1
|
Franco Acevedo A, Mack JJ, Valenzuela NM. The transcriptional repressor B cell lymphoma 6 regulates CXCR3 chemokine and human leukocyte antigen II expression in endothelial cells. Am J Transplant 2024:S1600-6135(24)00449-0. [PMID: 39074669 DOI: 10.1016/j.ajt.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Interferon gamma (IFN-γ) induces an endothelial proimmunogenic phenotype through the JAK/STAT1 pathway, which can shape the activation of alloreactive leukocytes in transplant rejection. In immune cells, the DNA-binding protein B cell lymphoma 6 (BCL6) controls the transcription of inflammatory genes. This study tested if BCL6 modulates IFN-γ-induced gene expression in endothelial cells. In vitro, BCL6 was IFN-γ-inducible in primary human endothelium, along with CXCR3 chemokines and human leukocyte antigen (HLA). BCL6, HLA II, and CXCL9 were also increased in human cardiac transplants during acute rejection. Knockdown of BCL6 augmented, whereas overexpression and BTB domain inhibitors (BCL6-BTBi) suppressed, HLA II and CXCR3 chemokine expression but not HLA I. Further, BCL6 had a greater effect on HLA-DR and DP but was less involved in regulating HLA-DQ expression. The effect correlated with BCL6 binding motifs in or near affected genes. The BCL6 DNA recognition sequence was highly similar to that of STAT1, and BTBi reduced STAT1's transcriptional activity in vitro. Our results show for the first time that BCL6 selectively controls IFN-γ-induced endothelial gene expression, advancing our understanding of the endogenous mechanisms regulating donor immunogenicity.
Collapse
Affiliation(s)
- Adriana Franco Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA
| | - Julia J Mack
- Department of Cardiology, University of California, Los Angeles, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
2
|
Shim J, Park S, Venkateswaran S, Kumar D, Prince C, Parihar V, Maples L, Waller EK, Kugathasan S, Briones M, Lee M, Henry CJ, Prahalad S, Chandrakasan S. Early B-cell development and B-cell maturation are impaired in patients with active hemophagocytic lymphohistiocytosis. Blood 2023; 142:1972-1984. [PMID: 37624902 PMCID: PMC10731577 DOI: 10.1182/blood.2023020426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is characterized by hyperinflammation and multiorgan dysfunction. Infections, including the reactivation of viruses, contribute to significant disease mortality in HLH. Although T-cell and natural killer cell-driven immune activation and dysregulation are well described, limited data exist on the status of B-cell compartment and humoral immune function in HLH. We noted marked suppression of early B-cell development in patients with active HLH. In vitro B-cell differentiation studies after exposure to HLH-defining cytokines, such as interferon gamma (IFN-γ) and tumor necrosis factor, recapitulated B-cell development arrest. Messenger RNA sequencing of human CD34+ cells exposed to IFN-γ demonstrated changes in genes and pathways affecting B-cell development and maturation. In addition, patients with active HLH exhibited a marked decrease in class-switched memory B (CSMB) cells and a decrease in bone marrow plasmablast/plasma cell compartments. The decrease in CSMB cells was associated with a decrease in circulating T follicular helper (cTfh) cells. Finally, lymph node and spleen evaluation in a patient with HLH revealed absent germinal center formation and hemophagocytosis with associated lymphopenia. Reassuringly, the frequency of CSMB and cTfh improved with the control of T-cell activation. Taken together, in patients with active HLH, these changes in B cells may affect the humoral immune response; however, further immune studies are needed to determine its clinical significance.
Collapse
Affiliation(s)
- Jenny Shim
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sunita Park
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Deepak Kumar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Chengyu Prince
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Vaunita Parihar
- Cancer Tissue and Pathology Shared Resource Core, Emory University School of Medicine, Atlanta, GA
| | - Larkin Maples
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Michael Briones
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Miyoung Lee
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Curtis J. Henry
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sampath Prahalad
- Division of Pediatric Rheumatology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Shanmuganathan Chandrakasan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
3
|
Zhang J, Yu X, Xie Z, Wang R, Li H, Tang Z, Na N. A bibliometric and knowledge-map analysis of antibody-mediated rejection in kidney transplantation. Ren Fail 2023; 45:2257804. [PMID: 37724568 PMCID: PMC10512841 DOI: 10.1080/0886022x.2023.2257804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVES Antibody-mediated rejection (AMR) is a large obstacle to the long-term survival of allograft kidneys. It is urgent to find novel strategies for its prevention and treatment. Bibliometric analysis is helpful in understanding the directions of one field. Hence, this study aims to analyze the state and emerging trends of AMR in kidney transplantation. METHODS Literature on AMR in kidney transplantation from 1999 to 2022 was collected from the Web of Science Core Collection. HistCite (version 12.03.17), CiteSpace (version 6.2.R2), Bibliometrix 4.1.0 Package from R language, and Gephi (https://gephi.org) were applied to the bibliometric analysis of the annual publications, leading countries/regions, core journals, references, keywords, and trend topics. RESULTS A total of 2522 articles related to AMR in kidney transplantation were included in the analysis and the annual publications increased year by year. There were 10874 authors from 118 institutions located in 70 countries/regions contributing to AMR studies, and the United States took the leading position in both articles and citation scores. Halloran PF from Canada made the most contribution to AMR in kidney transplantation. The top 3 productive journals, American Journal of Transplantation, Transplantation, and Transplantation Proceedings, were associated with transplantation. Moreover, the recent trend topics mainly focused on transplant outcomes, survival, and clinical research. CONCLUSIONS North American and European countries/regions played central roles in AMR of kidney transplantation. Importantly, the prognosis of AMR is the hotspot in the future. Noninvasive strategies like plasma and urine dd-cfDNA may be the most potential direction in the AMR field.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of kidney transplantation, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Yu
- Department of General Surgery, Kunming Municipal Hospital of Traditional Chinese Medicine, the Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Zhenwei Xie
- Department of kidney transplantation, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruojiao Wang
- Department of kidney transplantation, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Heng Li
- Department of kidney transplantation, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - ZuoFu Tang
- Department of kidney transplantation, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ning Na
- Department of kidney transplantation, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Valenzuela NM. JAKinibs prevent persistent, IFNγ-autonomous endothelial cell inflammation and immunogenicity. Am J Physiol Cell Physiol 2023; 325:C186-C207. [PMID: 37184230 PMCID: PMC10312316 DOI: 10.1152/ajpcell.00298.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
The adhesion and subsequent activation of T cells is a critical step in local inflammatory responses, particularly of alloreactive leukocytes in rejection of transplanted donor tissue. Interferon (IFN)γ is an adaptive cytokine that promotes endothelial cell (EC) expression of pro-adhesive factors and costimulatory molecules. We recently reported that IFNγ-induced endothelial cell antigen-presenting capacity was protracted after cytokine withdrawal. This study sought to determine what intracellular signaling mediates this chronic endothelial activation by IFNγ. The durability of interferon signaling in human aortic endothelial activation was tested. Pro-adhesive and costimulatory gene expression, phenotype, secretome, and Janus kinase (JAK)/STAT phosphorylation in human primary endothelial cells were measured under chronic and transient IFNγ stimulation, with various JAK inhibitors. IFNγ reporter cells were tested for STAT1 transcriptional activity with JAK inhibition and suppressors of cytokine signaling (SOCS) overexpression, under continuous and priming conditions. The consequences of even short exposure to IFNγ were long-lasting and broad, with sustained elevation of adhesion molecules and chemokines up to 48 h later. JAK/STAT and interferon response factor expression were likewise durable, dependent on new transcription but autonomous of continuous IFNγ. Persistent STAT new transcription and JAK signaling in the endothelium was required to maintain a pro-adhesive and proimmunogenic phenotype after IFNγ withdrawal since both could be prevented by cycloheximide but only by JAKinibs with potency against JAK2. Finally, the suppressor of cytokine signaling SOCS1 failed to emerge in primed endothelial cells, which likely accounted for prolonged inflammatory gene expression. The results reveal a sustained JAK-dependent perturbation of endothelial function and suggest that JAKinibs may have therapeutic benefits in dampening vascular inflammation and allogeneic leukocyte activation.NEW & NOTEWORTHY The central question investigated in this study is why vascular endothelium remains inflamed and what underlying signaling is responsible. The new results show that the resolution of endothelial-controlled inflammation may be impaired or delayed because Janus kinase (JAK)/STAT activation is maintained autonomous of interferon (IFN)γ presence, and the late phase negative regulator suppressors of cytokine signaling (SOCS)1 fails to be induced.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
| |
Collapse
|
5
|
Halawi A, El Kurdi AB, Vernon KA, Solhjou Z, Choi JY, Saad AJ, Younis NK, Elfekih R, Mohammed MT, Deban CA, Weins A, Abdi R, Riella LV, De Serres SA, Cravedi P, Greka A, Khoueiry P, Azzi JR. Uncovering a novel role of focal adhesion and interferon-gamma in cellular rejection of kidney allografts at single cell resolution. Front Immunol 2023; 14:1139358. [PMID: 37063857 PMCID: PMC10102512 DOI: 10.3389/fimmu.2023.1139358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundKidney transplant recipients are currently treated with nonspecific immunosuppressants that cause severe systemic side effects. Current immunosuppressants were developed based on their effect on T-cell activation rather than the underlying mechanisms driving alloimmune responses. Thus, understanding the role of the intragraft microenvironment will help us identify more directed therapies with lower side effects.MethodsTo understand the role of the alloimmune response and the intragraft microenvironment in cellular rejection progression, we conducted a Single nucleus RNA sequencing (snRNA-seq) on one human non-rejecting kidney allograft sample, one borderline sample, and T-cell mediated rejection (TCMR) sample (Banff IIa). We studied the differential gene expression and enriched pathways in different conditions, in addition to ligand-receptor (L-R) interactions.ResultsPathway analysis of T-cells in borderline sample showed enrichment for allograft rejection pathway, suggesting that the borderline sample reflects an early rejection. Hence, this allows for studying the early stages of cellular rejection. Moreover, we showed that focal adhesion (FA), IFNg pathways, and endomucin (EMCN) were significantly upregulated in endothelial cell clusters (ECs) of borderline compared to ECs TCMR. Furthermore, we found that pericytes in TCMR seem to favor endothelial permeability compared to borderline. Similarly, T-cells interaction with ECs in borderline differs from TCMR by involving DAMPS-TLRs interactions.ConclusionOur data revealed novel roles of T-cells, ECs, and pericytes in cellular rejection progression, providing new clues on the pathophysiology of allograft rejection.
