1
|
Lani R, Thariq IM, Suhaimi NS, Hassandarvish P, Abu Bakar S. From defense to offense: Modulating toll-like receptors to combat arbovirus infections. Hum Vaccin Immunother 2024; 20:2306675. [PMID: 38263674 DOI: 10.1080/21645515.2024.2306675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024] Open
Abstract
Arboviruses are a significant threat to global public health, with outbreaks occurring worldwide. Toll-like receptors (TLRs) play a crucial role in the innate immune response against these viruses by recognizing pathogen-associated molecular patterns and initiating an inflammatory response. Significantly, TLRs commonly implicated in the immune response against viral infections include TLR2, TLR4, TLR6, TLR3, TLR7, and TLR8; limiting or allowing them to replicate and spread within the host. Modulating TLRs has emerged as a promising approach to combat arbovirus infections. This review summarizes recent advances in TLR modulation as a therapeutic target in arbovirus infections. Studies have shown that the activation of TLRs can enhance the immune response against arbovirus infections, leading to increased viral clearance and protection against disease. Conversely, inhibition of TLRs can reduce the excessive inflammation and tissue damage associated with arbovirus infection. Modulating TLRs represents a potential therapeutic strategy to combat arbovirus infections.
Collapse
Affiliation(s)
- Rafidah Lani
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ilya Maisarah Thariq
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nuramira Syazreen Suhaimi
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sazaly Abu Bakar
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Burke Ó, Zeden MS, O'Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P O'Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Rao H, Tian H, Wang X, Huo C, Zhu L, Li Z, Li Y. Diversification of Toll-like receptor 1 in swamp eel (Monopterus albus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 157:105190. [PMID: 38697378 DOI: 10.1016/j.dci.2024.105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Toll-like receptor 1 (TLR1) is a pattern recognition receptor that plays critical roles in triggering immune activation via detecting bacterial lipoproteins and lipopeptides. In this study, the genetic characteristic of TLR1 was studied for an important aquaculture fish, swamp eel Monopterus albus. The eel has been seriously threatened by infectious diseases. However, a low level of genetic heterogeneity in the fish that has resulted from a demographic bottleneck presents further challenges in breeding for disease resistance. A comparison with the homologue of closely related species M. javanensis revealed that amino acid replacement (nonsynonymous) but not silent (synonymous) differences have accumulated nonrandomly over the coding sequences of the receptors at the early stage of their phylogenetic split. The combined results from comparative analyses of nonsynonymous-to-synonymous polymorphisms showed that the receptor has undergone significant diversification in M. albus driven by adaptive selection likely after the genetic bottleneck. Some of the changes reported here have taken place in the structures mediating heterodimerization with co-receptor TLR2, ligand recognition, and/or formation of active signaling complex with adaptor, which highlighted key structural elements and strategies of TLR1 in arms race against exogenous challenges. The findings of this study will add to the knowledge base of genetic engineering and breeding for disease resistance in the eel.
Collapse
Affiliation(s)
- Han Rao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China
| | - Xueting Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Caifei Huo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Lilan Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, PR China.
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
4
|
Kawai T, Ikegawa M, Ori D, Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 2024; 57:649-673. [PMID: 38599164 DOI: 10.1016/j.immuni.2024.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.
Collapse
Affiliation(s)
- Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan; Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Shizuo Akira
- Center for Advanced Modalities and DSS (CAMaD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
5
|
Chick HM, Rees ME, Lewis ML, Williams LK, Bodger O, Harris LG, Rushton S, Wilkinson TS. Using the Traditional Ex Vivo Whole Blood Model to Discriminate Bacteria by Their Inducible Host Responses. Biomedicines 2024; 12:724. [PMID: 38672079 PMCID: PMC11047930 DOI: 10.3390/biomedicines12040724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Whole blood models are rapid and versatile for determining immune responses to inflammatory and infectious stimuli, but they have not been used for bacterial discrimination. Staphylococcus aureus, S. epidermidis and Escherichia coli are the most common causes of invasive disease, and rapid testing strategies utilising host responses remain elusive. Currently, immune responses can only discriminate between bacterial 'domains' (fungi, bacteria and viruses), and very few studies can use immune responses to discriminate bacteria at the species and strain level. Here, whole blood was used to investigate the relationship between host responses and bacterial strains. Results confirmed unique temporal profiles for the 10 parameters studied: IL-6, MIP-1α, MIP-3α, IL-10, resistin, phagocytosis, S100A8, S100A8/A9, C5a and TF3. Pairwise analysis confirmed that IL-6, resistin, phagocytosis, C5a and S100A8/A9 could be used in a discrimination scheme to identify to the strain level. Linear discriminant analysis (LDA) confirmed that (i) IL-6, MIP-3α and TF3 could predict genera with 95% accuracy; (ii) IL-6, phagocytosis, resistin and TF3 could predict species at 90% accuracy and (iii) phagocytosis, S100A8 and IL-10 predicted strain at 40% accuracy. These data are important because they confirm the proof of concept that host biomarker panels could be used to identify bacterial pathogens.
Collapse
Affiliation(s)
- Heather M. Chick
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK; (H.M.C.); (M.E.R.); (M.L.L.); (L.K.W.); (L.G.H.)
| | - Megan E. Rees
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK; (H.M.C.); (M.E.R.); (M.L.L.); (L.K.W.); (L.G.H.)
| | - Matthew L. Lewis
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK; (H.M.C.); (M.E.R.); (M.L.L.); (L.K.W.); (L.G.H.)
| | - Lisa K. Williams
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK; (H.M.C.); (M.E.R.); (M.L.L.); (L.K.W.); (L.G.H.)
- Department of Animal and Agriculture, Hartpury University, Hartpury, Gloucestershire GL19 3BE, UK
| | - Owen Bodger
- Patient and Population Health an Informatics Research, Swansea University Medical School, Swansea SA2 8PP, UK;
| | - Llinos G. Harris
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK; (H.M.C.); (M.E.R.); (M.L.L.); (L.K.W.); (L.G.H.)
| | - Steven Rushton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Thomas S. Wilkinson
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK; (H.M.C.); (M.E.R.); (M.L.L.); (L.K.W.); (L.G.H.)
| |
Collapse
|
6
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
7
|
Dietrich M, Besser M, Stuermer EK. Characterization of the Human Plasma Biofilm Model (hpBIOM) to Identify Potential Therapeutic Targets for Wound Management of Chronic Infections. Microorganisms 2024; 12:269. [PMID: 38399673 PMCID: PMC10892339 DOI: 10.3390/microorganisms12020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The treatment of chronic wounds still represents a major challenge in wound management. Recent estimates suggest that 60-80% of chronic wounds are colonized by pathogenic microorganisms, which are strongly considered to have a major inhibiting influence on the healing process. By means of an innovative biofilm model based on human plasma, the time-dependent behavior of various bacterial strains under wound-milieu-like conditions were investigated, and the growth habits of different cocci species were compared. Undescribed fusion events between colonies of MRSA as well as of Staphylococcus epidermidis were detected, which were associated with the remodeling and reorganization of the glycocalyx of the wound tissue. After reaching a maximum colony size, the spreading of individual bacteria was observed. Interestingly, the combination of different cocci species with Pseudomonas aeruginosa in the human plasma biofilm revealed partial synergistic effects in these multispecies organizations. RT-qPCR analyses gave a first impression of the relevant proteins involved in the formation and maturation of biofilms, especially the role of fibrinogen-binding proteins. Knowledge of the maturation and growth behavior of persistent biofilms investigated in a translational human biofilm model reflects a starting point for the development of novel tools for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Michael Dietrich
- Institute of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Manuela Besser
- Institute of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Ewa Klara Stuermer
- Department of Vascular Medicine, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
8
|
Dernovics Á, Seprényi G, Rázga Z, Ayaydin F, Veréb Z, Megyeri K. Phenol-Soluble Modulin α3 Stimulates Autophagy in HaCaT Keratinocytes. Biomedicines 2023; 11:3018. [PMID: 38002017 PMCID: PMC10669503 DOI: 10.3390/biomedicines11113018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Phenol-soluble modulins (PSMs) are pore-forming toxins (PFTs) produced by staphylococci. PSMs exert diverse cellular effects, including lytic, pro-apoptotic, pro-inflammatory and antimicrobial actions. Since the effects of PSMs on autophagy have not yet been reported, we evaluated the autophagic activity in HaCaT keratinocytes treated with recombinant PSMα3. METHODS The autophagic flux and levels of autophagic marker proteins were determined using Western blot analysis. Subcellular localization of LC3B and Beclin-1 was investigated using an indirect immunofluorescence assay. The ultrastructural features of control and PSMα3-treated cells were evaluated via transmission electron microscopy. Cytoplasmic acidification was measured via acridine orange staining. Phosphorylation levels of protein kinases, implicated in autophagy regulation, were studied using a phospho-kinase array and Western blot analysis. RESULTS PSMα3 facilitated the intracellular redistribution of LC3B, increased the average number of autophagosomes per cell, promoted the development of acidic vesicular organelles, elevated the levels of LC3B-II, stimulated autophagic flux and triggered a significant decrease in the net autophagic turnover rate. PSMα3 induced the accumulation of autophagosomes/autolysosomes, amphisomes and multilamellar bodies at the 0.5, 6 and 24 h time points, respectively. The phospho-Akt1/2/3 (T308 and S473), and phospho-mTOR (S2448) levels were decreased, whereas the phospho-Erk1/2 (T202/Y204 and T185/Y187) level was increased in PSMα3-treated cells. CONCLUSIONS In HaCaT keratinocytes, PSMα3 stimulates autophagy. The increased autophagic activity elicited by sub-lytic PSM concentrations might be an integral part of the cellular defense mechanisms protecting skin homeostasis.
