1
|
Artiaga BL, Madden D, Kwon T, McDowell C, Keating C, Balaraman V, de Carvahlo Madrid DM, Touchard L, Henningson J, Meade P, Krammer F, Morozov I, Richt JA, Driver JP. Adjuvant Use of the Invariant-Natural-Killer-T-Cell Agonist α-Galactosylceramide Leads to Vaccine-Associated Enhanced Respiratory Disease in Influenza-Vaccinated Pigs. Vaccines (Basel) 2024; 12:1068. [PMID: 39340098 PMCID: PMC11435877 DOI: 10.3390/vaccines12091068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Invariant natural killer T (iNKT) cells are glycolipid-reactive T cells with potent immunoregulatory properties. iNKT cells activated with the marine-sponge-derived glycolipid, α-galactosylceramide (αGC), provide a universal source of T-cell help that has shown considerable promise for a wide array of therapeutic applications. This includes harnessing iNKT-cell-mediated immune responses to adjuvant whole inactivated influenza virus (WIV) vaccines. An important concern with WIV vaccines is that under certain circumstances, they are capable of triggering vaccine-associated enhanced respiratory disease (VAERD). This immunopathological phenomenon can arise after immunization with an oil-in-water (OIW) adjuvanted WIV vaccine, followed by infection with a hemagglutinin and neuraminidase mismatched challenge virus. This elicits antibodies (Abs) that bind immunodominant epitopes in the HA2 region of the heterologous virus, which purportedly causes enhanced virus fusion activity to the host cell and increased infection. Here, we show that αGC can induce severe VAERD in pigs. However, instead of stimulating high concentrations of HA2 Abs, αGC elicits high concentrations of interferon (IFN)-γ-secreting cells both in the lungs and systemically. Additionally, we found that VAERD mediated by iNKT cells results in distinct cytokine profiles and altered adaptation of the challenge virus following infection compared to an OIW adjuvant. Overall, these results provide a cautionary note about considering the formulation of WIV vaccines with iNKT-cell agonists as a potential strategy to modulate antigen-specific immunity.
Collapse
Affiliation(s)
- Bianca L. Artiaga
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel Madden
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Taeyong Kwon
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Chester McDowell
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Cassidy Keating
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Darling Melany de Carvahlo Madrid
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Laurie Touchard
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jamie Henningson
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Philip Meade
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Igor Morozov
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Luo J, Chen Z, Castellano D, Bao B, Han W, Li J, Kim G, An D, Lu W, Wu C. Lipids regulate peripheral serotonin release via gut CD1d. Immunity 2023; 56:1533-1547.e7. [PMID: 37354904 PMCID: PMC10527042 DOI: 10.1016/j.immuni.2023.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/04/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
The crosstalk between the immune and neuroendocrine systems is critical for intestinal homeostasis and gut-brain communications. However, it remains unclear how immune cells participate in gut sensation of hormones and neurotransmitters release in response to environmental cues, such as self-lipids and microbial lipids. We show here that lipid-mediated engagement of invariant natural killer T (iNKT) cells with enterochromaffin (EC) cells, a subset of intestinal epithelial cells, promoted peripheral serotonin (5-HT) release via a CD1d-dependent manner, regulating gut motility and hemostasis. We also demonstrated that inhibitory sphingolipids from symbiotic microbe Bacteroides fragilis represses 5-HT release. Mechanistically, CD1d ligation on EC cells transduced a signal and restrained potassium conductance through activation of protein tyrosine kinase Pyk2, leading to calcium influx and 5-HT secretion. Together, our data reveal that by engaging with iNKT cells, gut chemosensory cells selectively perceive lipid antigens via CD1d to control 5-HT release, modulating intestinal and systemic homeostasis.
Collapse
Affiliation(s)
- Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Bin Bao
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Dingding An
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
3
|
Morris I, Croes CA, Boes M, Kalkhoven E. Advanced omics techniques shed light on CD1d-mediated lipid antigen presentation to iNKT cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159292. [PMID: 36773690 DOI: 10.1016/j.bbalip.2023.159292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.
Collapse
Affiliation(s)
- Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands
| | - Cresci-Anne Croes
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Abstract
Gastrointestinal (GI) cancers represent a complex array of cancers that affect the digestive system. This includes liver, pancreatic, colon, rectal, anal, gastric, esophageal, intestinal and gallbladder cancer. Patients diagnosed with certain GI cancers typically have low survival rates, so new therapeutic approaches are needed. A potential approach is to harness the potent immunoregulatory properties of natural killer T (NKT) cells which are true T cells, not natural killer (NK) cells, that recognize lipid instead of peptide antigens presented by the non-classical major histocompatibility (MHC) molecule CD1d. The NKT cell subpopulation is known to play a vital role in tumor immunity by bridging innate and adaptive immune responses. In GI cancers, NKT cells can contribute to either antitumor or protumor immunity depending on the cytokine profile expressed and type of cancer. This review discusses the complexities of the role of NKT cells in liver, colon, pancreatic and gastric cancers with an emphasis on type I NKT cells.
Collapse
Affiliation(s)
- Julian Burks
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA,CONTACT Julian Burks National Cancer Institute, National Institute of Health, Building 41/Room D702, 41 Medlars Drive, Bethesda, Maryland20892, USA
| | - Purevdorj B. Olkhanud
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Manjili MH, Payne KK. Cancer immunotherapy: Re-programming cells of the innate and adaptive immune systems. Oncoimmunology 2021; 1:201-204. [PMID: 22720242 PMCID: PMC3377002 DOI: 10.4161/onci.1.2.18113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cancers utilize multiple mechanisms to overcome immune responses. Emerging evidence suggest that immunotherapy of cancer should focus on inducing and re-programming cells of the innate and adaptive immune systems rather than focusing solely on T cells. Recently, we have shown that such a multifaceted approach can improve immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology and Immunology; Virginia Commonwealth University Massey Cancer Center; Richmond, VA USA
| | | |
Collapse
|
6
|
Soluble and Exosome-Bound α-Galactosylceramide Mediate Preferential Proliferation of Educated NK Cells with Increased Anti-Tumor Capacity. Cancers (Basel) 2021; 13:cancers13020298. [PMID: 33467442 PMCID: PMC7830699 DOI: 10.3390/cancers13020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g., tumor or virus-infected cells. A desired property of cancer immunotherapy is, therefore, to activate educated NK cells during anti-tumor responses in vivo. We here analyze NK cell responses to α-galactosylceramide (αGC), a potent activator of invariant NKT (iNKT) cells, or to exosomes loaded with αGC. In mouse strains which express different MHC-I alleles using an extended NK cell flow cytometry panel, we show that αGC induces a biased NK cell proliferation of educated NK cells. Importantly, iNKT cell-induced activation of NK cells selectively increased in vivo missing self-responses, leading to more effective rejection of tumor cells. Exosomes from antigen-presenting cells are attractive anti-cancer therapy tools as they may induce both innate and adaptive immune responses, thereby addressing the hurdle of tumor heterogeneity. Adding αGC to antigen-loaded dendritic-cell-derived exosomes also led to an increase in missing self-responses in addition to boosted T and B cell responses. This study manifests αGC as an attractive adjuvant in cancer immunotherapy, as it increases the functional capacity of educated NK cells and enhances the innate, missing self-based antitumor response.
Collapse
|
7
|
Anderson CK, Reilly SP, Brossay L. The Invariant NKT Cell Response Has Differential Signaling Requirements during Antigen-Dependent and Antigen-Independent Activation. THE JOURNAL OF IMMUNOLOGY 2020; 206:132-140. [PMID: 33229442 DOI: 10.4049/jimmunol.2000870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Invariant NKT (iNKT) cells are an innate-like population characterized by their recognition of glycolipid Ags and rapid cytokine production upon activation. Unlike conventional T cells, which require TCR ligation, iNKT cells can also be stimulated independently of their TCR. This feature allows iNKT cells to respond even in the absence of glycolipid Ags, for example, during viral infections. Although the TCR-dependent and -independent activation of iNKT cells have been relatively well established, the exact contributions of IL-12, IL-18, and TLRs remain unclear for these two activation pathways. To definitively investigate how these components affect the direct and indirect stimulation of iNKT cells, we used mice deficient for either MyD88 or the IL-12Rβ2 in the T cell lineage. Using these tools, we demonstrate that IL-12, IL-18, and TLRs are completely dispensable for the TCR activation pathway when a strong agonist is used. In contrast, during murine CMV infection, when the TCR is not engaged, IL-12 signaling is essential, and TLR signaling is expendable. Importantly, to our knowledge, we discovered an intrinsic requirement for IL-18 signaling by splenic iNKT cells but not liver iNKT cells, suggesting that there might be diversity, even within the NKT1 population.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| | - Shanelle P Reilly
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| |
Collapse
|
8
|
Ye C, Low BE, Wiles MV, Brusko TM, Serreze DV, Driver JP. CD70 Inversely Regulates Regulatory T Cells and Invariant NKT Cells and Modulates Type 1 Diabetes in NOD Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:1763-1777. [PMID: 32868408 DOI: 10.4049/jimmunol.2000148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022]
Abstract
The CD27-CD70 costimulatory pathway is essential for the full activation of T cells, but some studies show that blocking this pathway exacerbates certain autoimmune disorders. In this study, we report on the impact of CD27-CD70 signaling on disease progression in the NOD mouse model of type 1 diabetes (T1D). Specifically, our data demonstrate that CD70 ablation alters thymocyte selection and increases circulating T cell levels. CD27 signaling was particularly important for the thymic development and peripheral homeostasis of Foxp3+Helios+ regulatory T cells, which likely accounts for our finding that CD70-deficient NOD mice develop more-aggressive T1D onset. Interestingly, we found that CD27 signaling suppresses the thymic development and effector functions of T1D-protective invariant NKT cells. Thus, rather than providing costimulatory signals, the CD27-CD70 axis may represent a coinhibitory pathway for this immunoregulatory T cell population. Moreover, we showed that a CD27 agonist Ab reversed the effects of CD70 ablation, indicating that the phenotypes observed in CD70-deficient mice were likely due to a lack of CD27 signaling. Collectively, our results demonstrate that the CD27-CD70 costimulatory pathway regulates the differentiation program of multiple T cell subsets involved in T1D development and may be subject to therapeutic targeting.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | | | | | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
| | | | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611;
| |
Collapse
|
9
|
Shissler SC, Singh NJ, Webb TJ. Thymic resident NKT cell subsets show differential requirements for CD28 co-stimulation during antigenic activation. Sci Rep 2020; 10:8218. [PMID: 32427927 PMCID: PMC7237672 DOI: 10.1038/s41598-020-65129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/28/2020] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells rapidly respond to antigenic stimulation with cytokine production and direct cytotoxicity. These innate-like characteristics arise from their differentiation into mature effector cells during thymic development. A subset of mature NKT cells remain thymic resident, but their activation and function remain poorly understood. We examined the roles of CD28 and CTLA-4 in driving the activation of thymic resident NKT cells. In contrast to studies with peripheral NKT cells, the proliferation of thymic NKT cells was significantly impaired when CD28 engagement was blocked, but unaffected by CTLA-4 activation or blockade. Within NKT subsets, however, stage 3 NKT cells, marked by higher NK1.1 expression, were significantly more sensitive to the loss of CD28 signals compared to NK1.1- stage 2 NKT cells. In good agreement, CD28 blockade suppressed NKT cell cytokine secretion, lowering the ratio of IFN-γ:IL-4 production by NK1.1+ NKT cells. Intriguingly, the activation-dependent upregulation of the master transcription factor PLZF did not require CD28-costimulation in either of the thymic NKT subsets, underlining a dichotomy between requirements for early activation vs subsequent proliferation and effector function by these cells. Collectively, our studies demonstrate the ability of CD28 co-stimulation to fine tune subset-specific responses by thymic resident NKT cells and contextually shape the milieu in this primary lymphoid organ.
