receptor 1 (C5aR1) inhibition mitigated the effects. In an experimental BALB/c mouse model of envenomation, N. annulifera venom promoted lipid mediator and chemokine production, neutrophil influx, and swelling at the injection site in a C5a-C5aR1 axis-dependent manner. N. annulifera venom induced systemic complementopathy and increased interleukin and chemokine production, leukocytosis, and acute lung injury (ALI). Inhibition of C5aR1 with the cyclic peptide antagonist PMX205 rescued mice from these systemic reactions and abrogated ALI development. These data reveal hitherto unrecognized roles for complement in envenomation physiopathogenesis, making complement an interesting therapeutic target in envenomation by N. annulifera and possibly by other snake venoms.
Collapse
Affiliation(s)
| | | | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Trent M. Woodruff
- Neuroinflammation Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Edimara da Silva Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
8
|
Kaposi's Sarcoma-Associated Herpesvirus and Host Interaction by the Complement System. Pathogens 2020; 9:pathogens9040260. [PMID: 32260199 PMCID: PMC7237997 DOI: 10.3390/pathogens9040260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) modulates the immune response to allow the virus to establish persistent infection in the host and facilitate the development of KSHV-associated cancer. The complement system has a central role in the defense against pathogens. Hence, KSHV has adopted an evasion strategy for complement attack using the viral protein encoded by KSHV open reading frame 4. However, despite this defense mechanism, the complement system appears to become activated in KSHV-infected cells as well as in the region surrounding Kaposi’s sarcoma tumors. Given that the complement system can affect cell fate as well as the inflammatory microenvironment, complement activation is likely associated with KSHV pathogenesis. A better understanding of the interplay between KSHV and the complement system may, therefore, translate into the development of novel therapeutic interventions for KSHV-associated tumors. In this review, the mechanisms and functions of complement activation in KSHV-infected cells are discussed.
Collapse
|
9
|
Hashimoto T, Rosen JD, Sanders KM, Yosipovitch G. Possible roles of basophils in chronic itch. Exp Dermatol 2018; 28:1373-1379. [PMID: 29894005 DOI: 10.1111/exd.13705] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 12/27/2022]
Abstract
Basophils are blood granulocytes and normally constitute <1% of blood peripheral leucocytes. Basophils share some morphological and functional similarities with mast cells, and basophils were once regarded as redundant and negligible circulating mast cells. However, recent studies reveal the indispensable roles of basophils in various diseases, including allergic and pruritic diseases. Basophils may be involved in itch through the mediation of a Th2 immune response, interaction with other cells in the skin and secretion of a wide variety of itch-related mediators, for example histamine, cytokines and chemokines (IL-4, IL-13, IL-31 and TSLP), proteases (cathepsin S), prostaglandins (PGE2 and PGD2), substance P and platelet-activating factor. Not only pruritic skin diseases (eg, atopic dermatitis, irritant contact dermatitis, chronic urticaria, prurigo, papulo-erythroderma of Ofuji, eosinophilic pustular folliculitis, scabies, tick bites and bullous pemphigoid) but also pruritic systemic diseases (eg, primary sclerosing cholangitis and polycythemia vera) may be affected by basophils.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jordan D Rosen
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kristen M Sanders
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Pandey MK, Grabowski GA, Köhl J. An unexpected player in Gaucher disease: The multiple roles of complement in disease development. Semin Immunol 2018; 37:30-42. [PMID: 29478824 DOI: 10.1016/j.smim.2018.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/14/2022]
Abstract
The complement system is well appreciated for its role as an important effector of innate immunity that is activated by the classical, lectin or alternative pathway. C5a is one important mediator of the system that is generated in response to canonical and non-canonical C5 cleavage by circulating or cell-derived proteases. In addition to its function as a chemoattractant for neutrophils and other myeloid effectors, C5a and its sister molecule C3a have concerted roles in cell homeostasis and surveillance. Through activation of their cognate G protein coupled receptors, C3a and C5a regulate multiple intracellular pathways within the mitochondria and the lysosomal compartments that harbor multiple enzymes critical for protein, carbohydrate and lipid metabolism. Genetic mutations of such lysosomal enzymes or their receptors can result in the compartmental accumulation of specific classes of substrates in this organelle summarized as lysosomal storage diseases (LSD). A frequent LSD is Gaucher disease (GD), caused by autosomal recessively inherited mutations in GBA1, resulting in functional defects of the encoded enzyme, acid β-glucosidase (glucocerebrosidase, GCase). Such mutations promote excessive accumulation of β-glucosylceramide (GC or GL1) in innate and adaptive immune cells frequently associated with chronic inflammation. Recently, we uncovered an unexpected link between the C5a and C5a receptor 1 (C5aR1) axis and the accumulation of GL1 in experimental and clinical GD. Here, we will review the pathways of complement activation in GD, its role as a mediator of the inflammatory response, and its impact on glucosphingolipid metabolism. Further, we will discuss the potential role of the C5a/C5aR1 axis in GL1-specific autoantibody formation and as a novel therapeutic target in GD.
Collapse
Affiliation(s)
- Manoj K Pandey
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; The Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; The Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Jörg Köhl
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; The Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Institute for Systemic Inflammation Research, University of Lübeck, 23562, Lübeck, Germany.
| |
Collapse
|
11
|
The Evolution of Human Basophil Biology from Neglect towards Understanding of Their Immune Functions. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8232830. [PMID: 28078302 PMCID: PMC5204076 DOI: 10.1155/2016/8232830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/16/2016] [Indexed: 12/03/2022]
Abstract
Being discovered long ago basophils have been neglected for more than a century. During the past decade evidence emerged that basophils share features of innate and adaptive immunity. Nowadays, basophils are best known for their striking effector role in the allergic reaction. They hence have been used for establishing new diagnostic tests and therapeutic approaches and for characterizing natural and recombinant allergens as well as hypoallergens, which display lower or diminished IgE-binding activity. However, it was a long way from discovery in 1879 until identification of their function in hypersensitivity reactions, including adverse drug reactions. Starting with a historical background, this review highlights the modern view on basophil biology.
Collapse
|
12
|
Hagmann BR, Odermatt A, Kaufmann T, Dahinden CA, Fux M. Balance between IL-3 and type Iinterferons and their interrelationship with FasL dictates lifespan and effector functions of human basophils. Clin Exp Allergy 2016; 47:71-84. [PMID: 27910206 DOI: 10.1111/cea.12850] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND In contrast to eosinophils and neutrophils, the regulation of the lifespan of human basophils is poorly defined, with the exception of the potent anti-apoptotic effect of IL-3 that also promotes pro-inflammatory effector functions and phenotypic changes. Type I IFNs (IFN-α, IFN-β), which are well known for their anti-viral activities, have the capacity to inhibit allergic inflammation. OBJECTIVE To elucidate whether type I IFNs have the potential to abrogate the lifespan and/or effector functions of human basophils. METHODS We cultured human basophils, and for comparison, eosinophils and neutrophils, with IL-3, interferons, FasL and TRAIL, alone or in combination, and studied cell survival, effector functions and signalling pathways involved. RESULTS Despite an identical pattern of early signalling in basophils, eosinophils and neutrophils in response to different types of interferons, only basophils displayed enhanced apoptosis after type I IFN treatment. IFN-γ prolonged survival of eosinophils but did not affect the lifespan of basophils. IFN-α-mediated apoptosis required STAT1-STAT2 heterodimers and the contribution of constitutive p38 MAPK activity. Whereas the death ligands FasL and TRAIL-induced apoptosis in basophils per se, IFN-α-mediated apoptosis did neither involve autocrine TRAIL signalling nor did it sensitize basophils to FasL-induced apoptosis. However, IFN-α and FasL displayed an additive effect in killing basophils. Interestingly, IL-3, which protected basophils from IFN-α-, TRAIL- or FasL-mediated apoptosis, did not completely block the additive effect of combined IFN-α and FasL treatment. Moreover, we demonstrate that IFN-α suppressed IL-3-induced release of IL-8 and IL-13. In contrast to IFN-α-mediated apoptosis, these inhibitory effects of IFN-α were not dependent on p38 MAPK signalling. CONCLUSIONS AND CLINICAL RELEVANCE Our study defines the unique and granulocyte-type-specific inhibitory and pro-apoptotic function of type I IFNs and their cooperation with death ligands in human blood basophils, which may be relevant for the anti-allergic properties of type I IFNs.