Collapse
Affiliation(s)
- Áron Dernovics
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary;
| | - György Seprényi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Kossuth L. sgt. 40., H-6724 Szeged, Hungary;
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, Állomás u. 2, H-6720 Szeged, Hungary;
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM) Nonprofit Ltd., Római krt. 21., H-6723 Szeged, Hungary;
- Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Korányi Fasor 6, H-6720 Szeged, Hungary;
- Biobank, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Research Development and Innovation Center of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Klára Megyeri
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary;
| |
Collapse
|
9
|
Fawzy El-Sayed KM, Rudert A, Geiken A, Tölle J, Mekhemar M, Dörfer CE. Toll-like receptor expression profile of stem/progenitor cells from human exfoliated deciduous teeth. Int J Paediatr Dent 2023; 33:607-614. [PMID: 37158295 DOI: 10.1111/ipd.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Stem/progenitor cells from human exfoliated deciduous teeth (SHED) show remarkable pluripotent, regenerative, and immunological capacities. During in vivo regenerative processes, there could be the presence of SHED in the surrounding inflammatory microenvironment, through toll-like receptors (TLRs). AIM The aim of this paper was to present a characteristic TLR expression profile on SHED for the first time. DESIGN Cells were harvested from extracted primary teeth (n = 10), anti-STRO-1 immunomagnetically sorted and cultivated, through colony-forming units (CFUs). SHED were examined for mesenchymal stem/progenitor cell traits, including the expression of clusters of differentiation (CDs) 14, 34, 45, 73, 90, 105, and 146, and their multilineage differentiation aptitude. TLRs 1-10 expression was investigated for SHED in uninflamed and inflamed (25 ng/mL IL-1β, 103 U/mL IFN-γ, 50 ng/mL TNF-α, and 3 × 103 U/mL IFN-α; SHED-i) microenvironmental conditions. RESULTS SHED were negative for CDs 14, 34, and 45, but were positive for CDs 73, 90, 105, and 146, and demonstrated characteristic multilineage differentiation. In an uninflamed microenvironment, SHED expressed TLRs 1, 2, 3, 4, 6, 8, 9, and 10. The inflammatory microenvironment downregulated TLR7 significantly on gene level and upregulated TLR8 on gene and protein levels (p < .05; Wilcoxon signed-rank test). CONCLUSION There appears to be a unique TLR expression profile on SHED, which could modulate their immunological and regenerative abilities in oral tissue engineering approaches.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem Cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Antonia Rudert
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Antje Geiken
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Johannes Tölle
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Mohamed Mekhemar
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| | - Christof E Dörfer
- Conservative Dentistry and Periodontology Department, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
10
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Grando K, Nicastro LK, Tursi SA, De Anda J, Lee EY, Wong GCL, Tükel Ç. Phenol-Soluble Modulins From Staphylococcus aureus Biofilms Form Complexes With DNA to Drive Autoimmunity. Front Cell Infect Microbiol 2022; 12:884065. [PMID: 35646719 PMCID: PMC9131096 DOI: 10.3389/fcimb.2022.884065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The bacterial amyloid curli, produced by Enterobacteriales including Salmonella species and Escherichia coli, is implicated in the pathogenesis of several complex autoimmune diseases. Curli binds to extracellular DNA, and these complexes drive autoimmunity via production of anti-double-stranded DNA autoantibodies. Here, we investigated immune activation by phenol-soluble modulins (PSMs), the amyloid proteins expressed by Staphylococcus species. We confirmed the amyloid nature of PSMs expressed by S. aureus using a novel specific amyloid stain, (E,E)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy) styrylbenzene (FSB). Direct interaction of one of the S. aureus PSMs, PSMα3, with oligonucleotides promotes fibrillization of PSM amyloids and complex formation with bacterial DNA. Finally, utilizing a mouse model with an implanted mesh-associated S. aureus biofilm, we demonstrated that exposure to S. aureus biofilms for six weeks caused anti-double-stranded DNA autoantibody production in a PSM-dependent manner. Taken together, these results highlight how the presence of PSM-DNA complexes in S. aureus biofilms can induce autoimmune responses, and suggest an explanation for how bacterial infections trigger autoimmunity.
Collapse
Affiliation(s)
- Kaitlyn Grando
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lauren K. Nicastro
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah A. Tursi
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jaime De Anda
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ernest Y. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California Nano Systems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Çağla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Çağla Tükel,
| |
Collapse
|
12
|
Quilapi AM, Vargas-Lagos C, Martínez D, Muñoz JL, Spies J, Esperguel I, Tapia J, Oyarzún-Salazar R, Vargas-Chacoff L. Brain immunity response of fish Eleginops maclovinus to infection with Francisella noatunensis. FISH & SHELLFISH IMMUNOLOGY 2022; 120:695-705. [PMID: 34808359 DOI: 10.1016/j.fsi.2021.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The brain's immune system is selective and hermetic in most species, including fish, favoring immune responses mediated by soluble immunomodulatory factors such as serotonin and the availability of nutrients against infectious processes. Francisella noatunensis coexist with fish such as Eleginops maclovinus, which raises questions about the susceptibility and immune response of the brain of E. maclovinus against Francisella. In this study, we inoculated fish with different doses of Francisella and took samples for 28 days. We detected bacteria in the brain of fish injected with a high concentration of Francisella at all time points. qPCR analysis of immune genes indicated a response mainly in the medium-dose and early expression of genes involved in iron metabolism. Finally, brain serotonin levels were higher than in uninfected fish in all conditions, suggesting possible immunomodulatory participation in an infectious process.
Collapse
Affiliation(s)
- Ana María Quilapi
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Universidad Santo Tomás, Osorno, Chile; Magister en Ciencias Mención Microbiología, Universidad Austral de Chile, Valdivia, Chile.
| | - Carolina Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - Danixa Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Luis Muñoz
- Centro de Investigación y Desarrollo i ∼ mar, Universidad de los Lagos, Casilla 557, Puerto Montt, Chile
| | - Johana Spies
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Ivan Esperguel
- Magister en Ciencias Mención Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Tapia
- Institute of Chemistry and Natural Resources, Universidad de Talca, Chile
| | | | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP-IDEAL, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
13
|
Lum KK, Cristea IM. Host Innate Immune Response and Viral Immune Evasion During Alphaherpesvirus Infection. Curr Issues Mol Biol 2021; 42:635-686. [PMID: 33640867 DOI: 10.21775/cimb.042.635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both the development of the mammalian innate immune system and the antagonistic strategies acquired by alphaherpesviruses to dismantle it have been shaped by co-evolving virus-host interactions over millions of years. Here, we review mechanisms employed by mammalian cells to detect pathogen molecules, such as viral glycoproteins and nucleic acids, and induce innate immune signaling upon infection with alphaherpesviruses. We further explore strategies acquired by these viruses to bypass immune detection and activation, thereby supporting virus replication and spread. Finally, we discuss the contributions of advanced 'omics' and microscopy methods to these discoveries in immune signaling and highlight emerging technologies that can help to further our understanding of the dynamic interplay between host innate immune responses and virus immune evasion.
Collapse
Affiliation(s)
- Krystal K Lum
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
14
|
Batool K, Wajid A, Ain Q, Shahid S, Namat T, Batool A, Hussain T, Babar ME. Sequence-Based Structural and Evolution of Polymorphisms in Bovine Toll-Like Receptor2 Gene in Dhanni and Jersey Cattle Breeds. Genetic polymorphisms in bovine TLR2. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795420120030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Sahoo BR. Structure of fish Toll-like receptors (TLR) and NOD-like receptors (NLR). Int J Biol Macromol 2020; 161:1602-1617. [PMID: 32755705 PMCID: PMC7396143 DOI: 10.1016/j.ijbiomac.2020.07.293] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022]
Abstract
Innate immunity driven by pattern recognition receptor (PRR) protects the host from invading pathogens. Aquatic animals like fish where the adaptive immunity is poorly developed majorly rely on their innate immunity modulated by PRRs like toll-like receptors (TLR) and NOD-like receptors (NLR). However, current development to improve the fish immunity via TLR/NLR signaling is affected by a poor understanding of its mechanistic and structural features. This review discusses the structure of fish TLRs/NLRs and its interaction with pathogen associated molecular patterns (PAMPs) and downstream signaling molecules. Over the past one decade, significant progress has been done in studying the structure of TLRs/NLRs in higher eukaryotes; however, structural studies on fish innate immune receptors are undermined. Several novel TLR genes are identified in fish that are absent in higher eukaryotes, but the function is still poorly understood. Unlike the fundamental progress achieved in developing antagonist/agonist to modulate human innate immunity, analogous studies in fish are nearly lacking due to structural inadequacy. This underlies the importance of exploring the structural and mechanistic details of fish TLRs/NLRs at an atomic and molecular level. This review outlined the mechanistic and structural basis of fish TLR and NLR activation.