Collapse
Affiliation(s)
- Ahmad Halawi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Abdullah B. El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Zhabiz Solhjou
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Scripps Clinic Medical Group, San Diego, CA, United States
| | - John Y. Choi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Anis J. Saad
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nour K. Younis
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rania Elfekih
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mostafa Tawfeek Mohammed
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Clinical Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Christa A. Deban
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Astrid Weins
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Leonardo V. Riella
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Sasha A. De Serres
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anna Greka
- The Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Pierre Khoueiry
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jamil R. Azzi
- Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jamil R. Azzi,
| |
Collapse
|
6
|
Franchon Marques Tejada N, Ziroldo Lopes JV, Duarte Gonçalves LE, Mamede Costa Andrade da Conceição I, Franco GR, Ghirotto B, Câmara NOS. AIM2 as a putative target in acute kidney graft rejection. Front Immunol 2022; 13:839359. [PMID: 36248890 PMCID: PMC9561248 DOI: 10.3389/fimmu.2022.839359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Acute rejection (AR) is a process triggered via the recognition of grafted organ-derived antigens by the immune system, which could present as a life-threatening condition. In the context of a kidney transplant, despite improvement with immunosuppressive therapies, AR maintains a significant incidence of 10%, and currently available drugs generally act in similar and canonical pathways of lymphocyte activation. This prompted the research for different approaches to identify potential novel targets that could improve therapeutic interventions. Here, we conducted a transcriptome analysis comparing groups of acute rejection (including T cell-mediated rejection and antibody-mediated rejection) to stable grafts that included differentially expressed genes, transcription factor and kinase enrichment, and Gene Set Enrichment Analysis. These analyses revealed inflammasome enhancement in rejected grafts and AIM2 as a potential component linked to acute rejection, presenting a positive correlation to T-cell activation and a negative correlation to oxidative phosphorylation metabolism. Also, the AIM2 expression showed a global accuracy in discerning acute rejection grafts (area under the curve (AUC) = 0.755 and 0.894, p < 0.0001), and meta-analysis comprising different studies indicated a considerable enhancement of AIM2 in rejection (standardized mean difference (SMD) = 1.45, [CI 95%, 1.18 to 1.71]), especially for T cell-mediated rejection (TCMR) (SMD = 2.01, [CI 95%, 1.58 to 2.45]). These findings could guide future studies of AIM2 as either an adjuvant target for immunosuppression or a potential biomarker for acute rejection and graft survival.
Collapse
Affiliation(s)
- Nathália Franchon Marques Tejada
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - João Vitor Ziroldo Lopes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Luis Eduardo Duarte Gonçalves
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Izabela Mamede Costa Andrade da Conceição
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Glória Regina Franco
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Ghirotto
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, Brazil
- Laboratory of Biochemical Genetics, Department of Biochemistry and Immunology, Institute of Biomedical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Niels Olsen Saraiva Câmara, ;
| |
Collapse
|
7
|
Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs. Nat Med 2020; 26:1102-1113. [PMID: 32661401 PMCID: PMC9990469 DOI: 10.1038/s41591-020-0971-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Patients awaiting lung transplantation face high wait-list mortality, as injury precludes the use of most donor lungs. Although ex vivo lung perfusion (EVLP) is able to recover marginal quality donor lungs, extension of normothermic support beyond 6 h has been challenging. Here we demonstrate that acutely injured human lungs declined for transplantation, including a lung that failed to recover on EVLP, can be recovered by cross-circulation of whole blood between explanted human lungs and a Yorkshire swine. This xenogeneic platform provided explanted human lungs a supportive, physiologic milieu and systemic regulation that resulted in functional and histological recovery after 24 h of normothermic support. Our findings suggest that cross-circulation can serve as a complementary approach to clinical EVLP to recover injured donor lungs that could not otherwise be utilized for transplantation, as well as a translational research platform for immunomodulation and advanced organ bioengineering.
Collapse
|
8
|
Kuppan P, Kelly S, Polishevska K, Hojanepesov O, Seeberger K, Korbutt GS, Pepper AR. Co-localized immune protection using dexamethasone-eluting micelles in a murine islet allograft model. Am J Transplant 2020; 20:714-725. [PMID: 31650674 DOI: 10.1111/ajt.15662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/14/2019] [Accepted: 10/07/2019] [Indexed: 01/25/2023]
Abstract
The broad application of ß cell transplantation for type 1 diabetes is hindered by the requisite of lifelong systemic immunosuppression. This study examines the utility of localized islet graft drug delivery to subvert the inflammatory and adaptive immune responses. Herein, we have developed and characterized dexamethasone (Dex) eluting Food and Drug Administration-approved micro-Poly(lactic-co-glycolic acid) micelles and examined their efficacy in a fully major histocompatibility complex-mismatch murine islet allograft model. A clinically relevant dose of 46.6 ± 2.8 μg Dex per graft was confirmed when 2 mg of micelles was implemented. Dex-micelles + CTLA-4-Ig (n = 10) resulted in prolonged allograft function with 80% of the recipients demonstrating insulin independence for 60 days posttransplant compared to 40% in empty micelles + CTLA-4-Ig recipients (n = 10, P = .06). Recipients of this combination therapy (n = 8) demonstrated superior glucose tolerance profiles, compared to empty micelles + CTLA-4-Ig recipients (n = 4, P < .05), and significantly reduced localized intragraft proinflammatory cytokine expression. Histologically, increased insulin positive and FOXP3+ T cells were observed in Dex-micelles + CTLA-4-Ig grafts compared to empty micelles + CTLA-4-Ig grafts (P < .01 and P < .05, respectively). Localized drug delivery via micelles elution has the potential to alter the inflammatory environment, enhances allograft survival, and may be an important adjuvant approach to improve clinical islet transplantation outcomes.
Collapse
Affiliation(s)
- Purushothaman Kuppan
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Sandra Kelly
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Kateryna Polishevska
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Osmanmyrat Hojanepesov
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Seeberger
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gregory S Korbutt
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Pepper
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Yoshida R, Maeda S, Tashiro-Yamaji J, Yasuda E, Shibayama Y, Hirose Y, Kubota T. IFN-γ Control of an Effector/Target Combination for Skin Allograft Rejection: Macrophage/Skin Components in Normal Mice or T Cell/Endothelial Cells in IFN-γ-Deficient Mice. J Interferon Cytokine Res 2020; 40:207-217. [PMID: 32069165 DOI: 10.1089/jir.2019.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Organ, skin, or cell allografts are acutely rejected from normal mice, whereas vascularized organ allografts, but not allografted Meth A cells, are rejected from interferon-γ (IFN-γ)-deficient mice. Here we explored effector/target combinations for i.p. allografted Meth A (cytotoxic T lymphocyte [CTL]-resistant) or RLmale1 (CTL-susceptible) cells into or for BALB/c skin (skin components: CTL resistant) onto normal or IFN-γ-deficient C57BL/6 mice. After allografting, normal mice showed more infiltration but only a little thrombosis/hemorrhage. Monocyte/macrophage MHC receptor (MMR)+ macrophages (on days 5-10) and T cell receptor (TCR)+ CTLs (on days 7-9) were cytotoxic against Meth A cells or skin components and RLmale1 cells, respectively, and the allografts were rejected. After allografting into IFN-γ-deficient mice, MMR- macrophages and highly activated TCR+ CTLs were induced, and the mice died of hemorrhagic ascites with Meth A cells and more acutely rejected RLmale1 cells. The CTLs on days 4-6 were inactive toward skin components at an in vivo effector/target ratio but injured endothelial cells to cause severe thrombosis/hemorrhage and more acute rejection of skin allografts. These results indicate that IFN-γ-dependent MMR expression was essential for macrophage-mediated cytolysis of allogeneic skin components and that IFN-γ-deficient mice more acutely rejected skin allograft by causing CTL-induced injury to endothelial cells.