Collapse
Affiliation(s)
- B R Hagmann
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Institute of Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - A Odermatt
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Institute of Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - T Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - C A Dahinden
- University Institute of Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M Fux
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Institute of Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
An LL, Gorman JV, Stephens G, Swerdlow B, Warrener P, Bonnell J, Mustelin T, Fung M, Kolbeck R. Complement C5a induces PD-L1 expression and acts in synergy with LPS through Erk1/2 and JNK signaling pathways. Sci Rep 2016; 6:33346. [PMID: 27624143 PMCID: PMC5022031 DOI: 10.1038/srep33346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022] Open
Abstract
Severe bacterial infection results in both uncontrolled inflammation and immune suppression in septic patients. Although there is ample evidence that complement activation provokes overwhelming pro-inflammatory responses, whether or not it plays a role in immune suppression in this case is unclear. Here, we identify that complement C5a directly participates in negative regulation of immune responses to bacteria-induced inflammation in an ex vivo model of human whole blood. Challenge of whole blood with heat-killed Pseudomonas aeruginosa induces PD-L1 expression on monocytes and the production of IL-10 and TGF-β, which we show to be inhibited by C5a blockade. The induction of PD-L1 expression by C5a is via C5aR1but not C5aR2. Furthermore, C5a synergises with P. aeruginosa LPS in both PD-L1 expression and the production of IL-10 and TGF-β. Mechanistically, C5a contributes to the synergy in PD-L1 expression by specifically activating Erk1/2 and JNK signaling pathways. Our study reveals a new role for C5a in directly promoting immunosuppressive responses. Therefore, aberrant production of complement C5a during bacterial infection could have broader effect on compromising host defense including the induction of immune suppression.
Collapse
Affiliation(s)
- Ling-Ling An
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Jacob V Gorman
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Geoffrey Stephens
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Bonnie Swerdlow
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Paul Warrener
- Department of Infectious Diseases, MedImmune, LLC, Gaithersburg, MD 20878, USA
| | - Jessica Bonnell
- Department of Infectious Diseases, MedImmune, LLC, Gaithersburg, MD 20878, USA
| | - Tomas Mustelin
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Michael Fung
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Roland Kolbeck
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune, LLC. One Medimmune Way, Gaithersburg, MD 20878, USA
| |
Collapse
|
14
|
Imoto Y, Takabayashi T, Sakashita M, Tokunaga T, Ninomiya T, Ito Y, Narita N, Yamada T, Fujieda S. Peripheral basophil reactivity, CD203c expression by Cryj1 stimulation, is useful for diagnosing seasonal allergic rhinitis by Japanese cedar pollen. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:300-8. [PMID: 26417444 PMCID: PMC4578528 DOI: 10.1002/iid3.69] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/08/2015] [Accepted: 05/06/2015] [Indexed: 01/03/2023]
Abstract
Measuring specific IgE can yield direct, accurate, and objective data. Nevertheless, clinical symptoms of allergy are often inconsistent with these data. Recently, the expression of CD203c, a surface marker of basophils, has been reported as capable of distinguishing allergic patients. This study compared specific IgE in serum and skin tests against antigen to assess CD203c as a biomarker correlated with allergic rhinitis (AR). We asked 3,453 subjects whether they experienced any AR related symptom. All subjects were assessed for six specific IgEs for common aeroallergens. Skin tests were also conducted for six aeroallergens. We observed the reactivity of peripheral basophil by measuring the levels of CD203c by Cryj1 stimulation using flow cytometry. Of the 3,453 participants, 1,987 (57.5%) possessed Japanese cedar pollen (JCP) specific IgE in their serum. Among those 1,987 JCP specific IgE positive participants, 552 (27.8%) had not experienced any allergic symptom during the JCP season. The levels of CD203c in the peripheral basophil by Cryj1 stimulation were significantly higher in SAR-JCP subjects than in non-SAR-JCP subjects (Cryj1 0.5 ng/ml: 2.25 ± 0.90% vs. 60.2 ± 27.4%, p < 0.01, Cryj1 50 ng/ml: 1.89 ± 0.90% vs. 68.0 ± 21.2%, p < 0.01). Our results indicate that the levels of CD203c in peripheral basophils by Cryj1 stimulation is a more objective and reliable marker that better reflects the allergic reaction by SAR-JCP in vivo than measuring specific IgE in serum or skin tests.
Collapse
Affiliation(s)
- Yoshimasa Imoto
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | - Tetsuji Takabayashi
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | - Masafumi Sakashita
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | - Takahiro Tokunaga
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | - Takahiro Ninomiya
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | - Yumi Ito
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | - Norihiko Narita
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui Fukui, Japan
| |
Collapse
|
15
|
Schatz-Jakobsen JA, Yatime L, Larsen C, Petersen SV, Klos A, Andersen GR. Structural and functional characterization of human and murine C5a anaphylatoxins. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:1704-17. [PMID: 24914981 PMCID: PMC4051506 DOI: 10.1107/s139900471400844x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
Complement is an ancient part of the innate immune system that plays a pivotal role in protection against invading pathogens and helps to clear apoptotic and necrotic cells. Upon complement activation, a cascade of proteolytic events generates the complement effectors, including the anaphylatoxins C3a and C5a. Signalling through their cognate G-protein coupled receptors, C3aR and C5aR, leads to a wide range of biological events promoting inflammation at the site of complement activation. The function of anaphylatoxins is regulated by circulating carboxypeptidases that remove their C-terminal arginine residue, yielding C3a-desArg and C5a-desArg. Whereas human C3a and C3a-desArg adopt a canonical four-helix bundle fold, the conformation of human C5a-desArg has recently been described as a three-helix bundle. Here, the crystal structures of an antagonist version of human C5a, A8(Δ71-73), and of murine C5a and C5a-desArg are reported. Whereas A8(Δ71-73) adopts a three-helix bundle conformation similar to human C5a-desArg, the two murine proteins form a four-helix bundle. A cell-based functional assay reveals that murine C5a-desArg, in contrast to its human counterpart, exerts the same level of activition as murine C5a on its cognate receptor. The role of the different C5a conformations is discussed in relation to the differential activation of C5a receptors across species.
Collapse
Affiliation(s)
| | - Laure Yatime
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Casper Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Steen Vang Petersen
- Department of Biomedicine, Aarhus University, Bartholin Building, Wilhelm Meyers Allé 4, DK-8000 Aarhus, Denmark
| | - Andreas Klos
- Institute for Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| |
Collapse
|
16
|
Molecular basis for downregulation of C5a-mediated inflammation by IgG1 immune complexes in allergy and asthma. Curr Allergy Asthma Rep 2014; 13:596-606. [PMID: 24013944 DOI: 10.1007/s11882-013-0387-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Allergy and asthma are triggered primarily by the binding of allergen-specific immunoglobulin E (IgE)-allergen complexes to their receptors, recognition of the allergens by antigen-presenting cells, and allergen presentation to the T cells. These events lead to mucus secretions, runny nose, itchy eyes, sneezing, airway hyperresponsiveness, and nasal congestion. Complement 5a (C5a) has emerged as a central molecule that mediates these allergic reactions. Many allergens and allergen-specific IgG immune complexes (IgG-ICs) cause complement activation and C5a generation. C5a interaction with its receptor (C5aR) leads to the infiltration and activation of several immunologic cell types and the secretion of pathogenic inflammatory and proinflammatory mediators. However, IgG1-IC binding to the IgG inhibitory Fc gamma receptor (FcγRIIB) suppresses C5aR-mediated inflammatory signaling and, hence, may reduce the inflammatory immune responses through this FcγRIIB-mediated pathway. Reviews of the IgG1-IC interactions with C5a-mediated inflammatory immune responses suggest that IgG1-IC-C5a inhibitory therapy may reduce inflammation in allergic diseases.