Collapse
|
16
|
Fehrmann C, Dörfer CE, Fawzy El-Sayed KM. Toll-like Receptor Expression Profile of Human Stem/Progenitor Cells Form the Apical Papilla. J Endod 2020; 46:1623-1630. [PMID: 32827509 DOI: 10.1016/j.joen.2020.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Stem/progenitor cells from the apical papilla (SCAPs) demonstrate remarkable regenerative and immunomodulatory properties. During their regenerative events, SCAPs, similar to other stem/progenitor cells, could interact with their local inflammatory microenvironment via their expressed toll-like receptors (TLRs). The present study aimed to describe for the first time the unique TLR expression profile of SCAPs. METHODS Cells were isolated from the apical papilla of extracted wisdom teeth (n = 8), STRO-1 immunomagnetically sorted, and cultured to obtain single colony-forming units. The expression of CD14, 34, 45, 73, 90, and 105 were characterized on the SCAPs, and their multilineage differentiation potential was examined to prove their multipotent aptitude. After their incubation in basic or inflammatory medium (25 ng/mL interleukin 1 beta, 103 U/mL interferon gamma, 50 ng/mL tumor necrosis factor alpha, and 3 × 103 U/mL interferon alpha), a TLR expression profile for SCAPs under uninflamed as well as inflamed conditions was respectively generated. RESULTS SCAPs demonstrated all predefined stem/progenitor cell characteristics. In basic medium, SCAPs expressed TLRs 1-10. The inflammatory microenvironment up-regulated the expression of TLR1, TLR2, TLR4, TLR5, TLR6, and TLR9 and down-regulated the expression of TLR3, TLR7, TLR8, and TLR10 in SCAPs under the inflamed condition. CONCLUSIONS The present study defines for the first time a distinctive TLR expression profile for SCAPs under uninflamed and inflamed conditions. This profile could greatly impact SCAP responsiveness to their inflammatory microenvironmental agents under regenerative conditions in vivo.
Collapse
Affiliation(s)
- Christian Fehrmann
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Karim M Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts University, Kiel, Germany; Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
17
|
Bhagwani A, Thompson AAR, Farkas L. When Innate Immunity Meets Angiogenesis-The Role of Toll-Like Receptors in Endothelial Cells and Pulmonary Hypertension. Front Med (Lausanne) 2020; 7:352. [PMID: 32850883 PMCID: PMC7410919 DOI: 10.3389/fmed.2020.00352] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/12/2020] [Indexed: 01/16/2023] Open
Abstract
Toll-like receptors serve a central role in innate immunity, but they can also modulate cell function in various non-immune cell types including endothelial cells. Endothelial cells are necessary for the organized function of the vascular system, and part of their fundamental role is also the regulation of immune function and inflammation. In this review, we summarize the current knowledge of how Toll-like receptors contribute to the immune and non-immune functions of the endothelial cells.
Collapse
Affiliation(s)
- Aneel Bhagwani
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - A. A. Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
The novel small-molecule antagonist MMG-11 preferentially inhibits TLR2/1 signaling. Biochem Pharmacol 2019; 171:113687. [PMID: 31678495 DOI: 10.1016/j.bcp.2019.113687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
Abstract
Toll-like receptor 2 (TLR2) forms heterodimers with either TLR1 or TLR6 to induce protective early inflammatory responses to pathogen- and damage-associated molecular patterns. However, excessive activation is associated with inflammatory and metabolic diseases. Several TLR2 antagonists have been described but pharmacological characterization is still at an early stage. Previously, we identified the potent and selective TLR2 antagonist MMG-11 by computational modelling and experimental validation. Here, we characterized the TLR2 antagonists MMG-11 and CU-CPT22 as well as the TIR-domain binding TLR2 antagonist C29 in TLR-overexpressing promoter cells as well as human and mouse macrophages. In line with our recent studies, MMG-11 abrogated pro-inflammatory cytokine secretion and NF-κB activation induced by different bacterial TLR2 agonists. MMG-11 preferentially inhibited TLR2/1 signaling in promoter cells stably expressing TLR2 heterodimers and mouse macrophages. Furthermore, the TLR2 antagonist blocked ligand-induced interaction of TLR2 with MyD88 and reduced MAP kinase and NF-κB activation. MMG-11 and CU-CPT22 but not C29 displaced Pam3CSK4 in an indirect binding assay confirming the competitive mode of action of MMG-11 and CU-CPT22. Isobologram analysis revealed additive and synergistic effects when the non-competitive antagonist C29 was combined with the competitive antagonist MMG-11 or CU-CPT22, respectively. In conclusion, we provide evidence that MMG-11 acts as a competitive antagonist with a predominance for the TLR2/1 heterodimer in human and mouse cells. Our results also indicate that MMG-11 is a model compound for studying TLR2 signaling.
Collapse
|
19
|
Hermann JK, Capadona JR. Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes. Crit Rev Biomed Eng 2019; 46:341-367. [PMID: 30806249 DOI: 10.1615/critrevbiomedeng.2018027166] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracortical microelectrodes exhibit enormous potential for researching the nervous system, steering assistive devices and functional electrode stimulation systems for severely paralyzed individuals, and augmenting the brain with computing power. Unfortunately, intracortical microelectrodes often fail to consistently record signals over clinically useful periods. Biological mechanisms, such as the foreign body response to intracortical microelectrodes and self-perpetuating neuroinflammatory cascades, contribute to the inconsistencies and decline in recording performance. Unfortunately, few studies have directly correlated microelectrode performance with the neuroinflammatory response to the implanted devices. However, of those select studies that have, the role of the innate immune system remains among the most likely links capable of corroborating the results of different studies, across laboratories. Therefore, the overall goal of this review is to highlight the role of innate immunity signaling in the foreign body response to intracortical microelectrodes and hypothesize as to appropriate strategies that may become the most relevant in enabling brain-dwelling electrodes of any geometry, or location, for a range of clinical applications.
Collapse
Affiliation(s)
- John K Hermann
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
| |
Collapse
|
20
|
Fawzy El-Sayed KM, Elahmady M, Adawi Z, Aboushadi N, Elnaggar A, Eid M, Hamdy N, Sanaa D, Dörfer CE. The periodontal stem/progenitor cell inflammatory-regenerative cross talk: A new perspective. J Periodontal Res 2019; 54:81-94. [PMID: 30295324 DOI: 10.1111/jre.12616] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/24/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Adult multipotent stem/progenitor cells, with remarkable regenerative potential, have been isolated from various components of the human periodontium. These multipotent stem/progenitor cells include the periodontal ligament stem/progenitor cells (PDLSCs), stem cells from the apical papilla (SCAP), the gingival mesenchymal stem/progenitor cells (G-MSCs), and the alveolar bone proper stem/progenitor cells (AB-MSCs). Whereas inflammation is regarded as the reason for tissue damage, it also remains a fundamental step of any early healing process. In performing their periodontal tissue regenerative/reparative activity, periodontal stem/progenitor cells interact with their surrounding inflammatory micro-environmental, through their expressed receptors, which could influence their fate and the outcome of any periodontal stem/progenitor cell-mediated reparative/regenerative activity. The present review discusses the current understanding about the interaction of periodontal stem/progenitor cells with their surrounding inflammatory micro-environment, elaborates on the inflammatory factors influencing their stemness, proliferation, migration/homing, differentiation, and immunomodulatory attributes, the possible underlying intracellular mechanisms, as well as their proposed relationship to the canonical and noncanonical Wnt pathways.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | | | - Zeina Adawi
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | | | - Ali Elnaggar
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Maryam Eid
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Nayera Hamdy
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Dalia Sanaa
- Faculty of Dentistry, New Giza University, Giza, Egypt
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
21
|
Curli-Containing Enteric Biofilms Inside and Out: Matrix Composition, Immune Recognition, and Disease Implications. Microbiol Mol Biol Rev 2018; 82:82/4/e00028-18. [PMID: 30305312 DOI: 10.1128/mmbr.00028-18] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biofilms of enteric bacteria are highly complex, with multiple components that interact to fortify the biofilm matrix. Within biofilms of enteric bacteria such as Escherichia coli and Salmonella species, the main component of the biofilm is amyloid curli. Other constituents include cellulose, extracellular DNA, O antigen, and various surface proteins, including BapA. Only recently, the roles of these components in the formation of the enteric biofilm individually and in consortium have been evaluated. In addition to enhancing the stability and strength of the matrix, the components of the enteric biofilm influence bacterial virulence and transmission. Most notably, certain components of the matrix are recognized as pathogen-associated molecular patterns. Systemic recognition of enteric biofilms leads to the activation of several proinflammatory innate immune receptors, including the Toll-like receptor 2 (TLR2)/TLR1/CD14 heterocomplex, TLR9, and NLRP3. In the model of Salmonella enterica serovar Typhimurium, the immune response to curli is site specific. Although a proinflammatory response is generated upon systemic presentation of curli, oral administration of curli ameliorates the damaged intestinal epithelial barrier and reduces the severity of colitis. Furthermore, curli (and extracellular DNA) of enteric biofilms potentiate the autoimmune disease systemic lupus erythematosus (SLE) and promote the fibrillization of the pathogenic amyloid α-synuclein, which is implicated in Parkinson's disease. Homologues of curli-encoding genes are found in four additional bacterial phyla, suggesting that the biomedical implications involved with enteric biofilms are applicable to numerous bacterial species.