Collapse
Affiliation(s)
- Susannah C Shissler
- Department of Microbiology and Immunology and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nevil J Singh
- Department of Microbiology and Immunology and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Vivas W, Leonhardt I, Hünniger K, Häder A, Marolda A, Kurzai O. Multiple Signaling Pathways Involved in Human Dendritic Cell Maturation Are Affected by the Fungal Quorum-Sensing Molecule Farnesol. THE JOURNAL OF IMMUNOLOGY 2019; 203:2959-2969. [DOI: 10.4049/jimmunol.1900431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 01/30/2023]
|
11
|
Carenza C, Calcaterra F, Oriolo F, Di Vito C, Ubezio M, Della Porta MG, Mavilio D, Della Bella S. Costimulatory Molecules and Immune Checkpoints Are Differentially Expressed on Different Subsets of Dendritic Cells. Front Immunol 2019; 10:1325. [PMID: 31244860 PMCID: PMC6579930 DOI: 10.3389/fimmu.2019.01325] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) play a crucial role in initiating and shaping immune responses. The effects of DCs on adaptive immune responses depend partly on functional specialization of distinct DC subsets, and partly on the activation state of DCs, which is largely dictated by environmental signals. Fully activated immunostimulatory DCs express high levels of costimulatory molecules, produce pro-inflammatory cytokines, and stimulate T cell proliferation, whereas tolerogenic DCs express low levels of costimulatory molecules, produce immunomodulatory cytokines and impair T cell proliferation. Relevant to the increasing use of immune checkpoint blockade in cancer treatment, signals generated from inhibitory checkpoint molecules on DC surface may also contribute to the inhibitory properties of tolerogenic DCs. Yet, our knowledge on the expression of inhibitory molecules on human DC subsets is fragmentary. Therefore, in this study, we investigated the expression of three immune checkpoints on peripheral blood DC subsets, in basal conditions and upon exposure to pro-inflammatory and anti-inflammatory stimuli, by using a flow cytometric panel that allows a direct comparison of the activatory/inhibitory phenotype of DC-lineage and inflammatory DC subsets. We demonstrated that functionally distinct DC subsets are characterized by differential expression of activatory and inhibitory molecules, and that cDC1s in particular are endowed with a unique immune checkpoint repertoire characterized by high TIM-3 expression, scarce PD-L1 expression and lack of ILT2. Notably, this unique cDC1 repertoire was subverted in a group of patients with myelodysplastic syndromes included in the study. Applied to the characterization of DCs in the tumor microenvironment, this panel has the potential to provide valuable information to be used for investigating the role of DC subsets in cancer, guiding DC-targeting treatments, and possibly identifying predictive biomarkers for clinical response to cancer immunotherapy.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Ferdinando Oriolo
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Clara Di Vito
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marta Ubezio
- Cancer Center, Humanitas Reserach Hospital, Rozzano, Italy
| | | | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
12
|
Dou R, Hong Z, Tan X, Hu F, Ding Y, Wang W, Liang Z, Zhong R, Wu X, Weng X. Fas/FasL interaction mediates imbalanced cytokine/cytotoxicity responses of iNKT cells against Jurkat cells. Mol Immunol 2018; 99:145-153. [DOI: 10.1016/j.molimm.2018.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022]
|
13
|
Park YJ, Park J, Huh JY, Hwang I, Choe SS, Kim JB. Regulatory Roles of Invariant Natural Killer T Cells in Adipose Tissue Inflammation: Defenders Against Obesity-Induced Metabolic Complications. Front Immunol 2018; 9:1311. [PMID: 29951059 PMCID: PMC6008523 DOI: 10.3389/fimmu.2018.01311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is a metabolic organ that plays a central role in controlling systemic energy homeostasis. Compelling evidence indicates that immune system is closely linked to healthy physiologic functions and pathologic dysfunction of adipose tissue. In obesity, the accumulation of pro-inflammatory responses in adipose tissue subsequently leads to dysfunction of adipose tissue as well as whole body energy homeostasis. Simultaneously, adipose tissue also activates anti-inflammatory responses in an effort to reduce the unfavorable effects of pro-inflammation. Notably, the interplay between adipocytes and resident invariant natural killer T (iNKT) cells is a major component of defensive mechanisms of adipose tissue. iNKT cells are leukocytes that recognize lipids loaded on CD1d as antigens, whereas most other immune cells are activated by peptide antigens. In adipose tissue, adipocytes directly interact with iNKT cells by presenting lipid antigens and stimulate iNKT cell activation to alleviate pro-inflammation. In this review, we provide an overview of the molecular and cellular determinants of obesity-induced adipose tissue inflammation. Specifically, we focus on the roles of iNKT cell-adipocyte interaction in maintaining adipose tissue homeostasis as well as the consequent modulation in systemic energy metabolism. We also briefly discuss future research directions regarding the interplay between adipocytes and adipose iNKT cells in adipose tissue inflammation.
Collapse
Affiliation(s)
- Yoon Jeong Park
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| | - Jeu Park
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Injae Hwang
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Sung Sik Choe
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Department of Biological Sciences, Center for Adipose Tissue Remodeling, College of Natural Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.,Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Harrer DC, Dörrie J, Schaft N. Chimeric Antigen Receptors in Different Cell Types: New Vehicles Join the Race. Hum Gene Ther 2018; 29:547-558. [PMID: 29320890 DOI: 10.1089/hum.2017.236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adoptive cellular therapy has evolved into a powerful force in the battle against cancer, holding promise for curative responses in patients with advanced and refractory tumors. Autologous T cells, reprogrammed to target malignant cells via the expression of a chimeric antigen receptor (CAR) represent the frontrunner in this approach. Tremendous clinical regressions have been achieved using CAR-T cells against a variety of cancers both in numerous preclinical studies and in several clinical trials, most notably against acute lymphoblastic leukemia, and resulted in a very recent United States Food and Drug Administration approval of the first CAR-T-cell therapy. In most studies CARs are transferred to conventional αβT cells. Nevertheless, transferring a CAR into different cell types, such as γδT cells, natural killer cells, natural killer T cells, and myeloid cells has yet received relatively little attention, although these cell types possess unique features that may aid in surmounting some of the hurdles CAR-T-cell therapy currently faces. This review focuses on CAR therapy using effectors beyond conventional αβT cells and discusses those strategies against the backdrop of developing a safe, powerful, and durable cancer therapy.
Collapse
Affiliation(s)
- Dennis C Harrer
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Jan Dörrie
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| | - Niels Schaft
- 1 Department of Dermatology, Universitätsklinikum Erlangen and Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen, Germany
| |
Collapse
|
15
|
Mattyasovszky SG, Mausbach S, Ritz U, Wollstädter J, Schmidtmann I, Baranowski A, Drees P, Rommens PM, Hofmann A. Cytokine Interferon-γ suppresses the function of capsule myofibroblasts and induces cell apoptosis. J Orthop Res 2017; 35:2524-2533. [PMID: 28176370 DOI: 10.1002/jor.23538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/27/2017] [Indexed: 02/04/2023]
Abstract
Myofibroblasts (MFs), a contractile subset of fibroblasts, play a pivotal role in physiological wound healing and in the development of many fibroconnective disorders. The complex cytokine network regulating the function of MFs in joint stiffness is still poorly understood. In this in vitro study, we investigated the effect of the cytokine Interferon-gamma (IFN-γ) on MFs isolated from human joint capsules. MFs were cultivated either in the presence of increasing concentrations of IFN-γ alone or in combination with IFN-γ neutralizing antibodies. Cell viability, cytotoxicity, apoptosis, and mRNA gene expression of the MF markers alpha-smooth muscle actin (α-SMA) and collagen type I were analyzed in MF cultures. Contraction potential was analyzed in an established collagen gel contraction assay simulating the extracellular matrix. Using immunofluorescence staining, we could verify that MFs express IFN-γ-receptor (R)-1 on their membrane. IFN-γ decreased MF viability and significantly elevated the apoptosis rate in a dose-dependent manner. IFN-γ down-regulated α-SMA and collagen type I mRNA expression which was associated with a diminished MF mediated contraction of the gel matrices. These effects were suppressed by simultaneous treatment of cells with a neutralizing IFN-γ antibody. Our experiments confirm the hypothesis that the cytokine IFN-γ is a crucial component of the regulatory network of capsule MFs. IFN-γ notably influences the ability of MFs to contract collagen matrices by suppressing α-SMA gene expression. IFN-γ is toxic for MFs in high concentrations and may negatively regulate the number of pro-fibrotic MFs during the healing process via induction of cell apoptosis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2524-2533, 2017.