Collapse
|
17
|
Ochkur SI, Protheroe CA, Li W, Colbert DC, Zellner KR, Shen HH, Luster AD, Irvin CG, Lee JJ, Lee NA. Cys-leukotrienes promote fibrosis in a mouse model of eosinophil-mediated respiratory inflammation. Am J Respir Cell Mol Biol 2014; 49:1074-84. [PMID: 23859654 DOI: 10.1165/rcmb.2013-0009oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Leukotrienes (i.e., products of the 5-lipoxygenase pathway) are thought to be contributors to lung pathologies. Moreover, eosinophils have been linked with pulmonary leukotriene activities both as potential sources of these mediators and as responding effector cells. The objective of the present study was to define the role(s) of leukotrienes in the lung pathologies accompanying eosinophil-associated chronic respiratory inflammation. A transgenic mouse model of chronic T helper (Th) 2-driven inflammation expressing IL-5 from T cells and human eotaxin-2 locally in the lung (I5/hE2) was used to define potential in vivo relationships among eosinophils, leukotrienes, and chronic Th2-polarized pulmonary inflammation. Airway levels of cys-leukotrienes and leukotriene B4 (LTB4) are both significantly elevated in I5/hE2 mice. The eosinophil-mediated airway hyperresponsiveness (AHR) characteristic of these mice was abolished in the absence of leukotrienes (i.e., 5-lipoxygenase-deficient I5/hE2). More importantly, the loss of leukotrienes led to an unexpectedly significant decrease in collagen deposition (i.e., pulmonary fibrosis) that accompanied elevated levels of IL-4/-13 and TGF-β in the lungs of I5/hE2 mice. Further studies using mice deficient for the LTB4 receptor (BLT-1(-/-)/I5/hE2) and I5/hE2 animals administered a cys-leukotriene receptor antagonist (montelukast) demonstrated that the AHR and the enhanced pulmonary fibrosis characteristic of the I5/hE2 model were uniquely cys-leukotriene-mediated events. These data demonstrate that, similar to allergen challenge models of wild-type mice, cys-leukotrienes underlie AHR in this transgenic model of severe pulmonary Th2 inflammation. These data also suggest that an underappreciated link exists among eosinophils, cys-leukotriene-mediated events, and fibrotic remodeling associated with elevated levels of IL-4/-13 and TGF-β.
Collapse
Affiliation(s)
- Sergei I Ochkur
- 1 Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Reis ES, Chen H, Sfyroera G, Monk PN, Köhl J, Ricklin D, Lambris JD. C5a receptor-dependent cell activation by physiological concentrations of desarginated C5a: insights from a novel label-free cellular assay. THE JOURNAL OF IMMUNOLOGY 2012; 189:4797-805. [PMID: 23041570 DOI: 10.4049/jimmunol.1200834] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complement anaphylatoxins C3a, C5a, and desarginated C5a (C5a(desArg)) play critical roles in the induction of inflammation and the modulation of innate and acquired immune responses after binding to their G protein-coupled receptors, C3a receptor and C5a receptor (C5aR). The role of C5a(desArg) in inducing cell activation has been often neglected, because the affinity of C5a(desArg) for C5aR has been reported to be much lower than that of C5a. We have used a novel label-free cellular assay to reassess the potential of C5a(desArg) to induce activation of transfected and primary immune cells. Our results indicate that physiological levels of C5a(desArg) induce significant levels of cell activation that are even higher than those achieved by stimulating cells with analogous concentrations of C5a. Such activation was strictly dependent on C5aR, because it was completely abrogated by PMX-53, a C5aR antagonist. Pharmacological inhibition of specific G proteins located downstream of C5aR indicated differential involvement of G(α) proteins upon C5aR engagement by C5a or C5a(desArg). Further, mass spectrometric characterization of plasma-derived C5a and C5a(desArg) provided important insight into the posttranslational modification pattern of these anaphylatoxins, which includes glycosylation at Asn(64) and partial cysteinylation at Cys(27). Although the context-specific physiological contribution of C5a(desArg) has to be further explored, our data suggest that C5a(desArg) acts as a key molecule in the triggering of local inflammation as well as the maintenance of blood surveillance and homeostatic status.
Collapse
Affiliation(s)
- Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Innate immune cells in liver inflammation. Mediators Inflamm 2012; 2012:949157. [PMID: 22933833 PMCID: PMC3425885 DOI: 10.1155/2012/949157] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/17/2012] [Indexed: 12/20/2022] Open
Abstract
Innate immune system is the first line of defence against invading pathogens that is critical for the overall survival of the host. Human liver is characterised by a dual blood supply, with 80% of blood entering through the portal vein carrying nutrients and bacterial endotoxin from the gastrointestinal tract. The liver is thus constantly exposed to antigenic loads. Therefore, pathogenic microorganism must be efficiently eliminated whilst harmless antigens derived from the gastrointestinal tract need to be tolerized in the liver. In order to achieve this, the liver innate immune system is equipped with multiple cellular components; monocytes, macrophages, granulocytes, natural killer cells, and dendritic cells which coordinate to exert tolerogenic environment at the same time detect, respond, and eliminate invading pathogens, infected or transformed self to mount immunity. This paper will discuss the innate immune cells that take part in human liver inflammation, and their roles in both resolution of inflammation and tissue repair.
Collapse
|
20
|
Abstract
Complement activation usually results in the formation of complement fragment 5a (C5a) that interacts with its two receptors, C5aR and C5L2. These receptors belong to the rhodopsin family of G protein-coupled seven transmembrane-containing receptors. C5aR and C5L2 are expressed on/in a wide variety of cells and tissues. Interaction of C5a with C5aR leads to many pleiotropic effects, including the release of cytokines and chemokines and recruitment of inflammatory cells. In certain circumstances, C5a-C5aR interactions can also result in pathophysiological changes as seen in sepsis, rheumatoid arthritis, asthma, acute lung injury and ischemia-reperfusion injury. This overview of the C5a-C5aR interactions describes how such interactions facilitate the pivotal role the complement system plays in the host's innate and adaptive responses.
Collapse
Affiliation(s)
- J Vidya Sarma
- University of Michigan Medical School, Department of Pathology, Ann Arbor, MI, USA
| | | |
Collapse
|
21
|
Abstract
Early studies that used parasite-infected interleukin-4 (IL-4) reporter animals led us to identify basophils as the primary source of IL-4 and hence propose the hypothesis that basophils trigger the development of antigen-specific T helper type 2 (Th2) immune responses in vivo. These findings appeared to resolve a long-standing puzzle underlying Th2 immunity, that is, 'what is the source of the initial IL-4 necessary for CD4 T-cell differentiation into Th2 effector cells?'. However, results from extensive investigations of the contribution of basophils to Th2 immunity unveiled some controversial data that cast doubt on the initial hypothesis. In this review, the consensus and the controversy regarding the roles of basophils in infection and immunity, as well as outstanding questions for the future, are discussed.
Collapse
Affiliation(s)
- Booki Min
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | | | |
Collapse
|
22
|
Rudilla F, Fayolle C, Casares N, Durantez M, Arribillaga L, Lozano T, Villanueva L, Pio R, Sarobe P, Leclerc C, Prieto J, Lasarte JJ. Combination of a TLR4 ligand and anaphylatoxin C5a for the induction of antigen-specific cytotoxic T cell responses. Vaccine 2012; 30:2848-58. [PMID: 22387222 DOI: 10.1016/j.vaccine.2012.02.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/15/2012] [Accepted: 02/19/2012] [Indexed: 01/01/2023]
Abstract
The complement system and Toll-like receptors (TLR) are key innate defense systems which might interact synergistically on dendritic cells (DC) to reinforce adaptive immunity. In a previous work, we found that the extra domain A from fibronectin EDA (an endogenous ligand for TLR4) can favour antigen delivery to DC and induce their maturation. Given the potential of anaphylatoxins to cause inflammation and activation of myeloid cells, we hypothesized that a fusion protein between EDA, and anaphylatoxins C3a, C4a or C5a together with an antigen might improve the immunogenicity of the antigen. Naked DNA immunization with a construct expressing the fusion protein between C5a, EDA and the cytotoxic T cell epitope SIINFEKL from ovalbumin, induced strong antigen specific T cell responses. The purified recombinant fusion protein EDA-SIINFEKL-C5a induced activation of dendritic cells, the production of proinflammatory cytokines/chemokines and stimulated antigen presenting cell migration and NK cell activation. As compared to EDA-SIINFEKL, the fusion protein EDA-SIINFEKL-C5a did not induce the production of the immunosuppressive molecules IL-10, CCL17, CCL1, CXCL12 or XCL1 by DC. Moreover, EDA-SIINFEKL-C5a induced strong specific T cell responses in vivo and protected mice against E.G7-OVA tumor growth more efficiently than EDA-SIINFEKL or SIINFEKL-C5a recombinant proteins. Our results suggest that fusion proteins containing EDA, the anaphylatoxin C5a and the antigen may serve as a suitable strategy for the development of anti-tumor or anti-viral vaccines.