Collapse
|
22
|
Tengesdal IW, Kitzenberg D, Li S, Nyuydzefe MS, Chen W, Weiss JM, Zhang J, Waksal SD, Zanin-Zhorov A, Dinarello CA. The selective ROCK2 inhibitor KD025 reduces IL-17 secretion in human peripheral blood mononuclear cells independent of IL-1 and IL-6. Eur J Immunol 2018; 48:1679-1686. [PMID: 30098001 DOI: 10.1002/eji.201847652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 01/07/2023]
Abstract
Reducing the activities of the pro-inflammatory cytokine IL-17 is an effective treatment strategy for several chronic autoimmune disorders. Rho-associated coiled-coil containing kinase 2 (ROCK2) is a member of the serine-threonine protein kinase family that regulates IL-17 secretion in T cells via signal transducer and activator of transcription 3 (STAT3)-dependent mechanism. We reported here that the selective ROCK2 inhibitor KD025 significantly reduced in vitro production of IL-17 in unfractionated human peripheral blood mononuclear cells (PBMCs) stimulated with the dectin-1 agonist Candida albicans. C. albicans induced IL-17 was reduced by 70% (p < 0.0001); a similar reduction (80%) was observed in PBMC stimulated with the Toll-like receptor 2 agonist Staphylococcus epidermidis (p < 0.0001). Treatment of PBMC with KD025 was not associated with a reduction in IL-1β, IL-6 or IL-1α levels; in contrast, a 1.5 fold increase in the level of IL-1 receptor antagonist (IL-1Ra) was observed (p < 0.001). KD025 down-regulated C. albicans-induced Myosin Light Chain and STAT3, whereas STAT5 phosphorylation increased. Using anti-CD3/CD28 activation of the TCR, KD025 similarly suppressed IL-17 independent of a reduction in IL-1β. Thus, ROCK2 directly regulates IL-17 secretion independent of endogenous IL-1 and IL-6 supporting development of selective ROCK2 inhibitors for treatment of IL-17-driven inflammatory diseases.
Collapse
Affiliation(s)
- Isak W Tengesdal
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Suzhao Li
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Wei Chen
- Kadmon Corporation, LLC, New York, NY, USA
| | | | | | | | | | - Charles A Dinarello
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Dong Y, Speer CP, Glaser K. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence 2018; 9:621-633. [PMID: 29405832 PMCID: PMC5955464 DOI: 10.1080/21505594.2017.1419117] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Staphylococcus epidermidis accounts for the majority of cases of neonatal sepsis. Moreover, it has been demonstrated to be associated with neonatal morbidities, such as bronchopulmonary dysplasia (BPD), white matter injury (WMI), necrotizing enterocolitis (NEC) and retinopathy of prematurity (ROP), which affect short-term and long-term neonatal outcome. Imbalanced inflammation has been considered to be a major underlying mechanism of each entity. Conventionally regarded as a harmless commensal on human skin, S. epidermidis has received less attention than its more virulent relative Staphylococcus aureus. Particularities of neonatal innate immunity and nosocomial environmental factors, however, may contribute to the emergence of S. epidermidis as a significant nosocomial pathogen. Neonatal host response to S. epidermidis sepsis has not been fully elucidated. Evidence is emerging regarding the implication of S. epidermidis sepsis in the pathogenesis of neonatal inflammatory diseases. This review focuses on the interplay among S. epidermidis, neonatal innate immunity and inflammation-driven organ injury.
Collapse
Affiliation(s)
- Ying Dong
- a University Children's Hospital , University of Wuerzburg , Wuerzburg , Germany.,b Department of Neonatology , Children's Hospital of Fudan University , Shanghai , China
| | - Christian P Speer
- a University Children's Hospital , University of Wuerzburg , Wuerzburg , Germany
| | - Kirsten Glaser
- a University Children's Hospital , University of Wuerzburg , Wuerzburg , Germany
| |
Collapse
|
24
|
Lee W, Kim M, Lee SH, Jung HG, Oh JW. Prophylactic efficacy of orally administered Bacillus poly-γ-glutamic acid, a non-LPS TLR4 ligand, against norovirus infection in mice. Sci Rep 2018; 8:8667. [PMID: 29875467 PMCID: PMC5989232 DOI: 10.1038/s41598-018-26935-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 12/22/2022] Open
Abstract
Poly-gamma-glutamic acid (γ-PGA), an extracellular biopolymer produced by Bacillus sp., is a non-canonical toll-like receptor 4 (TLR4) agonist. Here we show its antiviral efficacy against noroviruses. γ-PGA with a molecular mass of 2,000-kDa limited murine norovirus (MNV) replication in the macrophage cell line RAW264.7 by inducing interferon (IFN)-β and conferred resistance to viral infection-induced cell death. Additionally, γ-PGA interfered with viral entry into cells. The potent antiviral state mounted by γ-PGA was not attributed to the upregulation of TLR4 or TLR3, a sensor known to recognize norovirus RNA. γ-PGA sensing by TLR4 required the two TLR4-associated accessory factors MD2 and CD14. In ex vivo cultures of mouse ileum, γ-PGA selectively increased the expression of IFN-β in villi. In contrast, IFN-β induction was negligible in the ileal Peyer’s patches (PPs) where its expression was primarily induced by the replication of MNV. Oral administration of γ-PGA, which increased serum IFN-β levels without inducing proinflammatory cytokines, reduced MNV loads in the ileum with PPs and mesenteric lymph nodes in mice. Our results disclose a γ-PGA-mediated non-conventional TLR4 signaling in the ileum, highlighting the potential use of γ-PGA as a prophylactic antiviral agent against noroviruses.
Collapse
Affiliation(s)
- Wooseong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seung-Hoon Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hae-Gwang Jung
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
25
|
Vidyant S, Chatterjee A, Agarwal V, Dhole TN. Susceptibility to HIV-1 infection is influenced by toll like receptor-2 (-196 to -174) polymorphism in a north Indian population. J Gene Med 2018; 19. [PMID: 28730622 DOI: 10.1002/jgm.2971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/30/2017] [Accepted: 07/14/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Toll like receptors (TLRs) are pattern recognition receptors that recognize molecular patterns of pathogens and play an important role in innate immunity. Recent studies have identified that a single nucleotide polymorphism (SNP) in the TLR gene impairs the response to TLR ligands in some individuals and is associated with susceptibility to various infectious diseases. The present study aimed to investigate the role of four SNPs in the TLR2 gene [-196 to -174 Ins/Del, 2258 G/A (Arg753Gln), 2029 C/T (Arg677Trp) and 1892 C/A (Pro631His)] with respect to susceptibility and progression to HIV-1 in North Indian individuals. METHODS The study population consisted of 160 HIV-1 seropositive patients stratified on the basis of disease severity (stages I, II and III) and 270 HIV-1 seronegative individuals. The subjects were genotyped for TLR2 gene polymorphism by polymerase chain reaction restriction fragment length polymorphism. RESULTS In the present study, we found that the TLR2 Del mutant genotype [odds ratio (OR) = 2.138; p = 0.001] and allele (OR = 1.562; p = 0.002) was at a higher frequency in patients with HIV-1 infection compared to healthy controls and was significantly associated with the risk of HIV-1 infection and disease susceptibility. Furthermore, we also found that TLR2 Del homozygous genotype was at a lower frequency in stage III (19.35%) compared to stage I (50.87%; OR = 1.901) and stage II (43.05%; OR = 1.514) and was associated with a reduced risk of HIV-1 disease progression. CONCLUSIONS The present study reports for the first time that the TLR2-196 to -174 Ins/Del polymorphism is a risk factor for HIV-1 transmission in HIV-1 infected North Indian individuals.
