1
|
Madela-Mönchinger JC, Wolf SA, Wyler E, Bauer A, Mischke M, Möller L, Juranić Lisnić V, Landthaler M, Malyshkina A, Voigt S. Rat cytomegalovirus efficiently replicates in dendritic cells and induces changes in their transcriptional profile. Front Immunol 2023; 14:1192057. [PMID: 38077365 PMCID: PMC10702230 DOI: 10.3389/fimmu.2023.1192057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dendritic cells (DC) play a crucial role in generating and maintaining antiviral immunity. While DC are implicated in the antiviral defense by inducing T cell responses, they can also become infected by Cytomegalovirus (CMV). CMV is not only highly species-specific but also specialized in evading immune protection, and this specialization is in part due to characteristic genes encoded by a given virus. Here, we investigated whether rat CMV can infect XCR1+ DC and if infection of DC alters expression of cell surface markers and migration behavior. We demonstrate that wild-type RCMV and a mutant virus lacking the γ-chemokine ligand xcl1 (Δvxcl1 RCMV) infect splenic rat DC ex vivo and identify viral assembly compartments. Replication-competent RCMV reduced XCR1 and MHCII surface expression. Further, gene expression of infected DC was analyzed by bulk RNA-sequencing (RNA-Seq). RCMV infection reverted a state of DC activation that was induced by DC cultivation. On the functional level, we observed impaired chemotactic activity of infected XCR1+ DC compared to mock-treated cells. We therefore speculate that as a result of RCMV infection, DC exhibit diminished XCR1 expression and are thereby blocked from the lymphocyte crosstalk.
Collapse
Affiliation(s)
| | - Silver Anthony Wolf
- Genome Competence Center, Department of MFI, Robert Koch Institute, Berlin, Germany
| | - Emanuel Wyler
- Laboratory for RNA Biology, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Agnieszka Bauer
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Marius Mischke
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Möller
- Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Vanda Juranić Lisnić
- Center for Proteomics, University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Markus Landthaler
- Laboratory for RNA Biology, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Voigt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
2
|
Stojić-Vukanić Z, Pilipović I, Bufan B, Stojanović M, Leposavić G. Age and sex determine CD4+ T cell stimulatory and polarizing capacity of rat splenic dendritic cells. Biogerontology 2019; 21:83-107. [PMID: 31646402 DOI: 10.1007/s10522-019-09845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
The study investigated influence of sex and age on splenic myeloid dendritic cells (DCs) from Dark Agouti rats. Freshly isolated DCs from young males exhibited less mature phenotype and greater endocytic capacity compared with those from age-matched females. Upon LPS stimulation in vitro they were less potent in stimulating allogeneic CD4+ cells in mixed leukocyte reaction (MLR), due to lower expression of MHC II, and greater NO and IL-10 production. In accordance with higher TGF-β production, young male rat DCs were less potent in stimulating IL-17 production in MLR than those from young females. Irrespective of sex, endocytic capacity and responsiveness of DCs to LPS stimulation in culture, judging by their allostimulatory capacity in MLR decreased with age, reflecting decline in MHC II surface density followed by their greater NO production; the effects more prominent in females. Additionally, compared with LPS-stimulated DCs from young rats, those from sex-matched aged rats were more potent in stimulating IL-10 production in MLR, whereas capacity of DCs from aged female and male rats to stimulate IL-17 production remained unaltered and decreased, respectively. This reflected age-related shift in IL-6/TGF-β production level ratio in LPS-stimulated DC cultures towards TGF-β, and sex-specific age-related remodeling CD4+ cell cytokine pathways. Additionally, compared with LPS-stimulated DCs from young rats, those cells from sex-matched aged rats were less potent in stimulating IFN-γ production in MLR, the effect particularly prominent in MLRs encompassing male rat DCs. The study showed that stimulatory and polarizing capacity of DCs depends on rat sex and age.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
3
|
Kitazawa Y, Ueta H, Sawanobori Y, Katakai T, Yoneyama H, Ueha S, Matsushima K, Tokuda N, Matsuno K. Novel Targeting to XCR1 + Dendritic Cells Using Allogeneic T Cells for Polytopical Antibody Responses in the Lymph Nodes. Front Immunol 2019; 10:1195. [PMID: 31191552 PMCID: PMC6548820 DOI: 10.3389/fimmu.2019.01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/10/2019] [Indexed: 01/23/2023] Open
Abstract
Vaccination strategy that induce efficient antibody responses polytopically in most lymph nodes (LNs) against infections has not been established yet. Because donor-specific blood transfusion induces anti-donor class I MHC antibody production in splenectomized rats, we examined the mechanism and significance of this response. Among the donor blood components, T cells were the most efficient immunogens, inducing recipient T cell and B cell proliferative responses not only in the spleen, but also in the peripheral and gut LNs. Donor T cells soon migrated to the splenic T cell area and the LNs, with a temporary significant increase in recipient NK cells. XCR1+ resident dendritic cells (DCs), but not XCR1− DCs, selectively phagocytosed donor class I MHC+ fragments after 1 day. After 1.5 days, both DC subsets formed clusters with recipient CD4+ T cells, which proliferated within these clusters. Inhibition of donor T cell migration or depletion of NK cells by pretreatment with pertussis toxin or anti-asialoGM1 antibody, respectively, significantly suppressed DC phagocytosis and subsequent immune responses. Three allogeneic strains with different NK activities had the same response but with different intensity. Donor T cell proliferation was not required, indicating that the graft vs. host reaction is dispensable. Intravenous transfer of antigen-labeled and mitotic inhibitor-treated allogeneic, but not syngeneic, T cells induced a polytopical antibody response to labeled antigens in the LNs of splenectomized rats. These results demonstrate a novel mechanism of alloresponses polytopically in the secondary lymphoid organs (SLOs) induced by allogeneic T cells. Donor T cells behave as self-migratory antigen ferries to be delivered to resident XCR1+ DCs with negligible commitment of migratory DCs. Allogeneic T cells may be clinically applicable as vaccine vectors for polytopical prophylactic antibody production even in asplenic or hyposplenic individuals.
Collapse
Affiliation(s)
- Yusuke Kitazawa
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Hisashi Ueta
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Yasushi Sawanobori
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Tomoya Katakai
- Department of Immunology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Nobuko Tokuda
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Kenjiro Matsuno
- Department of Anatomy (Macro), School of Medicine, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
4
|
El-Mokhtar MA, Bauer A, Madela J, Voigt S. Cellular distribution of CD200 receptor in rats and its interaction with cytomegalovirus e127 protein. Med Microbiol Immunol 2018; 207:307-318. [PMID: 30032349 DOI: 10.1007/s00430-018-0552-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022]
Abstract
CD200 is a membrane protein that interacts with CD200R on the surface of immune cells and delivers an inhibitory signal. In this study, we characterized the distribution of inhibitory CD200R in rats. In addition, we investigated if e127, a homologue of rat CD200 expressed by rat cytomegalovirus (RCMV), can suppress immune functions in vitro. RT-PCR analysis was carried out to test the expression of CD200R in different rat tissues and flow cytometry was performed to characterize CD200R at the cellular level. To test the inhibitory functions of e127, a co-culture system was utilized in which immune cells were incubated with e127-expressing cells. The strongest CD200R expression was detected in lymphoid organs such as bone marrow and spleen. Flow cytometry analyses showed that CD200R+ cells were mainly CD4- dendritic cells (DC) and CD4+ T cells in the spleen. In blood, nearly all monocytes and granulocytes expressed CD200R and in bone marrow the NKRP1low subset of natural killer cells highly expressed CD200R. In addition, both peritoneal macrophages and the NR8383 macrophage cell line carried CD200R. At the functional level, viral e127 conferred an inhibitory signal on TNFα and IL6 cytokine release from IFNγ-stimulated macrophages. However, e127 did not affect the cytotoxic activity of DC. CD200R in the rat is mainly expressed on myeloid cells but also on non-myeloid cell subsets, and RCMV e127 can deliver inhibitory signals to immune cells by engaging CD200R. The RCMV model provides a useful tool to study potential immune evasion mechanisms of the herpesviridae and opens new avenues for understanding and controlling herpesvirus infections.
Collapse
Affiliation(s)
- Mohamed A El-Mokhtar
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Agnieszka Bauer
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Julia Madela
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Sebastian Voigt
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany. .,Department of Pediatric Oncology/Hematology/SCT, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
5
|
Bagaev A, Pichugin A, Nelson EL, Agadjanyan MG, Ghochikyan A, Ataullakhanov RI. Anticancer Mechanisms in Two Murine Bone Marrow-Derived Dendritic Cell Subsets Activated with TLR4 Agonists. THE JOURNAL OF IMMUNOLOGY 2018; 200:2656-2669. [PMID: 29500244 DOI: 10.4049/jimmunol.1701126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/05/2018] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are well-known for their functions in orchestrating the innate and adaptive arms of immune defense. However, under certain conditions, DCs can exert tumoricidal activity. We have elucidated the mechanism of tumor suppression by TLR4-activated bone marrow-derived DCs (BMDCs) isolated from BALB/c mice. We identified that two distinct subsets of BMDCs (CD11b+CD11c+I-A/Eint and CD11b+CD11c+I-A/Ehigh) have different cytotoxic mechanisms of action. The cytotoxicity of the former subset is mediated through NO and reactive oxygen species and type I IFN (IFN-β), whereas the latter subset acts only through IFN-β. TLR4 agonists, LPS or pharmaceutical-grade ImmunoMax, activate CD11c+ BMDCs, which, in turn, directly kill 4T1 mouse breast cancer cells or inhibit their proliferation in an MHC-independent manner. These data define two populations of BMDCs with different mechanisms of direct cytotoxicity, as well as suggest that the I-A/Eint subset could be less susceptible to counteracting mechanisms in the tumor microenvironment and support investigation of similar subsets in human DCs.