Collapse
Affiliation(s)
- Stefan G Mattyasovszky
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Stefan Mausbach
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Jochen Wollstädter
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Irene Schmidtmann
- Institute for Medical Biometry, Epidemiology and Computer Science, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Andreas Baranowski
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Phillipp Drees
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Pol M Rommens
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| |
Collapse
|
16
|
Shissler SC, Lee MS, Webb TJ. Mixed Signals: Co-Stimulation in Invariant Natural Killer T Cell-Mediated Cancer Immunotherapy. Front Immunol 2017; 8:1447. [PMID: 29163518 PMCID: PMC5671952 DOI: 10.3389/fimmu.2017.01447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are an integral component of the immune system and play an important role in antitumor immunity. Upon activation, iNKT cells can directly kill malignant cells as well as rapidly produce cytokines that stimulate other immune cells, making them a front line defense against tumorigenesis. Unfortunately, iNKT cell number and activity are reduced in multiple cancer types. This anergy is often associated with upregulation of co-inhibitory markers such as programmed death-1. Similar to conventional T cells, iNKT cells are influenced by the conditions of their activation. Conventional T cells receive signals through the following three types of receptors: (1) T cell receptor (TCR), (2) co-stimulation molecules, and (3) cytokine receptors. Unlike conventional T cells, which recognize peptide antigen presented by MHC class I or II, the TCRs of iNKT cells recognize lipid antigen in the context of the antigen presentation molecule CD1d (Signal 1). Co-stimulatory molecules can positively and negatively influence iNKT cell activation and function and skew the immune response (Signal 2). This study will review the background of iNKT cells and their co-stimulatory requirements for general function and in antitumor immunity. We will explore the impact of monoclonal antibody administration for both blocking inhibitory pathways and engaging stimulatory pathways on iNKT cell-mediated antitumor immunity. This review will highlight the incorporation of co-stimulatory molecules in antitumor dendritic cell vaccine strategies. The use of co-stimulatory intracellular signaling domains in chimeric antigen receptor-iNKT therapy will be assessed. Finally, we will explore the influence of innate-like receptors and modification of immunosuppressive cytokines (Signal 3) on cancer immunotherapy.
Collapse
Affiliation(s)
- Susannah C Shissler
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michael S Lee
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya J Webb
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Dashtsoodol N, Shigeura T, Tashiro T, Aihara M, Chikanishi T, Okada H, Hanada K, Sano H, Kurogi A, Taniguchi M. Natural Killer T Cell-Targeted Immunotherapy Mediating Long-term Memory Responses and Strong Antitumor Activity. Front Immunol 2017; 8:1206. [PMID: 28993781 PMCID: PMC5622408 DOI: 10.3389/fimmu.2017.01206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
Current tumor therapies, including immunotherapies, focus on passive eradication or at least reduction of the tumor mass. However, cancer patients quite often suffer from tumor relapse or metastasis after such treatments. To overcome these problems, we have developed a natural killer T (NKT) cell-targeted immunotherapy focusing on active engagement of the patient’s immune system, but not directly targeting the tumor cells themselves. NKT cells express an invariant antigen receptor α chain encoded by Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice and TRAV10 (Vα24)-TRAJ18 (Jα18) in humans and recognize glycolipid ligand in conjunction with a monomorphic CD1d molecule. The NKT cells play a pivotal role in the orchestration of antitumor immune responses by mediating adjuvant effects that activate various antitumor effector cells of both innate and adaptive immune systems and also aid in establishing a long-term memory response. Here, we established NKT cell-targeted therapy using a newly discovered NKT cell glycolipid ligand, RK, which has a stronger capacity to stimulate both human and mouse NKT cells compared to previous NKT cell ligand. Moreover, RK mediates strong adjuvant effects in activating various effector cell types and establishes long-term memory responses, resulting in the continuous attack on the tumor that confers long-lasting and potent antitumor effects. Since the NKT cell ligand presented by the monomorphic CD1d can be used for all humans irrespective of HLA types, and also because NKT cell-targeted therapy does not directly target tumor cells, this therapy can potentially be applied to all cancer patients and any tumor types.
Collapse
Affiliation(s)
- Nyambayar Dashtsoodol
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Core Research Laboratory, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Tomokuni Shigeura
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takuya Tashiro
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Minako Aihara
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Toshihiro Chikanishi
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiromi Okada
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keigo Hanada
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hirokazu Sano
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Akihiko Kurogi
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Taniguchi
- Laboratory for Immune Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
18
|
Bollino D, Webb TJ. Chimeric antigen receptor-engineered natural killer and natural killer T cells for cancer immunotherapy. Transl Res 2017; 187. [PMID: 28651074 PMCID: PMC5604792 DOI: 10.1016/j.trsl.2017.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Natural killer (NK) cells of the innate immune system and natural killer T (NKT) cells, which have roles in both the innate and adaptive responses, are unique lymphocyte subsets that have similarities in their functions and phenotypes. Both cell types can rapidly respond to the presence of tumor cells and participate in immune surveillance and antitumor immune responses. This has incited interest in the development of novel cancer therapeutics based on NK and NKT cell manipulation. Chimeric antigen receptors (CARs), generated through the fusion of an antigen-binding region of a monoclonal antibody or other ligand to intracellular signaling domains, can enhance lymphocyte targeting and activation toward diverse malignancies. Most of the CAR studies have focused on their expression in T cells; however, the functional heterogeneity of CAR T cells limits their therapeutic potential and is associated with toxicity. CAR-modified NK and NKT cells are becoming more prevalent because they provide a method to direct these cells more specifically to target cancer cells, with less risk of adverse effects. This review will outline current NK and NKT cell CAR constructs and how they compare to conventional CAR T cells, and discuss future modifications that can be explored to advance adoptive cell transfer of NK and NKT cells.
Collapse
Affiliation(s)
- Dominique Bollino
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, Md
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, Baltimore, Md.
| |
Collapse
|
19
|
Mattyasovszky SG, Mausbach S, Ritz U, Langendorf E, Wollstädter J, Baranowski A, Drees P, Rommens PM, Hofmann A. Influence of the anti-inflammatory cytokine interleukin-4 on human joint capsule myofibroblasts. J Orthop Res 2017; 35:1290-1298. [PMID: 27504740 DOI: 10.1002/jor.23386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic joint contracture was reported to be associated with elevated numbers of contractile myofibroblasts (MFs) in the healing capsule. During the physiological healing process, the number of MFs declines; however, in fibroconnective disorders, MFs persist. The manifold interaction of the cytokines regulating the appearance and persistence of MFs in the pathogenesis of joint contracture remains to be elucidated. The objective of our current study was to analyze the impact of the anti-inflammatory cytokine interleukin (IL)-4 on functional behavior of MFs. Cells were isolated from human joint capsule specimens and challenged with three different concentrations of IL-4 with or without its neutralizing antibody. MF viability, contractile properties, and the gene expression of both alpha-smooth muscle actin (α-SMA) and collagen type I were examined. Immunofluorescence staining revealed the presence of IL-4 receptor (R)-alpha (α) on the membrane of cultured MFs. The cytokine IL-4 promoted MF viability and enhanced MF modulated contraction of collagen gels. Moreover, IL-4 intervened in gene expression by up-regulation of α-SMA and collagen type I mRNA. These effects could be specifically lowered by the neutralizing IL-4 antibody. On the basis of our findings we conclude that the anti-inflammatory cytokine IL-4 specifically regulates viability and the contractile properties of MFs via up-regulating the gene expression of α-SMA and collagen type I. IL-4 may be a helpful target in developing anti-fibrotic therapeutics for post-traumatic joint contracture in human. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1290-1298, 2017.
Collapse
Affiliation(s)
- Stefan G Mattyasovszky
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Stefan Mausbach
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Eva Langendorf
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jochen Wollstädter
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Andreas Baranowski
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Phillipp Drees
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, University Medical Centre of the Johannes Gutenberg-University of Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
20
|
Keller CW, Freigang S, Lünemann JD. Reciprocal Crosstalk between Dendritic Cells and Natural Killer T Cells: Mechanisms and Therapeutic Potential. Front Immunol 2017; 8:570. [PMID: 28596767 PMCID: PMC5442181 DOI: 10.3389/fimmu.2017.00570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 12/23/2022] Open
Abstract
Natural killer T cells carrying a highly conserved, semi-invariant T cell receptor (TCR) [invariant natural killer T (iNKT) cells] are a subset of unconventional T lymphocytes that recognize glycolipids presented by CD1d molecules. Although CD1d is expressed on a variety of hematopoietic and non-hematopoietic cells, dendritic cells (DCs) are key presenters of glycolipid antigen in vivo. When stimulated through their TCR, iNKT cells rapidly secrete copious amounts of cytokines and induce maturation of DCs, thereby facilitating coordinated stimulation of innate and adaptive immune responses. The bidirectional crosstalk between DCs and iNKT cells determines the functional outcome of iNKT cell-targeted responses and iNKT cell agonists are used and currently being evaluated as adjuvants to enhance the efficacy of antitumor immunotherapy. This review illustrates mechanistic underpinnings of reciprocal DCs and iNKT cell interactions and discusses how those can be harnessed for cancer therapy.