Collapse
Affiliation(s)
- Sanjukta Vidyant
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Tapan N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
26
|
Zhou Y, Ni X, Wen B, Duan L, Sun H, Yang M, Zou F, Lin Y, Liu Q, Zeng Y, Fu X, Pan K, Jing B, Wang P, Zeng D. Appropriate dose of Lactobacillus buchneri supplement improves intestinal microbiota and prevents diarrhoea in weaning Rex rabbits. Benef Microbes 2018; 9:401-416. [DOI: 10.3920/bm2017.0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examined the effects on intestinal microbiota and diarrhoea of Lactobacillus buchneri supplementation to the diet of weaning Rex rabbits. To this end, rabbits were treated with L. buchneri at two different doses (LC: 104 cfu/g diet and HC: 105 cfu/g diet) for 4 weeks. PCR-DGGE was used to determine the diversity of the intestinal microbiota, while real-time PCR permitted the detection of individual bacterial species. ELISA and real-time PCR allowed the identification of numerous cytokines in the intestinal tissues. Zonula occludens-1, polymeric immunoglobulin receptor and immunoglobulin A genes were examined to evaluate intestinal barriers. Results showed that the biodiversity of the intestinal microbiota of weaning Rex rabbits improved in the whole tract of the treated groups. The abundance of most detected bacterial species was highly increased in the duodenum, jejunum and ileum after L. buchneri administration. The species abundance in the HC group was more increased than in the LC group when compared to the control. Although the abundance of Enterobacteriaceae exhibited a different pattern, Escherichia coli was inhibited in all treatment groups. Toll-like receptor (TLR)2 and TLR4 genes were down-regulated in all intestinal tissues as the microbiota changed. In the LC group, the secretion of the inflammatory cytokine tumour necrosis factor-α was reduced, the gene expression of the anti-inflammatory cytokine interleukin (IL)-4 was up-regulated and the expression of intestinal-barrier-related genes was enhanced. Conversely, IL-4 expression was increased and the expression of other tested genes did not change in the HC group. The beneficial effects of LC were greater than those of HC or the control in terms of improving the daily weight gain and survival rate of weaning Rex rabbits and reducing their diarrhoea rate. Therefore, 104 cfu/g L. buchneri treatment improved the microbiota of weaning Rex rabbits and prevented diarrhoea in these animals.
Collapse
Affiliation(s)
- Y. Zhou
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - X. Ni
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| | - B. Wen
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China P.R
| | - L. Duan
- Qu Country Extension Station for Husbandry Technology, Dazhou, Sichuan 635299, China P.R
| | - H. Sun
- Ya’an City Bureau of Agriculture, Ya’an, Sichuan 625099, China P.R
| | - M. Yang
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - F. Zou
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - Y. Lin
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - Q. Liu
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - Y. Zeng
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
| | - X. Fu
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China P.R
| | - K. Pan
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| | - B. Jing
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| | - P. Wang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan 611731, China P.R
| | - D. Zeng
- Animal Microecology Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Huiming Road 211, Chengdu, Sichuan 611130, China P.R
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China P.R
| |
Collapse
|
27
|
Chu M, Zhou M, Jiang C, Chen X, Guo L, Zhang M, Chu Z, Wang Y. Staphylococcus aureus Phenol-Soluble Modulins α1-α3 Act as Novel Toll-Like Receptor (TLR) 4 Antagonists to Inhibit HMGB1/TLR4/NF-κB Signaling Pathway. Front Immunol 2018; 9:862. [PMID: 29922279 PMCID: PMC5996891 DOI: 10.3389/fimmu.2018.00862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/06/2018] [Indexed: 01/23/2023] Open
Abstract
Phenol-soluble modulins (PSMs) have recently emerged as key virulence determinants, particularly in highly aggressive Staphylococcus aureus isolates. These peptides contribute to the pathogenesis of S. aureus infections, participating in multiple inflammatory responses. Here, we report a new role for S. aureus PSMs in high mobility group box-1 protein (HMGB1) induced inflammation by modulating toll-like receptor (TLR) 4 pathway. Direct ligation of TLR4 with S. aureus PSMα1–α3 and PSMβ1–β2 was identified by surface plasmon resonance. Remarkably, the binding affinity of TLR4 with HMGB1 was attenuated by PSMα1–α3. Further study revealed that PSMα1–α3 directly inhibited HMGB1-induced NF-κB activation and proinflammatory cytokines production in vitro using HEK-Blue hTLR4 cells and THP-1 cells. To analyze the molecular interactions between PSMs and TLR4, blast similarity search was performed and identified that PSMα1 and PSMβ2 were ideal templates for homology modeling. The three-dimensional structures of PSMα2, PSMα4, PSMβ1, and δ-toxin were successfully generated with MODELLER, and further refined using CHARMm. PSMs docking into TLR4 were done using ZDOCK, indicating that PSMα1–α3 compete with HMGB1 for interacting with the surrounding residues (336–477) of TLR4 domain. Our study reveals that S. aureus PSMα1–α3 can act as novel TLR4 antagonists, which account at least in part for the staphylococcal immune evasion. Modulation of this process will lead to new therapeutic strategies against S. aureus infections.
Collapse
Affiliation(s)
- Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Mingya Zhou
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | | | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Likai Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Mingbo Zhang
- Pharmacy Departments, Liao Ning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhengyun Chu
- Pharmacy Departments, Liao Ning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
28
|
Martínez D, Díaz-Ibarrola D, Vargas-Lagos C, Oyarzún R, Pontigo JP, Muñoz JLP, Yáñez AJ, Vargas-Chacoff L. Immunological response of the Sub-Antarctic Notothenioid fish Eleginops maclovinus injected with two strains of Piscirickettsia salmonis. FISH & SHELLFISH IMMUNOLOGY 2018; 75:139-148. [PMID: 29421586 DOI: 10.1016/j.fsi.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Eleginops maclovinus is an endemic fish to Chile that lives in proximity to salmonid culture centers, feeding off of uneaten pellet and salmonid feces. Occurring in the natural environment, this interaction between native and farmed fish could result in the horizontal transmission of pathogens affecting the aquaculture industry. The aim of this study was to evaluate the innate and adaptive immune responses of E. maclovinus challenged with P. salmonis. Treatment injections (in duplicate) were as follows: control (100 μL of culture medium), wild type LF-89 strain (100 μL, 1 × 108 live bacteria), and antibiotic resistant strain Austral-005 (100 μL, 1 × 108 live bacteria). The fish were sampled at various time-points during the 35-day experimental period. The gene expression of TLRs (1, 5, and 8), NLRCs (3 and 5), C3, IL-1β, MHCII, and IgMs were significantly modulated during the experimental period in both the spleen and gut (excepting TLR1 and TLR8 spleen expressions), with tissue-specific expression profiles and punctual differences between the injected strains. Anti-P. salmonis antibodies increased in E. maclovinus serum from day 14-28 for the LF-89 strain and from day 14-35 for the Austral-005 strain. These results suggest temporal activation of the innate and adaptive immune responses in E. maclovinus tissues when injected by distinct P. salmonis strains. The Austral-005 strain did not always cause the greatest increases/decreases in the number of transcripts, so the magnitude of the observed immune response (mRNA) may not be related to antibiotic resistance. This is the first immunological study to relate a pathogen widely studied in salmonids with a native fish.
Collapse
Affiliation(s)
- D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de l6a Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| | - D Díaz-Ibarrola
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
| | - C Vargas-Lagos
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Magister en Microbiología, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile
| | - R Oyarzún
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de l6a Acuicultura, Universidad Austral de Chile, Av. Los Pinos s/n Balneario Pelluco, Puerto Montt, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - J P Pontigo
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile
| | - J L P Muñoz
- Centro de Investigación y Desarrollo i ∼ mar, Universidad de los Lagos, Casilla 557, Puerto Montt, Chile
| | - A J Yáñez
- Centro Fondap Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Austral de Chile, Valdivia, Chile; Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| |
Collapse
|
29
|
Nguyen MT, Uebele J, Kumari N, Nakayama H, Peter L, Ticha O, Woischnig AK, Schmaler M, Khanna N, Dohmae N, Lee BL, Bekeredjian-Ding I, Götz F. Lipid moieties on lipoproteins of commensal and non-commensal staphylococci induce differential immune responses. Nat Commun 2017; 8:2246. [PMID: 29269769 PMCID: PMC5740139 DOI: 10.1038/s41467-017-02234-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/15/2017] [Indexed: 02/08/2023] Open
Abstract
Lipoproteins (Lpp) of Gram-positive bacteria are major players in alerting our immune system. Here, we show that the TLR2 response induced by commensal species Staphylococcus aureus and Staphylococcus epidermidis is almost ten times lower than that induced by noncommensal Staphylococcus carnosus, and this is at least partially due to their different modifications of the Lpp lipid moieties. The N terminus of the lipid moiety is acylated with a long-chain fatty acid (C17) in S. aureus and S. epidermidis, while it is acylated with a short-chain fatty acid (C2) in S. carnosus. The long-chain N-acylated Lpp, recognized by TLR2-TLR1 receptors, silences innate and adaptive immune responses, while the short-chain N-acetylated Lpp, recognized by TLR2-TLR6 receptors, boosts it.