Collapse
Affiliation(s)
- Alexander Bagaev
- The Institute of Immunology, Federal Medical-Biological Agency, Moscow 115478, Russia
| | - Aleksey Pichugin
- The Institute of Immunology, Federal Medical-Biological Agency, Moscow 115478, Russia
| | - Edward L Nelson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697.,Division of Hematology and Oncology, Department of Medicine, University of California, Irvine, Irvine, CA 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92868
| | - Michael G Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647; and.,The Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647; and
| | | |
Collapse
|
6
|
Yu E, Ueta H, Kimura H, Kitazawa Y, Sawanobori Y, Matsuno K. Graft-Versus-Host Disease Following Liver Transplantation: Development of a High-Incidence Rat Model and a Selective Prevention Method. Am J Transplant 2017; 17:979-991. [PMID: 27732765 DOI: 10.1111/ajt.14077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 01/25/2023]
Abstract
Graft-versus-host disease (GvHD) following liver transplantation (LT) is a rare but serious complication with no presently available animal model and no preventive measures. To develop a rat model of GvHD after LT (LT-GvHD), we preconditioned hosts with sublethal irradiation plus reduction of natural killer (NK) cells with anti-CD8α mAb treatment, which invariably resulted in acute LT-GvHD. Compared with those in the peripheral counterpart, graft CD4+ CD25- passenger T cells showed lower alloreactivities in mixed leukocyte culture. Immunohistology revealed that donor CD4+ T cells migrated and formed clusters with host dendritic cells in secondary lymphoid organs, with early expansion and subsequent accumulation in target organs. For selectively preventing GvHD, donor livers were perfused ex vivo with organ preservation media containing anti-TCRαβ mAb. T cell-depleted livers almost completely suppressed clinical GvHD such that host rats survived for >100 days. Our results showed that passenger T cells could develop typical LT-GvHD if resistant cells such as host radiosensitive cells and host radioresistant NK cells were suppressed. Selective ex vivo T cell depletion prevented LT-GvHD without affecting host immunity or graft function. This method might be applicable to clinical LT in prediagnosed high-risk donor-recipient combinations and for analyzing immunoregulatory mechanisms of the liver.
Collapse
Affiliation(s)
- E Yu
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan.,Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - H Ueta
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - H Kimura
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Y Kitazawa
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - Y Sawanobori
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| | - K Matsuno
- Department of Anatomy (Macro), Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
7
|
Dendritic cells and macrophages neurally hard-wired in the lymph node. Sci Rep 2015; 5:16866. [PMID: 26581550 PMCID: PMC4652329 DOI: 10.1038/srep16866] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022] Open
Abstract
The neural hard-wired pathways in which the lymphoid organs are innervated by the nervous system is of special interest with respect to suggested afferent and sensory systems informing the central nervous system about the status of the immune system. Until today efferent also like afferent innervation seem to be unspecific, targeting many types of cells by affecting many cells at the same time. We for the first time show that antigen presenting cells (APC) are abundantly innervated in the T-cell enriched area, the subsinoidal layer and the cortical extrafollicular zone of lymph nodes in rats by a mesh of filamentous neurofilament positive structures originating from single nerve fibers and covering each single APC similar to a glass fishing float, so that we termed them “wired” APC (wAPC). These wAPC also found in humans seem to be restricted to the cell body, not to follow membranous extensions, they may be dynamic and receptive as MAP2 is expressed and axonal growth cones can be detected and they probably lack vesicular activity through missing synaptophysin expression. The specific innervation targeting single cells which show a distribution divided in several areas in one lymph node suggests a form of topographically organized afferent sensory system.
Collapse
|
8
|
Gutiérrez-Martínez E, Planès R, Anselmi G, Reynolds M, Menezes S, Adiko AC, Saveanu L, Guermonprez P. Cross-Presentation of Cell-Associated Antigens by MHC Class I in Dendritic Cell Subsets. Front Immunol 2015; 6:363. [PMID: 26236315 PMCID: PMC4505393 DOI: 10.3389/fimmu.2015.00363] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/05/2015] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have the unique ability to pick up dead cells carrying antigens in tissue and migrate to the lymph nodes where they can cross-present cell-associated antigens by MHC class I to CD8+ T cells. There is strong in vivo evidence that the mouse XCR1+ DCs subset acts as a key player in this process. The intracellular processes underlying cross-presentation remain controversial and several pathways have been proposed. Indeed, a wide number of studies have addressed the cellular process of cross-presentation in vitro using a variety of sources of antigen and antigen-presenting cells. Here, we review the in vivo and in vitro evidence supporting the current mechanistic models and disscuss their physiological relevance to the cross-presentation of cell-associated antigens by DCs subsets.
Collapse
Affiliation(s)
- Enric Gutiérrez-Martínez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Remi Planès
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Giorgio Anselmi
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Matthew Reynolds
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Shinelle Menezes
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| | - Aimé Cézaire Adiko
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Loredana Saveanu
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, Centre for Molecular & Cellular Biology of Inflammation (CMCBI), King's College London , Paris , France ; Sorbonne Paris Cité, Université Paris Diderot , Paris , France
| | - Pierre Guermonprez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, CMCBI, King's College London , London , UK
| |
Collapse
|
9
|
Martin JCJ, Bériou G, Heslan M, Chauvin C, Utriainen L, Aumeunier A, Scott CL, Mowat A, Cerovic V, Houston SA, Leboeuf M, Hubert FX, Hémont C, Merad M, Milling S, Josien R. Interleukin-22 binding protein (IL-22BP) is constitutively expressed by a subset of conventional dendritic cells and is strongly induced by retinoic acid. Mucosal Immunol 2014; 7:101-13. [PMID: 23653115 PMCID: PMC4291114 DOI: 10.1038/mi.2013.28] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/08/2013] [Indexed: 02/04/2023]
Abstract
Interleukin-22 (IL-22) is mainly produced at barrier surfaces by T cells and innate lymphoid cells and is crucial to maintain epithelial integrity. However, dysregulated IL-22 action leads to deleterious inflammation and is involved in diseases such as psoriasis, intestinal inflammation, and cancer. IL-22 binding protein (IL-22BP) is a soluble inhibitory IL-22 receptor and may represent a crucial regulator of IL-22. We show both in rats and mice that, in the steady state, the main source of IL-22BP is constituted by a subset of conventional dendritic cells (DCs) in lymphoid and non-lymphoid tissues. In mouse intestine, IL-22BP was specifically expressed in lamina propria CD103(+)CD11b(+) DC. In humans, IL-22BP was expressed in immature monocyte-derived DC and strongly induced by retinoic acid but dramatically reduced upon maturation. Our data suggest that a subset of immature DCs may actively participate in the regulation of IL-22 activity in the gut by producing high levels of IL-22BP.
Collapse
Affiliation(s)
- JCJ Martin
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France,CHU Nantes, Laboratoire d’immunologie, Nantes, F-44000, France,Université de Nantes, Faculté de Médecine, Nantes, F-44000, France
| | - G Bériou
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France
| | - M Heslan
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France
| | - C Chauvin
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France
| | - L Utriainen
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - A Aumeunier
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - CL Scott
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - A Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - V Cerovic
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - SA Houston
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - M Leboeuf
- Department of Gene and Cell medicine and the Department of Medicine, Mount Sinai School of Medicine, New York 10029, USA
| | - FX Hubert
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France,Université de Nantes, Faculté de Médecine, Nantes, F-44000, France
| | - C Hémont
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France,CHU Nantes, Laboratoire d’immunologie, Nantes, F-44000, France,Université de Nantes, Faculté de Médecine, Nantes, F-44000, France
| | - M Merad
- Department of Gene and Cell medicine and the Department of Medicine, Mount Sinai School of Medicine, New York 10029, USA
| | - S Milling
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - R Josien
- INSERM Center of Research in Transplantation and Immunology, UMR1064, Nantes, F - 44000, France,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, F-44000, France,CHU Nantes, Laboratoire d’immunologie, Nantes, F-44000, France,Université de Nantes, Faculté de Médecine, Nantes, F-44000, France
| |
Collapse
|
10
|
Guimont-Desrochers F, Lesage S. Revisiting the Prominent Anti-Tumoral Potential of Pre-mNK Cells. Front Immunol 2013; 4:446. [PMID: 24376447 PMCID: PMC3858890 DOI: 10.3389/fimmu.2013.00446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/26/2013] [Indexed: 01/06/2023] Open
Abstract
Interferon-producing killer dendritic cells (IKDC) were first described for their outstanding anti-tumoral properties. The “IKDC” terminology implied the description of a novel DC subset and initiated a debate on their cellular lineage origin. This debate shifted the focus away from their notable anti-tumoral potential. IKDC were recently redefined as precursors to mature NK (mNK) cells and consequently renamed pre-mNK cells. Importantly, a putative human equivalent of pre-mNK cells was recently associated with improved disease outcome in cancer patients. It is thus timely to revisit the functional attributes as well as the therapeutic potential of pre-mNK cells in line with their newly defined NK-cell precursor function.
Collapse
Affiliation(s)
- Fanny Guimont-Desrochers
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| |
Collapse
|
11
|
Aging affects AO rat splenic conventional dendritic cell subset composition, cytokine synthesis and T-helper polarizing capacity. Biogerontology 2013; 14:443-59. [DOI: 10.1007/s10522-013-9444-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/07/2013] [Indexed: 11/24/2022]
|
12
|
Abstract
BACKGROUND/AIMS We have compared dendritic cell (DC) function derived from the alcoholic liver disease (ALD) sensitive Long-Evans (LE) and resistant Fischer rat strains to determine if the influence of ethanol on DCs was dependent on ALD. METHODS The LE and Fischer rats were fed an ethanol-containing or isocaloric control liquid diet for 8 weeks and comparisons were made to LE rats injected with thioacetamide as a liver disease control. DCs were isolated from the spleen after expansion with human Fms-like tyrosine kinase receptor 3 ligand plasmid. Maturation markers CD86, CD80, CD40 and MHC-II were analysed by flow cytometry with or without lipopolysaccharide and poly I:C stimulation. Production of tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-12p40 and IL-10 cytokines and the antigen presentation ability of DCs was determined. RESULTS Only LE rats developed ALD characterized by liver injury, elevated alanine aminotransferase levels and steatosis; CD86 and CD40 expression was decreased in LE but not Fischer rats. Reduced TNF-α, IFN-γ, IL-12, proinflammatory and enhanced IL-10 cytokine production was found in DCs isolated from ethanol-fed LE but not Fischer rats. Allostimulatory activity was reduced in LE compared with the Fischer strain. In contrast, DCs isolated from thioacetamide-induced liver damage displayed a reduction only in IL-12p40; TNF-α, IL-10 and IFN-α production as well as antigen presenting ability remained intact compared with controls. CONCLUSIONS ALD sensitive LE rats exhibited characteristics of a suppressed DC phenotype that was not observed following thioacetamide-induced liver disease, which suggests an important role for ALD in altering the host cellular and humoral immune responses.