Collapse
Affiliation(s)
- Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland
| | - Stefan Freigang
- Institute of Pathology, Laboratory of Immunopathology, University of Bern, Bern, Switzerland
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Speir M, Hermans IF, Weinkove R. Engaging Natural Killer T Cells as 'Universal Helpers' for Vaccination. Drugs 2017; 77:1-15. [PMID: 28005229 DOI: 10.1007/s40265-016-0675-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional vaccine adjuvants enhance peptide-specific T-cell and B-cell responses by modifying peptide stability or uptake or by binding to pattern-recognition receptors on antigen-presenting cells (APCs). This article discusses the application of a distinct mechanism of adjuvant activity: the activation of type I, or invariant, natural killer T (iNKT) cells to drive cellular and humoral immune responses. Using a semi-invariant T-cell receptor (TCR), iNKT cells recognize glycolipid antigens presented on cluster of differentiation (CD)-1d molecules. When their ligands are presented in concert with peptides, iNKT cells can provide T-cell help, 'licensing' APCs to augment peptide-specific T-cell and antibody responses. We discuss the potential benefits and limitations of exploiting iNKT cells as 'universal helpers' to enhance vaccine responses for the treatment and prevention of cancer and infectious diseases.
Collapse
Affiliation(s)
- Mary Speir
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand. .,School of Biological Sciences, Victoria University Wellington, PO Box 600, Wellington, 6140, New Zealand. .,Maurice Wilkins Centre, Private Bag 92019, Auckland, New Zealand.
| | - Robert Weinkove
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand. .,Wellington Blood and Cancer Centre, Wellington Hospital, Private Bag 7902, Wellington, 6242, New Zealand. .,Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, 6021, New Zealand.
| |
Collapse
|
22
|
Saez de Guinoa J, Jimeno R, Farhadi N, Jervis PJ, Cox LR, Besra GS, Barral P. CD1d-mediated activation of group 3 innate lymphoid cells drives IL-22 production. EMBO Rep 2017; 18:39-47. [PMID: 27799287 PMCID: PMC5210076 DOI: 10.15252/embr.201642412] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/07/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a heterogeneous family of immune cells that play a critical role in a variety of immune processes including host defence against infection, wound healing and tissue repair. Whether these cells are involved in lipid-dependent immunity remains unexplored. Here we show that murine ILCs from a variety of tissues express the lipid-presenting molecule CD1d, with group 3 ILCs (ILC3s) showing the highest level of expression. Within the ILC3 family, natural cytotoxicity triggering receptor (NCR)-CCR6+ cells displayed the highest levels of CD1d. Expression of CD1d on ILCs is functionally relevant as ILC3s can acquire lipids in vitro and in vivo and load lipids on CD1d to mediate presentation to the T-cell receptor of invariant natural killer T (iNKT) cells. Conversely, engagement of CD1d in vitro and administration of lipid antigen in vivo induce ILC3 activation and production of IL-22. Taken together, our data expose a previously unappreciated role for ILCs in CD1d-mediated immunity, which can modulate tissue homeostasis and inflammatory responses.
Collapse
Affiliation(s)
| | - Rebeca Jimeno
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Nazanin Farhadi
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Peter J Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King's College London, London, UK
| |
Collapse
|
23
|
Beristain-Covarrubias N, Canche-Pool EB, Ramirez-Velazquez C, Barragan-Galvez JC, Gomez-Diaz RA, Ortiz-Navarrete V. Class I-Restricted T Cell-Associated Molecule Is a Marker for IFN-γ-Producing iNKT Cells in Healthy Subjects and Patients with Type 1 Diabetes. J Interferon Cytokine Res 2016; 37:39-49. [PMID: 27835062 DOI: 10.1089/jir.2016.0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Class I-restricted T cell-associated molecule (CRTAM) is an activation marker expressed on the cell surface of activated invariant natural killer T (iNKT) cells, CD8+ T cells, and a small subset of CD4+ T cells. CRTAM has also been associated with a proinflammatory profile in murine CD4+ T cells. However, CRTAM has not been thoroughly explored in human cells. This work focused on evaluating CRTAM expression in human iNKT lymphocytes after activation with α-galactosylceramide, its widely used specific glycolipid antigen. We also analyzed the involvement of costimulatory molecules in CRTAM expression and whether CRTAM expression is associated with a specific effector cytokine profile. We found that the signal produced by invariant T cell receptor (iTCR) engagement with α-galactosylceramide is sufficient to trigger CRTAM expression on human iNKT cells after 18 h of stimulation. Moreover, we observed a clear association between CRTAM expression and IFN-γ production in iNKT cells from healthy subjects and patients with type 1 diabetes. However, blocking the engagement of costimulatory molecules, such as CD40, CD80, and CD86, did not modify CRTAM expression. These results indicate that CRTAM may also play a role in triggering the production of IFN-γ in human iNKT cells and that CRTAM could be used as a marker to identify these inflammatory cells.
Collapse
Affiliation(s)
| | - Elsy B Canche-Pool
- 2 Laboratory of Zoonoses, Dr. Hideyo Noguchi Center for Regional Investigations, Autonomous University of Yucatan , Merida, Mexico
| | - Carlos Ramirez-Velazquez
- 3 Department of Allergy, Dr. Fernando Quiroz Gutierrez General Hospital , ISSSTE, Mexico City, Mexico
| | - Juan Carlos Barragan-Galvez
- 1 Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV) , Mexico City, Mexico
| | - Rita A Gomez-Diaz
- 4 Research Unit on Clinical Epidemiology (UMAE), Specialty Hospital, National Medical Center , IMSS, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- 1 Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV) , Mexico City, Mexico
| |
Collapse
|
24
|
Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics 2016; 68:623-38. [PMID: 27393665 DOI: 10.1007/s00251-016-0928-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
Natural killer T (NKT) cells are a unique subset of lymphocytes that bridge the innate and adaptive immune system. NKT cells possess a classic αβ T cell receptor (TCR) that is able to recognize self and foreign glycolipid antigens presented by the nonclassical class I major histocompatibility complex (MHC) molecule, CD1d. Type I NKT cells (referred to as invariant NKT cells) express a semi-invariant Vα14Jα18 TCR in mice and Vα24Jα18 TCR in humans. Type II NKT cells are CD1d-restricted T cells that express a more diverse set of TCR α chains. The two types of NKT cells often exert opposing effects especially in tumor immunity, where type II cells generally suppress tumor immunity while type I NKT cells can enhance anti-tumor immune responses. In this review, we focus on the role of NKT cells in cancer. We discuss their effector and suppressive functions, as well as describe preclinical and clinical studies utilizing therapeutic strategies focused on harnessing their potent anti-tumor effector functions, and conclude with a discussion on potential next steps for the utilization of NKT cell-targeted therapies for the treatment of cancer.
Collapse
|
25
|
Veinotte L, Gebremeskel S, Johnston B. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFNγ production and tumor control. Oncoimmunology 2016; 5:e1160979. [PMID: 27471636 PMCID: PMC4938370 DOI: 10.1080/2162402x.2016.1160979] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/26/2016] [Accepted: 02/26/2016] [Indexed: 12/16/2022] Open
Abstract
Crosstalk interactions between dendritic cells (DCs) and invariant natural killer T (iNKT) cells are important in regulating antitumor responses elicited by glycolipid antigens. iNKT cells constitutively express the chemokine receptor CXCR6, while cytokine-activated DCs upregulate the transmembrane chemokine ligand, CXCL16. This study examined the co-stimulatory role of CXCR6/CXCL16 interactions in glycolipid-dependent iNKT cell activation and tumor control. Spleen and liver DCs in wild-type mice, but not iNKT cell deficient (Jα18−/−) mice, transiently upregulated surface CXCL16 following in vivo administration of the glycolipid antigen α-galactosylceramide. Recombinant CXCL16 did not directly induce iNKT cell activation in vitro but enhanced interferon (IFN)-γ production when mouse or human iNKT cells were stimulated with plate-bound anti-CD3. Compared with glycolipid-loaded CXCL16neg DCs, CXCL16hi DCs induced higher levels of IFNγ production in iNKT cell cultures and following adoptive transfer in vivo. The number of IFNγ+ iNKT cells and expansion of T-bet+ iNKT cells were reduced in vivo when CXCL16−/− DCs were used to activate iNKT cells. Enhanced IFNγ production in vivo was not dependent on CXCR6 expression on natural killer (NK) cells. Adoptive transfer of glycolipid-loaded CXCL16hi DCs provided superior protection against tumor metastasis compared to CXCL16neg DC transfers. Similarly, wild-type DCs provided superior protection against metastasis compared with CXCL16−/− DCs. These experiments implicate an important role for CXCR6/CXCL16 interactions in regulating iNKT cell IFNγ production and tumor control. The selective use of CXCL16hi DCs in adoptive transfer immunotherapies may prove useful for enhancing T helper (Th) type 1 responses and clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Linnea Veinotte
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Simon Gebremeskel
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Brent Johnston
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada; Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
26
|
Ushida M, Iyoda T, Kanamori M, Watarai H, Takahara K, Inaba K. In vivo and in vitro analyses of α-galactosylceramide uptake by conventional dendritic cell subsets using its fluorescence-labeled derivative. Immunol Lett 2015; 168:300-5. [PMID: 26481266 DOI: 10.1016/j.imlet.2015.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 01/06/2023]
Abstract
Conventional dendritic cells (cDCs) present α-galactosylceramide (αGC) to invariant natural killer T (iNKT) cells through CD1d. Among cDC subsets, CD8(+) DCs efficiently induce IFN-γ production in iNKT cells. Using fluorescence-labeled αGC, we showed that CD8(+) DCs incorporated larger amounts of αGC and kept it intact longer than CD8(-) DCs. Histological analyses revealed that Langerin(+)CD8(+) DCs in the splenic marginal zone, which was the unique equipment to capture blood-borne antigens, preferably incorporated αGC, and the depletion of Langerin(+) cells decreased IFN-γ and IL-12 production in response to αGC. Furthermore, splenic Langerin(+)CD8(+) DCs expressed more membrane-bound CXCL16, which possibly anchored iNKT cells in the marginal zone, than CD8(-) DCs. Collectively, it is suggested that the cellular properties and localization of CD8(+) DCs are important for stimulation of iNKT cells by αGC.