Collapse
Affiliation(s)
- Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, 72076, Germany.,School of Biological and Food Technology, Hanoi University of Science and Technology, Hanoi, 1000, Vietnam
| | - Julia Uebele
- Paul-Ehrlich-Institute, Federal Regulatory Agency for Vaccines and Biomedicines, Langen, 63225, Germany
| | - Nimerta Kumari
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, 72076, Germany
| | - Hiroshi Nakayama
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Lena Peter
- Paul-Ehrlich-Institute, Federal Regulatory Agency for Vaccines and Biomedicines, Langen, 63225, Germany
| | - Olga Ticha
- Paul-Ehrlich-Institute, Federal Regulatory Agency for Vaccines and Biomedicines, Langen, 63225, Germany
| | - Anne-Kathrin Woischnig
- Laboratory of Infection Biology, Department of Biomedicine, University Hospital Basel, Basel, CH-4031, Switzerland
| | - Mathias Schmaler
- Laboratory of Infection Biology, Department of Biomedicine, University Hospital Basel, Basel, CH-4031, Switzerland
| | - Nina Khanna
- Laboratory of Infection Biology, Department of Biomedicine, University Hospital Basel, Basel, CH-4031, Switzerland
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Pusan, 609-735, South Korea
| | - Isabelle Bekeredjian-Ding
- Paul-Ehrlich-Institute, Federal Regulatory Agency for Vaccines and Biomedicines, Langen, 63225, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
30
|
Generalov EA, Levashova NT, Sidorova AE, Chumakov PM, Yakovenko LV. An autowave model of the bifurcation behavior of transformed cells in response to polysaccharide. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917050086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Lewis ML, Surewaard BGJ. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus. Cell Tissue Res 2017; 371:489-503. [PMID: 29204747 DOI: 10.1007/s00441-017-2737-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023]
Abstract
Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.
Collapse
Affiliation(s)
- Megan L Lewis
- Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bas G J Surewaard
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada. .,Department of Medical Microbiology, University Medical Centre, Utrecht, Netherlands.
| |
Collapse
|
32
|
TLR expression profile of human alveolar bone proper-derived stem/progenitor cells and osteoblasts. J Craniomaxillofac Surg 2017; 45:2054-2060. [DOI: 10.1016/j.jcms.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/07/2017] [Accepted: 09/11/2017] [Indexed: 02/08/2023] Open
|
33
|
Sabaté Brescó M, Harris LG, Thompson K, Stanic B, Morgenstern M, O'Mahony L, Richards RG, Moriarty TF. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection. Front Microbiol 2017; 8:1401. [PMID: 28824556 PMCID: PMC5539136 DOI: 10.3389/fmicb.2017.01401] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly found on skin and mucous membranes. By adhering to tissue surface moieties of the host via specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with humans that begins early in life. In its role as a commensal organism, S. epidermidis is thought to provide benefits to human host, including out-competing more virulent pathogens. However, largely due to its capacity to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important opportunistic pathogen in patients receiving medical devices. S. epidermidis causes approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to 50% in late-developing infections. Despite this prevalence, it remains underrepresented in the scientific literature, in particular lagging behind the study of the S. aureus. This review aims to provide an overview of the interactions of S. epidermidis with the human host, both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis that enable colonization of human skin as well as invasive infection, will be described, with a particular focus upon biofilm formation. The host immune responses to these infections are also described, including how S. epidermidis seems to trigger low levels of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to the sub-acute and persistent nature often associated with these infections. The adaptive immune response to S. epidermidis remains poorly described, and represents an area which may provide significant new discoveries in the coming years.
Collapse
Affiliation(s)
- Marina Sabaté Brescó
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland.,Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - Llinos G Harris
- Microbiology and Infectious Diseases, Institute of Life Science, Swansea University Medical SchoolSwansea, United Kingdom
| | - Keith Thompson
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Barbara Stanic
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - Mario Morgenstern
- Department of Orthopedic and Trauma Surgery, University Hospital BaselBasel, Switzerland
| | - Liam O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of ZurichDavos, Switzerland
| | - R Geoff Richards
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| | - T Fintan Moriarty
- Musculoskeletal Infection, AO Research Institute DavosDavos, Switzerland
| |
Collapse
|
34
|
Takagi M, Takakubo Y, Pajarinen J, Naganuma Y, Oki H, Maruyama M, Goodman SB. Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. J Orthop Translat 2017; 10:68-85. [PMID: 29130033 PMCID: PMC5676564 DOI: 10.1016/j.jot.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The innate immune sensors, Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), can recognize not only exogenous pathogen-associated molecular patterns (PAMPs), but also endogenous molecules created upon tissue injury, sterile inflammation, and degeneration. Endogenous ligands are called damage-associated molecular patterns (DAMPs), and include endogenous molecules released from activated and necrotic cells as well as damaged extracellular matrix. TLRs and NLRs can interact with various ligands derived from PAMPs and DAMPs, leading to activation and/or modulation of intracellular signalling pathways. Intensive research on the innate immune sensors, TLRs and NLRs, has brought new insights into the pathogenesis of not only various infectious and rheumatic diseases, but also aseptic foreign body granuloma and septic inflammation of failed total hip replacements (THRs). In this review, recent knowledge is summarized on the innate immune system, including TLRs and NLRs and their danger signals, with special reference to their possible role in the adverse local host response to THRs. Translational potential of this article: A clear understanding of the roles of Toll-like receptors and NOD-like receptors in aseptic and septic loosening of joint replacements will facilitate potential strategies to mitigate these events, thereby extending the longevity of implants in humans.
Collapse
Affiliation(s)
- Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Yuya Takakubo
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yasushi Naganuma
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Hiroharu Oki
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan.,Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
35
|
Gioacchini G, Rossi G, Carnevali O. Host-probiotic interaction: new insight into the role of the endocannabinoid system by in vivo and ex vivo approaches. Sci Rep 2017; 7:1261. [PMID: 28455493 PMCID: PMC5430882 DOI: 10.1038/s41598-017-01322-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system plays an important role in regulating inflammation in several chronic or anomalous gut inflammatory diseases. In vivo and ex vivo studies showed that 30 days treatment with a probiotic mix activated the endocannabinoid system in zebrafish. These results highlight the potential of this probiotic mixture to regulate immune cell function, by inducing gene expression of toll-like receptors and other immune related molecules. Furthermore, TUNEL assay showed a decrease in the number of apoptotic cells, and this finding was supported by a reduction in pro-apoptotic factors and an increase in anti-apoptotic molecules. The results presented here strengthen the molecular mechanisms activated by probiotic mix controlling immune response and inflammation.
Collapse
Affiliation(s)
- Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Giacomo Rossi
- Scuola di Bioscienze e Medicina Veterinaria, Università degli Studi di Camerino, Via Fidanza 15, 62024, Matelica, MC, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy. .,INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy.
| |
Collapse
|
36
|
Nguyen TH, Park MD, Otto M. Host Response to Staphylococcus epidermidis Colonization and Infections. Front Cell Infect Microbiol 2017; 7:90. [PMID: 28377905 PMCID: PMC5359315 DOI: 10.3389/fcimb.2017.00090] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/07/2017] [Indexed: 01/11/2023] Open
Abstract
The majority of research in the Staphylococcus field has been dedicated to the understanding of Staphylococcus aureus infections. In contrast, there is limited information on infections by coagulase-negative Staphylococci (CoNS) and how the host responds to them. S. epidermidis, a member of the coagulase-negative Staphylococci, is an important commensal organism of the human skin and mucous membranes; and there is emerging evidence of its benefit for human health in fighting off harmful microorganisms. However, S. epidermidis can cause opportunistic infections, which include particularly biofilm-associated infections on indwelling medical devices. These often can disseminate into the bloodstream; and in fact, S. epidermidis is the most frequent cause of nosocomial sepsis. The increasing use of medical implants and the dramatic shift in the patient demographic population in recent years have contributed significantly to the rise of S. epidermidis infections. Furthermore, treatment has been complicated by the emergence of antibiotic-resistant strains. Today, S. epidermidis is a major nosocomial pathogen posing significant medical and economic burdens. In this review, we present the current understanding of mechanisms of host defense against the prototypical CoNS species S. epidermidis as a commensal of the skin and mucous membranes, and during biofilm-associated infection and sepsis.