Collapse
Affiliation(s)
- Dechun Feng
- The Department of Medicine, Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | | | | | | |
Collapse
|
13
|
Lakomy D, Janikashvili N, Fraszczak J, Trad M, Audia S, Samson M, Ciudad M, Vinit J, Vergely C, Caillot D, Foucher P, Lagrost L, Chouaib S, Katsanis E, Larmonier N, Bonnotte B. Cytotoxic dendritic cells generated from cancer patients. THE JOURNAL OF IMMUNOLOGY 2011; 187:2775-82. [PMID: 21804019 DOI: 10.4049/jimmunol.1004146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Known for years as professional APCs, dendritic cells (DCs) are also endowed with tumoricidal activity. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. However, the tumoricidal activity of DCs has mainly been investigated in animal models. Cancer cells inhibit antitumor immune responses using numerous mechanisms, including the induction of immunosuppressive/ tolerogenic DCs that have lost their ability to present Ags in an immunogenic manner. In this study, we evaluated the possibility of generating tumor killer DCs from patients with advanced-stage cancers. We demonstrate that human monocyte-derived DCs are endowed with significant cytotoxic activity against tumor cells following activation with LPS. The mechanism of DC-mediated tumor cell killing primarily involves peroxynitrites. This observed cytotoxic activity is restricted to immature DCs. Additionally, after killing, these cytotoxic DCs are able to activate tumor Ag-specific T cells. These observations may open important new perspectives for the use of autologous cytotoxic DCs in cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Daniela Lakomy
- INSERM Unité Mixte de Recherche 866, Institut de Recherche Fédératif 100, Faculté de Médecine, 21079 Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Apetoh L, Locher C, Ghiringhelli F, Kroemer G, Zitvogel L. Harnessing dendritic cells in cancer. Semin Immunol 2011; 23:42-9. [DOI: 10.1016/j.smim.2011.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 01/05/2011] [Indexed: 01/28/2023]
|
15
|
Kato T, Ueda Y, Kinoh H, Yoneyama Y, Matsunaga A, Komaru A, Harada Y, Suzuki H, Komiya A, Shibata S, Hasegawa M, Hayashi H, Ichikawa T, Yonemitsu Y. RIG-I helicase-independent pathway in sendai virus-activated dendritic cells is critical for preventing lung metastasis of AT6.3 prostate cancer. Neoplasia 2010; 12:906-14. [PMID: 21076616 PMCID: PMC2978913 DOI: 10.1593/neo.10732] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022]
Abstract
We recently demonstrated highly efficient antitumor immunity against dermal tumors of B16F10 murine melanoma with the use of dendritic cells (DCs) activated by replication-competent, as well as nontransmissible-type, recombinant Sendai viruses (rSeV), and proposed a new concept, "immunostimulatory virotherapy," for cancer immunotherapy. However, there has been little information on the efficacies of this method: 1) in more clinically relevant situations including metastatic diseases, 2) on other tumor types and other animal species, and 3) on the related molecular/cellular mechanisms. In this study, therefore, we investigated the efficacy of vaccinating DCs activated by fusion gene-deleted nontransmissible rSeV on a rat model of lung metastasis using a highly malignant subline of Dunning R-3327 prostate cancer, AT6.3. rSeV/dF-green fluorescent protein (GFP)-activated bone marrow-derived DCs (rSeV/dF-GFP-DC), consistent with results previously observed in murine DCs. Vaccination of rSeV/dF-GFP-DC was highly effective at preventing lung metastasis after intravenous loading of R-3327 tumor cells, compared with the effects observed with immature DCs or lipopolysaccharide-activated DCs. Interestingly, neither CTL activity nor DC trafficking showed any apparent difference among groups. Notably, rSeV/dF-DCs expressing a dominant-negative mutant of retinoic acid-inducible gene I (RIG-I) (rSeV/dF-RIGIC-DC), an RNA helicase that recognizes the rSeV genome for inducing type I interferons, largely lost the expression of proinflammatory cytokines without any impairment of antitumor activity. These results indicate the essential role of RIG-I-independent signaling on antimetastatic effect induced by rSeV-activated DCs and may provide important insights to DC-based immunotherapy for advanced malignancies.
Collapse
Affiliation(s)
- Tomonori Kato
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuji Ueda
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroaki Kinoh
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasuo Yoneyama
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akinao Matsunaga
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Komaru
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yui Harada
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyoshi Suzuki
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Komiya
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoko Shibata
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hideki Hayashi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
- Center for Frontier Medical Engineering, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshikazu Yonemitsu
- Department of Gene Therapy, Chiba University Graduate School of Medicine, Chiba, Japan
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Role of natural killer dendritic cells in host resistance against Pseudomonas aeruginosa infection after thermal injury in mice. Shock 2010; 34:83-9. [PMID: 20016409 DOI: 10.1097/shk.0b013e3181ce2be8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The contributions of dendritic cells (DCs) and natural killer dendritic cells (NKDCs) on host antibacterial innate immunities have been described. We have previously reported that mice with partial-thickness burn injuries (PT-burn mice) are resistant to burn wound infections, whereas mice with full-thickness burn injuries (FT-burn mice) are susceptible. In this study, the effect of burn stress on the appearance and properties of DCs and NKDCs was investigated in two different murine models of thermal injury. Dendritic cells isolated from PT-burn mice produced CCL3 and IL-12, whereas these soluble factors were not produced by DCs from FT-burn mice. As compared with unburned mouse controls, a large number of NKDCs were isolated from the DC preparations from PT-burn mice, whereas fewer NKDCs were detected in the DC preparations from FT-burn mice. Nonobese diabetic severe combined immunodeficiency mice inoculated with NKDCs were shown to be resistant against a lethal s.c. Pseudomonas aeruginosa infection. These results strongly suggest that NKDCs influenced by partial-thickness burn injury play a role on the resistance of PT-burn mice to P. aeruginosa s.c. infection.
Collapse
|
17
|
Guazzone VA, Hollwegs S, Mardirosian M, Jacobo P, Hackstein H, Wygrecka M, Schneider E, Meinhardt A, Lustig L, Fijak M. Characterization of dendritic cells in testicular draining lymph nodes in a rat model of experimental autoimmune orchitis. ACTA ACUST UNITED AC 2010; 34:276-89. [DOI: 10.1111/j.1365-2605.2010.01082.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Larmonier N, Fraszczak J, Lakomy D, Bonnotte B, Katsanis E. Killer dendritic cells and their potential for cancer immunotherapy. Cancer Immunol Immunother 2010; 59:1-11. [PMID: 19618185 PMCID: PMC11031008 DOI: 10.1007/s00262-009-0736-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 12/25/2022]
Abstract
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4(+) or CD8(+) effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.
Collapse
Affiliation(s)
- Nicolas Larmonier
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, 1501 N. Campbell Ave., PO Box 245073, Tucson, AZ 85724-5073 USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724 USA
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | | | - Daniela Lakomy
- Faculty of Medicine, INSERM UMR 866, IFR 100, Dijon, France
| | | | - Emmanuel Katsanis
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, 1501 N. Campbell Ave., PO Box 245073, Tucson, AZ 85724-5073 USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724 USA
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
19
|
Dhaenens M, Fert I, Glatigny S, Haerinck S, Poulain C, Donnadieu E, Hacquard-Bouder C, André C, Elewaut D, Deforce D, Breban M. Dendritic cells from spondylarthritis-prone HLA-B27-transgenic rats display altered cytoskeletal dynamics, class II major histocompatibility complex expression, and viability. ACTA ACUST UNITED AC 2009; 60:2622-32. [PMID: 19714626 DOI: 10.1002/art.24780] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Spondylarthritis (SpA) is characterized by spinal and peripheral joint inflammation, frequently combined with extraarticular manifestations. Despite the well-established association of SpA with the class I major histocompatibility complex (MHC) allele HLA-B27, there are still different, parallel hypotheses on the relationship between HLA-B27 and disease mechanisms. The present study was undertaken to investigate several characteristics of mature dendritic cells (DCs), which are believed to be essential for triggering disease in a model of SpA in HLA-B27-transgenic rats. METHODS We combined different whole-proteome approaches (2-dimensional polyacrylamide gel electrophoresis and iTRAQ) to define the most aberrant molecular processes occurring in spleen DCs. Videomicroscopy and flow cytometry were used to confirm both cytoskeletal and class II MHC expression deficiencies. RESULTS Our proteome studies provided evidence of up-regulation of proteins involved in class I MHC loading, and unfolded protein response, along with a striking down-regulation of several cytoskeleton-reorganizing proteins. The latter result was corroborated by findings of deficient motility, altered morphology, and decreased immunologic synapse formation. Furthermore, class II MHC surface expression was reduced in DCs from B27-transgenic rats, and this could be linked to differences in class II MHC-induced apoptotic sensitivity. Finally, we found reduced viability of the CD103+CD4- DC subpopulation, which likely exerts tolerogenic function. CONCLUSION Taken together, our findings have different important implications regarding the physiology of B27-transgenic rat DCs, which have a putative role in spontaneous disease in these rats. In particular, the reduced motility and viability of putatively tolerogenic CD4+ DCs could play an important role in initiating the inflammatory process, resulting in SpA.