Collapse
Affiliation(s)
- Ryotaro Yoshida
- Department of Physiology, Osaka Medical College, Takatsuki, Japan
| | - Shogo Maeda
- Department of Physiology, Osaka Medical College, Takatsuki, Japan
| | | | - Emi Yasuda
- Department of Pathology, Osaka Medical College, Takatsuki, Japan
| | - Yuro Shibayama
- Department of Pathology, Osaka Medical College, Takatsuki, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical College, Takatsuki, Japan
| | - Takahiro Kubota
- Department of Physiology, Osaka Medical College, Takatsuki, Japan
| |
Collapse
|
10
|
Zhang Y, Wang Y, Wu G, Zhang W, Wang X, Cai W, Zhang J, Han S, Li Y, Bai X, Shi J, Su L, Hu D. Prolonged skin grafts survival time by IFN-γ in allogeneic skin transplantation model during acute rejection through IFN-γ/STAT3/IDO pathway in epidermal layer. Biochem Biophys Res Commun 2018; 496:436-442. [PMID: 29288671 DOI: 10.1016/j.bbrc.2017.12.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/24/2017] [Indexed: 12/25/2022]
Abstract
Allogeneic skin transplantation is the life-saving therapy for multiple diseases, including extensive burn, large-scale trauma and certain post-surgical complications. However, acute rejection impedes clinical application of allogeneic skin transplantation. Although a lot of novel immunosuppressant drugs have been developed, there is still great need for ideal therapy with less complication and more therapeutic effects. Here, we found interferon gamma (IFN-γ) as an immunomodulatory cytokine prolonged the survival time of allografts from (8.50 ± 1.517) days to (14.83 ± 2.714) days at best. Indoleamine-2, 3-dioxygenase (IDO) has been proposed to play key roles in induction of immune tolerance. Using in vitro tissue culture and primary keratinocytes and fibroblasts, we investigated the regulatory effects of IFN-γ on the IDO expression. IFN-γ upregulated IDO expression through STAT3 phosphorylation and this upregulation was reduced by abolition of STAT3 phosphorylation through a STAT3 phosphorylation inhibitor. Interestingly, IFN-γ induced IDO expression predominately in epidermis rather than dermis. In consistent with these results, IFN-γ significantly triggered IDO expression in keratinocytes but not fibroblasts. Taken together, this suggests that IFN-γ might be a potential immunomodulatory drug in acute rejection and keratinocytes in epidermis may play a main role in immune tolerance after allogeneic skin transplantation.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Julei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
11
|
Halloran PF, Venner JM, Famulski KS. Comprehensive Analysis of Transcript Changes Associated With Allograft Rejection: Combining Universal and Selective Features. Am J Transplant 2017; 17:1754-1769. [PMID: 28101959 DOI: 10.1111/ajt.14200] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 01/25/2023]
Abstract
We annotated the top transcripts associated with kidney transplant rejection by p-value, either universal for all rejection or selective for T cell-mediated rejection (TCMR) or antibody-mediated rejection (ABMR; ClinicalTrials.gov NCT01299168). We used eight class-comparison algorithms to interrogate microarray results from 703 biopsies, 205 with rejection. The positive comparators were all rejection, TCMR, or ABMR; the negative comparators varied from normal biopsies to all nonrejecting biopsies, including other diseases. The universal algorithm, rejection versus all nonrejection, identified transcripts mainly inducible by interferon γ. Selectivity for ABMR or TCMR required the other rejection class as well as nonrejection biopsies in the comparator to avoid selecting universal transcripts. Direct comparison of ABMR versus TCMR yielded only transcripts related to TCMR, the stronger signal. Transcripts highly associated with rejection were never completely specific for rejection: Many were increased in biopsies without rejection, reflecting sharing between rejection and injury-induced innate immunity. Union of the top 200 transcripts from universal and selective algorithms yielded 454 transcripts that permitted unsupervised analysis of biopsies in principal component analysis: PC1 was rejection, and PC2 was separation of TCMR from ABMR. Appreciating rejection-associated molecular changes requires a diverse case mix, accurate histologic classification (including C4d-negative ABMR), and both selective and universal algorithms.
Collapse
Affiliation(s)
- P F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - J M Venner
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
| | - K S Famulski
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Nomura M, Hodgkinson SJ, Tran GT, Verma ND, Robinson C, Plain KM, Boyd R, Hall BM. Cytokines affecting CD4 +T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4 +T regulatory cells. Transpl Immunol 2017; 42:24-33. [PMID: 28487237 DOI: 10.1016/j.trim.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/21/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
CD4+T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4+T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4+T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4+T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4+T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4+T cells. Tolerant CD4+CD25+T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4+CD25+T cells to third-party Lewis. Tolerant CD4+CD25+T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4+CD25+T cells.
Collapse
Affiliation(s)
- Masaru Nomura
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Suzanne J Hodgkinson
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Giang T Tran
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Nirupama D Verma
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Catherine Robinson
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Karren M Plain
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Rochelle Boyd
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia
| | - Bruce M Hall
- Immune Tolerance Group, Faculty of Medicine, UNSW Australia, Sydney and Ingham Institute Liverpool Hospital, NSW, Australia.
| |
Collapse
|
13
|
Hydrogen Sulfide Treatment Mitigates Renal Allograft Ischemia-Reperfusion Injury during Cold Storage and Improves Early Transplant Kidney Function and Survival Following Allogeneic Renal Transplantation. J Urol 2015; 194:1806-15. [DOI: 10.1016/j.juro.2015.07.096] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 01/30/2023]
|
14
|
Hall BM, Tran GT, Robinson CM, Hodgkinson SJ. Induction of antigen specific CD4+CD25+Foxp3+T regulatory cells from naïve natural thymic derived T regulatory cells. Int Immunopharmacol 2015; 28:875-86. [DOI: 10.1016/j.intimp.2015.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
|
15
|
Mengel M. Renalomics: Molecular Pathology in Kidney Biopsies. Surg Pathol Clin 2014; 7:443-55. [PMID: 26837449 DOI: 10.1016/j.path.2014.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this article, various omics technologies and their applications in renal pathology (native and transplant biopsies) are reviewed and discussed. Despite significant progress and novel insights derived from these applications, extensive adoption of molecular diagnostics in renal pathology has not been accomplished. Further validation of specific applications leading to increased diagnostic precision in a clinically relevant way is ongoing.
Collapse
Affiliation(s)
- Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, 4B1.18 Walter Mackenzie Center, 8440-112 Street, Edmonton T6G2S2, Canada.
| |
Collapse
|
16
|
Gao W, Liu D, Li D, Che X, Cui G. Effects of hypercapnia on T cells in lung ischemia/reperfusion injury after lung transplantation. Exp Biol Med (Maywood) 2014; 239:1597-605. [PMID: 25013165 DOI: 10.1177/1535370214542072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
T cells play a key role in lung ischemia/reperfusion injury (IRI). Hypercapnia has been indicated to decrease IRI and inhibit immunity. This study aimed to evaluate the effects of hypercapnia on T cells during lung IRI and to identify the underlying mechanism of these effects. In the in vivo study, rat recipients of lung transplants were randomized into a control group M and a hypercapnia group H. Peripheral blood T cells and cytokines were analyzed during reperfusion. In the in vitro study, we analyzed the T cells and cytokine levels in culture media from phytohemagglutinin-stimulated T cells from normal rats, stimulated under the normal (group C), hypercapnic (group H), or buffer hypercapnic (group BH) condition. In the in vivo study, the CD3+/CD4+ T-cell ratio and interleukin (IL)-2, IL-8, interferon (IFN)-γ, intracellular adhesion molecule (ICAM)-1, and P-selectin levels were decreased, but the IL-4 and IL-10 levels were increased, after reperfusion in group H compared to group M. In the in vitro study, groups H and BH exhibited a decreased CD2+/CD28+ ratio and IL-2 and IFN-γ levels, but elevated IL-4 and IL-10 levels, compared to group C. The CD2+/CD28+ ratio was not different between groups BH and H; however, group H evidenced a lower IL-2 level and higher IL-4 and IL-10 levels compared to group BH. Hypercapnia decreased the CD3+/CD4+ T-cell ratio and pro-inflammatory cytokine levels, but promoted anti-inflammatory factors in lung IRI. Hypercapnia inhibits CD2 and CD28 in T cells by CO2 and modulates T-cell cytokines via acidosis.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, 150000 Harbin, China
| | - Dongdong Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, 150000 Harbin, China
| | - Di Li
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, 150000 Harbin, China
| | - Xiangyu Che
- Department of Anesthesiology, The Fifth Hospital of Harbin, 150000 Harbin, China
| | - Guangxiao Cui
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, 150000 Harbin, China
| |
Collapse
|
17
|
Askar M. T helper subsets & regulatory T cells: rethinking the paradigm in the clinical context of solid organ transplantation. Int J Immunogenet 2014; 41:185-94. [DOI: 10.1111/iji.12106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/24/2013] [Accepted: 12/12/2013] [Indexed: 12/26/2022]
Affiliation(s)
- M. Askar
- Allogen Laboratories; Transplant Center; Cleveland Clinic & Department of Surgery; Cleveland Clinic Lerner College of Medicine; CWRU; Cleveland OH USA
| |
Collapse
|
18
|
Hall BM, Tran GT, Verma ND, Plain KM, Robinson CM, Nomura M, Hodgkinson SJ. Do Natural T Regulatory Cells become Activated to Antigen Specific T Regulatory Cells in Transplantation and in Autoimmunity? Front Immunol 2013; 4:208. [PMID: 23935597 PMCID: PMC3731939 DOI: 10.3389/fimmu.2013.00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022] Open
Abstract
Antigen specific T regulatory cells (Treg) are often CD4+CD25+FoxP3+ T cells, with a phenotype similar to natural Treg (nTreg). It is assumed that nTreg cannot develop into an antigen specific Treg as repeated culture with IL-2 and a specific antigen does not increase the capacity or potency of nTreg to promote immune tolerance or suppress in vitro. This has led to an assumption that antigen specific Treg mainly develop from CD4+CD25−FoxP3− T cells, by activation with antigen and TGF-β in the absence of inflammatory cytokines such as IL-6 and IL-1β. Our studies on antigen specific CD4+CD25+ T cells from animals with tolerance to an allograft, identified that the antigen specific and Treg are dividing, and need continuous stimulation with specific antigen T cell derived cytokines. We identified that a variety of cytokines, especially IL-5 and IFN-γ but not IL-2 or IL-4 promoted survival of antigen specific CD4+CD25+FoxP3+ Treg. To examine if nTreg could be activated to antigen specific Treg, we activated nTreg in culture with either IL-2 or IL-4. Within 3 days, antigen specific Treg are activated and there is induction of new cytokine receptors on these cells. Specifically nTreg activated by IL-2 and antigen express the interferon-γ receptor (IFNGR) and IL-12p70 (IL-12Rβ2) receptor but not the IL-5 receptor (IL-5Rα). These cells were responsive to IFN-γ or IL-12p70. nTreg activated by IL-4 and alloantigen express IL-5Rα not IFNGR or IL-12p70Rβ2 and become responsive to IL-5. These early activated antigen specific Treg, were respectively named Ts1 and Ts2 cells, as they depend on Th1 or Th2 responses. Further culture of Ts1 cells with IL-12p70 induced Th1-like Treg, expressing IFN-γ, and T-bet as well as FoxP3. Our studies suggest that activation of nTreg with Th1 or Th2 responses induced separate lineages of antigen specific Treg, that are dependent on late Th1 and Th2 cytokines, not the early cytokines IL-2 and IL-4.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, Medicine, University of New South Wales , Sydney, NSW , Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Tse GH, Hughes J, Marson LP. Systematic review of mouse kidney transplantation. Transpl Int 2013; 26:1149-60. [PMID: 23786597 DOI: 10.1111/tri.12129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/29/2013] [Accepted: 05/13/2013] [Indexed: 01/06/2023]
Abstract
A mouse model of kidney transplantation was first described in 1973 by Skoskiewicz et al. Although the mouse model is technically difficult, it is attractive for several reasons: the mouse genome has been characterized and in many aspects is similar to man and there is a greater diversity of experimental reagents and techniques available for mouse studies than other experimental models. We reviewed the literature on all studies of mouse kidney transplantation to report the donor and recipient strain combinations that have been investigated and the resultant survival and histological outcomes. Some models of kidney transplantation have used the transplanted kidney as a life-supporting organ, however, in many studies the recipient mouse's native kidney has been left in situ. Several different combinations of inbred mouse strains have been reported, with varying degrees of injury, survival or tolerance because of haplotype differences. This model has been exceptionally useful as an investigational tool to understand multiple aspects of transplantation including acute rejection, cellular and humoral rejection mechanisms and their treatment. Furthermore, this model has been used to investigate disease mechanisms beyond transplant rejection including intrinsic renal disease and infection-associated pathology.