Collapse
Affiliation(s)
- Thuan H Nguyen
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| | - Matthew D Park
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
37
|
Thakur KK, Saini J, Mahajan K, Singh D, Jayswal DP, Mishra S, Bishayee A, Sethi G, Kunnumakkara AB. Therapeutic implications of toll-like receptors in peripheral neuropathic pain. Pharmacol Res 2017; 115:224-232. [DOI: 10.1016/j.phrs.2016.11.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/28/2016] [Accepted: 11/20/2016] [Indexed: 12/13/2022]
|
38
|
Elshabrawy HA, Essani AE, Szekanecz Z, Fox DA, Shahrara S. TLRs, future potential therapeutic targets for RA. Autoimmun Rev 2016; 16:103-113. [PMID: 27988432 DOI: 10.1016/j.autrev.2016.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/27/2023]
Abstract
Toll like receptors (TLR)s have a central role in regulating innate immunity and in the last decade studies have begun to reveal their significance in potentiating autoimmune diseases such as rheumatoid arthritis (RA). Earlier investigations have highlighted the importance of TLR2 and TLR4 function in RA pathogenesis. In this review, we discuss the newer data that indicate roles for TLR5 and TLR7 in RA and its preclinical models. We evaluate the pathogenicity of TLRs in RA myeloid cells, synovial tissue fibroblasts, T cells, osteoclast progenitor cells and endothelial cells. These observations establish that ligation of TLRs can transform RA myeloid cells into M1 macrophages and that the inflammatory factors secreted from M1 and RA synovial tissue fibroblasts participate in TH-17 cell development. From the investigations conducted in RA preclinical models, we conclude that TLR-mediated inflammation can result in osteoclastic bone erosion by interconnecting the myeloid and TH-17 cell response to joint vascularization. In light of emerging unique aspects of TLR function, we summarize the novel approaches that are being tested to impair TLR activation in RA patients.
Collapse
Affiliation(s)
- Hatem A Elshabrawy
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA
| | - Abdul E Essani
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA
| | - Zoltán Szekanecz
- Department of Rheumatology, Institute of Medicine, University of Debrecen Faculty of Medicine, Nagyerdei Str 98, Debrecen H-4004, Hungary
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiva Shahrara
- Division of Rheumatology, Jesse Brown VA, Medical Center, Chicago, IL 60612, USA; Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, IL 60612, USA.
| |
Collapse
|
39
|
Medvedev AE, Sabroe I, Hasday JD, Vogel SN. Invited review: Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120030201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many host cell types, including endothelial and epithelial cells, neutrophils, monocytes, natural killer cells, dendritic cells and macrophages, initiate the first line of defense against infection by sensing conserved microbial structures through Toll-like receptors (TLRs). Recognition of microbial ligands by TLRs induces their oligomerization and triggers intracellular signaling pathways, leading to production of pro- and anti-inflammatory cytokines. Dysregulation of the fine molecular mechanisms that tightly control TLR signaling may lead to hyperactivation of host cells by microbial products and septic shock. A prior exposure to bacterial products such as lipopolysaccharide (LPS) may result in a transient state of refractoriness to subsequent challenge that has been referred to as `tolerance'. Tolerance has been postulated as a protective mechanism limiting excessive inflammation and preventing septic shock. However, tolerance may compromise the host's ability to counteract subsequent bacterial challenge since many septic patients exhibit an increased incidence of recurrent bacterial infection and suppressed monocyte responsiveness to LPS, closely resembling the tolerant phenotype. Thus, by studying mechanisms of microbial tolerance, we may gain insights into how normal regulatory mechanisms are dysregulated, leading ultimately to microbial hyporesponsivess and life-threatening disease. In this review, we present current theories of the molecular mechanisms that underlie induction and maintenance of `microbial tolerance', and discuss the possible relevance of tolerance to several infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Andrei E. Medvedev
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), Baltimore, Maryland, USA,
| | - Ian Sabroe
- Academic Unit of Respiratory Medicine, Division of Genomic Medicine, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - Jeffrey D. Hasday
- Department of Medicine, University of Maryland, Baltimore (UMB), Baltimore, Maryland, USA
| | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), Baltimore, Maryland, USA
| |
Collapse
|
40
|
Tapping RI, Tobias PS. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090040801] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mycobacteria and their cell wall component lipoarabinomannan (LAM) have recently been established as agonists for TLR2. Our transfection studies with single and pairwise combinations of TLRs 1, 2, 6 and 10 reveal that only TLR1 and TLR2 together mediate strong activation of NF-KB-driven luciferase activity in response to LAM. Co-operative signaling by TLR1 and TLR2 is observed using either non-capped or mannose-capped LAM as a stimulus. Moreover, we have found that phosphatidylinositol mannosides, simple biosynthetic precursors of LAM, also activate cells through the combined actions of TLR1 and TLR2. Co-immunoprecipitation studies show that TLR1 and TLR2 are physically associated, independently of the presence of LAM. To address the mechanism of LAM-induced TLR activation we have used TLR fusion proteins in a protein fragment complementation assay. The results of this assay suggest that LAM alters the physical interaction between the intracellular signaling domains of TLR1 and TLR2. Together, these results identify LAM as an agonist for TLR1 and TLR2 and support the idea that LAM initiates transmembrane signaling by altering the physical association between TLR1 and TLR2.
Collapse
Affiliation(s)
- Richard I. Tapping
- Department of Microbiology, College of Medicine, University of Illinois, Urbana, Illinois, USA
| | - Peter S. Tobias
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA,
| |
Collapse
|
41
|
Abstract
Toll-like receptors (TLRs) recognize specific molecular patterns present only in micro-organisms and thereby activate innate immune cells. TLR2 is essential for the recognition of peptidoglycan and lipoprotein/lipopeptides. Lipoprotein/lipopeptides are observed in cell walls of a variety of micro-organisms. Host immune cells recognize the specific patterns of lipoprotein/lipopeptides through the association of TLR2 with other TLRs. TLR1 and TLR6 are highly homologous to TLR2 in structure. TLR6-deficient mice showed an impaired response to mycoplasmal lipopeptides that are diacylated, whereas TLR1-deficient mice were defective in their response to bacterial lipopeptides that are triacylated. TLR2-deficient mice did not show any inflammatory response to either type of lipopeptide. The functional association of TLR2 with TLR1 or TLR6 has been demonstrated. Thus, TLR1 and TLR6 are involved in the discrimination of a subtle difference between triacyl and diacyl lipopeptides through interaction with TLR2.
Collapse
Affiliation(s)
- Kiyoshi Takeda
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and SORST of Japan Science and Technology Corporation, Osaka, Japan
| | - Osamu Takeuchi
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and SORST of Japan Science and Technology Corporation, Osaka, Japan
| | - Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and SORST of Japan Science and Technology Corporation, Osaka, Japan, -u.ac.jp
| |
Collapse
|
42
|
Ernst RK, Hajjar AM, Tsai JH, Moskowitz SM, Wilson CB, Miller SI. Pseudomonas aeruginosa lipid A diversity and its recognition by Toll-like receptor 4. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090060201] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid A is the pro-inflammatory component of bacterial lipopolysaccharide, the major surface component of Gram-negative bacteria. Gram-negative bacteria alter the structure of lipid A in response to specific environmental conditions including those found upon colonization of a host. The opportunistic pathogen Pseudomonas aeruginosa synthesizes a unique hexa-acylated lipid A containing palmitate and aminoarabinose during adaptation to the cystic fibrosis airway. Different lipid A species are observed in P. aeruginosa isolated from non-cystic fibrosis associated infections. Here we report that P. aeruginosa isolates from the airway of a cystic fibrosis patient with severe pulmonary disease synthesized a novel hepta-acylated lipid A. Cystic fibrosis-specific P. aeruginosa lipid A modifications result in resistance to host antimicrobial peptides and increased recognition by human Toll-like receptor 4 (TLR4). Using P. aeruginosa lipid A with different levels of acylation, we identified a 222 amino acid region in the extracellular portion of human TLR4 that is required for the differential recognition of cystic fibrosis-specific lipid A. P. aeruginosa adaptation to the human airway may, therefore, play a fundamental role in the progressive lung damage associated with cystic fibrosis.