Collapse
Affiliation(s)
- Francesc Rudilla
- Gene Therapy and Hepatology Area and Oncology Area, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rodriguez Gomez M, Talke Y, Goebel N, Hermann F, Reich B, Mack M. Basophils support the survival of plasma cells in mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:7180-5. [PMID: 21068399 DOI: 10.4049/jimmunol.1002319] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that basophils support humoral memory immune responses by increasing B cell proliferation and Ig production as well as inducing a Th2 and B helper phenotype in T cells. Based on the high frequency of basophils in spleen and bone marrow, in this study we investigated whether basophils also support plasma cell survival and Ig production. In the absence of basophils, plasma cells of naive or immunized mice rapidly undergo apoptosis in vitro and produce only low amounts of Igs. In contrast, in the presence of basophils and even more in the presence of activated basophils, the survival of plasma cells is markedly increased and continuous production of Igs enabled. This effect is partially dependent on IL-4 and IL-6 released from basophils. Similar results were obtained when total bone marrow cells or bone marrow cells depleted of basophils were cultured in the presence or absence of substances activating basophils. When basophils were depleted in vivo 6 mo after immunization with an Ag, specific Ig production in subsequent bone marrow cultures was significantly reduced. In addition, depletion of basophils for 18 d in naive mice significantly reduced the number of plasma cells in the spleen. These data indicate that basophils are important for survival of plasma cells in vitro and in vivo.
Collapse
|
24
|
Zhang X, Köhl J. A complex role for complement in allergic asthma. Expert Rev Clin Immunol 2010; 6:269-77. [PMID: 20402389 DOI: 10.1586/eci.09.84] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Allergic asthma is a chronic inflammatory disease of the upper airway. It is well appreciated that maladaptive Th2 immunity promotes the allergic phenotype, the underlying mechanisms of which remain elusive. The disease is associated with activation of complement, an ancient danger-sensing component of the innate immune system. Different models of experimental allergic asthma suggest that the small complement fragments of C3 and C5, the anaphylatoxins C3a and C5a, not only promote proallergic effector functions during the allergic effector phase but regulate the development of Th2 immunity during allergen sensitization. The available data support a concept in which C5a is dominant during allergen sensitization and protects against the development of maladaptive Th2 immunity. By contrast, C3a and C5a appear to act synergistically and drive allergic inflammation during the effector phase. In this article, we will review the recent findings in the field to judge the benefit of complement targeting in allergic asthma.
Collapse
Affiliation(s)
- Xun Zhang
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, OH 45229, USA
| | | |
Collapse
|
25
|
Ali H. Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a. Immunol Lett 2009; 128:36-45. [PMID: 19895849 DOI: 10.1016/j.imlet.2009.10.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 10/21/2009] [Accepted: 10/23/2009] [Indexed: 12/18/2022]
Abstract
Allergic diseases such as asthma result from inappropriate immunologic responses to common environmental allergens in genetically susceptible individuals. Following allergen exposure, interaction of dendritic cells (DC) with CD4(+) T cells leads to the production of Th2 cytokines, which induce B cells to synthesize IgE molecules (sensitization phase). These IgE molecules bind to their high affinity receptors (FcvarepsilonRI) on the surface of mast cells and basophils and their subsequent cross-linking by allergen results in the release of preformed and newly synthesized mediators, which cause bronchoconstriction, lung inflammation and airway hyperresponsiveness (AHR) in asthma (effector phase). The complement components C3a and C5a levels are increased in the lungs of patients with asthma and are likely generated via the actions of both allergen and mast cell proteases. In vivo studies with rodents have shown that while C3a facilitates allergen sensitization in some models C5a inhibits this response. Despite this difference, both anaphylatoxins promote lung inflammation and AHR in vivo indicating that cells other than DC and T cells likely mediate the functional effects of C3a and C5a in asthma. This review focuses on the contribution of C3a and C5a in the pathogenesis of asthma with a particular emphasis on mast cells and basophils. It discusses the mechanisms by which anaphylatoxins activate mast cells and basophils and the associated signaling pathways via which their receptors are regulated by priming and desensitization.
Collapse
Affiliation(s)
- Hydar Ali
- Department of Pathology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104-6030, USA.
| |
Collapse
|
26
|
Erken E, Gunesacar R, Ozer HTE. Investigation of C5a receptor gene 450 C/T polymorphism in Turkish patients with familial Mediterranean fever. Mol Biol Rep 2009; 37:273-6. [DOI: 10.1007/s11033-009-9677-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Accepted: 07/27/2009] [Indexed: 11/28/2022]
|
27
|
|
28
|
The human complement fragment receptor, C5L2, is a recycling decoy receptor. Mol Immunol 2008; 46:1149-62. [PMID: 19100624 PMCID: PMC2697321 DOI: 10.1016/j.molimm.2008.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 10/31/2008] [Accepted: 11/01/2008] [Indexed: 12/16/2022]
Abstract
C5L2 is a 7 transmembrane domain receptor for complement fragment C5a that, unlike the classical C5a receptor, C5aR, does not couple to G proteins. However, in mice where C5L2 has been deleted, the response to C5a is altered, suggesting that C5L2 may have a signaling function. In order to investigate whether human C5L2 also has some capacity to transduce signals, we have attempted to produce a signaling competent form of human C5L2 by inserting C5aR sequences at three key G protein activation motifs. However, we detected neither an intracellular Ca2+ response nor β-arrestin redistribution in mutated C5L2, suggesting that the potential for G protein coupling is completely absent in this receptor and that, in humans, C5L2 may have functions that are unrelated to signaling. In confirmation of this, we detected constitutive ligand-independent internalization of C5L2 that resulted in the rapid accumulation of C5a and its stable metabolite, C5a des Arg, within the cell with only a small net change in cell surface receptor levels. Internalization was found to be through a clathrin-dependent mechanism that led to the retention and, in cells natively expressing C5L2, the degradation of the ligand within an intracellular compartment. In contrast, the classical C5a receptor, C5aR, internalized ligand much more slowly and a majority of this ligand was released back into the extracellular environment in an apparently undegraded form. These data suggest that a major function of human C5L2 is to remove active complement fragments from the extracellular environment.
Collapse
|
29
|
Jacobson AC, Weis JJ, Weis JH. Complement receptors 1 and 2 influence the immune environment in a B cell receptor-independent manner. THE JOURNAL OF IMMUNOLOGY 2008; 180:5057-66. [PMID: 18354231 DOI: 10.4049/jimmunol.180.7.5057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The CD21/35 proteins are complement receptors implicated in controlling and interpreting activation states of the innate and acquired immune responses. One defect of CD21/35(-/-) animals is depressed production of Ag-specific IgG3 which we show is evident in vivo but not in vitro. Gene expression profiles obtained from naive wild-type and CD21/35(-/-) splenocytes demonstrated enhanced expression of inflammatory mediators from CD11b(+) splenocytes in the CD21/35(-/-) animals. Splenocyte populations between wild-type and CD21/35(-/-) mice were similar except for a moderate increase in GR1(low)CD31(+) immature myeloid cells. Furthermore, depletion of neutrophils and other GR1-expressing cells alleviates elevated inflammatory gene expression in the CD21/35(-/-) spleen. Complement activation also plays a key role in the differential gene expression observed in the CD21/35-deficient mouse as depletion of C3 or inhibition of C3a receptor signaling within the animal returned inflammatory gene expression within the spleen to wild-type levels. Finally, C3 depletion before immunization allowed for the enhanced production of Ag-specific IgG3 production in the CD21/35(-/-) mouse compared with mock-depleted animals. These data suggest that the overall environment of the CD21/35(-/-) spleen is quite different from that of the wild-type animal perhaps due to altered complement convertase activity. This difference may be responsible for a number of the phenotypes ascribed to the deficiency of CD21/35 proteins on B cells and follicular dendritic cells.
Collapse
Affiliation(s)
- Amanda C Jacobson
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
30
|
DiScipio RG, Schraufstatter IU. The role of the complement anaphylatoxins in the recruitment of eosinophils. Int Immunopharmacol 2007; 7:1909-23. [PMID: 18039528 DOI: 10.1016/j.intimp.2007.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 07/09/2007] [Indexed: 01/21/2023]
Abstract
Eosinophils are blood and tissue immune cells that participate in a diverse range of activities normally beneficial for the host defense, but in circumstances of untoward inflammatory conditions these cells can be responsible for pathological responses. Accordingly the transit of eosinophils from the blood to tissues is a subject of considerable importance in immunology. In this article we review how the complement anaphylatoxins, C3a and C5a bring about eosinophil extravasation. These mediators do not merely provide a chemotactic or haptotactic gradient but are responsible for orchestrating innumerable responses by other cells types, including of endothelial cells, mast cells, and basophils in order to create an environment that is conducive for eosinophil infiltration. C5a has the capacity to prime the endothelium directly to present P-selectin, and C5a stimulated generation of eosinophil hydrogen peroxide and other oxidants can cause additional upregulation of endothelial P-selectin and ICAM-1. Moreover, the anaphylatoxins have the ability to recruit mast cells and basophils and can stimulate these cells to release IL-4 and IL-13, which by augmenting endothelial VCAM-1, convey some selectivity for eosinophils. The anaphylatoxins also have the capability to evoke the release and activation of eosinophil MMP-9, which is employed by this cell type to digest its way past the subendothelial matrix. Finally, because C3a and C5a can stimulate the generation of nitric oxide along with the secretion of histamine and LTC4 from several cell types, the anaphylatoxins can bring about an increase in vascular permeability that facilitates eosinophil accumulation at sites of allergic inflammation.