Collapse
Affiliation(s)
- Maarten Dhaenens
- Laboratory for Phartmaceutical Biotechnology, Ghent University, Harelbekestraat 72, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4. Blood 2009; 114:4823-31. [PMID: 19805616 DOI: 10.1182/blood-2009-04-216374] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The lack of natural killer (NK) cell-specific markers, as well as the overlap among several common surface antigens and functional properties, has obscured the delineation between NK cells and dendritic cells. Here, novel subsets of peripheral blood CD3/14/19(neg) NK cells and monocyte/dendritic cell (DC)-like cells were identified on the basis of CD7 and CD4 expression. Coexpression of CD7 and CD56 differentiates NK cells from CD56+ monocyte/DC-like cells, which lack CD7. In contrast to CD7+CD56+ NK cells, CD7(neg)CD56+ cells lack expression of NK cell-associated markers, but share commonalities in their expression of various monocyte/DC-associated markers. Using CD7, we observed approximately 60% of CD4+CD56+ cells were CD7(neg) cells, indicating the actual frequency of activated CD4+ NK cells is much lower in the blood than previously recognized. Functionally, only CD7+ NK cells secrete gamma interferon (IFNgamma) and degranulate after interleukin-12 (IL-12) plus IL-18 or K562 target cell stimulation. Furthermore, using CD7 to separate CD56+ NK cells and CD56+ myeloid cells, we demonstrate that unlike resting CD7+CD56+ NK cells, the CD7(neg)CD56+ myeloid cells stimulate a potent allogeneic response. Our data indicate that CD7 and CD56 coexpression discriminates NK cells from CD7(neg)CD56+ monocyte/DC-like cells, thereby improving our ability to study the intricacies of NK-cell subset phenotypes and functions in vivo.
Collapse
|
21
|
Terme M, Mignot G, Ullrich E, Bonmort M, Minard-Colin V, Jacquet A, Schultze JL, Kroemer G, Leclerc C, Chaput N, Zitvogel L. The dendritic cell-like functions of IFN-producing killer dendritic cells reside in the CD11b+ subset and are licensed by tumor cells. Cancer Res 2009; 69:6590-7. [PMID: 19679551 DOI: 10.1158/0008-5472.can-08-4473] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
IFN producing killer dendritic cells (IKDC) were originally defined as CD11c(int) B220(+)NK1.1(+) (or CD49b(+)) cells that exert a potent tumoricidal activity in animals lacking B, T, and conventional natural killer effectors. MHC class II expression on tumor infiltrating IKDC prompted us to investigate their putative antigen presenting function. Here, we show that tumor cells license IKDC to acquire the properties of antigen presenting cells, i.e., expression of MHC class II and costimulatory CD86 molecules. We show that the CD11b(+) subset of IKDC are able to prime naïve CD4(+) T cells and cross-prime naïve CD8(+) T lymphocytes. Licensing of IKDC by tumor cells was mandatory for the full differentiation of T cells into polarized effectors. IKDC could engulf and process soluble Ova protein in a CD206-dependent manner. Finally, we show that CD11b(+)IKDC is selectively endowed with CTLA4Ig-inhibitable antigen presenting capacities and that targeting this subset with the detoxified adenylate cyclase toxin of Bordetella pertussis fused to antigen resulted in efficient cross-presentation of antigen by IKDC to specific TCR transgenic CD8(+)T cells in vivo. Collectively, our data indicate that upon exposure to tumor cells, IKDC subserve DC-like functions.
Collapse
Affiliation(s)
- Magali Terme
- Institut National de la Sante et de la Recherche Medicale, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhou YJ, Gao J, Yang HM, Zhu JX, Chen TX, He ZJ. Morphology and ontogeny of dendritic cells in rats at different development periods. World J Gastroenterol 2009; 15:1246-53. [PMID: 19291826 PMCID: PMC2658855 DOI: 10.3748/wjg.15.1246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the morphology and ontogeny of dendritic cells of Peyer’s patches in rats at different development periods.
METHODS: The morphometric and flow cytometric analyses were performed to detect all the parameters of villous-crypts axis and the number of OX62+DC, OX62+CD4+SIRP+DC, and OX62+CD4-SIRP-DC in the small intestine in different groups of rats. The relationship between the parameters of villous-axis and the number of DC and DC subtype were analyzed.
RESULTS: All morphometric parameters changed significantly with the development of pups in the different age groups (F = 10.751, 12.374, 16.527, 5.291, 3.486; P = 0.000, 0.000, 0.000, 0.001, 0.015). Villous height levels were unstable and increased from 115.24 &mgr;m to 140.43 &mgr;m as early as 3 wk postpartum. Villous area increased significantly between 5 and 7 wk postpartum, peeked up to 13817.60 &mgr;m2 at 7 wk postpartum. Villous height and crypt depth ratios were relatively stable and increased significantly from 2.80 ± 1.01 to 4.54 ± 1.56, 9-11 wk postpartum. The expression of OX62+DC increased from 33.30% ± 5.80% to 80% ± 17.30%, 3-11 wk postpartum (F = 5.536, P = 0.0013). OX62+CD4+SIRP+DC subset levels detected in single-cell suspensions of rat total Peyer’s patch dendritic cells (PP-DCs) increased significantly from 30.73% ± 5.16% to 35.50% ± 4.08%, 5-7 wk postpartum and from 34.20% ± 1.35% to 43.60% ± 2.07% 9-11 wk postpartum (F = 7.216, P = 0.005).
CONCLUSION: This study confirms the age-related changes in villous-crypt axis differentiation in the small intestine. Simultaneously, there are also development and maturation in rat PP-DCs phenotypic expression. Furthermore, the morphological changes of intestinal mucosa and the development of immune cells (especially DC) peaked at 9-11 wk postpartum, indicating that the intestinal mucosae reached a relatively mature state at 11 wk postpartum.
Collapse
|
23
|
Chauvin C, Philippeau JM, Hémont C, Hubert FX, Wittrant Y, Lamoureux F, Trinité B, Heymann D, Rédini F, Josien R. Killer Dendritic Cells Link Innate and Adaptive Immunity against Established Osteosarcoma in Rats. Cancer Res 2008; 68:9433-40. [DOI: 10.1158/0008-5472.can-08-0104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Abstract
On the basis of experimental models and some human data, we can assume that tumor outgrowth results from the balance between immunosurveillance (the extrinsic tumor suppressor mechanisms) and immunosubversion dictated by transformed cells and/or the corrupted surrounding microenvironment. Cancer immunosurveillance relies mainly upon conventional lymphocytes exerting either lytic or secretory functions, whereas immunosubversion results from the activity of regulatory T or suppressor myeloid cells and soluble mediators. Although specific tools to target or ablate dendritic cells (DCs) became only recently available, accumulating evidence points to the critical role of the specialized DC system in dictating most of the conventional and regulatory functions of tumor-specific T lymphocytes. Although DC can be harnessed to silence tumor development, tumors in turn can exploit DC to evade immunity. Indeed, DCs harbor defects in their differentiation and stimulatory functions in cancer-bearing hosts and can actively promote T-cell tolerance to self-tumor antigens. In this review, we will focus on the dual role of DC during tumor progression and discuss pharmacoimmunological strategies to harness DC against cancer.
Collapse
|
25
|
Naito K, Anzai T, Sugano Y, Maekawa Y, Kohno T, Yoshikawa T, Matsuno K, Ogawa S. Differential effects of GM-CSF and G-CSF on infiltration of dendritic cells during early left ventricular remodeling after myocardial infarction. THE JOURNAL OF IMMUNOLOGY 2008; 181:5691-701. [PMID: 18832728 DOI: 10.4049/jimmunol.181.8.5691] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several lines of evidence suggest that the immune activation after myocardial infarction (MI) induces secondary myocardial injury. Although dendritic cells (DC) are potent regulators of immunity, their role in MI is still undetermined. We investigated the effect of DC modulation by CSF on left ventricular (LV) remodeling after MI. MI was induced by ligation of the left coronary artery in male Wistar rats. G-CSF (20 microg/kg/day, MI-G, n = 33), a GM-CSF inducer (romurtide, 200 microg/kg/day, MI-GM, n = 28), or saline (MI-C, n = 55) was administered for 7 days. On day 14, MI-G animals had higher LV max dP/dt and smaller LV dimensions, whereas MI-GM animals had lower LV max dP/dt and larger LV dimensions than did MI-C animals, despite similar infarct size. In MI-C, OX62(+) DC infiltrated the infarcted and border areas, peaking on day 7. Bromodeoxyuridine-positive DC were observed in the border area during convalescence. Infiltration by DC was decreased in MI-G animals and increased in MI-GM animals compared with MI-C (p < 0.05). In the infarcted area, the heat shock protein 70, TLR2 and TLR4, and IFN-gamma expression were reduced in MI-G, but increased in MI-GM in comparison with those in MI-C animals. IL-10 expression was higher in MI-G and lower in MI-GM than in MI-C animals. In conclusion, G-CSF improves and GM-CSF exacerbates early postinfarction LV remodeling in association with modulation of DC infiltration. Suppression of DC-mediated immunity could be a new strategy for the treatment of LV remodeling after MI.