Collapse
Affiliation(s)
- Robert K. Ernst
- Department of Medicine, University of Washington, Seattle, Washington, USA,
| | - Adeline M. Hajjar
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jeff H. Tsai
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Samuel M. Moskowitz
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Christopher B. Wilson
- Department of Immunology, University of Washington, Seattle, Washington, USA, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Samuel I. Miller
- Department of Medicine, University of Washington, Seattle, Washington, USA, Department of Genome Sciences, University of Washington, Seattle, Washington, USA, Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Transcriptome analysis reveals regional and temporal differences in mucosal immune system development in the small intestine of neonatal calves. BMC Genomics 2016; 17:602. [PMID: 27515123 PMCID: PMC4981982 DOI: 10.1186/s12864-016-2957-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Background Postnatal development of the mammalian mucosal immune system is crucial for responding to the rapid colonization by commensal bacteria and possible exposure to pathogens. This study analyzed expression patterns for mRNAs and their relationship with microRNAs (miRNAs) in the bovine small intestine during the critical neonatal period (0 to 42 days). This analysis revealed molecular mechanisms regulating the postnatal development of the intestinal mucosal immune system. Results Small intestine samples (jejunum and ileum) were collected from newborn male, Holstein calves immediately post-partum (n = 3) and at 7 (n = 5), 21 (n = 5), and 42 (n = 5) days of age and the transcriptomes were profiled using RNA-Seq. When analyzing all time points collectively, greater expression of genes encoding the complement functional pathway, as well as lower expression of genes encoding Toll-like receptors and NOD-like receptors were observed in the jejunum when compared to the ileum. In addition, significant changes in the expression of immune-related genes were detected within the first week post-partum in both jejunum and ileum. For example, increased expression of genes encoding tight junction proteins (claudin 1, claudin 4 and occludin), an antimicrobial peptide (Regenerating Islet-Derived 3-γ), NOD-like receptors (NACHT, LRR and PYD domain-containing protein 3), regulatory T cell marker (forkhead box P3), and both anti-inflammatory (interleukin 10) and pro-inflammatory (interleukin 8) cytokines was observed throughout the small intestine of 7-day-old calves when compared to newborn calves. Moreover, the expression of mucosal immune-related genes were either positively or negatively correlated with total bacterial population depending on both intestinal region and age. The integrated analysis of miRNAs and mRNAs supported the conclusion that miRNAs may regulate temporal changes in the expression of genes encoding tight junction proteins (miR-335), cytokines (miR-335) and bacterial recognition (miR-100) during the first week of small intestine development. Conclusion The rapid development of transcriptional differences between jejunum and ileum reveal that these two intestinal regions make distinct contributions to the intestinal mucosal immune system during the early neonatal period. In addition, transcriptome analysis indicates that the first week after birth is a very dynamic developmental period for the intestinal mucosal immune system and these changes may be regulated by both miRNAs and microbial colonization. Findings from this study indicate that a detailed analysis of both the abundance and diversity of the colonizing microbiome may be necessary to understand factors regulating the rapid development of the mucosal immune system during the first week of life. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2957-y) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Hanzelmann D, Joo HS, Franz-Wachtel M, Hertlein T, Stevanovic S, Macek B, Wolz C, Götz F, Otto M, Kretschmer D, Peschel A. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nat Commun 2016; 7:12304. [PMID: 27470911 PMCID: PMC4974576 DOI: 10.1038/ncomms12304] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/21/2016] [Indexed: 12/18/2022] Open
Abstract
Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. The role played by human protein TLR2 in inflammation and sepsis varies for different bacterial pathogens. Here, Hanzelmann et al. show that the differential abilities of Staphylococcus aureus strains to activate TLR2 depend on their production of peptides that release lipoproteins known to act as TLR2 agonists.
Collapse
Affiliation(s)
- Dennis Hanzelmann
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Christiane Wolz
- Department of Medical Microbiology and Hygiene, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,German Center for Infection Research, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,German Center for Infection Research, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
45
|
Liu S, Shi W, Guo C, Zhao X, Han Y, Peng C, Chai X, Liu G. Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways. FISH & SHELLFISH IMMUNOLOGY 2016; 54:322-7. [PMID: 27109580 DOI: 10.1016/j.fsi.2016.04.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 05/20/2023]
Abstract
The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa β signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa β signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria.
Collapse
Affiliation(s)
- Saixi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Cheng Guo
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xinguo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Chao Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xueliang Chai
- Zhejiang Mariculture Research Institute, Wenzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
46
|
Tian W, Zhao C, Hu Q, Sun J, Peng X. Roles of Toll-like receptors 2 and 6 in the inflammatory response to Mycoplasma gallisepticum infection in DF-1 cells and in chicken embryos. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 59:39-47. [PMID: 26797426 DOI: 10.1016/j.dci.2016.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
While Mycoplasma gallisepticum (MG) is a major pathogen that causes chronic respiratory diseases in chicken, the molecular mechanism of MG infection is not clear. In this study, we investigated the roles of Toll-like receptor 2 (TLR2) and 6 (TLR6) in MG infection. We found that TLR2 type 2 (TLR2-2) and TLR6 had differential expressions in chicken embryo fibroblasts (DF-1 cells), where TLR6 was highly expressed, but TLR2-2 was barely expressed. Upon MG infection, TLR6 expression was upregulated, followed by upregulation of downstream factors, MyD88, NF-κB, IL2, IL6, and TNF-α. Knockdown of TLR6 expression by shRNA abolished the MG-induced inflammatory responses. More interestingly, in the presence of TLR6, TLR2-2 didn't respond to MG infection in DF-1 cells. When TLR6 was knocked down by shRNA, however, TLR2 was upregulated upon MG infection, which was followed by upregulation of proinflammatory genes. Finally, we tested effects of the MG infection on expression of TLR2-2 and TLR6 in the lungs and trachea tissues of chicken embryos. We found both TLR2-2 and TLR6 were upregulated upon MG infection, followed by upregulation of the downstream NF-κB-mediated inflammatory responses. This study was the first to report the differential roles of TLR2-2 and TLR6 in MG-infected DF-1 cells and chicken embryos.
Collapse
Affiliation(s)
- Wei Tian
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengcheng Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingchuang Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
47
|
Li J, Csakai A, Jin J, Zhang F, Yin H. Therapeutic Developments Targeting Toll-like Receptor-4-Mediated Neuroinflammation. ChemMedChem 2016; 11:154-65. [PMID: 26136385 PMCID: PMC4983275 DOI: 10.1002/cmdc.201500188] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) have been shown to play an important role in the immune system, which warrants study of their remarkable potential as pharmacological targets. Activation of TLRs requires participation from specific pathogen-associated molecular patterns (PAMPs) and accessory proteins such as myeloid differentiation protein 2 (MD2), lipopolysaccharide binding protein (LBP), and cluster differentiation antigen 14 (CD14). Assembly of the TLR4-MD2-LPS complex is essential in TLR4 activation. Recent studies have revealed that TLR4 activation is a significant trigger of signal transmission pathways in the nervous system, which could result in chronic pain as well as opioid tolerance and dependence. Researchers of the molecular structure of TLRs and their accessory proteins have opened a door to syntheses of TLRs agonists and antagonists, such as eritoran. Small-molecule modulators of TLR4, such as MD2-I and tricyclic antidepressants, offer more promising prospects than peptides, given their convenience in oral administration and lower cost. Herein we mainly discuss the mechanisms and clinical prospects of TLR4 agonists and antagonists.
Collapse
Affiliation(s)
- Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100032, China
| | - Adam Csakai
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, 80309-0596, USA
| | - Jialin Jin
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100082, China
- Physikalisch-Astronomische Fakultät, Abbe School of Photonics, Jena, 07743, Germany
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100032, China.
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, 80309-0596, USA.
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100082, China.
| |
Collapse
|
48
|
Fawzy El-Sayed KM, Klingebiel P, Dörfer CE. Toll-like Receptor Expression Profile of Human Dental Pulp Stem/Progenitor Cells. J Endod 2016; 42:413-7. [PMID: 26769027 DOI: 10.1016/j.joen.2015.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Human dental pulp stem/progenitor cells (DPSCs) show remarkable regenerative potential in vivo. During regeneration, DPSCs may interact with their inflammatory environment via toll-like receptors (TLRs). The present study aimed to depict for the first time the TLR expression profile of DPSCs. METHODS Cells were isolated from human dental pulp, STRO-1-immunomagnetically sorted, and seeded out to obtain single colony-forming units. DPSCs were characterized for CD14, CD34, CD45, CD73, CD90, CD105, and CD146 expression and for their multilineage differentiation potential. After incubation of DPSCs in basic or inflammatory medium (interleukin-1β, interferon-γ, interferon-α, tumor necrosis factor-α), TLR expression profiles were generated (DPSCs and DPSCs-i). RESULTS DPSCs showed all characteristics of stem/progenitor cells. In basic medium DPSCs expressed TLRs 1-10 in different quantities. The inflammatory medium upregulated the expression of TLRs 2, 3, 4, 5, and 8, downregulated TLRs 1, 7, 9, and 10, and abolished TLR6. CONCLUSIONS The current study describes for the first time the distinctive TLR expression profile of DPSCs in uninflamed and inflamed conditions.
Collapse
Affiliation(s)
- Karim M Fawzy El-Sayed
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany; Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo, Egypt.
| | - Pauline Klingebiel
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Christof E Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
49
|
Ghosh C, Bishayi B. Toll-like receptor 2 and 6 interdependency in the erosive stage of Staphylococcus aureus induced septic arthritis mediated by IFN-γ and IL-6 – A possible involvement of IL-17 in the progression of the disease. Immunobiology 2015; 220:910-23. [DOI: 10.1016/j.imbio.2015.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/21/2022]
|
50
|
Toubiana J, Rossi AL, Belaidouni N, Grimaldi D, Pene F, Chafey P, Comba B, Camoin L, Bismuth G, Claessens YE, Mira JP, Chiche JD. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway. Innate Immun 2015; 21:685-97. [DOI: 10.1177/1753425915586075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells.
Collapse
Affiliation(s)
- Julie Toubiana
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Department of Pediatrics, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Anne-Lise Rossi
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Nadia Belaidouni
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
| | - David Grimaldi
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Frederic Pene
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Philippe Chafey
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Béatrice Comba
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
| | - Luc Camoin
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Georges Bismuth
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Yann-Erick Claessens
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
| | - Jean-Paul Mira
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| | - Jean-Daniel Chiche
- Department of Infection, Immunity and Inflammation, Institut Cochin, Inserm, U1016, Paris, France
- Université Paris Descartes, Paris, France
- Medical Intensive Care Unit, Hôpital Cochin, AP-HP, Paris, France
| |
Collapse
|