Collapse
Affiliation(s)
- George Hondag Tse
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
20
|
The effects of in vivo B-cell depleting therapy on ex-vivo cytokine production. Transpl Immunol 2013; 28:183-8. [PMID: 23651756 DOI: 10.1016/j.trim.2013.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/23/2022]
Abstract
In renal transplantation, IL-17 production by T-cells might be dependent on the presence of B-cells. Therefore, the effect of in vivo B-cell depletion on ex-vivo IL-17 production was investigated. Twenty patients undergoing living-donor renal transplantation were recruited from a larger cohort of patients participating in a randomized, double-blind trial. All patients were allocated to a single intra-operative dose of either placebo or rituximab (375 mg/m(2)) added to the standard immunosuppressive therapy. Blood was collected at baseline, at one day, and at one month after surgery. The healthy kidney donors also gave blood at baseline. Peripheral blood mononuclear cells were stimulated ex-vivo in different manners (heat killed Candida albicans yeast, heat killed Staphylococcus aureus, or αCD3αCD28 coated beads), to address the role of B-cells in ex-vivo cytokine responses. The concentration of monocyte- and T-cell-derived cytokines (IL-1β, IL-6, TNF-α, IFN-γ, IL-17 and IL-22) was measured in supernatants. Of the 20 recruited patients, 13 received treatment with rituximab and 7 received placebo. In all patients, IL-17 was produced by CD4-positive, γδTCR-negative cells. After stimulation, there was no difference between patients and healthy controls in ex-vivo production of IL-17 or other cytokines. In all patients there was a general decrease of monocyte- and T-cell-derived cytokines after transplantation, except for IL-17. There was no difference between patients who received rituximab and patients who received placebo. A single dose of rituximab treatment added to standard immunosuppressive therapy in renal transplant patients did not influence the production of IL-17 or other monocyte- or T-cell derived cytokines after ex-vivo stimulation.
Collapse
|
21
|
Fowler DH. Editorial: protean effects of IL-10 include skin self-defense. J Leukoc Biol 2012; 92:247-8. [PMID: 22850765 DOI: 10.1189/jlb.0312156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
22
|
Abstract
Background—
Interleukin-17 (IL-17), which is predominantly produced by T helper 17 cells distinct from T helper 1 or T helper 2 cells, participates in the pathogenesis of infectious, autoimmune, and allergic disorders. However, the precise role in allograft rejection remains uncertain. In the present study, we investigated the role of IL-17 in acute allograft rejection using IL-17-deficient mice.
Methods and Results—
Donor hearts from FVB mice were heterotopically transplanted into either C57BL/6J-IL-17-deficient (IL-17
−
/
−
) or -wild-type mice. Allograft survival was significantly prolonged in IL-17
−
/
−
recipient mice due to reduced local inflammation accompanied by decreased inflammatory cell recruitment and cytokine/chemokine expression. IL-17
−
/
−
recipient mice exhibited decreased IL-6 production and reciprocally enhanced regulatory T cell expansion, suggesting a contribution of regulatory T cells to prolonged allograft survival. Indeed, allografts transplanted into anti-CD25 mAb-treated IL-17
−
/
−
recipient mice (regulatory T cell-depleted) developed acute rejection similar to wild-type recipient mice. Surprisingly, we found that gamma delta T cells rather than CD4
+
and CD8
+
T cells were key IL-17 producers in the allografts. In support, equivalent allograft rejection was observed in Rag-2
−/−
recipient mice engrafted with either wild-type or IL-17
−
/
−
CD4
+
and CD8
+
T cells. Finally, hearts transplanted into gamma delta T cell-deficient mice resulted in decreased allograft rejection compared with wild-type controls.
Conclusions—
During heart transplantation, (1) IL-17 is crucial for acceleration of acute rejection; (2) IL-17-deficiency enhances regulatory T cell expansion; and (3) gamma delta T cells rather than CD4
+
and CD8
+
T cells are a potential source of IL-17. IL-17 neutralization may provide a potential target for novel therapeutic treatment for cardiac allograft rejection.
Collapse
|
23
|
Coelho VPCDV, Ioschpe R, Caldas C, Spadafora-Ferreira M, Fonseca JA, Cardoso MRA, Palacios SA, Kalil J, Goldberg AC. Contrasting roles of donor and recipient TGFB1 and IFNG gene polymorphic variants in chronic kidney transplant rejection. EINSTEIN-SAO PAULO 2011; 9:46-51. [PMID: 26760552 DOI: 10.1590/s1679-45082011ao1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To assess the long-term impact (minimum of 3 years follow-up) of polymorphisms in cytokine genes in donor:recipient pairs on the results of the transplant. METHODS We compared genetic cytokine polymorphisms and the primary factors of risk for the development of chronic rejection in paired groups of renal transplant patients with and without chronic allograft nephropathy [CAN]. RESULTS Multivariate analysis indicated that the presence of the high-production TT genotype (codon 10) of the transforming growth factor beta-1 (TGFB1) was protective in receptors (p=0.017), contrasting with the increased risk when present in donor samples (p=0.049). On the other hand, in the case of the gamma interferon studied, the greater frequency of the high production allele was protective in the analysis of the donor group (p=0.013), increasing the risk of chronic nephropathy of the allograft when present in the recipients (p=0.036). CONCLUSION Our results highlight the importance of TGFB1 genotyping in donors, and indicate that polymorphisms in the gene of this cytokine in donor cells might contribute to the development of chronic allograft nephropathy.
Collapse
Affiliation(s)
| | - Rafael Ioschpe
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - Cristina Caldas
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | | | - João Americo Fonseca
- Unidade de Transplante Renal, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | | | - Selma Aliotti Palacios
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - Jorge Kalil
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, BR
| | - Anna Carla Goldberg
- Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia, BR
| |
Collapse
|
24
|
Abstract
Macrophages are present within the transplanted kidney in varying numbers throughout its lifespan. Because of their prominence during acute rejection episodes, macrophages traditionally have been viewed as contributors to T-cell-directed graft injury. With growing appreciation of macrophage biology, it has become evident that different types of macrophages exist within the kidney, subserving a range of functions that include promotion or attenuation of inflammation, participation in innate and adaptive immune responses, and mediation of tissue injury and fibrosis, as well as tissue repair. A deeper understanding of how macrophages accumulate within the kidney and of what factors control their differentiation and function may identify novel therapeutic targets in transplantation.
Collapse
|
25
|
Xie XJ, Ye YF, Zhou L, Xie HY, Jiang GP, Feng XW, He Y, Xie QF, Zheng SS. Th17 promotes acute rejection following liver transplantation in rats. J Zhejiang Univ Sci B 2010; 11:819-27. [PMID: 21043049 PMCID: PMC2970890 DOI: 10.1631/jzus.b1000030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/28/2010] [Indexed: 12/18/2022]
Abstract
T help cell 17 (Th17), recently identified as a new subset of CD4(+) T cells, has been implicated in autoimmune diseases, tumor immunity, and transplant rejection. To investigate the role of Th17 in acute hepatic rejection, a rat model of allogeneic liver transplantation (Dark Agouti (DA) to Brown Norway (BN)) was established and isogeneic liver transplantation (BN to BN) was used as controls in the study. The expression of Th17-related cytokines in the liver and peripheral blood was determined by immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assay (ELISA), or real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Strong expression of interleukin-17A (IL-17A), IL-6, transforming growth factor-β (TGF-β), IL-8, and myeloperoxidase (MPO) was observed in liver allografts. The ratios of Th17 to CD4(+) lymphocytes in the liver and peripheral blood were dramatically increased in the allograft group compared with the control (P<0.01). Secreted IL-17 and IL-6 in liver homogenate and serum were significantly elevated in the allograft group, while secreted TGF-β was increased in liver homogenate and decreased in serum compared with the control (P<0.01). The messenger RNA (mRNA) levels of IL-17, IL-21, and IL-23 were enhanced in the allografts compared with the control (P<0.01). Correlation analysis showed significant correlations between IL-17 and IL-6 and TGF-β and between IL-17 and IL-21 and IL-23. The present study demonstrates that Th17 plays a role in promoting rat liver allograft rejection.