Collapse
Affiliation(s)
- Maki Ushida
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Tomonori Iyoda
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Mitsuhiro Kanamori
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Watarai
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato, Tokyo 108-8639, Japan
| | - Kazuhiko Takahara
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan.
| | - Kayo Inaba
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Boghal RH, Stephenson B, Afford SC. Immune cell communication in liver disease and liver regeneration. SIGNALING PATHWAYS IN LIVER DISEASES 2015:110-129. [DOI: 10.1002/9781118663387.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Pratheek BM, Nayak TK, Sahoo SS, Mohanty PK, Chattopadhyay S, Chakraborty NG, Chattopadhyay S. Mammalian non-classical major histocompatibility complex I and its receptors: Important contexts of gene, evolution, and immunity. INDIAN JOURNAL OF HUMAN GENETICS 2014; 20:129-41. [PMID: 25400340 PMCID: PMC4228563 DOI: 10.4103/0971-6866.142855] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The evolutionary conserved, less-polymorphic, nonclassical major histocompatibility complex (MHC) class I molecules: Qa-1 and its human homologue human leukocyte antigen-E (HLA-E) along with HLA-F, G and H cross-talk with the T-cell receptors and also interact with natural killer T-cells and other lymphocytes. Moreover, these nonclassical MHC molecules are known to interact with CD94/NKG2 heterodimeric receptors to induce immune responses and immune regulations. This dual role of Qa-1/HLA-E in terms of innate and adaptive immunity makes them more interesting. This review highlights the new updates of the mammalian nonclassical MHC-I molecules in terms of their gene organization, evolutionary perspective and their role in immunity.
Collapse
Affiliation(s)
- B M Pratheek
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | | | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ntiya G Chakraborty
- Department of Medicine, University of Connecticut Health Center, Farmington, USA
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| |
Collapse
|
29
|
Guo W, Dong A, Xing C, Lin X, Pan X, Lin Y, Zhu B, He M, Yao RX. CD1d levels in peripheral blood of patients with acute myeloid leukemia and acute lymphoblastic leukemia. Oncol Lett 2014; 8:825-830. [PMID: 25009659 PMCID: PMC4081415 DOI: 10.3892/ol.2014.2208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 05/07/2014] [Indexed: 01/16/2023] Open
Abstract
The antitumor effect of natural killer T cells has been reported in several studies analyzing the expression of CD1d on antigen-presenting cells (APCs). Therefore, the present study questioned whether APCs may be abnormal in the peripheral blood (PB) of acute leukemia (AL) patients, particularly the levels of CD1d. To improve the understanding of the role of CD1d on APCs, the levels of CD1d on monocytes were analyzed in healthy controls, AL patients and AL patients with complete remission (CR). In addition, the correlation between the number of CD3+CD56+ T lymphocytes and levels of CD1d on monocytes was analyzed. Flow cytometry was used to determine the levels of CD1d on monocytes and lymphocytes. A significant decrease was observed in the levels of CD1d on monocytes in the PB of acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients compared with the healthy controls. Simultaneously, significantly different levels of CD1d on monocytes were identified between the CR-AML and the CR-ALL patients; the levels of CD1d on monocytes remained low in the CR-AML patients, while the levels of CD1d on monocytes recovered in the CR-ALL patients. A significantly negative correlation was observed between the number of CD3+CD56+ T lymphocytes and the levels of CD1d on monocytes in AL patients. However, a significantly positive correlation was identified between the cytotoxicity of the CD3+CD56+ T lymphocytes and the levels of CD1d on monocytes. These results suggested that the significantly low levels of CD1d on monocytes may contribute to AML and ALL progression. In addition, a significant correlation was observed between the levels of CD1d on monocytes and the number/cytotoxicity of CD3+CD56+ T lymphocytes in AML and ALL patients.
Collapse
Affiliation(s)
- Wenjian Guo
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Aishu Dong
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Chao Xing
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Xiaoji Lin
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Xiahui Pan
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Ying Lin
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Baoling Zhu
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Muqing He
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| | - Rong-Xing Yao
- Department of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 0577, P.R. China
| |
Collapse
|
30
|
Hirai T, Ishii Y, Ikemiyagi M, Fukuda E, Omoto K, Namiki M, Taniguchi M, Tanabe K. A novel approach inducing transplant tolerance by activated invariant natural killer T cells with costimulatory blockade. Am J Transplant 2014; 14:554-67. [PMID: 24502294 DOI: 10.1111/ajt.12606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/06/2013] [Accepted: 11/20/2013] [Indexed: 01/25/2023]
Abstract
Invariant natural killer T (iNKT) cells are one of the innate lymphocytes that regulate immunity, although it is still elusive how iNKT cells should be manipulated for transplant tolerance. Here, we describe the potential of a novel approach using a ligand for iNKT cells and suboptimal dosage of antibody for CD40-CD40 ligand (L) blockade as a powerful method for mixed chimerism establishment after allogenic bone marrow transplantation in sublethally irradiated fully allo recipients. Mixed-chimera mice accepted subsequent cardiac allografts in a donor-specific manner. High amounts of type 2 helper T cytokines were detected right after iNKT cell activation, while subsequent interferon-gamma production by NK cells was effectively inhibited by CD40/CD40L blockade. Tolerogenic components, such as CD11c(low) mPDCA1(+) plasmacytoid dendritic cells and activated regulatory T cells (Tregs) expressing CD103, KLRG-1 and PD-1, were subsequently augmented. Those activating Tregs seem to be required for the establishment of chimerism because depletion of the Tregs 1 day before allogenic cell transfer resulted in a chimerism brake. These results collectively suggest that our new protocol makes it possible to induce donor-specific tolerance by enhancement of the innate ability for immune tolerance in place of the conventional immunosuppression.
Collapse
Affiliation(s)
- T Hirai
- Department of Urology, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan; Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Aspeslagh S, Nemčovič M, Pauwels N, Venken K, Wang J, Calenbergh SV, Zajonc DM, Elewaut D. Enhanced TCR footprint by a novel glycolipid increases NKT-dependent tumor protection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2916-25. [PMID: 23960235 PMCID: PMC3817951 DOI: 10.4049/jimmunol.1203134] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells, a unique type of regulatory T cells, respond to structurally diverse glycolipids presented by CD1d. Although it was previously thought that recognition of glycolipids such as α-galactosylceramide (α-GalCer) by the NKT cell TCR (NKTCR) obeys a key-lock principle, it is now clear this interaction is much more flexible. In this article, we report the structure-function analysis of a series of novel 6''-OH analogs of α-GalCer with more potent antitumor characteristics. Surprisingly, one of the novel carbamate analogs, α-GalCer-6''-(pyridin-4-yl)carbamate, formed novel interactions with the NKTCR. This interaction was associated with an extremely high level of Th1 polarization and superior antitumor responses. These data highlight the in vivo relevance of adding aromatic moieties to the 6''-OH position of the sugar and additionally show that judiciously chosen linkers are a promising strategy to generate strong Th1-polarizing glycolipids through increased binding either to CD1d or to NKTCR.
Collapse
Affiliation(s)
- Sandrine Aspeslagh
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marek Nemčovič
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Nora Pauwels
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Koen Venken
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jing Wang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Dirk M. Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Kunte A, Zhang W, Paduraru C, Veerapen N, Cox LR, Besra GS, Cresswell P. Endoplasmic reticulum glycoprotein quality control regulates CD1d assembly and CD1d-mediated antigen presentation. J Biol Chem 2013; 288:16391-16402. [PMID: 23615906 PMCID: PMC3675576 DOI: 10.1074/jbc.m113.474221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-classical major histocompatibility complex (MHC) homologue CD1d presents lipid antigens to innate-like lymphocytes called natural-killer T (NKT) cells. These cells, by virtue of their broad cytokine repertoire, shape innate and adaptive immune responses. Here, we have assessed the role of endoplasmic reticulum glycoprotein quality control in CD1d assembly and function, specifically the role of a key component of the quality control machinery, the enzyme UDP glucose glycoprotein glucosyltransferase (UGT1). We observe that in UGT1-deficient cells, CD1d associates prematurely with β2-microglobulin (β2m) and is able to rapidly exit the endoplasmic reticulum. At least some of these CD1d-β2m heterodimers are shorter-lived and can be rescued by provision of a defined exogenous antigen, α-galactosylceramide. Importantly, we show that in UGT1-deficient cells the CD1d-β2m heterodimers have altered antigenicity despite the fact that their cell surface levels are unchanged. We propose that UGT1 serves as a quality control checkpoint during CD1d assembly and further suggest that UGT1-mediated quality control can shape the lipid repertoire of newly synthesized CD1d. The quality control process may play a role in ensuring stability of exported CD1d-β2m complexes, in facilitating presentation of low abundance high affinity antigens, or in preventing deleterious responses to self lipids.