Collapse
Affiliation(s)
- Richard G DiScipio
- La Jolla Institute for Molecular Medicine, 4570 Executive Dr. #100, San Diego, CA 92122, USA.
| | | |
Collapse
|
31
|
Scola AM, Higginbottom A, Partridge LJ, Reid RC, Woodruff T, Taylor SM, Fairlie DP, Monk PN. The role of the N-terminal domain of the complement fragment receptor C5L2 in ligand binding. J Biol Chem 2006; 282:3664-71. [PMID: 17158873 PMCID: PMC2873560 DOI: 10.1074/jbc.m609178200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C5L2 is a new cellular receptor found to interact with the human anaphylatoxins complement factor C5a and its C-terminal cleavage product C5a des Arg. The classical human C5a receptor (C5aR) preferentially binds C5a, with a 10-100-fold lower affinity for C5a des Arg. In contrast, C5L2 binds both ligands with nearly equal affinity. C5aR presents acidic and tyrosine residues in its N terminus that interact with the core of C5a while a hydrophobic pocket formed by the transmembrane helices interacts with residues in the C terminus of C5a. Here, we have investigated the molecular basis for the increased affinity of C5L2 for C5a des Arg. Rat and mouse C5L2 preferentially bound C5a des Arg, whereas rodent C5aR showed much higher affinity for intact C5a. Effective peptidic and non-peptidic ligands for the transmembrane hydrophobic pocket of C5aR were poor inhibitors of ligand binding to C5L2. An antibody raised against the N terminus of human C5L2 did not affect the binding of C5a to C5L2 but did inhibit C5a des Arg binding. A chimeric C5L2, containing the N terminus of C5aR, had little effect on the affinity for C5a des Arg. Mutation of acidic and tyrosine residues in the N terminus of human C5L2 revealed that 3 residues were critical for C5a des Arg binding but had little involvement in C5a binding. C5L2 thus appears to bind C5a and C5a des Arg by different mechanisms, and, unlike C5aR, C5L2 uses critical residues in its N-terminal domain for binding only to C5a des Arg.
Collapse
Affiliation(s)
- Anne-Marie Scola
- Academic Neurology Unit and Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Hellman L. Regulation of IgE homeostasis, and the identification of potential targets for therapeutic intervention. Biomed Pharmacother 2006; 61:34-49. [PMID: 17145160 DOI: 10.1016/j.biopha.2006.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 10/12/2006] [Indexed: 12/20/2022] Open
Abstract
Atopic allergies have increased during the past 20-30 years in frequency quite dramatically and in many countries have reached almost epidemic proportions. Allergies have thereby become one of the major medical issues of the western world. Immunoglobulin E (IgE) is here a central player. IgE is the Ig class that is present in the lowest concentration in human plasma. IgG is, for example, 10 000 to 1 million times more abundant than IgE. However, despite of its low plasma levels IgE is a very important inducer of inflammation, due to its interaction with high-affinity receptors on mast cell and basophils. IgE has been conserved as a single active gene in all placental mammals studied, and the expression of this gene is under a very stringent control, most likely due to its very potent inflammatory characteristics. IgE expression is being regulated at many levels: by cytokines, switch region length, positive and negatively acting transcription factors and suppressors of cytokine signaling (SOCS). In addition, the plasma half-life differs markedly for IgG and IgE, with 21 and 2.5 days, respectively. This review summarizes the rapid progress in our understanding of the complex network of regulatory mechanisms acting on IgE and also how this new information may help us in our efforts to control IgE-mediated inflammatory conditions.
Collapse
Affiliation(s)
- Lars Hellman
- Uppsala University, Department of Cell and Molecular Biology, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
33
|
Peters-Golden M, Gleason MM, Togias A. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy 2006; 36:689-703. [PMID: 16776669 PMCID: PMC1569601 DOI: 10.1111/j.1365-2222.2006.02498.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cysteinyl leukotrienes (CysLTs) are a family of inflammatory lipid mediators synthesized from arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils, and macrophages. This article reviews the data for the role of CysLTs as multi-functional mediators in allergic rhinitis (AR). We review the evidence that: (1) CysLTs are released from inflammatory cells that participate in AR, (2) receptors for CysLTs are located in nasal tissue, (3) CysLTs are increased in patients with AR and are released following allergen exposure, (4) administration of CysLTs reproduces the symptoms of AR, (5) CysLTs play roles in the maturation, as well as tissue recruitment, of inflammatory cells, and (6) a complex inter-regulation between CysLTs and a variety of other inflammatory mediators exists.
Collapse
|
34
|
McKinley L, Kim J, Bolgos GL, Siddiqui J, Remick DG. Allergens induce enhanced bronchoconstriction and leukotriene production in C5 deficient mice. Respir Res 2006; 7:129. [PMID: 17044927 PMCID: PMC1635702 DOI: 10.1186/1465-9921-7-129] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 10/17/2006] [Indexed: 11/10/2022] Open
Abstract
Background Previous genetic analysis has shown that a deletion in the complement component 5 gene-coding region renders mice more susceptible to allergen-induced airway hyperresponsiveness (AHR) due to reduced IL-12 production. We investigated the role of complement in a murine model of asthma-like pulmonary inflammation. Methods In order to evaluate the role of complement B10 mice either sufficient or deficient in C5 were studied. Both groups of mice immunized and challenged with a house dust extract (HDE) containing high levels of cockroach allergens. Airways hyper-reactivity was determined with whole-body plesthysmography. Bronchoalveolar lavage (BAL) was performed to determine pulmonary cellular recruitment and measure inflammatory mediators. Lung homogenates were assayed for mediators and plasma levels of IgE determined. Pulmonary histology was also evaluated. Results C5-deficient mice showed enhanced AHR to methylcholine challenge, 474% and 91% increase above baseline Penh in C5-deficient and C5-sufficient mice respectively, p < 0.001. IL-12 levels in the lung homogenate (LH) were only slightly reduced and BAL IL-12 was comparable in C5-sufficient and C5-deficient mice. However, C5-deficient mice had significantly higher cysteinyl-leukotriene levels in the BAL fluid, 1913 +/- 246 pg/ml in C5d and 756 +/- 232 pg/ml in C5-sufficient, p = 0.003. Conclusion These data demonstrate that C5-deficient mice show enhanced AHR due to increased production of cysteinyl-leukotrienes.
Collapse
Affiliation(s)
- Laura McKinley
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jiyoun Kim
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Gerald L Bolgos
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Javed Siddiqui
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel G Remick
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Boston University School of Medicine, Department of Pathology, 670 Albany Street, Room 407,
Boston, MA 02118, USA
| |
Collapse
|
35
|
Tschopp CM, Spiegl N, Didichenko S, Lutmann W, Julius P, Virchow JC, Hack CE, Dahinden CA. Granzyme B, a novel mediator of allergic inflammation: its induction and release in blood basophils and human asthma. Blood 2006; 108:2290-9. [PMID: 16794249 DOI: 10.1182/blood-2006-03-010348] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Histamine, leukotriene C4, IL-4, and IL-13 are major mediators of allergy and asthma. They are all formed by basophils and are released in particularly large quantities after stimulation with IL-3. Here we show that supernatants of activated mast cells or IL-3 qualitatively change the makeup of granules of human basophils by inducing de novo synthesis of granzyme B (GzmB), without induction of other granule proteins expressed by cytotoxic lymphocytes (granzyme A, perforin). This bioactivity of IL-3 is not shared by other cytokines known to regulate the function of basophils or lymphocytes. The IL-3 effect is restricted to basophil granulocytes as no constitutive or inducible expression of GzmB is detected in eosinophils or neutrophils. GzmB is induced within 6 to 24 hours, sorted into the granule compartment, and released by exocytosis upon IgE-dependent and -independent activation. In vitro, there is a close parallelism between GzmB, IL-13, and leukotriene C4 production. In vivo, granzyme B, but not the lymphoid granule marker granzyme A, is released 18 hours after allergen challenge of asthmatic patients in strong correlation with interleukin-13. Our study demonstrates an unexpected plasticity of the granule composition of mature basophils and suggests a role of granzyme B as a novel mediator of allergic diseases.