Collapse
Affiliation(s)
- Kotaro Naito
- Division of Cardiology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang J, Xing F. A novel cell subset: interferon-producing killer dendritic cells. ACTA ACUST UNITED AC 2008; 51:671-5. [PMID: 18677594 DOI: 10.1007/s11427-008-0084-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 05/16/2008] [Indexed: 01/25/2023]
Abstract
Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells (IKDCs). IKDCs not only secret type I and type II interferons to recognize and kill tumor cells effectively, but also express MHC-II molecules to present antigens. Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Jiongkun Wang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | | |
Collapse
|
27
|
Burt BM, Plitas G, Stableford JA, Nguyen HM, Bamboat ZM, Pillarisetty VG, DeMatteo RP. CD11c identifies a subset of murine liver natural killer cells that responds to adenoviral hepatitis. J Leukoc Biol 2008; 84:1039-46. [PMID: 18664530 DOI: 10.1189/jlb.0408256] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The liver contains a unique repertoire of immune cells and a particular abundance of NK cells. We have found that CD11c defines a distinct subset of NK cells (NK1.1(+)CD3(-)) in the murine liver whose function was currently unknown. In naïve animals, CD11c(+) liver NK cells displayed an activated phenotype and possessed enhanced effector functions when compared with CD11c(-) liver NK cells. During the innate response to adenovirus infection, CD11c(+) NK cells were the more common IFN-gamma-producing NK cells in the liver, demonstrated enhanced lytic capability, and gained a modest degree of APC function. The mechanism of IFN-gamma production in vivo depended on TLR9 ligation as well as IL-12 and -18. Taken together, our findings demonstrate that CD11c(+) NK cells are a unique subset of NK cells in the murine liver that contribute to the defense against adenoviral hepatitis.
Collapse
Affiliation(s)
- Bryan M Burt
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Chauvin C, Josien R. Dendritic cells as killers: mechanistic aspects and potential roles. THE JOURNAL OF IMMUNOLOGY 2008; 181:11-6. [PMID: 18566364 DOI: 10.4049/jimmunol.181.1.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dendritic cells (DC) are professional APC endowed with the unique capacity to activate naive T cells. DC also have important effector functions during the innate immune response, such as pathogen recognition and cytokine production. In fact, DC represent the crucial link between innate and adaptive immune responses. However, DC are quite heterogeneous and various subsets endowed with specific pathogen recognition mechanisms, locations, phenotypes, and functions have been described both in rodents and in humans. A series of studies indicated that rodent as well as human DC could also mediate another important innate function, i.e., cell-mediated cytotoxicity, mostly toward tumor cells. In this article, we will review the phenotypes of these so-called killer DC, their killing mechanism, and putative implication in the immune response.
Collapse
Affiliation(s)
- Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 643, Nantes, France
| | | |
Collapse
|
29
|
Bonmort M, Dalod M, Mignot G, Ullrich E, Chaput N, Zitvogel L. Killer dendritic cells: IKDC and the others. Curr Opin Immunol 2008; 20:558-65. [PMID: 18554881 DOI: 10.1016/j.coi.2008.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 12/28/2022]
Abstract
Tumors can regress as a result of invading myeloid and lymphoid cells that act in concert. Although the myeloid cells are widely recognized as antigen presenters and lymphoid cells as classical effectors, recent evidence revealed the capacity of dendritic cells (DC) to kill tumor cells. The functional concept of 'natural killer (NK) myeloid DC' is supported by mouse and human in vitro data that may be clinically relevant because human killer DC can contribute to tumor shrinking during topical therapy with toll-like receptor (TLR) agonists. Whether tumor killing by DC is a 'catalyzing' step for efficient crosspresentation and/or a promoting step for an immunogenic cell death pathway remains an open question. We also discuss how interferon-producing killer DC (IKDC) may participate in the control of tumor progression.
Collapse
|
30
|
Moghaddami M, Cleland LG, Radisic G, Mayrhofer G. Recruitment of dendritic cells and macrophages during T cell-mediated synovial inflammation. Arthritis Res Ther 2008; 9:R120. [PMID: 18028548 PMCID: PMC2246239 DOI: 10.1186/ar2328] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 10/08/2007] [Accepted: 11/20/2007] [Indexed: 12/31/2022] Open
Abstract
Adoptive transfer of adjuvant-induced arthritis was used in this study to examine local macrophages and dendritic cells (DCs) during T cell-mediated synovial inflammation. We studied the influx of CD11b+CD11c+ putative myeloid DCs and other non-lymphoid CD45+ cells into synovium-rich tissues (SRTs) of the affected hind paws in response to a pulse of autoreactive thoracic duct cells. Cells were prepared from the SRTs using a collagenase perfusion-digestion technique, thus allowing enumeration and phenotypic analysis by flow cytometry. Numbers of CD45+ cells increased during the first 6 days, with increases in CD45+MHC (major histocompatibility complex) II+ monocyte-like cells from as early as day 3 after transfer. In contrast, typical MHC II- monocytes, mainly of the CD4- subset, did not increase until 12 to 14 days after cell transfer, coinciding with the main influx of polymorphonuclear cells. By day 14, CD45+MHC IIhi cells constituted approximately half of all CD45+ cells in SRT. Most of the MHC IIhi cells expressed CD11c and CD11b and represented putative myeloid DCs, whereas only approximately 20% were CD163+ macrophages. Less than 5% of the MHC IIhi cells in inflamed SRT were CD11b-, setting a maximum for any influx of plasmacytoid DCs. Of the putative myeloid DCs, a third expressed CD4 and both the CD4+ and the CD4- subsets expressed the co-stimulatory molecule CD172a. Early accumulation of MHC IIhiCD11c+ monocyte-like cells during the early phase of T cell-mediated inflammation, relative to typical MHC II- blood monocytes, suggests that recruited monocytes differentiate rapidly toward the DC lineage at this stage in the disease process. However, it is possible also that the MHC IIhiCD11c+ cells originate from a specific subset of DC-like circulating mononuclear cells.
Collapse
Affiliation(s)
- Mahin Moghaddami
- Arthritis Research Laboratory, Hanson Research Institute, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia, 5000, Australia.
| | | | | | | |
Collapse
|
31
|
Pockley AG, Fairburn B, Mirza S, Slack LK, Hopkinson K, Muthana M. A non-receptor-mediated mechanism for internalization of molecular chaperones. Methods 2008; 43:238-44. [PMID: 17920521 DOI: 10.1016/j.ymeth.2007.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 06/25/2007] [Indexed: 10/22/2022] Open
Abstract
The evolving realization that stress proteins, which have for many years been considered to be exclusively intracellular molecules under normal conditions, can be released from viable cells via a number of potential routes/pathways has prompted interest into their extracellular biology and intercellular signaling properties. That the stress proteins Hsp60, Hsp70 and gp96 can elicit both pro- and anti-inflammatory effects suggests that these molecules play a key role in the maintenance of immunological homeostasis, and a better understanding of the immunobiology of extracellular stress proteins might reveal new and more effective approaches for controlling and managing infectious disease, inflammatory disease and cancer. A number of cell surface receptors for stress proteins have been identified, and the intracellular consequences of these cell surface receptor-ligand interactions have been characterized. To date, studies into the intercellular signaling properties of stress proteins and their interactions with antigen presenting cells have focused on specific receptor-mediated uptake, and have not considered the fact that such cells can also take up proteins via non-specific endocytosis/pinocytosis. Herein we present a methodological approach for assessing receptor-mediated and non-receptor-mediated uptake of gp96 by rat bone marrow-derived dendritic cells.
Collapse
Affiliation(s)
- A Graham Pockley
- Immunobiology Research Unit, School of Medicine and Biomedical Sciences, University of Sheffield, L Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Srivastava RM, Varalakshmi C, Khar A. The Ischemia-Responsive Protein 94 (Irp94) Activates Dendritic Cells through NK Cell Receptor Protein-2/NK Group 2 Member D (NKR-P2/NKG2D) Leading to Their Maturation. THE JOURNAL OF IMMUNOLOGY 2008; 180:1117-30. [DOI: 10.4049/jimmunol.180.2.1117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Bode U, Lörchner M, Ahrendt M, Blessenohl M, Kalies K, Claus A, Overbeck S, Rink L, Pabst R. Dendritic cell subsets in lymph nodes are characterized by the specific draining area and influence the phenotype and fate of primed T cells. Immunology 2007; 123:480-90. [PMID: 18028375 DOI: 10.1111/j.1365-2567.2007.02713.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DC) are important in differential T-cell priming. Little is known about the local priming by DC in the microenvironment of different lymph nodes and about the fate of the imprinted T cells. Therefore, freshly isolated rat DC from mesenteric lymph nodes (mLN) and axillary lymph nodes (axLN) were phenotyped and cultured with blood T cells in the presence of the superantigen Mycoplasma arthritidis mitogen (MAM). The phenotype, proliferation and apoptosis of the primed T cells were analysed. Our data show that a common DC population exists in both mLN and axLN. In addition, region-specific DC with an organotypical marker expression imprinted by the drained area were found. Coculture of T cells with DC from mLN or axLN resulted in a distinct shift in the CD4 and CD8 expression of T cells and their phenotype. Furthermore, when these differentially primed mLN and axLN T cells were injected into recipients, mLN-primed T cells survived longer in other lymphoid organs. The results show that the region-specific DC have a unique phenotype and an impact on the ratio of CD4 : CD8 T cells during an immune response in vivo.
Collapse
Affiliation(s)
- Ulrike Bode
- Functional and Applied Anatomy, Medical School Hannover, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) specialized in the stimulation of naïve T lymphocytes, which are key components of antiviral and antitumor immunity. DCs are 'sentinels' of the immune system endowed with the mission to (1) sense invading pathogens as well as any form of tissue distress and (2) alert the effectors of the immune response. They represent a very heterogeneous population including subsets characterized by their anatomical locations and specific missions. Beyond their unique APC features, DCs exhibit a large array of effector functions that play critical roles in the induction and regulation of the cell-mediated as well as humoral immune responses. In the course of the antitumor immune response, DCs are unique in engulfing tumor cells killed by natural killer (NK) cells and cross-presenting tumor-associated antigens to cytotoxic T lymphocytes (CTLs). However, while DCs mediate antitumor immune responses by stimulating tumor-specific CTLs and NK cells, direct tumoricidal mechanisms have been recently evoked. This review addresses the other face of DCs to directly deliver apoptotic signals to stressed cells, their role in tumor cell death, and its implication in the design of DC-based cancer immunotherapies.