Collapse
|
26
|
Einecke G, Kayser D, Vanslambrouck JM, Sis B, Reeve J, Mengel M, Famulski KS, Bailey CG, Rasko JEJ, Halloran PF. Loss of solute carriers in T cell-mediated rejection in mouse and human kidneys: an active epithelial injury-repair response. Am J Transplant 2010; 10:2241-51. [PMID: 20883558 DOI: 10.1111/j.1600-6143.2010.03263.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
T cell-mediated rejection of kidney allografts causes epithelial deterioration, manifested by tubulitis, but the mechanism remains unclear. We hypothesized that interstitial inflammation triggers a stereotyped epithelial response similar to that triggered by other types of injury such as ischemia-reperfusion. We identified solute carrier transcripts with decreased expression in mouse allografts, and compared their behavior in T cell-mediated rejection to native kidneys with ischemic acute tubular necrosis (ATN). Average loss of solute carrier expression was similar in ATN (77%) and T cell-mediated rejection (75%) with high correlation of individual transcripts. Immunostaining of SLC6A19 confirmed loss of proteins. Analysis of human kidney transplant biopsies confirmed that T cell-mediated rejection and ATN showed similar loss of solute carrier mRNAs. The loss of solute carrier expression was weakly correlated with interstitial inflammation, but kidneys with ATN showed decreased solute carriers despite minimal inflammation. Loss of renal function correlated better with decreased solute carrier expression than with histologic lesions (r = 0.396, p < 0.001). Thus the loss of epithelial transcripts in rejection is not a unique consequence of T cell-mediated rejection but an active injury-repair response of epithelium, triggered by rejection but also by other injury mechanisms.
Collapse
Affiliation(s)
- G Einecke
- Department of Nephrology, Hannover Medical School, Hanover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gorbacheva V, Fan R, Li X, Valujskikh A. Interleukin-17 promotes early allograft inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1265-73. [PMID: 20651239 DOI: 10.2353/ajpath.2010.091106] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute cellular rejection of organ transplants is executed by donor-reactive T cells, which are dominated by interferon-gamma-producing cells. As interferon-gamma is dispensable for graft destruction, we evaluated the contribution of interleukin-17A (IL-17) to intragraft inflammation in major histocompatibility complex-mismatched heart transplants. A/J (H-2(a)) cardiac allografts placed into wild-type BALB/c (H-2(d)) mice induced intragraft IL-17 production on day 2 after transplant. Allografts placed into BALB/c IL-17(-/-) recipients demonstrated diminished production of the chemokines CXCL1 and CXCL2 and delayed neutrophil and T cell recruitment. However, by day 7 after transplant, allografts from IL-17(-/-) and wild-type recipients had comparable levels of cellular infiltration. The priming of donor-specific T cells was not affected by the absence of IL-17, and the kinetics of cardiac allograft rejection were similar in wild-type and IL-17(-/-) recipients. In contrast, IL-17(-/-) mice depleted of CD8 T cells rejected A/J allografts in a delayed fashion compared with CD8-depleted wild-type recipients. Although donor-reactive CD4 T cells were efficiently activated in both groups, the infiltration of effector T cells into allografts was impaired in IL-17(-/-) recipients. Our data indicate that locally produced IL-17 amplifies intragraft inflammation early after transplantation and promotes tissue injury by facilitating T cell recruitment into the graft. Targeting the IL-17 signaling network in conjunction with other graft-prolonging therapies may decrease this injury and improve the survival of transplanted organs.
Collapse
|
28
|
Abstract
In kidney allografts, T cell mediated rejection (TCMR) is characterized by infiltration of the interstitium by T cells and macrophages, intense IFNG and TGFB effects, and epithelial deterioration. Recent experimental and clinical studies provide the basis for a provisional model for TCMR. The model proposes that the major unit of cognate recognition in TCMR is effector T cells engaging donor antigen on macrophages. This event creates the inflammatory compartment that recruits effector and effector memory CD4 and CD8 T cells, both cognate and noncognate, and macrophage precursors. Cognate T cells cross the donor microcirculation to enter the interstitium but spare the microcirculation. Local inflammation triggers dedifferentiation of the adjacent epithelium (e.g. loss of transporters and expression of embryonic genes) rather than cell death, via mechanisms that do not require known T-cell cytotoxic mechanisms or direct contact of T cells with the epithelium. Local epithelial changes trigger a response of the entire nephron and a second wave of dedifferentiation. The dedifferentiated epithelium is unable to exclude T cells, which enter to produce tubulitis lesions. Thus TCMR is a cognate recognition-based process that creates local inflammation and epithelial dedifferentiation, stereotyped nephron responses, and tubulitis, and if untreated causes irreversible nephron loss.
Collapse
Affiliation(s)
- P F Halloran
- Department of Medicine, Division of Nephrology and Immunology, Alberta Transplant Applied Genomics Centre, University of Alberta, Edmonton, Canada.
| |
Collapse
|
29
|
Valujskikh A, Baldwin WM, Fairchild RL. Recent progress and new perspectives in studying T cell responses to allografts. Am J Transplant 2010; 10:1117-25. [PMID: 20353479 PMCID: PMC3208261 DOI: 10.1111/j.1600-6143.2010.03087.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Studies in the past decade advanced our understanding of the development, execution and regulation of T-cell-mediated allograft rejection. This review outlines recent progress and focuses on three major areas of investigation that are likely to guide the development of graft-prolonging therapies in the future. The discussed topics include the contribution of recently discovered molecules to the activation and functions of alloreactive T cells, the emerging problem of alloreactive memory T cells and recently gained insights into the old question of transplantation tolerance.
Collapse
Affiliation(s)
- Anna Valujskikh
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - William M. Baldwin
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert L. Fairchild
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
30
|
Issa F, Schiopu A, Wood KJ. Role of T cells in graft rejection and transplantation tolerance. Expert Rev Clin Immunol 2010; 6:155-69. [PMID: 20383898 DOI: 10.1586/eci.09.64] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transplantation is the most effective treatment for end-stage organ failure, but organ survival is limited by immune rejection and the side effects of immunosuppressive regimens. T cells are central to the process of transplant rejection through allorecognition of foreign antigens leading to their activation, and the orchestration of an effector response that results in organ damage. Long-term transplant acceptance in the absence of immunosuppressive therapy remains the ultimate goal in the field of transplantation and many studies are exploring potential therapies. One promising cellular therapy is the use of regulatory T cells to induce a state of donor-specific tolerance to the transplant. This article first discusses the role of T cells in transplant rejection, with a focus on the mechanisms of allorecognition and the alloresponse. This is followed by a detailed review of the current progress in the field of regulatory T-cell therapy in transplantation and the translation of this therapy to the clinical setting.
Collapse
Affiliation(s)
- Fadi Issa
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | | | | |
Collapse
|
31
|
Abstract
Interleukin-17 (IL-17) and IL-17-producing cells have been shown to play important roles in inflammation and the immune response. IL-17 is believed to be mainly produced by T helper 17 (Th17) cells, a unique helper T-cell subset different from Th1 and Th2 cells. Other subsets of T cells such as gammadeltaT and natural killer T (NKT) cells have also been found to produce IL-17 in response to innate stimuli. IL-17 acts as a proinflammatory cytokine that can induce the release of certain chemokines, cytokines, matrix metalloproteinases (MMPs) and antimicrobial peptides from mesenchymal and myeloid cells. This leads to the expansion and accumulation of neutrophils in the innate immune system and links innate and adaptive immunity in vivo. Furthermore, increasing evidence indicates that IL-17 and IL-17-producing cells are involved in the pathogenesis of various diseases such as allergies, autoimmune diseases, allograft transplantation and even malignancy. They may also play protective roles in host defense against infectious diseases and promote induction of cytotoxic T lymphocyte (CTL) responses against cancer. Targeting of the IL-17 axis is under investigation for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Sheng Xu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
| | | |
Collapse
|
32
|
Bolinger B, Engeler D, Krebs P, Miller S, Firner S, Hoffmann M, Palmer DC, Restifo NP, Tian Y, Clavien PA, Ludewig B. IFN-gamma-receptor signaling ameliorates transplant vasculopathy through attenuation of CD8+ T-cell-mediated injury of vascular endothelial cells. Eur J Immunol 2010; 40:733-43. [PMID: 20049875 PMCID: PMC3247644 DOI: 10.1002/eji.200939706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Occlusive transplant vasculopathy (TV) is the major cause for chronic graft rejection. Since endothelial cells (EC) are the first graft cells encountered by activated host lymphocytes, it is important to delineate the molecular mechanisms that coordinate the interaction of EC with activated T cells. Here, the interaction of CD8(+) T cells with Ag-presenting EC in vivo was examined using a transgenic heart transplantation model with beta-galactosidase (beta-gal) expression exclusively in EC (Tie2-LacZ hearts). We found that priming with beta-gal peptide-loaded DC failed to generate a strong systemic IFN-gamma response, but elicited pronounced TV in both IFN-gamma receptor (IFNGR)-competent, and ifngr(-/-) Tie2-LacZ hearts. In contrast, stimulation of EC-specific CD8(+) T cells with beta-gal-recombinant mouse cytomegalovirus (MCMV-LacZ) in recipients of ifngr(+/+) Tie2-LacZ hearts did not precipitate significant TV. However, MCMV-LacZ infection of recipients of ifngr(-/-) Tie2-LacZ hearts led to massive activation of beta-gal-specific CD8 T cells, and led to development of fulminant TV. Further analyses revealed that the strong systemic IFN-gamma "storm" associated with MCMV infection induced upregulation of programmed death-1 ligand 1 (PD-L1) on EC, and subsequent attenuation of programmed death-1 (PD-1)-expressing EC-specific CD8(+) T cells. Thus, IFNGR signaling in ECs activates a potent peripheral negative feedback circuit that protects vascularized grafts from occlusive TV.