Collapse
Affiliation(s)
- Cornelia M Tschopp
- Institute of Immunology, Inselspital, University Hospital Bern, Inselspital, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wust SK, Blumenthal MN, Corazalla EO, Benson BA, Dalmasso AP. Complement in asthma: sensitivity to activation and generation of C3a and C5a via the different complement pathways. Transl Res 2006; 148:157-63. [PMID: 17002917 DOI: 10.1016/j.trsl.2006.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 03/09/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Studies in rodent models suggested that complement may play a critical role in susceptibility to airway hyperresponsiveness (AHR) and as a mediator of bronchial obstruction and inflammation in asthma. Complement may participate in susceptibility to asthma because of an intrinsic abnormality in complement activation and generation of C3a, C5a, or other products that affect cellular responses, resulting in T(H)2 predominance and asthma susceptibility. Alternatively, an intrinsic abnormality in the cellular response to complement activation products could determine susceptibility to asthma. In this study, the authors investigated whether complement in patients with atopic asthma versus nonatopic controls possesses an increased propensity to become activated. Despite reports that total complement plasma levels in unchallenged asthmatics are normal, an abnormal sensitivity of complement to activation may exist if an isoform or a polymorphic variant of a complement protein was present and resulted in gain or loss of function without associated changes in total complement levels. Therefore, complement activation was induced in vitro in plasma of asthmatics and controls using activators of the classical, alternative, and lectin pathways and measured C3a, other C3 fragments, and C5a. For each pathway, similar amounts of generated fragments, as well as C3a/C3 and C5a/C5 ratios, were found in asthmatics and controls. Also, similar basal plasma levels of C3a and C5a were found in both groups; however, mannan-binding lectin (MBL) levels were moderately elevated in asthmatics. In conclusion, the results suggest that, in asthmatic patients, complement activation does not exhibit an abnormal sensitivity to activation by any of the known activation pathways.
Collapse
Affiliation(s)
- Sven K Wust
- Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
37
|
Min B, Le Gros G, Paul WE. Basophils: a potential liaison between innate and adaptive immunity. Allergol Int 2006; 55:99-104. [PMID: 17075245 DOI: 10.2332/allergolint.55.99] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Indexed: 01/23/2023] Open
Abstract
Activation of innate immunity is closely associated to development of protective adaptive immune response. Significant advances have been made to reveal such links between innate immunity and Th1 type adaptive immune responses. By contrast, the role of innate immunity in the development of Th2 type adaptive immune responses is still not well understood. Production of IL-4, a key cytokine in the induction of Th2 immunity, by innate type cells represents an attractive mechanism for such an innate link to Th2 immunity. We have recently reported that in the course of infection with the intestinal nematode, Nippostrongylus brasiliensis, a robust basophil accumulation in the liver/spleen occurs and that these basophils display enhanced IL-4 production. Thus, the basophils is an attractive candidate to mediate the innate-adaptive link for Th2 responses and understanding the control of the tissue homing patterns and cytokine responses of basophils in the course of infections may shed important light on the in vivo induction of Th2 adaptive immunity.
Collapse
Affiliation(s)
- Booki Min
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
38
|
Köhl J, Baelder R, Lewkowich IP, Pandey MK, Hawlisch H, Wang L, Best J, Herman NS, Sproles AA, Zwirner J, Whitsett JA, Gerard C, Sfyroera G, Lambris JD, Wills-Karp M. A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J Clin Invest 2006; 116:783-96. [PMID: 16511606 PMCID: PMC1386108 DOI: 10.1172/jci26582] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 11/29/2005] [Indexed: 11/17/2022] Open
Abstract
Complement component 5 (C5) has been described as either promoting or protecting against airway hyperresponsiveness (AHR) in experimental allergic asthma, suggesting pleomorphic effects of C5. Here we report that local pharmacological targeting of the C5a receptor (C5aR) prior to initial allergen sensitization in murine models of inhalation tolerance or allergic asthma resulted in either induction or marked enhancement of Th2-polarized immune responses, airway inflammation, and AHR. Importantly, C5aR-deficient mice exhibited a similar, increased allergic phenotype. Pulmonary allergen exposure in C5aR-targeted mice resulted in increased sensitization and accumulation of CD4+ CD69+ T cells associated with a marked increase in pulmonary myeloid, but not plasmacytoid, DC numbers. Pulmonary DCs from C5aR-targeted mice produced large amounts of CC chemokine ligand 17 (CCL17) and CCL22 ex vivo, suggesting a negative impact of C5aR signaling on pulmonary homing of Th2 cells. In contrast, C5aR targeting in sensitized mice led to suppressed airway inflammation and AHR but was still associated with enhanced production of Th2 effector cytokines. These data suggest a dual role for C5a in allergic asthma, i.e., protection from the development of maladaptive type 2 immune responses during allergen sensitization at the DC/T cell interface but enhancement of airway inflammation and AHR in an established inflammatory environment.
Collapse
Affiliation(s)
- Jörg Köhl
- Division of Molecular Immunology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Baelder R, Fuchs B, Bautsch W, Zwirner J, Köhl J, Hoymann HG, Glaab T, Erpenbeck V, Krug N, Braun A. Pharmacological targeting of anaphylatoxin receptors during the effector phase of allergic asthma suppresses airway hyperresponsiveness and airway inflammation. THE JOURNAL OF IMMUNOLOGY 2005; 174:783-9. [PMID: 15634899 DOI: 10.4049/jimmunol.174.2.783] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Airway hyperresponsiveness and airway inflammation are hallmarks of allergic asthma, the etiology of which is crucially linked to the presence of Th2 cytokines. A role for the complement anaphylatoxins C3a and C5a in allergic asthma was suggested, as deficiencies of the C3a receptor (C3aR) and of complement factor C5 modulate airway hyperresponsiveness, airway inflammation, and Th2 cytokine levels. However, such models do not allow differentiation of effects on the sensitization phase and the effector phase of the allergic response, respectively. In this study, we determined the role of the anaphylatoxins on the effector phase of asthma by pharmacological targeting of the anaphylatoxin receptors. C3aR and C5a receptor (C5aR) signaling was blocked using the nonpeptidic C3aR antagonist SB290157 and the neutralizing C5aR mAb 20/70 in a murine model of Aspergillus fumigatus extract induced pulmonary allergy. Airway hyperresponsiveness was substantially improved after C5aR blockade but not after C3aR blockade. Airway inflammation was significantly reduced in mice treated with the C3aR antagonist or the anti-C5aR mAb, as demonstrated by reduced numbers of neutrophils and eosinophils in bronchoalveolar lavage fluid. Of note, C5aR but not C3aR inhibition reduced lymphocyte numbers in bronchoalveolar lavage fluid. Cytokine levels of IL-5 and IL-13 in bronchoalveolar lavage fluid were not altered by C3aR or C5aR blockade. However, blockade of both anaphylatoxin receptors markedly reduced IL-4 levels. These data suggest an important and exclusive role for C5aR signaling on the development of airway hyperresponsiveness during pulmonary allergen challenge, whereas both anaphylatoxins contribute to airway inflammation and IL-4 production.
Collapse
Affiliation(s)
- Ralf Baelder
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Higginbottom A, Cain SA, Woodruff TM, Proctor LM, Madala PK, Tyndall JDA, Taylor SM, Fairlie DP, Monk PN. Comparative agonist/antagonist responses in mutant human C5a receptors define the ligand binding site. J Biol Chem 2005; 280:17831-40. [PMID: 15661745 DOI: 10.1074/jbc.m410797200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C terminus is responsible for all of the agonist activity of C5a at human C5a receptors (C5aRs). In this report we have mapped the ligand binding site on the C5aR using a series of agonist and antagonist peptide mimics of the C terminus of C5a as well as receptors mutated at putative interaction sites (Ile(116), Arg(175,) Arg(206), Glu(199), Asp(282), and Val(286)). Agonist peptide 1 (Phe-Lys-Pro-d-cyclohexylalanine-cyclohexylalanine-d-Arg) can be converted to an antagonist by substituting the bulkier Trp for cyclohexylalanine at position 5 (peptide 2). Conversely, mutation of C5aR transmembrane residue Ile(116) to the smaller Ala (I116A) makes the receptor respond to peptide 2 as an agonist (Gerber, B. O., Meng, E. C., Dotsch, V., Baranski, T. J., and Bourne, H. R. (2001) J. Biol. Chem. 276, 3394-3400). However, a potent cyclic hexapeptide antagonist, Phe-cyclo-[Orn-Pro-d-cyclohexylalanine-Trp-Arg] (peptide 3), derived from peptide 2 and which binds to the same receptor site, remains a full antagonist at I116AC5aR. This suggests that although the residue at position 5 might bind near to Ile(116), the latter is not essential for either activation or antagonism. Arg(206) and Arg(175) both appear to interact with the C-terminal carboxylate of C5a agonist peptides, suggesting a dynamic binding mechanism that may be a part of a receptor activation switch. Asp(282) has been previously shown to interact with the side chain of the C-terminal Arg residue, and Glu(199) may also interact with this side chain in both C5a and peptide mimics. Using these interactions to orient NMR-derived ligand structures in the binding site of C5aR, a new model of the interaction between peptide antagonists and the C5aR is presented.