Collapse
|
35
|
Killer dendritic cells: mechanisms of action and therapeutic implications for cancer. Cell Death Differ 2007; 15:51-7. [DOI: 10.1038/sj.cdd.4402243] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
36
|
Caminschi I, Ahmet F, Heger K, Brady J, Nutt SL, Vremec D, Pietersz S, Lahoud MH, Schofield L, Hansen DS, O'Keeffe M, Smyth MJ, Bedoui S, Davey GM, Villadangos JA, Heath WR, Shortman K. Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells. ACTA ACUST UNITED AC 2007; 204:2579-90. [PMID: 17923506 PMCID: PMC2118479 DOI: 10.1084/jem.20071351] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Interferon-producing killer dendritic cells (IKDCs) have been described as possessing the lytic potential of NK cells and the antigen-presenting capacity of dendritic cells (DCs). In this study, we examine the lytic function and antigen-presenting capacity of mouse spleen IKDCs, including those found in DC preparations. IKDCs efficiently killed NK cell targets, without requiring additional activation stimuli. However, in our hands, when exposed to protein antigen or to MHC class II peptide, IKDCs induced little or no T cell proliferation relative to conventional DCs or plasmacytoid DCs, either before or after activation with CpG, or in several disease models. Certain developmental features indicated that IKDCs resembled NK cells more than DCs. IKDCs, like NK cells, did not express the transcription factor PU.1 and were absent from recombinase activating gene-2–null, common γ-chain–null (Rag2−/−Il2rg−/−) mice. When cultured with IL-15 and -18, IKDCs proliferated extensively, like NK cells. Under these conditions, a proportion of expanded IKDCs and NK cells expressed high levels of surface MHC class II. However, even such MHC class II+ IKDCs and NK cells induced poor T cell proliferative responses compared with DCs. Thus, IKDCs resemble NK cells functionally, and neither cell type could be induced to be effective antigen-presenting cells.
Collapse
Affiliation(s)
- Irina Caminschi
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Slack LK, Muthana M, Hopkinson K, Suvarna SK, Espigares E, Mirza S, Fairburn B, Pockley AG. Administration of the stress protein gp96 prolongs rat cardiac allograft survival, modifies rejection-associated inflammatory events, and induces a state of peripheral T-cell hyporesponsiveness. Cell Stress Chaperones 2007; 12:71-82. [PMID: 17441509 PMCID: PMC1852895 DOI: 10.1379/csc-237r.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
High-dose gp96 has been shown to inhibit experimental autoimmune disease by a mechanism that appears to involve immunoregulatory CD4+ T cells. This study tested the hypothesis that high-dose gp96 administration modifies allograft rejection and associated inflammatory events. Wistar cardiac allografts were transplanted into Lewis recipient rats and graft function was monitored daily by palpation. Intradermal administration of gp96 purified from Wistar rat livers (100 microg) at the time of transplantation and 3 days later significantly prolonged allograft survival (14 vs 8 days in phosphate-buffered saline [PBS]-treated recipients; P = 0.009). Rejected allografts from gp96-treated animals were significantly less enlarged than allografts from their PBS-treated counterparts (2.8 vs 4.3 g; P < 0.004). Gp96 was also effective when administered on days 1 and 8 (13 vs 7 days), but not if it was derived from recipient (Lewis) liver tissue or administered on days 0, 3, and 6. In parallel studies, CD3+ T cells from gp96-treated untransplanted animals secreted less interleukin (IL)-4, IL-10, and interferon (IFN)-gamma after in vitro polyclonal stimulation than CD3+ T cells from PBS-treated animals. Gp96 administration might therefore influence the induction of immunity to coencountered antigenic challenges and inflammatory events by inducing what appears to be a state of peripheral T-cell hyporesponsiveness.
Collapse
Affiliation(s)
- Laura K Slack
- Immunobiology Research Unit, School of Medicine and Biomedical Sciences (University of Sheffield), L Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mirza S, Muthana M, Fairburn B, Slack LK, Hopkinson K, Pockley AG. The stress protein gp96 is not an activator of resting rat bone marrow-derived dendritic cells, but is a costimulator and activator of CD3+ T cells. Cell Stress Chaperones 2007; 11:364-78. [PMID: 17278885 PMCID: PMC1712683 DOI: 10.1379/csc-208.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although low doses of tumor-derived stress protein gp96 elicit protective immunity to the tumor from which it is isolated, protection is lost at high doses because of the induction of immunoregulatory CD4+ T cells. This study evaluated the influence of gp96 on resting rat bone marrow-derived dendritic cells (BMDCs) and purified CD3+ T cells. In contrast to previous reports, gp96 had no effect on adhesion and costimulatory molecule expression by BMDCs, nor did it influence interleukin (IL)-10 and IL-12 secretion or their allostimulatory capacity. Gp96 did not bind to BMDCs but dose-dependently bound to CD4+ and CD8+ T cells. At low concentrations (1 and 25 microg/mL), gp96 acted as a costimulator of CD3+ T cells, inducing proliferation and the secretion of interferon (IFN)-gamma- and IL-10. Gp96 also increased the proliferation of CD28-costimulated CD3+ T cells and their secretion of IFN-gamma, IL-4, and IL-10. Gp96 had no effect at higher concentrations (50 and 100 microg/mL), despite the occurrence of cell surface binding at these concentrations. These findings indicate that gp96 can act as a costimulatory molecule for CD3+ T cells, and an observed increase in the IL-10: IFN-gamma secretion ratio induced by gp96 suggests that it might, at appropriate concentrations, promote a regulatory T-helper 2 (Th2)-like phenotype.
Collapse
Affiliation(s)
- Shabana Mirza
- Immunobiology Research Unit, School of Medicine and Biomedical Sciences (University of Sheffield), L Floor, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK
| | | | | | | | | | | |
Collapse
|
39
|
Chen L, Calomeni E, Wen J, Ozato K, Shen R, Gao JX. Natural killer dendritic cells are an intermediate of developing dendritic cells. J Leukoc Biol 2007; 81:1422-33. [PMID: 17332372 DOI: 10.1189/jlb.1106674] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
NK dendritic cells (DCs; NKDCs) appear to emerge as a distinct DC subset in humans and rodents, which have the functions of NK cells and DCs. However, the developmental relationship of NKDCs (CD11c(+)NK1.1(+)) to CD11c(+)NK1.1(-) DCs has not been addressed. Herein, we show that NKDCs exist exclusively in the compartment of CD11c(+)MHC II(-) cells in the steady state and express variable levels of DC subset markers, such as the IFN-producing killer DC marker B220, in a tissue-dependent manner. They can differentiate into NK1.1(-) DCs, which is accompanied by the up-regulation of MHC Class II molecules and down-regulation of NK1.1 upon adoptive transfer. However, NK cells (NK(+)CD11c(-)) did not differentiate into NK1.1(+)CD11c(+) cells upon adoptive transfer. Bone marrow-derived Ly6C(+) monocytes can be a potential progenitor of NKDCs, as some of them can differentiate into CD11c(+)NK1.1(+) as well as CD11c(+)NK1.1(-) cells in vivo. The steady-state NKDCs have a great capacity to lyse tumor cells but little capability to present antigens. Our studies suggest that NKDCs are an intermediate of developing DCs. These cells appear to bear the unique surface phenotype of CD11c(+)NK1.1(+)MHC II(-) and possess strong cytotoxic function yet show a poor ability to present antigen in the steady state. These findings suggest that NKDCs may play a critical role in linking innate and adaptive immunity.
Collapse
Affiliation(s)
- Li Chen
- Department of Pathology, Ohio State University Medical Center, 129 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Accumulating data suggest a potential for substantial overlap in phenotypic and functional characteristics between natural killer and dendritic cells. Thus, their identification, lineage commitment, and in vivo relevance may need a closer look.
Collapse
Affiliation(s)
- Hergen Spits
- Department of Immunology, Genentech, South San Francisco, CA 94080, USA.
| | | |
Collapse
|
41
|
De Bernardis F, Lucciarini R, Boccanera M, Amantini C, Arancia S, Morrone S, Mosca M, Cassone A, Santoni G. Phenotypic and functional characterization of vaginal dendritic cells in a rat model of Candida albicans vaginitis. Infect Immun 2006; 74:4282-94. [PMID: 16790803 PMCID: PMC1489681 DOI: 10.1128/iai.01714-05] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study analyzes the phenotype of vaginal dendritic cells (VDCs), their antigenic presentation and activation of T-cell cytokine secretion, and their protective role in a rat model of Candida vaginitis. Histological observation demonstrated a significant accumulation of OX62(+) VDCs in the mucosal epithelium of Candida albicans-infected rats at the third round of infection. We identified two subsets of OX62(+) VDCs differing in the expression of CD4 molecule in both noninfected and Candida-infected rats. The OX62(+) CD4(+) subset of VDCs displayed a lymphoid cell-like morphology and expressed the T-cell antigen CD5, whereas the OX62(+) CD4(-) VDC subset exhibited a myeloid morphology and was CD5 negative. Candida infection resulted in VDC maturation with enhanced expression of CD80 and CD134L on both CD4(+) and CD4(-) VDC subsets at 2 and 6 weeks after Candida infection. CD5(-) CD4(-) CD86(-) CD80(-) CD134L(+) VDCs from infected, but not noninfected, rats spontaneously released large amounts of interleukin-12 (IL-12) and tumor necrosis factor alpha, whereas all VDC subsets released comparable levels of IL-10 and IL-2 cytokines. Furthermore, OX62(+) VDCs from infected rats primed naïve CD4(+) T-cell proliferation and release of cytokines, including gamma interferon, IL-2, IL-6, and IL-10, in response to staphylococcal enterotoxin B stimulation in vitro. Adoptive transfer of highly purified OX62(+) VDCs from infected rats induced a significant acceleration of fungal clearance compared with that in rats receiving naive VDCs, suggesting a protective role of VDCs in the anti-Candida mucosal immunity. Finally, VDC-mediated protection was associated with their ability to rapidly migrate to the vaginal mucosa and lymph nodes, as assessed by adoptive transfer of OX62(+) VDCs labeled with 5 (and 6-)-carboxyfluorescein diacetate succinimidyl ester.