Collapse
Affiliation(s)
- Amit Kunte
- Section of Infectious Diseases, Department of Internal Medicine, New Haven, Connecticut 06520-8011
| | - Wei Zhang
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011
| | - Crina Paduraru
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011
| | - Natacha Veerapen
- School of Biosciences, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Peter Cresswell
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011.
| |
Collapse
|
33
|
Wang XF, Lei Y, Chen M, Chen CB, Ren H, Shi TD. PD-1/PDL1 and CD28/CD80 pathways modulate natural killer T cell function to inhibit hepatitis B virus replication. J Viral Hepat 2013; 20 Suppl 1:27-39. [PMID: 23458522 DOI: 10.1111/jvh.12061] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 12/08/2012] [Indexed: 12/31/2022]
Abstract
α-Galactosylceramide (α-GalCer)-activated natural killer T (NKT) cells have antiviral properties against hepatitis B virus (HBV). However, α-GalCer activation of NKT cells can induce anergy. We hypothesized that this effect may be overcome by a treatment strategy that includes manipulation of CD28/CD80 costimulatory and PD-1/PDL1 coinhibitory signals of NKT cells, thereby enhancing the anti-HBV effect of α-GalCer. We established a transgenic mouse model of chronic HBV infection and investigated hepatic NKT cell frequencies, functions and expression of immunomodulatory factors. Our results showed that compared with uninfected control mice, hepatic NKT cells from HBV transgenic mice displayed lower frequencies (7.91% vs 16.74%, P < 0.05), impaired capabilities to produce interferon (IFN)-γ (5.6% vs 1.4%, P < 0.05) and interleukin (IL)-4 (6.8% vs 0.3%, P < 0.05), higher expression of PD-1 (9.64% vs 6.36%, P < 0.05) and lower expression of CD28 (5.05% vs 28.88%, P < 0.05). However, when hepatic mononuclear cells (MNCs) were isolated from HBV transgenic mice, α-GalCer exposure in culture remarkably upregulated both PD-1(+) NKT cells (P < 0.05) and CD28(+) NKT cells (P < 0.05). Furthermore, when HBV transgenic mice were treated with combination therapies consisting of α-GalCer and anti-PDL1 monoclonal antibody (mAb) and/or anti-CD80/anti-CD28 mAbs, IFN-γ(+) NKT cell frequency was selectively increased (P < 0.05) and HBV replication was suppressed; these effects were accompanied by varying degrees and types of liver damage. Surprisingly, activating CD28/CD80 signal in HBV transgenic mice was more effective but caused less liver injury than blocking PD-1/PDL1 signal in modulating αGalCer-activated NKT cell function to inhibit HBV infection. Our findings also show that combined therapy with blocking PD-1/PDL1 and activating CD28/CD80 signal in the presence of aGalCer cannot superimpose the effect of antivirus. α-GalCer combination therapy that modulates the CD28/CD80 pathways of NKT cells may represent a promising approach to inhibit HBV replication in chronically infected patients.
Collapse
Affiliation(s)
- X F Wang
- Institute of Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Second Affiliated Hospital, Chongqing, China
| | | | | | | | | | | |
Collapse
|
34
|
Nowak M, Krämer B, Haupt M, Papapanou PN, Kebschull J, Hoffmann P, Schmidt-Wolf IG, Jepsen S, Brossart P, Perner S, Kebschull M. Activation of invariant NK T cells in periodontitis lesions. THE JOURNAL OF IMMUNOLOGY 2013; 190:2282-91. [PMID: 23365081 DOI: 10.4049/jimmunol.1201215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Periodontitis is one of the most prevalent human inflammatory diseases. The major clinical phenotypes of this polymicrobial, biofilm-mediated disease are chronic and aggressive periodontitis, the latter being characterized by a rapid course of destruction that is generally attributed to an altered immune-inflammatory response against periodontal pathogens. Still, the biological basis for the pathophysiological distinction of the two disease categories has not been well documented yet. Type I NKT cells are a lymphocyte subset with important roles in regulating immune responses to either tolerance or immunity, including immune responses against bacterial pathogens. In this study, we delineate the mechanisms of NKT cell activation in periodontal infections. We show an infiltration of type I NKT cells in aggressive, but not chronic, periodontitis lesions in vivo. Murine dendritic cells infected with aggressive periodontitis-associated Aggregatibacter actinomycetemcomitans triggered a type I IFN response followed by type I NKT cell activation. In contrast, infection with Porphyromonas gingivalis, a principal pathogen in chronic periodontitis, did not induce NKT cell activation. This difference could be explained by the absence of a type I IFN response to P. gingivalis infection. We found these IFNs to be critical for NKT cell activation. Our study provides a conceivable biological distinction between the two periodontitis subforms and identifies factors required for the activation of the immune system in response to periodontal bacteria.
Collapse
Affiliation(s)
- Michael Nowak
- Department of Prostate Cancer Research, Institute of Pathology, University of Bonn, Bonn 53127, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lawson V. Turned on by danger: activation of CD1d-restricted invariant natural killer T cells. Immunology 2012; 137:20-7. [PMID: 22734667 DOI: 10.1111/j.1365-2567.2012.03612.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells bear characteristics of innate and adaptive lymphocytes, which allow them to bridge the two halves of the immune response and play roles in many disease settings. Recent work has characterized precisely how their activation is initiated and regulated. Novel antigens from important pathogens have been identified, as has an abundant self-antigen, β-glucopyranosylcaramide, capable of mediating an iNKT-cell response. Studies of the iNKT T-cell receptor (TCR)-antigen-CD1d complex show how docking between CD1d-antigen and iNKT TCR is highly conserved, and how small sequence differences in the TCR establish intrinsic variation in iNKT TCR affinity. The sequence of the TCR CDR3β loop determines iNKT TCR affinity for ligand-CD1d, independent of ligand identity. CD1d ligands can promote T helper type 1 (Th1) or Th2 biased cytokine responses, depending on the composition of their lipid tails. Ligands loaded into CD1d on the cell surface promote Th2 responses, whereas ligands with long hydrophobic tails are loaded endosomally and promote Th1 responses. This information is informing the design of synthetic iNKT-cell antigens. The iNKT cells may be activated by exogenous antigen, or by a combination of dendritic cell-derived interleukin-12 and iNKT TCR-self-antigen-CD1d engagement. The iNKT-cell activation is further modulated by recent foreign or self-antigen encounter. Activation of dendritic cells through pattern recognition receptors alters their antigen presentation and cytokine production, strongly influencing iNKT-cell activation. In a range of bacterial infections, dendritic cell-dependent innate activation of iNKT cells through interleukin-12 is the dominant influence on their activity.
Collapse
|
36
|
Pilones KA, Aryankalayil J, Demaria S. Invariant NKT cells as novel targets for immunotherapy in solid tumors. Clin Dev Immunol 2012; 2012:720803. [PMID: 23118781 PMCID: PMC3483734 DOI: 10.1155/2012/720803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/02/2012] [Accepted: 09/02/2012] [Indexed: 12/15/2022]
Abstract
Natural killer T (NKT) cells are a small population of lymphocytes that possess characteristics of both innate and adaptive immune cells. They are uniquely poised to respond rapidly to infection and inflammation and produce cytokines that critically shape the ensuing adaptive cellular response. Therefore, they represent promising therapeutic targets. In cancer, NKT cells are attributed a role in immunosurveillance. NKT cells also act as potent activators of antitumor immunity when stimulated with a synthetic agonist in experimental models. However, in some settings, NKT cells seem to act as suppressors and regulators of antitumor immunity. Here we briefly review current data supporting these paradoxical roles of NKT cells and their regulation. Increased understanding of the signals that determine the function of NKT cells in cancer will be essential to improve current strategies for NKT-cell-based immunotherapeutic approaches.
Collapse
Affiliation(s)
- Karsten A. Pilones
- Department of Pathology, NYU School of Medicine, 550 First Avenue, MSB-521, New York, NY 10016, USA
| | - Joseph Aryankalayil
- Department of Pathology, NYU School of Medicine, 550 First Avenue, MSB-521, New York, NY 10016, USA
| | - Sandra Demaria
- Department of Pathology, NYU School of Medicine, 550 First Avenue, MSB-521, New York, NY 10016, USA
| |
Collapse
|
37
|
Bajwa A, Huang L, Ye H, Dondeti K, Song S, Rosin DL, Lynch KR, Lobo PI, Li L, Okusa MD. Dendritic cell sphingosine 1-phosphate receptor-3 regulates Th1-Th2 polarity in kidney ischemia-reperfusion injury. THE JOURNAL OF IMMUNOLOGY 2012; 189:2584-96. [PMID: 22855711 DOI: 10.4049/jimmunol.1200999] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dendritic cells (DCs) are central to innate and adaptive immunity of early kidney ischemia-reperfusion injury (IRI), and strategies to alter DC function may provide new therapeutic opportunities. Sphingosine 1-phosphate (S1P) modulates immunity through binding to its receptors (S1P1-5), and protection from kidney IRI occurs in S1P3-deficient mice. Through a series of experiments we determined that this protective effect was owing in part to differences between S1P3-sufficient and -deficient DCs. Mice lacking S1P3 on bone marrow cells were protected from IRI, and S1P3-deficient DCs displayed an immature phenotype. Wild-type (WT) but not S1P3-deficient DCs injected into mice depleted of DCs prior to kidney IR reconstituted injury. Adoptive transfer (i.e., i.v. injection) of glycolipid (Ag)-loaded WT but not S1P3-deficient DCs into WT mice exacerbated IRI, suggesting that WT but not S1P3-deficient DCs activated NKT cells. Whereas WT DC transfers activated the Th1/IFN-γ pathway, S1P3-deficient DCs activated the Th2/IL-4 pathway, and an IL-4-blocking Ab reversed protection from IRI, supporting the concept that IL-4 mediates the protective effect of S1P3-deficient DCs. Administration of S1P3-deficient DCs 7 d prior to or 3 h after IRI protected mice from IRI and suggests their potential use in cell-based therapy. We conclude that absence of DC S1P3 prevents DC maturation and promotes a Th2/IL-4 response. These findings highlight the importance of DC S1P3 in modulating NKT cell function and IRI and support development of selective S1P3 antagonists for tolerizing DCs for cell-based therapy or for systemic administration for the prevention and treatment of IRI and autoimmune diseases.