Collapse
Affiliation(s)
- Beatrice Bolinger
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Daniel Engeler
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Philippe Krebs
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Simone Miller
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Sonja Firner
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Matthias Hoffmann
- Department of Visceral Surgery, Hannover Medical School, Hannover, Germany
| | - Douglas C. Palmer
- National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nicholas P. Restifo
- National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yinghua Tian
- Department of Visceral Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Burkhard Ludewig
- Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
- VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Abstract
SUMMARY As the recognition that costimulatory signals are critical for optimal T-cell activation, proliferation, and differentiation, there has been an explosion in the study of costimulatory molecules and their roles in enhancing anti-donor T-cell responses following transplantation. Here, we focus on the bench-to-beside translation of blocking agents designed to target three critical costimulatory pathways: the CD28/CD80/CD86 pathway, the CD154/CD40 pathway, and the lymphocyte function associated antigen-1/intercellular adhesion molecule pathway. While blockade of each of these pathways proved promising in inhibiting donor-reactive T-cell responses and promoting long-term graft survival in murine models of transplantation, the progression of development of therapeutic agents to block these pathways has each taken a slightly different course. Both logistical and biological pitfalls have accompanied the translation of blockers of all three pathways into clinically applicable therapies, and the development of costimulatory blockade as a substitute for current standard-of-care calcineurin inhibitors has by no means reached completion. Collaboration between both the basic and clinical arenas will further propel the development of costimulation blockers currently in the pipeline, as well as of novel methods to target these critical pathways during transplantation.
Collapse
Affiliation(s)
- Mandy L Ford
- Department of Surgery, Emory Transplant Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
34
|
Einecke G, Mengel M, Hidalgo L, Allanach K, Famulski KS, Halloran PF. The early course of kidney allograft rejection: defining the time when rejection begins. Am J Transplant 2009; 9:483-93. [PMID: 19260832 DOI: 10.1111/j.1600-6143.2008.02546.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied the early events in mouse kidney allografts and isografts to define when allorecognition begins and when alloimmune tissue injury begins. Allografts but not isografts showed T-cell infiltration in perivascular areas from day 1, but tubulitis and arteritis did not develop until day 7. Flow cytometry confirmed the early allospecific CD3(+)CD8(+) T-cell infiltrate. At day 1, both allografts and isografts showed extensive transcriptome changes, reflecting the response to surgery, but only allografts showed expression of interferon-gamma (IFN-gamma)-inducible transcripts and T-cell-associated transcripts. Although the number of CD68(+) myeloid cell numbers did not increase in day 1 isografts or allografts, mRNA expression for myeloid markers was increased in isografts and allografts, suggesting activation of resident cells of the macrophage-dendritic cell series (MMDCs) in response to injury, followed by increased CD68(+) cell numbers from day 2. By day 3, an interstitial T-cell and MMDC infiltrate was established in allografts, corresponding with the emergence of allospecific tissue injury, as reflected by decreased parenchymal transcripts. Thus, in renal allografts, allorecognition by T cells occurs in perivascular sites by day 1, but alloimmune parenchymal damage begins at day 3, coinciding with the emergence of the interstitial T-cell-MMDC infiltrate.
Collapse
Affiliation(s)
- G Einecke
- Department of Medicine, Division of Nephrology and Transplantation Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Mitchell RN. Graft Vascular Disease: Immune Response Meets the Vessel Wall. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:19-47. [DOI: 10.1146/annurev.pathol.3.121806.151449] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Richard N. Mitchell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School Health Sciences and Technology, Boston, Massachusetts 02115;
| |
Collapse
|
36
|
|
37
|
Coley SM, Ford ML, Hanna SC, Wagener ME, Kirk AD, Larsen CP. IFN-gamma dictates allograft fate via opposing effects on the graft and on recipient CD8 T cell responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:225-33. [PMID: 19109153 PMCID: PMC2683416 DOI: 10.4049/jimmunol.182.1.225] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8 T cells are necessary for costimulation blockade-resistant rejection. However, the mechanism by which CD8 T cells mediate rejection in the absence of major costimulatory signals is poorly understood. IFN-gamma promotes CD8 T cell-mediated immune responses, but IFN-gamma-deficient mice show early graft loss despite costimulation blockade. In contrast, we found that IFN-gamma receptor knockout mice show dramatically prolonged graft survival under costimulation blockade. To investigate this paradox, we addressed the effects of IFN-gamma on T cell alloresponses in vivo independent of the effects of IFN-gamma on graft survival. We identified a donor-specific CD8 T cell breakthrough response temporally correlated with costimulation blockade-resistant rejection. Neither IFN-gamma receptor knockout recipients nor IFN-gamma-deficient recipients showed a CD8 breakthrough response. Graft death on IFN-gamma-deficient recipients despite costimulation blockade could be explained by the lack of IFN-gamma available to act on the graft. Indeed, the presence of IFN-gamma was necessary for graft survival on IFN-gamma receptor knockout recipients, as either IFN-gamma neutralization or the lack of the IFN-gamma receptor on the graft precipitated early graft loss. Thus, IFN-gamma is required both for the recipient to mount a donor-specific CD8 T cell response under costimulation blockade as well as for the graft to survive after allotransplantation.
Collapse
Affiliation(s)
- Shana M. Coley
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| | - Mandy L. Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| | - Samantha C. Hanna
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| | - Maylene E. Wagener
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| | - Allan D. Kirk
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| | - Christian P. Larsen
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, WMRB Suite 5203, Atlanta, Georgia, 30322, USA
| |
Collapse
|
38
|
Kayser D, Einecke G, Famulski KS, Mengel M, Sis B, Zhu LF, Halloran PF. Donor Fas is not necessary for T-cell-mediated rejection of mouse kidney allografts. Am J Transplant 2008; 8:2049-55. [PMID: 18828768 DOI: 10.1111/j.1600-6143.2008.02375.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It is important to resolve whether T-cell-mediated rejection (TCMR) is mediated by contact-dependent cytotoxicity or by contact-independent inflammatory mechanisms. We recently showed that the cytotoxic molecules perforin and granzymes A and B are not required for TCMR of mouse kidney transplants. Nevertheless, TCMR could still be mediated by cytotoxicity via Fas on donor cells engaging Fas ligand on host T cells. We examined whether the diagnostic TCMR lesions would be abrogated if donor Fas was absent, particularly in hosts deficient in perforin or granzymes A and B. Kidneys from Fas-deficient donors transplanted into major histocompatibility complex (MHC)- mismatched hosts developed tubulitis and diffuse interstitial infiltration indistinguishable from wild-type (WT) allografts, even in hosts deficient in perforin and granzymes A and B. Gene expression analysis revealed similar molecular disturbances in Fas-deficient and WT allografts at day 21 transplanted into WT, perforin and granzyme A/B-deficient hosts, indicating epithelial injury and dedifferentiation. Thus, donor Fas is not necessary for TCMR diagnostic lesions or molecular changes, even in the absence of perforin-granzyme mechanisms. We propose that in TCMR, interstitial effector T cells mediate parenchymal injury by inflammatory mechanisms that require neither the perforin-granzyme nor the Fas-Fas ligand cytotoxic mechanisms.
Collapse
Affiliation(s)
- D Kayser
- Department of Medicine, Division of Nephrology, Alberta Transplant Applied Genomics Centre, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Qi XP, Li P, Li G, Sun Z, Li JS. 1,25-dihydroxyvitamin D 3 regulates LPS-induced cytokine production and reduces mortality in rats. World J Gastroenterol 2008; 14:3897-902. [PMID: 18609716 PMCID: PMC2721449 DOI: 10.3748/wjg.14.3897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the immunoregulatory effect of 1,25-dihydroxyvitamin-D3 Von dominant Th1 response in rats.
METHODS: Sixty adult Lewis rats were randomized into three groups. Rats in group 1 (n=25) were treated with 1,25-(OH)2D3 first and then challenged with LPS, rats in group 2 (n=25) were treated with vehicle first and then challenged with LPS. Ten animals in groups 1 and 2 were preserved for mortality observation. The remaining animals were injected (i.p) with endotoxin, 24 h after the last administration of 1,25-(OH)2D3 and vehicle. Rats in group 3 (n=10) were treated with 1,25-(OH)2D3 only. Serum IL-12, IFN-γ, IL-2 and IL-4 levels were measured and target gene of 1,25-(OH)2D3 on Th cells was studied after 6 h. Gene abundance was verified by real-time quantitative PCR.
RESULTS: No death occurred in rats pretreated with 1,25-(OH)2D3 after LPS injection. Death occurred 9 h after LPS injection in rats pretreated with the vehicle, and the number of deaths was 5 within 24 h, with a mortality rate of 50%. There was no change in the number of deaths within 96 h. Six hours after endotoxin stimulation, serum IL-12 and IFN-γ levels decreased significantly in rats pretreated with 1,25-(OH)2D3 as compared with those in rats pretreated with the vehicle. The serum content of these two cytokines was very low in rats not challenged by endotoxin, and there was a significant difference as compared with the previous two groups.
CONCLUSION: 1,25-(OH)2D3 attenuates injury induced by the lethal dose of LPS, regulates Th1 and Th2 cells at the transcription level, and dominantly responds to cytokine production in rats.