Collapse
Affiliation(s)
- Flavia De Bernardis
- Department of Experimental Medicine and Public Health, University of Camerino, via Scalzino 3, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hubert FX, Voisine C, Louvet C, Heslan JM, Ouabed A, Heslan M, Josien R. Differential Pattern Recognition Receptor Expression but Stereotyped Responsiveness in Rat Spleen Dendritic Cell Subsets. THE JOURNAL OF IMMUNOLOGY 2006; 177:1007-16. [PMID: 16818757 DOI: 10.4049/jimmunol.177.2.1007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dendritic cells (DC) are a heterogeneous population of APC endowed with specific functions. The nature of the DC subset involved in the course of an immune response to a specific pathogen might be important for inducing the appropriate effectors. In addition, each DC subset might also exhibit intrinsic functional plasticity. In the rat, spleen DC can be separated into three morphological and phenotypical distinct subsets, namely CD4+, CD4-, and plasmacytoid DC (pDC), whose frequencies are strain dependent. We correlated the expression of TLR and nucleotide-binding oligomerization domain 2 (NOD2) in these DC subsets to their in vitro responsiveness to specific ligands. CD4- DC expressed high levels of TLR1, 2, 3, and 10 mRNA, low TLR4, 5, 6, 7, and 9, and very low, if any, TLR8. pDC had a restricted repertoire characterized by high TLR7 and 9. CD4+ DC expressed all TLR and 10-fold higher levels of NOD2 mRNA than CD4- and pDC. Upon stimulation by TLR and NOD2 ligands, each DC subset responded in quite a stereotyped fashion. TLR2/6, 3, 4, 5, 9, and NOD2 triggering induced CD4- DC to mature and produce high IL-12p40, low IL-10, and TNF-alpha. TLR7/8 and 9 triggering induced pDC to mature and produce copious amounts of IL-6, IL-12p40, and TNF-alpha and low IFN-alpha. CD4+ DC were very poor producers of inflammatory cytokines. This study suggests that the nature of spleen DC responses to pathogens is dependent on subset specific-stimulation rather than intrinsic plasticity.
Collapse
Affiliation(s)
- François-Xavier Hubert
- INSERM Unité 643, Institut de Transplantation et de Recherche en Transplantation (ITERT), Centre Hospitalo-Universitaire Nantes, Hotel Dieu, 30 boulevard Jean Monnet, 44093 Nantes Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Chaudhry UI, Katz SC, Kingham TP, Pillarisetty VG, Raab JR, Shah AB, DeMatteo RP. In vivo
overexpression of Flt3 ligand expands and activates murine spleen natural killer dendritic cells. FASEB J 2006; 20:982-4. [PMID: 16571772 DOI: 10.1096/fj.05-5411fje] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Natural killer dendritic cells (NKDC) are a unique class of murine immune cells that possess the characteristics of both natural killer (NK) cells and dendritic cells (DC). Because NKDC are able to secrete IFN-gamma, directly lyse tumor cells, and present antigen to naïve T cells, they have immunotherapeutic potential. The relative paucity of NKDC, however, impedes their detailed study. We have found that in vivo, overexpression of the hematopoietic cytokine Flt3 ligand (Flt3L) expands NKDC in various organs from 2-18 fold. Flt3L expanded splenic NKDC retain the ability to lyse tumor cells and become considerably more potent at activating naïve allogeneic and antigen-specific T cells. Compared to normal splenic NKDC, Flt3L-expanded splenic NKDC have a more mature phenotype, a slightly increased ability to capture and process antigen, and a similar cytokine profile. In vivo, we found that Flt3L-expanded splenic NKDC are more effective than normal splenic NKDC in stimulating antigen-specific CD8 T cells. Additionally, we show that NKDC are able to cross-present antigen in vivo. The ability to expand NKDC in vivo using Flt3L will facilitate further analysis of their unique biology. Moreover, Flt3L-expanded NKDC may have enhanced immunotherapeutic potential, given their increased ability to stimulate T cells.
Collapse
Affiliation(s)
- Umer I Chaudhry
- Hepatobiliary Service, Memorial Sloan-Kettering Cancer Center, Box 203, 1275 York Ave., New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Degauque N, Lair D, Dupont A, Moreau A, Roussey G, Moizant F, Hubert FX, Louvet C, Hill M, Haspot F, Josien R, Usal C, Vanhove B, Soulillou JP, Brouard S. Dominant Tolerance to Kidney Allografts Induced by Anti-Donor MHC Class II Antibodies: Cooperation between T and Non-T CD103+Cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:3915-22. [PMID: 16547225 DOI: 10.4049/jimmunol.176.7.3915] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Allograft acceptance can be induced in the rat by pretransplant infusion of donor blood or spleen cells. Although promoting long-term acceptance, this treatment is also associated with chronic rejection. In this study, we show that a single administration of anti-donor MHC class II alloimmune serum on the day of transplantation results in indefinite survival of a MHC-mismatched kidney graft. Long-term recipients accept a donor-type skin graft and display no histological evidence of chronic rejection. The kidney grafts of tolerant animals display an accumulation of TCR Cbeta, FoxP3, and IDO transcripts. Moreover, as compared with syngeneic recipients, tolerant recipients harbor a large infiltrate of MHC class II(+) cells and CD103(+) cells. In vitro, splenocytes from tolerant recipients exhibit decreased donor-specific proliferation, which is restored by depletion of non-T cells and partially restored by the blockade of IDO. Finally, splenocytes from tolerant recipients, but not purified T cell splenocytes, transfer donor-specific infectious tolerance without chronic rejection, after infusion into naive recipients, over two generations. However, splenocytes depleted of T cells or splenocytes depleted of CD103(+) cells fail to transfer tolerance. Collectively, these data show that a single administration of anti-donor MHC class II alloimmune serum induces a tolerant state characterized by an infiltration of the kidney graft by regulatory T cells and CD103(+) cells. These data also show that the transfer of tolerance requires the presence of both T cells and CD103(+) dendritic cells. The precise mechanism of cooperation of these two cell subsets remains to be defined.
Collapse
Affiliation(s)
- Nicolas Degauque
- Institut National de la Santé et de la Recherche Médicale-Université de Nantes, Unité Mixte de Recherche 643, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Muthana M, Fairburn B, Mirza S, Slack LK, Hopkinson K, Pockley AG. Identification of a rat bone marrow-derived dendritic cell population which secretes both IL-10 and IL-12: evidence against a reciprocal relationship between IL-10 and IL-12 secretion. Immunobiology 2006; 211:391-402. [PMID: 16716808 DOI: 10.1016/j.imbio.2006.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 02/02/2006] [Indexed: 02/02/2023]
Abstract
The qualitative nature of immune responses induced by dendritic cells (DCs) is influenced by the balance of pro-inflammatory (e.g. IL-12) and anti-inflammatory (e.g. IL-10) cytokines that they secrete. Evidence to date suggests that IL-12 and IL-10 secretion is reciprocally regulated and that IL-10 inhibits IL-12 secretion. This study identifies a population of resting, immature rat bone marrow-derived DCs (BMDCs) which secretes IL-10, the IL-12(p70) heterodimer and the free IL-12(p40) subunit, the latter in vast excess of IL-12(p70). Counter-intuitively, activation with LPS induces the secretion of high and equivalent levels of IL-10 and IL-12(p40), but only quantitatively small increases in IL-12(p70). Neutralization of IL-10 increased the secretion of IL-12(p40) by resting BMDCs, but decreased IL-12(p40) secretion by LPS-activated BMDCs. Pre-incubation of resting BMDCs for 24h with neutralizing antibody to IL-10 reduced the subsequent secretion of IL-10 in allogeneic cultures of Lewis CD3(+) T cells with resting and LPS-activated Wistar BMDCs, and enhanced IL-12(p40) secretion in allogeneic cultures with LPS-activated BMDCs. IL-10 neutralization had no effect on the levels of IL-12(p70), IFN-gamma or IL-4 in allogeneic cultures. In summary, this study has identified a population of rat BMDCs that secretes low levels of bioactive IL-12(p70), but high levels of IL-10 and IL-12(p40). These findings argue against the concept that there is a reciprocal relationship between IL-10 and IL-12 secretion. They might also have implications for understanding the role of DCs in post-activation qualitative skewing of immune responses.