Collapse
Affiliation(s)
- Adrian Higginbottom
- Academic Neurology Unit, University of Sheffield Medical School, Sheffield S10 2RX, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vogel M, Tschopp C, Bobrzynski T, Fux M, Stadler MB, Miescher SM, Stadler BM. A Highly Conserved Interspecies V H in the Human Genome. J Mol Biol 2004; 341:477-89. [PMID: 15276838 DOI: 10.1016/j.jmb.2004.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 05/14/2004] [Accepted: 06/08/2004] [Indexed: 11/20/2022]
Abstract
Idiotype conservation between human and mouse antibodies has been observed in association with various infectious and autoimmune diseases. We have isolated a human anti-idiotypic antibody to a mouse monoclonal anti-IgE antibody (BSW17) suggesting a conserved interspecies idiotype associated with an anti-IgE response. To find the homologue of BSW17 in the human genome we applied the guided selection strategy. Combining V(H) of BSW17 with a human V(L) repertoire resulted in three light chains. The three V(L) chains were then combined with a human V(H) repertoire resulting in three clones specific for human IgE. Surprisingly, one clone, Hu41, had the same epitope specificity and functional in vitro activity as BSW17 and V(H) complementarity-determining regions identical with that of BSW17. Real-time PCR analysis confirmed the presence of the Hu41 V(H) sequence in the human genome. These data document the first example of the isolation of a human antibody where high sequence similarity to the original murine V(H) sequence is associated with common antigen and epitope specificity.
Collapse
Affiliation(s)
- Monique Vogel
- Institute of Immunology, Sahli Haus 2, Inselspital, 3010 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Cain SA, Higginbottom A, Monk PN. Characterisation of C5a receptor agonists from phage display libraries. Biochem Pharmacol 2003; 66:1833-40. [PMID: 14563493 DOI: 10.1016/s0006-2952(03)00473-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
C5a des-Arg(74) has a 10- to 100-fold lower receptor binding affinity than intact C5a and is only a partial agonist. We have used phage display selection from randomly mutated C5a des-Arg(74) libraries to isolate variant proteins that can activate C5a receptors with similar potency to C5a. Here we explore the interactions of three variants (V1-3) with C5aR mutated at residues involved in the differential response. The mutant Asp(282)Arg-C5aR is preferentially activated by C5a des-Arg(74), probably due to repulsion between Arg(74) of C5a and the substituent Arg(282). In accordance with this hypothesis, V2 (with a polar C-terminus which has no Arg residue) but not V1 (with a C-terminal Arg residue at position 73) could activate Asp(282)Arg-C5aR. V3, with a very hydrophobic C-terminus, was the most potent agonist at Asp(282)Arg-C5aR. Arg(175) is a potential counterion for the C-terminal carboxylate of C5a. C5aR mutated to either Ala or Asp at this position lost nearly all responsiveness to both C5a and C5a des-Arg(74), suggesting that mutation of Arg(175) caused a non-specific loss of receptor conformation and a loss of signalling capacity. However, V3 could still activate Arg(175)Asp/Ala-C5aR with the same potency as wild-type C5aR, demonstrating that the mutant receptors retained high signalling capability and showed a specific loss of responsiveness. Thus C5a des-Arg(74) variants produced by phage display are potentially useful tools for the dissection of ligand-receptor interactions.
Collapse
Affiliation(s)
- Stuart A Cain
- Academic Neurology Unit, University of Sheffield Medical School, Sheffield S10 2RX, UK
| | | | | |
Collapse
|
43
|
Otto M, Hawlisch H, Monk PN, Müller M, Klos A, Karp CL, Köhl J. C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: position 69 is the locus that determines agonism or antagonism. J Biol Chem 2003; 279:142-51. [PMID: 14570896 DOI: 10.1074/jbc.m310078200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anaphylatoxin C5a exerts a plethora of biologic activities critical in the pathogenesis of systemic inflammatory diseases. Recently, we reported on a C5a mutant, jun/fos-A8, as a potent antagonist for the human and mouse C5a receptor (CD88). Addressing the molecular mechanism accounting for CD88 receptor antagonism by site-directed mutagenesis, we found that a positively charged amino acid at position 69 is crucial. Replacements by either hydrophobic or negatively charged amino acids switched the CD88 antagonist jun/fos-A8 to a CD88 agonist. In addition to CD88, the seven-transmembrane receptor C5L2 has recently been found to provide high affinity binding sites for C5a and its desarginated form, C5adesArg74. A jun/fos-A8 mutant in which the jun/ fos moieties and amino acids at positions 71-73 were deleted, A8Delta71-73, blocked C5a and C5adesArg74 binding to CD88 and C5L2. In contrast, the cyclic C5a C-terminal analog peptide AcF-[OP-d-ChaWR] inhibited binding of the two anaphylatoxins to CD88 but not to C5L2, suggesting that the C5a core segment is important for high affinity binding to C5L2. Both receptors are coexpressed on human monocytes and the human mast cell line HMC-1; however, C5L2 expression on monocytes is weaker as compared with HMC-1 cells and highly variable. In contrast, no C5L2 expression was found on human neutrophils. A8Delta71-73 is the first antagonist that blocks C5a and C5adesArg74 binding to both C5a receptors, CD88 and C5L2, making it a valuable tool for studying C5L2 functions and for blocking the biological activities of C5a and C5adesArg74 in mice and humans.
Collapse
Affiliation(s)
- Magnus Otto
- Institute of Medical Microbiology, Medical School Hannover, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Schramm G, Falcone FH, Gronow A, Haisch K, Mamat U, Doenhoff MJ, Oliveira G, Galle J, Dahinden CA, Haas H. Molecular characterization of an interleukin-4-inducing factor from Schistosoma mansoni eggs. J Biol Chem 2003; 278:18384-92. [PMID: 12624091 DOI: 10.1074/jbc.m300497200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eggs of the parasitic trematode Schistosoma mansoni are powerful inducers of a T helper type 2 (Th2) immune response and immunoglobulin E (IgE) production. S. mansoni egg extract (SmEA) stimulates human basophils to rapidly release large amounts of interleukin (IL)-4, the key promoter of a Th2 response. Here we show purification and sequence of the IL-4-inducing principle of S. mansoni eggs (IPSE). Stimulation studies with human basophils using SmEA fractions and natural and recombinant IPSE as well as neutralization and immunodepletion studies using antibodies to recombinant IPSE demonstrate that IPSE is the bioactive principle in SmEA leading to activation of basophils and to expression of IL-4 and IL-13. Regarding the mechanism of action, blot analysis showed that IPSE is an IgE-binding factor, suggesting that it becomes effective via cross-linking receptor-bound IgE on basophils. Immunohistology revealed that IPSE is enriched in and secreted from the subshell area of the schistosome egg. We conclude from these data that IPSE may be an important parasite-derived component for skewing the immune response toward Th2.
Collapse
|
45
|
La Flamme AC, MacDonald AS, Huxtable CR, Carroll M, Pearce EJ. Lack of C3 affects Th2 response development and the sequelae of chemotherapy in schistosomiasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:470-6. [PMID: 12496433 DOI: 10.4049/jimmunol.170.1.470] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of the third component of complement (C3) during schistosome infection was investigated using mice deficient in C3. While no effect was observed 8 wk after infection on worm development or liver pathology, Ag-specific Th2-associated cytokine production (IL-13, IL-5, IL-6, and IL-10) was significantly reduced, and IFN-gamma production was enhanced in the absence of C3. IgG1 and IgE, but not IgG2a or IgM, Ab responses were also significantly impaired in infected C3(-/-) mice, suggesting that C3 may play a role in IL-4-mediated Th2 response enhancement during schistosome infection. Furthermore, C3-deficient mice could not effectively clear adult worms after praziquantel (PZQ) treatment and suffered increased morbidity due to the overproduction of proinflammatory mediators following drug administration. However, the ischemic liver damage that normally accompanies PZQ administration in infected wild-type mice was substantially reduced in treated C3-deficient mice, probably due to the absence of dead or dying worms in the livers of these animals. Together these results indicate that C3 enhances Th2 responses during schistosome infection, potentiates PZQ-mediated parasite clearance, and reduces chemotherapy-induced proinflammatory mediator production.