Collapse
|
40
|
Cornell LD, Smith RN, Colvin RB. Kidney transplantation: mechanisms of rejection and acceptance. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:189-220. [PMID: 18039144 DOI: 10.1146/annurev.pathmechdis.3.121806.151508] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We describe the molecular and cellular mechanisms believed to be responsible for the rejection of renal allografts, including acute T cell-mediated rejection, acute antibody-mediated (humoral) rejection, rejection mediated by the innate immune system, and chronic rejection. We present mechanisms of graft acceptance, including accommodation, regulation, and tolerance. Studies in animals have replicated many pathologic features of acute and chronic rejection. We illuminate the pathogenesis of human pathology by reflection from experimental models.
Collapse
Affiliation(s)
- Lynn D Cornell
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
41
|
Sis B, Famulski KS, Allanach KL, Zhu LF, Halloran PF. IFN-gamma prevents early perforin-granzyme-mediated destruction of kidney allografts by inducing donor class I products in the kidney. Am J Transplant 2007; 7:2301-10. [PMID: 17845563 DOI: 10.1111/j.1600-6143.2007.01947.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Interferon-gamma (Ifng) protects organ allografts: mouse kidney allografts lacking Ifng receptors rapidly fail with massive ischemic necrosis around days 5 to 7, reflecting microcirculation failure. We hypothesized that Ifng protects the graft by preventing perforin-granzyme-mediated cytotoxic damage to the microcirculation by inducing class Ia and/or Ib products. We transplanted kidney allografts lacking Ifng receptors into various knockout hosts. The necrosis/congestion phenotype did not require host B cells or IL-4 and IL-13 receptors, but required the T-cell alloresponse: it did not occur if the hosts were syngeneic or T-cell deficient. However, host perforin-granzyme mechanisms were required: no necrosis developed if hosts lacked either perforin or granzymes A and B. The ability of Ifng to protect the allograft required donor class I products: allografts lacking class I products due to Tap1 or beta2 microglobulin deficiency developed a similar necrosis-congestion phenotype at day 7 despite Ifng receptors being present. Thus when host cytotoxic T cells infiltrate organ allografts, Ifng prevents their perforin-granzyme mechanism from compromising the microcirculation by a mechanism requiring donor class Ia or Ib products. We propose that donor class Ia or Ib products are needed to trigger inhibitory receptors on effector T cells.
Collapse
Affiliation(s)
- B Sis
- Department of Medicine, Division of Nephrology & Transplantation Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
42
|
Beilke JN, Gill RG. Frontiers in Nephrology: The Varied Faces of Natural Killer Cells in Transplantation—Contributions to Both Allograft Immunity and Tolerance. J Am Soc Nephrol 2007; 18:2262-7. [PMID: 17634430 DOI: 10.1681/asn.2007040423] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Natural killer (NK) cells are recognized for providing an important early innate immune response to viral and bacterial pathogens and for the surveillance of stressed and transformed autologous cells. However, with the exception of a pronounced role in allogeneic hematopoietic stem cell rejection, it has been challenging to ascribe the precise roles for NK cells in reactivity to tissue and solid-organ transplants. In general, NK cells initiate a rapid, proinflammatory environment that is conducive to many forms of effective immune host defense. This reactivity is often considered deleterious to allograft survival because NK cells are implicated in promoting both acute and chronic graft injury. However, more recent findings indicate that NK cells can also play a surprisingly profound role in allograft tolerance induction. This duality of function requires a reconsideration of the nature and consequence of NK cell reactivity during the allograft response. This review focuses on the differing "faces" of NK cells, especially the unexpected role of NK cells in allograft tolerance induction.
Collapse
Affiliation(s)
- Joshua N Beilke
- Department of Microbiology & Immunology, University of California San Francisco, USA
| | | |
Collapse
|
43
|
Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics 2007; 8:242. [PMID: 17612399 PMCID: PMC1931607 DOI: 10.1186/1471-2105-8-242] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 07/05/2007] [Indexed: 11/21/2022] Open
Abstract
Background Gene-set analysis evaluates the expression of biological pathways, or a priori defined gene sets, rather than that of individual genes, in association with a binary phenotype, and is of great biologic interest in many DNA microarray studies. Gene Set Enrichment Analysis (GSEA) has been applied widely as a tool for gene-set analyses. We describe here some critical problems with GSEA and propose an alternative method by extending the individual-gene analysis method, Significance Analysis of Microarray (SAM), to gene-set analyses (SAM-GS). Results Using a mouse microarray dataset with simulated gene sets, we illustrate that GSEA gives statistical significance to gene sets that have no gene associated with the phenotype (null gene sets), and has very low power to detect gene sets in which half the genes are moderately or strongly associated with the phenotype (truly-associated gene sets). SAM-GS, on the other hand, performs very well. The two methods are also compared in the analyses of three real microarray datasets and relevant pathways, the diverging results of which clearly show advantages of SAM-GS over GSEA, both statistically and biologically. In a microarray study for identifying biological pathways whose gene expressions are associated with p53 mutation in cancer cell lines, we found biologically relevant performance differences between the two methods. Specifically, there are 31 additional pathways identified as significant by SAM-GS over GSEA, that are associated with the presence vs. absence of p53. Of the 31 gene sets, 11 actually involve p53 directly as a member. A further 6 gene sets directly involve the extrinsic and intrinsic apoptosis pathways, 3 involve the cell-cycle machinery, and 3 involve cytokines and/or JAK/STAT signaling. Each of these 12 gene sets, then, is in a direct, well-established relationship with aspects of p53 signaling. Of the remaining 8 gene sets, 6 have plausible, if less well established, links with p53. Conclusion We conclude that GSEA has important limitations as a gene-set analysis approach for microarray experiments for identifying biological pathways associated with a binary phenotype. As an alternative statistically-sound method, we propose SAM-GS. A free Excel Add-In for performing SAM-GS is available for public use.
Collapse
|
44
|
Canossi A, Piazza A, Poggi E, Ozzella G, Di Rocco M, Papola F, Iaria G, Adorno D. Renal Allograft Immune Response Is Influenced by Patient and Donor Cytokine Genotypes. Transplant Proc 2007; 39:1805-12. [PMID: 17692619 DOI: 10.1016/j.transproceed.2007.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study investigated the impact of specific cytokine genotypes on the incidence of acute rejection episodes (ARE), chronic graft dysfunction (CGD), and anti-HLA donor-specific antibody (DS-Ab) production in 86 renal transplant recipients and 70 cadaveric donors. A PCR-SSP method was performed for the analysis of polymorphisms in TNF-alpha, IL-6, TGF-beta, IL-10, and IFN-gamma cytokines. DS-Ab monitoring of sera was performed using a FCXM analysis. Observed cytokine frequencies for patients and donors were not significantly different from the expected frequencies under Hardy-Weinberg equilibrium conditions. The evaluation in recipients revealed a higher frequency of DS-Ab-positive patients among the TNF-alpha high (50.0% vs 25.7%), and for the IL-10 cytokine a greater incidence of ARE-positive patients (35.8% vs 18.2%) with the high + intermediate, compared with the low genotype. The combined effect of these 2 genotypes predisposed to DS-Abs (71.4% vs 25.3%; P = 0.02; odds ratio [OR] = 7.37). As for the TGF-beta1 cytokine, we observed a higher number of CGD-positive patients among high compared with intermediate producers (14.3% vs 0%; P = .050). The analysis of donors revealed a significantly lower incidence of ARE-positive patients among recipients whose donors were carriers of the high IL-6 G/G-genotype compared with the G/C+C/C-genotypes (16.7% vs 41.2%; P = .03), suggesting a protective effect of the G/G genotype on ARE and a predisposing role of donor (-174)allele C. In addition, we noted an association between the IFN-gamma low A/A-genotype and a higher incidence of ARE (42.1% vs 0%; P = .002) and DS-Ab production (47.4% vs 12.5%; P = .02) compared with high producers.
Collapse
Affiliation(s)
- A Canossi
- CNR Institute Organ Transplant and Immunocytology, L'Aquila, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Einecke G, Broderick G, Sis B, Halloran PF. Early loss of renal transcripts in kidney allografts: relationship to the development of histologic lesions and alloimmune effector mechanisms. Am J Transplant 2007; 7:1121-30. [PMID: 17456200 DOI: 10.1111/j.1600-6143.2007.01797.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We sought to understand the epithelial response to the T-cell mediated inflammatory process in kidney allograft rejection. Using microarrays, we studied transcriptome changes of kidney parenchymal cells and their relationship to the development of pathologic lesions such as tubulitis in mouse kidney allografts and isografts. Inflammatory infiltrate in allografts developed by day 5, but tubulitis first appeared at day 7 and was severe by day 21. Using microarrays, we selected 70 solute carrier transcripts with high renal parenchymal expression and known epithelial function. Transcript expression was reduced early in isografts and allografts, followed by progressive loss in allografts and recovery in isografts. The expression pattern of day 21 allografts developed progressively from the time of engraftment and was established before histologic lesions. These changes are probably functionally significant: selected proteins showed decreased immunostaining at days 7 and 21. Allospecific loss of transcripts was dependent on T cells but independent of perforin, granzymes A/B, CD103, or B cells. Weighted sum decomposition revealed multiple components of the epithelial response with allospecific changes from day 1. We conclude that loss of renal transcripts indicates an early stage of T-cell mediated alloimmune injury that later progresses to pathologic lesions such as tubulitis.