Collapse
Affiliation(s)
- Amandeep Bajwa
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Shimazu T, Iida R, Zhang Q, Welner RS, Medina KL, Alberola-Lla J, Kincade PW. CD86 is expressed on murine hematopoietic stem cells and denotes lymphopoietic potential. Blood 2012; 119:4889-97. [PMID: 22371880 PMCID: PMC3367893 DOI: 10.1182/blood-2011-10-388736] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/20/2012] [Indexed: 11/20/2022] Open
Abstract
A unique subset of CD86(-) HSCs was previously discovered in mice that were old or chronically stimulated with lipopolysaccharide. Functionally defective HSCs were also present in those animals, and we now show that CD86(-) CD150(+) CD48(-) HSCs from normal adult mice are particularly poor at restoring the adaptive immune system. Levels of the marker are high on all progenitors with lymphopoietic potential, and progressive loss helps to establish relations between progenitors corresponding to myeloid and erythroid lineages. CD86 represents an important tool for subdividing HSCs in several circumstances, identifying those unlikely to generate a full spectrum of hematopoietic cells.
Collapse
Affiliation(s)
- Tomoyuki Shimazu
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Qi Q, Huang W, Bai Y, Balmus G, Weiss RS, August A. A unique role for ITK in survival of invariant NKT cells associated with the p53-dependent pathway in mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:3611-9. [PMID: 22403441 DOI: 10.4049/jimmunol.1102475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Invariant NKT (iNKT) cells play important roles in the immune response. ITK and TXK/RLK are Tec family kinases that are expressed in iNKT cells; the expression level of ITK is ∼7-fold higher than that of TXK. Itk(-/-) mice have reduced iNKT cell frequency and numbers, with defects in development and cytokine secretion that are exacerbated in Itk/Txk double-knockout mice. In contrast, there is no iNKT cell defect in Txk(-/-) mice. To determine whether ITK and TXK play distinct roles in iNKT cell development and function, we examined mice that overexpress TXK in T cells at levels similar to Itk. Overexpression of TXK rescues the maturation and cytokine secretion of Itk(-/-) iNKT cells, as well as altered expression of transcription factors T-bet, eomesodermin, and PLZF. In contrast, the increased apoptosis observed in Itk(-/-) splenic iNKT cells is not affected by TXK overexpression, likely due to the lack of effect on the elevated expression of p53 regulated proapoptotic pathways Fas, Bax, and Bad in those cells. Supporting this idea, p53(-/-) and Bax(-/-) mice have increased splenic iNKT cells. Our results suggest that TXK plays an overlapping role with ITK in iNKT cell development and function but that ITK also has a unique function in the survival of iNKT cells, likely via a p53-dependent pathway.
Collapse
Affiliation(s)
- Qian Qi
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16801, USA
| | | | | | | | | | | |
Collapse
|
40
|
Chung Y, Lee YH, Zhang Y, Martin-Orozco N, Yamazaki T, Zhou D, Kang CY, Hwu P, Kwak LW, Dong C. T cells and T cell tumors efficiently generate antigen-specific cytotoxic T cell immunity when modified with an NKT ligand. Oncoimmunology 2012; 1:141-151. [PMID: 22720235 PMCID: PMC3376985 DOI: 10.4161/onci.1.2.18479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Various Invariant NKT (iNKT) cell ligands have been shown as potent adjuvants in boosting T cell reactivates to antigens on professional APC. Non-professional APC, such as T cells, also co-expressing MHC class I and CD1d, have been unattractive cell vaccine carriers due to their poor immunogenicity. Here, we report that T cells as well as T cell lymphoma can efficiently generate antigen-specific cytotoxic T lymphocytes (CTL) responses in mice in vivo, when formulated to present iNKT ligand α-galactosylceramide (αGC) on their surface CD1d. Vaccination with αGC-pulsed EG-7 T-cell lymphoma induced tumor-specific CTL response and suppressed the growth of EG-7 in a CD8 T cell-dependent manner. Injection of αGC-loaded CD4 T cells in mice efficiently activated iNKT cells in vivo. While T cells loaded with a class I-restricted peptide induced proliferation but not effector differentiation of antigen-specific CD8 T cells, injection of T cells co-pulsed with αGC strongly induced IFNγ and Granzyme B expression in T cells and complete lysis of target cells in vivo. Presentation of αGC and peptide on the same cells was required for optimal CTL response and vaccinating T cells appeared to directly stimulate both iNKT and cytotoxic CD8 T cells. Of note, the generation of this cytotoxic T cell response was independent of IL-4, IFNγ, IL-12, IL-21 and costimulation. Our data indicate that iNKT cell can license a non-professional APC to directly trigger antigen-specific cytotoxic T cell responses, which provides an alternative cellular vaccine strategy against tumors.
Collapse
Affiliation(s)
- Yeonseok Chung
- Department of Immunology; Center for Cancer Immunology Research; University of Texas MD Anderson Cancer Center; Houston, TX USA ; Institute of Molecular Medicine; University of Texas Medical School; Houston, TX USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Klinker MW, Lundy SK. Multiple mechanisms of immune suppression by B lymphocytes. Mol Med 2012; 18:123-37. [PMID: 22033729 PMCID: PMC3276396 DOI: 10.2119/molmed.2011.00333] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/21/2011] [Indexed: 12/20/2022] Open
Abstract
Suppression of the immune system after the resolution of infection or inflammation is an important process that limits immune-mediated pathogenesis and autoimmunity. Several mechanisms of immune suppression have received a great deal of attention in the past three decades. These include mechanisms related to suppressive cytokines, interleukin (IL)-10 and transforming growth factor (TGF)-β, produced by regulatory cells, and mechanisms related to apoptosis mediated by death ligands, Fas ligand (FasL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), expressed by killer or cytotoxic cells. Despite many lines of evidence supporting an important role for B lymphocytes as both regulatory and killer cells in many inflammatory settings, relatively little attention has been given to understanding the biology of these cells, their relative importance or their usefulness as therapeutic targets. This review is intended to give an overview of the major mechanisms of immunosuppression used by B lymphocytes during both normal and inflammatory contexts. The more recent discoveries of expression of granzyme B, programmed death 1 ligand 2 (PD-L2) and regulatory antibody production by B cells as well as the interactions of regulatory and killer B cells with regulatory T cells, natural killer T (NKT) cells and other cell populations are discussed. In addition, new evidence on the basis of independent characterizations of regulatory and killer CD5(+) B cells point toward the concept of a multipotent suppressor B cell with seemingly high therapeutic potential.
Collapse
Affiliation(s)
- Matthew W Klinker
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Steven K Lundy
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
42
|
Issazadeh-Navikas S. NKT cell self-reactivity: evolutionary master key of immune homeostasis? J Mol Cell Biol 2011; 4:70-8. [PMID: 22167750 DOI: 10.1093/jmcb/mjr035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Complex immune responses have evolved to protect multicellular organisms against the invasion of pathogens. This has exerted strong developmental pressure for specialized functions that can also limit damage to self-tissue. Two arms of immunity, the innate and adaptive immune systems, have evolved for quick, non-specific immune responses to pathogens and more efficient, long-lasting ones upon specific recognition of recurrent pathogens. Specialized cells have arisen as the sentinels of these functions, including macrophages, natural killer (NK), and T and B-lymphocytes. Interestingly, a population of immune cells that can exert both of these complex functions, NKT cells, not only share common functions but also exhibit shared cell surface markers of cells of both arms of the immune system. These features, in combination with sophisticated maintenance of immune homeostasis, will be discussed. The recent finding of self-peptide reactivity of NKT cells in the context of CD1d, with capacity to regulate multiple autoimmune and inflammatory conditions, motivates the current proposal that self-reactive NKT cells might be the ancestral link between present NK and T cells. Their parallel selection through evolution by higher vertebrates could be related to their central function as master regulators of immune homeostasis that in part is shared with regulatory T cells. Hypothetical views on how self-reactive NKT cells secure such a central role will also be proposed.
Collapse
Affiliation(s)
- Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen Biocentre, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
43
|
King IL, Fortier A, Tighe M, Dibble J, Watts GFM, Veerapen N, Haberman AM, Besra GS, Mohrs M, Brenner MB, Leadbetter EA. Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat Immunol 2011; 13:44-50. [PMID: 22120118 PMCID: PMC3833037 DOI: 10.1038/ni.2172] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/25/2011] [Indexed: 02/08/2023]
Abstract
Mouse invariant natural killer T cells (iNKT cells) provide cognate and noncognate help for lipid and protein-specific B cells, respectively. However, the long-term outcome for B cells after cognate help is provided by iNKT cells is unknown at present. Here we found that cognate iNKT cell help resulted in a B cell differentiation program characterized by extrafollicular plasmablasts, germinal-center formation, affinity maturation and a robust primary immunoglobulin G (IgG) antibody response that was uniquely dependent on iNKT cell-derived interleukin 21 (IL-21). However, cognate help from iNKT cells did not generate an enhanced humoral memory response. Thus, cognate iNKT cell help for lipid-specific B cells induces a unique signature that is a hybrid of classic T cell-dependent and T cell-independent type 2 B cell responses.