Collapse
Affiliation(s)
- Anne Camille La Flamme
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
46
|
Drouin SM, Corry DB, Hollman TJ, Kildsgaard J, Wetsel RA. Absence of the complement anaphylatoxin C3a receptor suppresses Th2 effector functions in a murine model of pulmonary allergy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5926-33. [PMID: 12421977 DOI: 10.4049/jimmunol.169.10.5926] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Asthma is a chronic inflammatory disease of the lung resulting in airway obstruction. The airway inflammation of asthma is strongly linked to Th2 lymphocytes and their cytokines, particularly IL-4, IL-5, and IL-13, which regulate airway hyperresponsiveness, eosinophil activation, mucus production, and IgE secretion. Historically, complement was not thought to contribute to the pathogenesis of asthma. However, our previous reports have demonstrated that complement contributes to bronchial hyperreactivity, recruitment of airway eosinophils, IL-4 production, and IgE responses in a mouse model of pulmonary allergy. To define the complement activation fragments that mediate these effects, we assessed the role of the complement anaphylatoxin C3a in a mouse model of pulmonary allergy by challenging C3aR-deficient mice intranasally with a mixed Ag preparation of Aspergillus fumigatus cell culture filtrate and OVA. Analysis by plethysmography after challenge revealed an attenuation in airway hyperresponsiveness in C3aR-deficient mice relative to wild-type mice. C3aR-deficient mice also had an 88% decrease in airway eosinophils and a 59% reduction in lung IL-4-producing cells. Consistent with the reduced numbers of IL-4-producing cells, C3aR-deficient mice had diminished bronchoalveolar lavage levels of the Th2 cytokines, IL-5 and IL-13. C3aR knockout mice also exhibited decreases in IgE titers as well as reduced mucus production. Collectively, these data highlight the importance of complement activation, the C3a anaphylatoxin, and its receptor during Th2 development in this experimental model and implicate these molecules as possible therapeutic targets in diseases such as asthma.
Collapse
Affiliation(s)
- Scott M Drouin
- Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas-Houston Medical School, 2121 West Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
47
|
Arock M, Schneider E, Boissan M, Tricottet V, Dy M. Differentiation of human basophils: an overview of recent advances and pending questions. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.4.557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Michel Arock
- Department of Cellular and Molecular Hematology, UPRES‐EA 2509, Faculty of Pharmacy, Paris, France; and
| | | | - Mathieu Boissan
- Department of Cellular and Molecular Hematology, UPRES‐EA 2509, Faculty of Pharmacy, Paris, France; and
| | - Viviane Tricottet
- Department of Cellular and Molecular Hematology, UPRES‐EA 2509, Faculty of Pharmacy, Paris, France; and
| | - Michel Dy
- CNRS UMR 8603, Hôpital Necker, Paris Cedex, France
| |
Collapse
|
48
|
Cain SA, Monk PN. The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J Biol Chem 2002; 277:7165-9. [PMID: 11773063 DOI: 10.1074/jbc.c100714200] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The substantial variations in the responses of cells to the anaphylatoxin C5a and its desarginated form, C5adR(74), suggest that more than one type of cell surface receptor for these ligands might exist. However, only a single receptor for C5a and C5adR(74), CD88, has been characterized to date. Here we report that the orphan receptor C5L2/gpr77, which shares 35% amino acid identity with CD88, binds C5a with high affinity but has a 10-fold higher affinity for C5adR(74) than CD88. C5L2 also has a moderate affinity for anaphylatoxin C3a, but cross-competition studies suggest that C3a binds to a distinct site from C5a. C4a was able to displace C3a, suggesting that C5L2, like the C3a receptor, may have a low binding affinity for this anaphylatoxin. Unlike CD88 and C3a receptor, C5L2 transfected into RBL-2H3 cells does not support degranulation or increases in intracellular [Ca(2+)] and is not rapidly internalized in response to ligand binding. However, ligation of C5L2 by anaphylatoxin did potentiate the degranulation response to cross-linkage of the high affinity IgE receptor by a pertussis toxin-sensitive mechanism. These results suggest that C5L2 is an anaphylatoxin-binding protein with unique ligand binding and signaling properties.
Collapse
MESH Headings
- Amino Acid Sequence
- Anaphylatoxins
- Animals
- Antigens, CD/chemistry
- Binding Sites
- Binding, Competitive
- Cloning, Molecular
- Complement C5a/chemistry
- Complement C5a, des-Arginine/chemistry
- Humans
- Inhibitory Concentration 50
- Ligands
- Membrane Proteins
- Molecular Sequence Data
- Protein Binding
- Rats
- Receptor, Anaphylatoxin C5a
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/metabolism
- Receptors, Complement/chemistry
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Time Factors
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Stuart A Cain
- Department of Neurology, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | | |
Collapse
|
49
|
Cain SA, Coughlan T, Monk PN. Mapping the ligand-binding site on the C5a receptor: arginine74 of C5a contacts aspartate282 of the C5a receptor. Biochemistry 2001; 40:14047-52. [PMID: 11705397 DOI: 10.1021/bi011055w] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction between the anaphylatoxin C5a and its receptor involves two distinct sites. One site is formed by acidic residues at the receptor N-terminus and contributes to only ligand binding. The second site, responsible for activation, is less well defined. In this study, we demonstrate that the receptor residue D(282), near the extracellular face of transmembrane domain VII, is a component of the second ligand-binding site. Mutation of D(282) to A decreases the sensitivity of the receptor to activation by intact C5a but not by its less potent metabolite, C5adR(74), which lacks the C-terminal arginine(74). The mutation of the R(74) residue of C5a to A causes a 60-fold decrease in wild-type receptor sensitivity, but only a 2-fold decrease for the receptor mutated at D(282). In contrast, the mutation of R(74) to D makes C5a completely inactive on both wild-type and A(282) C5a receptors. The mutation of D(282) to R partly restores the response to C5a[D(74)], which is a more effective ligand than C5a at the mutant receptor. A peptide mimic of the C5a activation domain with a C-terminal R potently activates the wild type but is only a weak agonist at the mutant D(282)R-C5a receptor. Conversely, a peptide with D at the C-terminus is a more effective activator of D(282)R than wild-type C5a receptors. These data indicate that the R(74) side chain of C5a makes an interaction with receptor D(282) that is responsible for the higher potency of intact C5a versus that of C5adR(74).
Collapse
Affiliation(s)
- S A Cain
- Department of Neurology, University of Sheffield Medical School, Sheffield S10 2RX, U.K
| | | | | |
Collapse
|
50
|
Drouin SM, Corry DB, Kildsgaard J, Wetsel RA. Cutting edge: the absence of C3 demonstrates a role for complement in Th2 effector functions in a murine model of pulmonary allergy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4141-5. [PMID: 11591733 DOI: 10.4049/jimmunol.167.8.4141] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Asthma is a chronic disease of the lung resulting from airway obstruction. Although the initiating causes are not entirely clear, the airway inflammation in asthma is associated with Th2 lymphocytes and their cytokines, particularly IL-4, which play a prominent role in this disease by regulating airway hyperresponsiveness, eosinophil activation, and IgE synthesis. Historically, complement was not thought to contribute to the pathogenesis of asthma. However, using C3-deficient mice in an allergen-induced model of pulmonary allergy, we demonstrate that complement may impact key features of this disease. When challenged with allergen, mice deficient in C3 exhibit diminished airway hyperresponsiveness and lung eosinophilia. Furthermore, these mice also have dramatically reduced numbers of IL-4-producing cells and attenuated Ag-specific IgE and IgG1 responses. Collectively, these results demonstrate that C3-deficient mice have significantly altered allergic lung responses and indicate a role for the complement system in promoting Th2 effector functions in asthma.
Collapse
Affiliation(s)
- S M Drouin
- Institute of Molecular Medicine for the Prevention of Human Diseases, Department of Biochemistry and Molecular Biology, University of Texas, Houston, TX 77030, USA
| | | | | | | |
Collapse
|