Collapse
Affiliation(s)
- G Einecke
- Division of Nephrology and Transplantation Immunology, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|
46
|
Woltman AM, de Fijter JW, Zuidwijk K, Vlug AG, Bajema IM, van der Kooij SW, van Ham V, van Kooten C. Quantification of dendritic cell subsets in human renal tissue under normal and pathological conditions. Kidney Int 2007; 71:1001-8. [PMID: 17361115 DOI: 10.1038/sj.ki.5002187] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) play critical roles in immune responses and can be distinguished in two major subsets, myeloid and plasmacytoid DCs. Although the presence of DC in all peripheral organs, including the kidney, has been well documented, no accurate estimates of DC subsets in human kidneys have been reported. This study shows a detailed analysis of DC subsets in cryosections of human renal tissue. The cortex of normal kidneys contains at least two different HLA-DR(+) myeloid DC subtypes characterized by BDCA-1(+)DC-SIGN(+) and BDCA-1(+)DC-SIGN(-). The staining for DC-SIGN completely overlapped with CD68 in the renal interstitium. Unexpectedly, BDCA-2(+)DC-SIGN(-) plasmacytoid DCs are also abundantly present. Both subsets are located in the tubulo-interstitium often with a high frequency around, but rarely observed within glomeruli. Quantification of BDCA-1(+), DC-SIGN(+), and BDCA-2(+) cells in normal human renal tissue (pretransplant biopsy living donors; n=21) revealed that BDCA-1 is about four times as frequently present as BDCA-2. A preliminary cross-sectional analysis of DC in diseased kidneys, including rejection and immunoglobulin A nephropathy, revealed that the number of DC as well as their anatomical distribution might change under pathophysiological conditions. In conclusion, we show that human kidneys contain a dense network of myeloid and plasmacytoid DCs and provide the tools for phenotyping and enumeration of these cells to better understand interindividual differences in immune responses.
Collapse
Affiliation(s)
- A M Woltman
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Verma ND, Boyd R, Robinson C, Plain KM, Tran GT, Hall BM. Interleukin-12p70 Prolongs Allograft Survival by Induction of Interferon Gamma and Nitric Oxide Production. Transplantation 2006; 82:1324-33. [PMID: 17130782 DOI: 10.1097/01.tp.0000239519.56358.c1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Interleukin (IL)-12p70, a heterodimeric cytokine has been considered central to induction of Th1 responses with the assistance of IL-18 and IL-27. It was predicted IL-12p70 treatment would promote allograft rejection. In these studies, IL-12p70 delayed rejection. METHODS We compared Piebald Virol Glaxo (PVG) neonatal heart graft survival in fully allogeneic Dark Agoutti (DA) rats treated with IL-12p70 alone or in combination with other cytokines. The mechanism by which IL-12p70 induced delayed rejection was examined by reverse transcription polymerase chain reaction of cytokine mRNA and studying the role of interferon (IFN)-gamma and inducible nitric oxide synthase (iNOS) that were induced by IL-12. RESULTS IL-12p70 treatment significantly delayed PVG neonatal heart graft rejection compared to normal rejection control and other control groups treated with supernatant from Chinese hamster ovary (CHO)-K1 cells transfected with IL-12p35, IL-12p40, or no cytokine gene. IL-12p70 had no effect on alloantibody response. IFN-gamma and iNOS mRNA expression was increased in heart graft and regional lymph node compared to normal rejection and other treatment groups, consistent with Th1 response induction. IL-12p35 mRNA expression decreased in IL-12p70 treated rats but there was no difference in IL-12p40, Th2, or Tr1 cytokine mRNA expression. Coadministration of an iNOS inhibitor, L-NIL, or a monoclonal antibody (mAb) that blocks IFN-gamma, inhibited IL-12p70's ability to prolong allograft survival; as did co-treatment with IL-4 but not IL-13. CONCLUSIONS IL-12p70 treatment may inhibit rejection by hyperinduction of Th1 responses, especially production of IFN-gamma and nitric oxide. These effects may be by enhancing regulatory T-cell responses or by the activation of iNOS in macrophages to produce excessive nitric oxide that in turn inhibits alloimmune responses.
Collapse
Affiliation(s)
- Nirupama D Verma
- Department of Medicine, Immune Tolerance Group, University of New South Wales, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Einecke G, Fairhead T, Hidalgo LG, Sis B, Turner P, Zhu LF, Bleackley RC, Hadley GA, Famulski KS, Halloran PF. Tubulitis and epithelial cell alterations in mouse kidney transplant rejection are independent of CD103, perforin or granzymes A/B. Am J Transplant 2006; 6:2109-20. [PMID: 16869802 DOI: 10.1111/j.1600-6143.2006.01483.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
One of the defining lesions of kidney allograft rejection is epithelial deterioration and invasion by inflammatory cells (tubulitis). We examined epithelial changes and their relationship to effector T cells and to CD103/E-cadherin interactions in mouse kidney allografts. Rejecting allografts showed interstitial mononuclear infiltration from day 5. Loss of epithelial mass, estimated by tubular surface area, and tubulitis were minimal through day 7 and severe by day 21. Tubules in day 21 allografts manifested severe reduction of E-cadherin and Ksp-cadherin by immunostaining with redistribution to the apical membrane, indicating loss of polarity. By flow cytometry T cells isolated from allografts were 25% CD103+. Laser capture microdissection and RT-PCR showed increased CD103 mRNA in the interstitium and tubules. However, allografts in hosts lacking CD103 developed tubulitis, cadherin loss, and epithelial deterioration similar to wild-type hosts. The loss of cadherins and epithelial mass was also independent of perforin and granzymes A and B. Thus rejection is characterized by severe tubular deterioration associated with CD103+ T cells but not mediated by CD103/cadherin interactions or granzyme-perforin cytotoxic mechanisms. We suggest that alloimmune effector T cells mediate epithelial injury by contact-independent mechanisms related to delayed type hypersensitivity, followed by invasion of the altered epithelium to produce tubulitis.
Collapse
Affiliation(s)
- G Einecke
- Department of Medicine, Division of Nephrology and Transplantation Immunology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mullarky IK, Szaba FM, Winchel CG, Parent MA, Kummer LW, Mackman N, Johnson LL, Smiley ST. In situ assays demonstrate that interferon-gamma suppresses infection-stimulated hepatic fibrin deposition by promoting fibrinolysis. J Thromb Haemost 2006; 4:1580-7. [PMID: 16839357 PMCID: PMC3010163 DOI: 10.1111/j.1538-7836.2006.02010.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Inflammatory cytokines potently impact hemostatic pathways during infection, but the tissue-specific regulation of coagulation and fibrinolysis complicates studies of the underlying mechanisms. METHODS AND RESULTS Here, we describe assays that quantitatively measuring prothrombinase (PTase), protein C-ase (PCase) and plasminogen activator (PA) activities in situ, thereby facilitating studies of tissue-specific hemostasis. Using these assays, we investigate the mechanisms regulating hepatic fibrin deposition during murine toxoplasmosis and the means by which interferon-gamma (IFN-gamma) suppresses infection-stimulated fibrin deposition. We demonstrate that Toxoplasma infection upregulates hepatic PTase, PCase, and PA activity. Wild type and gene-targeted IFN-gamma-deficient mice exhibit similar levels of infection-stimulated PTase activity. By contrast, IFN-gamma-deficiency is associated with increased PCase activity and reduced PA activity during infection. Parallel analyses of hepatic gene expression reveal that IFN-gamma-deficiency is associated with increased expression of thrombomodulin (TM), a key component of the PCase, increased expression of thrombin-activatable fibrinolysis inhibitor (TAFI), a PC substrate, and reduced expression of urokinase PA (u-PA). CONCLUSIONS These findings suggest that IFN-gamma suppresses infection-stimulated hepatic fibrin deposition by suppressing TM-mediated activation of TAFI, thereby destabilizing fibrin deposits, and concomitantly increasing hepatic u-PA activity, thereby promoting fibrinolysis. We anticipate that further application of these in situ assays will improve our understanding of tissue-specific hemostasis, its regulation by cytokines, and its dysregulation during coagulopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Nigel Mackman
- Departments of Immunology and Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
50
|
Famulski KS, Einecke G, Reeve J, Ramassar V, Allanach K, Mueller T, Hidalgo LG, Zhu LF, Halloran PF. Changes in the transcriptome in allograft rejection: IFN-gamma-induced transcripts in mouse kidney allografts. Am J Transplant 2006; 6:1342-54. [PMID: 16686758 DOI: 10.1111/j.1600-6143.2006.01337.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We used Affymetrix Microarrays to define interferon-gamma (IFN-gamma)-dependent, rejection-induced transcripts (GRITs) in mouse kidney allografts. The algorithm included inducibility by recombinant IFN-gamma in kidneys of three normal mouse strains, increase in kidney allografts in three strain combinations and less induction in IFN-gamma-deficient allografts. We identified 40 transcripts, which were highly IFN-gamma inducible (e.g. Cxcl9, ubiquitin D, MHC), and 168 less sensitive to IFN-gamma in normal kidney. In allografts, expression of GRITs was intense and consistent at all time points (day 3 through 42). These transcripts were partially dependent on donor IFN-gamma receptors (IFN-gammars): receptor-deficient allografts manifested up to 76% less expression, but some transcripts were highly dependent (ubiquitin D) and others relatively independent (Cxcl9). Kidneys of hosts rejecting allografts showed expression similar to that observed with IFN-gamma injections. Many GRITs showed transient IFN-gamma-dependent increase in isografts, peaking at day 4-5. GRITs were increased in heart allografts, indicating them as generalized feature of alloresponse. Thus, expression of rejection-induced transcripts is robust and consistent in allografts, reflecting the IFN-gamma produced by the alloresponse locally and systemically, acting via host and donor IFN-gammar, as well as local IFN-gamma production induced by post-operative stress.
Collapse
Affiliation(s)
- K S Famulski
- Department of Medicine, Division of Nephrology & Transplantation Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|