Collapse
Affiliation(s)
- Irah L King
- Trudeau Institute, Saranac Lake, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bialecki E, Macho Fernandez E, Ivanov S, Paget C, Fontaine J, Rodriguez F, Lebeau L, Ehret C, Frisch B, Trottein F, Faveeuw C. Spleen-resident CD4+ and CD4- CD8α- dendritic cell subsets differ in their ability to prime invariant natural killer T lymphocytes. PLoS One 2011; 6:e26919. [PMID: 22066016 PMCID: PMC3204990 DOI: 10.1371/journal.pone.0026919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/06/2011] [Indexed: 12/03/2022] Open
Abstract
One important function of conventional dendritic cells (cDC) is their high capacity to capture, process and present Ag to T lymphocytes. Mouse splenic cDC subtypes, including CD8α+ and CD8α− cDC, are not identical in their Ag presenting and T cell priming functions. Surprisingly, few studies have reported functional differences between CD4− and CD4+ CD8α− cDC subsets. We show that, when loaded in vitro with OVA peptide or whole protein, and in steady-state conditions, splenic CD4− and CD4+ cDC are equivalent in their capacity to prime and direct CD4+ and CD8+ T cell differentiation. In contrast, in response to α-galactosylceramide (α-GalCer), CD4− and CD4+ cDC differentially activate invariant Natural Killer T (iNKT) cells, a population of lipid-reactive non-conventional T lymphocytes. Both cDC subsets equally take up α-GalCer in vitro and in vivo to stimulate the iNKT hybridoma DN32.D3, the activation of which depends solely on TCR triggering. On the other hand, and relative to their CD4+ counterparts, CD4− cDC more efficiently stimulate primary iNKT cells, a phenomenon likely due to differential production of co-factors (including IL-12) by cDC. Our data reveal a novel functional difference between splenic CD4+ and CD4− cDC subsets that may be important in immune responses.
Collapse
Affiliation(s)
- Emilie Bialecki
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Elodie Macho Fernandez
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Stoyan Ivanov
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christophe Paget
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Josette Fontaine
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Fabien Rodriguez
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Luc Lebeau
- Laboratoire de Conception et Application des Molécules Bioactives, Faculté de Pharmacie, CNRS, UMR 7199/Université de Strasbourg, Illkirch, France
| | - Christophe Ehret
- Laboratoire de Conception et Application des Molécules Bioactives, Faculté de Pharmacie, CNRS, UMR 7199/Université de Strasbourg, Illkirch, France
| | - Benoit Frisch
- Laboratoire de Conception et Application des Molécules Bioactives, Faculté de Pharmacie, CNRS, UMR 7199/Université de Strasbourg, Illkirch, France
| | - François Trottein
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
| | - Christelle Faveeuw
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Lille, France
- Université Lille Nord de France, Lille, France
- Centre National de la Recherche Scientifique (CNRS), UMR 8204, Lille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1019, Lille, France
- Institut Fédératif de Recherche 142, Lille, France
- * E-mail:
| |
Collapse
|
45
|
Zietara N, Łyszkiewicz M, Krueger A, Weiss S. ICOS-dependent stimulation of NKT cells by marginal zone B cells. Eur J Immunol 2011; 41:3125-34. [PMID: 21809338 DOI: 10.1002/eji.201041092] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 07/12/2011] [Accepted: 07/22/2011] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells express high levels of CD1d molecules. In accordance, MZ B cells, like splenic conventional DCs (cDCs), efficiently trigger NKT-cell proliferation. Importantly, MZ B cells exclusively induced production of IL-4 and IL-13 by such cells whereas cDCs induced robust production of mainly IFN-γ. NKT-cell proliferation, IL-4 and IL-13 production induced by MZ B cells were dependent on ICOS/ICOS ligand interaction while IFN-γ and IL-17 induction by cDCs required glucocorticoid-induced TNF receptor/glucocorticoid-induced TNF receptor ligand interplay. Our data illustrate that both MZ B cells and cDCs act as efficient APCs for NKT cells and might differentially influence the quality of the subsequent immune response.
Collapse
Affiliation(s)
- Natalia Zietara
- Department of Molecular Biotechnology, Molecular Immunology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | |
Collapse
|
46
|
Exley MA, Lynch L, Varghese B, Nowak M, Alatrakchi N, Balk SP. Developing understanding of the roles of CD1d-restricted T cell subsets in cancer: reversing tumor-induced defects. Clin Immunol 2011; 140:184-95. [PMID: 21646050 PMCID: PMC3143311 DOI: 10.1016/j.clim.2011.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T-cells ('iNKT') are the best-known CD1d-restricted T-cells, with recently-defined roles in controlling adaptive immunity. CD1d-restricted T-cells can rapidly produce large amounts of Th1 and/or Th2//Treg/Th17-type cytokines, thereby regulating immunity. iNKT can stimulate potent anti-tumor immune responses via production of Th1 cytokines, direct cytotoxicity, and activation of effectors. However, Th2//Treg-type iNKT can inhibit anti-tumor activity. Furthermore, iNKT are decreased and/or reversibly functionally impaired in many advanced cancers. In some cases, CD1d-restricted T-cell cancer defects can be traced to CD1d(+) tumor interactions, since hematopoietic, prostate, and some other tumors can express CD1d. Ligand and IL-12 can reverse iNKT defects and therapeutic opportunities exist in correcting such defects alone and in combination. Early stage clinical trials have shown potential for reconstitution of iNKT IFN-gamma responses and evidence of activity in a subset of patients, with rational new approaches to capitalize on this progress ongoing, as will be discussed here.
Collapse
Affiliation(s)
- Mark A Exley
- Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Early activated Th-1 type and dominantly diverse natural killer T (CD3+CD161+Vα24−) cells in bone marrow among visceral leishmaniasis patients. Int J Parasitol 2011; 41:1069-77. [DOI: 10.1016/j.ijpara.2011.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/26/2011] [Accepted: 05/30/2011] [Indexed: 11/21/2022]
|
48
|
Lang GA, Johnson AM, Devera TS, Joshi SK, Lang ML. Reduction of CD1d expression in vivo minimally affects NKT-enhanced antibody production but boosts B-cell memory. Int Immunol 2011; 23:251-60. [PMID: 21398691 DOI: 10.1093/intimm/dxq477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The CD1d-binding glycolipid α-galactosylceramide exerts potent adjuvant effects on T-dependent humoral immunity. The mechanism is driven by cognate interaction between CD1d-expressing B cells and TCR-expressing type I CD1d-restricted NKT cells. Thus, far positive effects of alpha-galactosylceramide have been observed on initial and sustained antibody titers as well as B-cell memory. Following vaccination, each of these features is desirable, but good B-cell memory is of paramount importance for long-lived immunity. We therefore tested the hypothesis that CD1d expression in vivo differentially affects initial antibody titers versus B-cell memory responses. CD1d(+/+) and CD1d(+/-) mice were generated and immunized with antigen plus CD1d ligand before analysis of cytokine expression, CD40L expression, initial and longer term antibody responses and B-cell memory. As compared with CD1d(+/+) controls, CD1d(+/-) mice had equivalent numbers of total NKT cells, lower cytokine production, fewer CD40L-expressing NKT cells, lower initial antibody responses, similar long-term antibody responses and higher B-cell memory. Our data indicate that weak CD1d antigen presentation may facilitate good B-cell memory without compromising antibody responses. This work may impact vaccine design since over-stimulation of NKT cells at the time of vaccination may not lead to optimal B-cell memory.
Collapse
Affiliation(s)
- Gillian A Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
49
|
Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4-dependent mechanism. Blood 2011; 117:3220-9. [PMID: 21258007 DOI: 10.1182/blood-2010-08-303008] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CD4(+) natural killer T (NKT) cells, along with CD4(+)CD25(+) regulatory T cells (Tregs), are capable of controlling aberrant immune reactions. We explored the adoptive transfer of highly purified (> 95%) CD4(+)NKT cells in a murine model of allogeneic hematopoietic cell transplantation (HCT). NKT cells follow a migration and proliferation pattern similar to that of conventional T cells (Tcons), migrating initially to secondary lymphoid organs followed by infiltration of graft-versus-host disease (GVHD) target tissues. NKT cells persist for more than 100 days and do not cause significant morbidity or mortality. Doses of NKT cells as low as 1.0 × 10(4) cells suppress GVHD caused by 5.0 × 10(5) Tcons in an interleukin-4 (IL-4)-dependent mechanism. Protective doses of NKT cells minimally affect Tcon proliferation, but cause significant reductions in interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production by donor Tcons and in skin, spleen, and gastrointestinal pathology. In addition, NKT cells do not impact the graft-versus-tumor (GVT) effect of Tcons against B-cell lymphoma-1 (BCL-1) tumors. These studies elucidate the biologic function of donor-type CD4(+)NKT cells in suppressing GVHD in an allogeneic transplantation setting, demonstrating clinical potential in reducing GVHD in HCT.
Collapse
|
50
|
Targeting NKT cells and PD-L1 pathway results in augmented anti-tumor responses in a melanoma model. Cancer Immunol Immunother 2011; 60:547-58. [PMID: 21240487 DOI: 10.1007/s00262-010-0963-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 12/21/2010] [Indexed: 02/08/2023]
Abstract
Invariant or Type 1 NKT cells (iNKT cells) are a unique population of lymphocytes that share characteristics of T cells and natural killer (NK) cells. Various studies have shown that positive costimulatory pathways such as the CD28 and CD40 pathways can influence the expansion and cytokine production by iNKT cells. However, little is understood about the regulation of iNKT cells by negative costimulatory pathways. Here, we show that in vivo activation with α-GalCer results in increased cytokine production and expansion of iNKT cells in the absence of programmed cell death ligand-1 (PD-L1, B7-H1, and CD274). To study whether PD-L1 deficiency on NKT cells would enhance antigen-specific T-cell responses, we utilized CD8(+) OT-1 OVA transgenic T cells. α-GalCer enhanced the expansion and cytokine production of OT-1 CD8(+) cells after adoptive transfer into wild-type recipients. However, this expansion was significantly enhanced when OT-1 CD8(+) T cells were adoptively transferred into PD-L1(-/-) recipients. To extend these results to a tumor model, we used the B16 melanoma system. PD-L1(-/-) mice given dendritic cells loaded with antigen and α-GalCer had a significant reduction in tumor growth and this was associated with increased trafficking of antigen-presenting cells and CD8(+) T cells to the tumors. These data demonstrate that abrogating PDL1:PD-1 interactions during the activation of iNKT cells amplifies an anti-tumor response when coupled with DC vaccination.
Collapse
|