Collapse
Affiliation(s)
- Munitta Muthana
- Immunobiology Research Unit, Division of Clinical Sciences (North), Clinical Sciences Centre (University of Sheffield), Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | | | | | | | | | | |
Collapse
|
46
|
Taieb J, Chaput N, Ménard C, Apetoh L, Ullrich E, Bonmort M, Péquignot M, Casares N, Terme M, Flament C, Opolon P, Lecluse Y, Métivier D, Tomasello E, Vivier E, Ghiringhelli F, Martin F, Klatzmann D, Poynard T, Tursz T, Raposo G, Yagita H, Ryffel B, Kroemer G, Zitvogel L. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 2006; 12:214-9. [PMID: 16444265 DOI: 10.1038/nm1356] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 12/05/2005] [Indexed: 12/20/2022]
Abstract
The interferon (IFN)-gamma-induced TRAIL effector mechanism is a vital component of cancer immunosurveillance by natural killer (NK) cells in mice. Here we show that the main source of IFN-gamma is not the conventional NK cell but a subset of B220(+)Ly6C(-) dendritic cells, which are atypical insofar as they express NK cell-surface molecules. Upon contact with a variety of tumor cells that are poorly recognized by NK cells, B220(+)NK1.1(+) dendritic cells secrete high levels of IFN-gamma and mediate TRAIL-dependent lysis of tumor cells. Adoptive transfer of these IFN-producing killer dendritic cells (IKDCs) into tumor-bearing Rag2(-/-)Il2rg(-/-) mice prevented tumor outgrowth, whereas transfer of conventional NK cells did not. In conclusion, we identified IKDCs as pivotal sensors and effectors of the innate antitumor immune response.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigen Presentation
- Antigens, Ly
- Antigens, Surface/metabolism
- Apoptosis Regulatory Proteins/immunology
- CD11c Antigen/metabolism
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Dendritic Cells/classification
- Dendritic Cells/immunology
- Dendritic Cells/ultrastructure
- Female
- Interferon-gamma/biosynthesis
- Interleukin Receptor Common gamma Subunit
- Killer Cells, Natural/immunology
- Lectins, C-Type/metabolism
- Leukocyte Common Antigens/metabolism
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Microscopy, Electron
- NK Cell Lectin-Like Receptor Subfamily B
- Neoplasms, Experimental/immunology
- Receptors, Interleukin/deficiency
- Receptors, Interleukin/genetics
- TNF-Related Apoptosis-Inducing Ligand
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Julien Taieb
- ERM0208 INSERM, Faculté de Médecine Kremlin Bicêtre, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Janelidze S, Enell K, Visse E, Darabi A, Salford LG, Siesjö P. Activation of purified allogeneic CD4+ T cells by rat bone marrow-derived dendritic cells induces concurrent secretion of IFN-γ, IL-4, and IL-10. Immunol Lett 2005; 101:193-201. [PMID: 16002150 DOI: 10.1016/j.imlet.2005.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 03/24/2005] [Accepted: 05/31/2005] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) are highly specialized antigen-presenting cells that play a key role in the initiation and regulation of immune responses. The ability of DCs to process antigens and the outcome of their interaction with T cells are largely dependent on phenotype as well as maturation state of DCs. In this study, we generated DCs from rat bone marrow precursors. Bone marrow cells cultured in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-4, and Flt-3 ligand (FL) produced immature DCs that expressed intermediate levels of major histocompatibility complex (MHC) class II, low levels of CD80 and CD86 molecules and displayed a high capacity of endocytosis. Bone marrow-derived DCs (BMDCs) matured in the presence of lipopolysaccharide (LPS) upregulated expression of MHC class II, CD80 and CD86, while their phagocytic capacity was dramatically reduced. Mature BMDCs stimulated vigorous proliferation of purified allogeneic CD4(+) T cells in a primary mixed leukocyte reaction (MLR) and elicited a mixed cytokine profile in allogeneic CD4(+) T cells: DCs activated CD4(+) T cells to produce interferon (IFN)-gamma, IL-4, and IL-10. Thus, rat BMDCs effectively internalize antigens and stimulate T cell proliferation but fail to induce an unidirectional polarization of T helper (T(H)) cells and in this respect differ from both human and mouse DCs.
Collapse
Affiliation(s)
- Shorena Janelidze
- Glioma Immunotherapy Group, The Rausing Laboratory, Division of Neurosurgery, Department of Clinical Neuroscience, University of Lund, BMC I12, 221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
48
|
Trinité B, Chauvin C, Pêche H, Voisine C, Heslan M, Josien R. Immature CD4−CD103+Rat Dendritic Cells Induce Rapid Caspase-Independent Apoptosis-Like Cell Death in Various Tumor and Nontumor Cells and Phagocytose Their Victims. THE JOURNAL OF IMMUNOLOGY 2005; 175:2408-17. [PMID: 16081812 DOI: 10.4049/jimmunol.175.4.2408] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We previously reported the characterization of a MHC class II(low) CD4- CD103+ (CD4-) subset of dendritic cells (DC) in rat spleen that exhibit a Ca2+-, Fas ligand-, TRAIL- and TNF-alpha-independent cytotoxic activity against specific targets in vitro. In this study, we demonstrate that this DC subset was also found in lymph nodes. Freshly extracted and, therefore, immature CD4- DC exhibited a potent cytotoxic activity against a large panel of tumor cell lines as well as primary endothelial cells. The cytotoxic activity of immature CD4- DC required cell-to-cell contact and de novo protein expression. CD4- DC-mediated cell death resembled apoptosis, as evidenced by outer membrane phosphatidylserine exposure and nuclear fragmentation in target cells, but was caspase as well as Fas-associated death domain and receptor-interacting protein independent. Bcl-2 overexpression in target cells did not protect them against DC-mediated cell death. Immature CD4- DC phagocytosed efficiently apoptotic cells in vitro and, therefore, rapidly and specifically engulfed their victims following death induction. Maturation induced a dramatic down-regulation of the killing and phagocytic activities of CD4- DC. In contrast, CD4+ DC were both unable to kill target cells and to phagocytose apoptotic cells in vitro. Taken together, these data indicate that rat immature CD4- CD103+ DC mediate an unusual cytotoxic activity and can use this function to efficiently acquire Ag from live cells.
Collapse
Affiliation(s)
- Benjamin Trinité
- Institut National de la Santé et de la Recherche Médicale Unité 643, Institut de Transplantation et de Recherche en Transplantation, Nantes University Hospital, Nantes, France
| | | | | | | | | | | |
Collapse
|
49
|
Martiniello-Wilks R, Wang XY, Voeks DJ, Dane A, Shaw JM, Mortensen E, Both GW, Russell PJ. Purine nucleoside phosphorylase and fludarabine phosphate gene-directed enzyme prodrug therapy suppresses primary tumour growth and pseudo-metastases in a mouse model of prostate cancer. J Gene Med 2005; 6:1343-57. [PMID: 15493036 DOI: 10.1002/jgm.629] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Gene-directed enzyme prodrug therapy based on the E. coli purine nucleoside phosphorylase (PNP) gene produces efficient tumour cell killing. PNP converts adenosine analogs into toxic metabolites that diffuse across cell membranes to kill neighbouring untransduced cells (PNP-GDEPT). Interference with DNA, RNA and protein synthesis kills dividing and non-dividing cells, an important consideration for slow-growing prostate tumours. This study examined the impact of administering PNP-GDEPT into orthotopically grown RM1 prostate cancers (PCas) on the growth of lung pseudo-metastases of immunocompetent mice. C57BL/6 mice bearing orthotopic RM1 PCas received a single intraprostatic injection of OAdV220 (10(10) particles), a recombinant ovine atadenovirus containing the PNP gene controlled by the Rous Sarcoma virus promoter, followed by fludarabine phosphate (approximately 600 mg/m(2)/day) administered intraperitoneally (ip) once daily for 5 days. Pseudo-metastases were induced 2 days after intraprostatic vector administration by tail-vein injection of untransduced RM1 cells. Mice given PNP-GDEPT showed a significant reduction both in prostate volume (approximately 50%) and in lung colony counts (approximately 60%). Apoptosis was increased two-fold in GDEPT-treated prostates compared with controls (P < 0.01), but was absent in the lungs. Staining for proliferating cell nuclear antigen (PCNA) indicated that proliferation of both RM1 prostate tumours (P < 0.01) and lung colonies (P < 0.01) was significantly suppressed after GDEPT. Although prostate tumour immune cell infiltration did not differ significantly between treatments, immunostaining for Thy-1.2 (CD90) showed that GDEPT promoted Thy-1.2(+) cell infiltration into the prostate tumour site. This study showed that a single course of PNP-GDEPT significantly suppressed local PCa growth and reduced lung colony formation in the aggressive RM1 tumour model.
Collapse
Affiliation(s)
- Rosetta Martiniello-Wilks
- Oncology Research Centre, Prince of Wales Hospital Clinical School of Medicine, Faculty of Medicine, The University of New South Wales, Level 2, Clinical Sciences Building, Barker Street, Randwick, NSW 2031, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Turnbull EL, Yrlid U, Jenkins CD, Macpherson GG. Intestinal dendritic cell subsets: differential effects of systemic TLR4 stimulation on migratory fate and activation in vivo. THE JOURNAL OF IMMUNOLOGY 2005; 174:1374-84. [PMID: 15661895 DOI: 10.4049/jimmunol.174.3.1374] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dendritic cells (DC) present peripheral Ags to T cells in lymph nodes, but also influence their differentiation (tolerance/immunity, Th1/Th2). To investigate how peripheral conditions affect DC properties and might subsequently regulate T cell differentiation, we examined the effects of a potent DC-activating, TLR-4-mediated stimulus, LPS, on rat intestinal and hepatic DC in vivo. Steady-state rat intestinal and hepatic lymph DC are alpha(E2) integrin(high) (CD103) and include two subsets, signal regulatory protein alpha (SIRPalpha)(hi/low), probably representing murine CD8alphaalpha(-/+) DC. Steady-state lamina propria DC are immature; surface MHC class II(low), but steady-state lymph DC are semimature, MHC class II(high), but CD80/86(low). Intravenous LPS induced rapid lamina propria DC emigration and increased lymph DC traffic without altering SIRPalpha(high)/SIRPalpha(low) proportions. CD80/86 expression on lymph or mesenteric node DC was not up-regulated after i.v. LPS. In contrast, i.v. LPS stimulated marked CD80/86 up-regulation on splenic DC. CD80/86 expression on intestinal lymph DC, however, was increased after in vitro culture with TNF-alpha or GM-CSF, but not with up to 5 mug/ml LPS. Steady-state SIRPalpha(low) DC localized to T cell areas of mesenteric nodes, spleen, and Peyer's patch, whereas SIRPalpha(high) DC were excluded from these areas. Intravenous LPS stimulated rapid and abundant SIRPalpha(high) DC accumulation in T cell areas of mesenteric nodes and spleen. In striking contrast, i.v. LPS had no effect on DC numbers or distribution in Peyer's patches. Our results suggest that any explanation of switching between tolerance and immunity as well as involving changes in DC activation status must also take into account differential migration of DC subsets.
Collapse
Affiliation(s)
- Emma L Turnbull
- Sir William Dunn School of Pathology, Oxford, United Kingdom
| | | | | | | |
Collapse
|