1
|
Silnitsky S, Rubin SJS, Zerihun M, Qvit N. An Update on Protein Kinases as Therapeutic Targets-Part I: Protein Kinase C Activation and Its Role in Cancer and Cardiovascular Diseases. Int J Mol Sci 2023; 24:17600. [PMID: 38139428 PMCID: PMC10743896 DOI: 10.3390/ijms242417600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein kinases are one of the most significant drug targets in the human proteome, historically harnessed for the treatment of cancer, cardiovascular disease, and a growing number of other conditions, including autoimmune and inflammatory processes. Since the approval of the first kinase inhibitors in the late 1990s and early 2000s, the field has grown exponentially, comprising 98 approved therapeutics to date, 37 of which were approved between 2016 and 2021. While many of these small-molecule protein kinase inhibitors that interact orthosterically with the protein kinase ATP binding pocket have been massively successful for oncological indications, their poor selectively for protein kinase isozymes have limited them due to toxicities in their application to other disease spaces. Thus, recent attention has turned to the use of alternative allosteric binding mechanisms and improved drug platforms such as modified peptides to design protein kinase modulators with enhanced selectivity and other pharmacological properties. Herein we review the role of different protein kinase C (PKC) isoforms in cancer and cardiovascular disease, with particular attention to PKC-family inhibitors. We discuss translational examples and carefully consider the advantages and limitations of each compound (Part I). We also discuss the recent advances in the field of protein kinase modulators, leverage molecular docking to model inhibitor-kinase interactions, and propose mechanisms of action that will aid in the design of next-generation protein kinase modulators (Part II).
Collapse
Affiliation(s)
- Shmuel Silnitsky
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Samuel J. S. Rubin
- Department of Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA;
| | - Mulate Zerihun
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, Safed 1311502, Israel; (S.S.); (M.Z.)
| |
Collapse
|
2
|
Kiser JN, Neibergs HL. Identifying Loci Associated With Bovine Corona Virus Infection and Bovine Respiratory Disease in Dairy and Feedlot Cattle. Front Vet Sci 2021; 8:679074. [PMID: 34409086 PMCID: PMC8364960 DOI: 10.3389/fvets.2021.679074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
Bovine coronavirus (BCoV) is associated with respiratory and enteric infections in both dairy and beef cattle worldwide. It is also one of a complex of pathogens associated with bovine respiratory disease (BRD), which affects millions of cattle annually. The objectives of this study were to identify loci and heritability estimates associated with BCoV infection and BRD in dairy calves and feedlot cattle. Dairy calves from California (n = 1,938) and New Mexico (n = 647) and feedlot cattle from Colorado (n = 915) and Washington (n = 934) were tested for the presence of BCoV when classified as BRD cases or controls following the McGuirk scoring system. Two comparisons associated with BCoV were investigated: (1) cattle positive for BCoV (BCoV+) were compared to cattle negative for BCoV (BCoV-) and (2) cattle positive for BCoV and affected with BRD (BCoV+BRD+) were compared to cattle negative for BCoV and BRD (BCoV-BRD-). The Illumina BovineHD BeadChip was used for genotyping, and genome-wide association analyses (GWAA) were performed using EMMAX (efficient mixed-model association eXpedited). The GWAA for BCoV+ identified 51 loci (p < 1 × 10-5; 24 feedlot, 16 dairy, 11 combined) associated with infection with BCoV. Three loci were associated with BCoV+ across populations. Heritability estimates for BCoV+ were 0.01 for dairy, 0.11 for feedlot cattle, and 0.03 for the combined population. For BCoV+BRD+, 80 loci (p < 1 × 10-5; 26 feedlot, 25 dairy, 29 combined) were associated including 14 loci across populations. Heritability estimates for BCoV+BRD+ were 0.003 for dairy, 0.44 for feedlot cattle, and 0.07 for the combined population. Several positional candidate genes associated with BCoV and BRD in this study have been associated with other coronaviruses and respiratory infections in humans and mice. These results suggest that selection may reduce susceptibility to BCoV infection and BRD in cattle.
Collapse
Affiliation(s)
- Jennifer N Kiser
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Harford TJ, Rezaee F, Gupta MK, Bokun V, Naga Prasad SV, Piedimonte G. Respiratory syncytial virus induces β 2-adrenergic receptor dysfunction in human airway smooth muscle cells. Sci Signal 2021; 14:14/685/eabc1983. [PMID: 34074703 DOI: 10.1126/scisignal.abc1983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pharmacologic agonism of the β2-adrenergic receptor (β2AR) induces bronchodilation by activating the enzyme adenylyl cyclase to generate cyclic adenosine monophosphate (cAMP). β2AR agonists are generally the most effective strategy to relieve acute airway obstruction in asthmatic patients, but they are much less effective when airway obstruction in young patients is triggered by infection with respiratory syncytial virus (RSV). Here, we investigated the effects of RSV infection on the abundance and function of β2AR in primary human airway smooth muscle cells (HASMCs) derived from pediatric lung tissue. We showed that RSV infection of HASMCs resulted in proteolytic cleavage of β2AR mediated by the proteasome. RSV infection also resulted in β2AR ligand-independent activation of adenylyl cyclase, leading to reduced cAMP synthesis compared to that in uninfected control cells. Last, RSV infection caused stronger airway smooth muscle cell contraction in vitro due to increased cytosolic Ca2+ concentrations. Thus, our results suggest that RSV infection simultaneously induces loss of functional β2ARs and activation of multiple pathways favoring airway obstruction in young patients, with the net effect of counteracting β2AR agonist-induced bronchodilation. These findings not only provide a potential mechanism for the reported lack of clinical efficacy of β2AR agonists for treating virus-induced wheezing but also open the path to developing more precise therapeutic strategies.
Collapse
Affiliation(s)
- Terri J Harford
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Manveen K Gupta
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Giovanni Piedimonte
- Departments of Pediatrics, Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
4
|
Lee AJ, Lim JW, Kim H. Ascorbic Acid Suppresses House Dust Mite-Induced Expression of Interleukin-8 in Human Respiratory Epithelial Cells. J Cancer Prev 2021; 26:64-70. [PMID: 33842407 PMCID: PMC8020177 DOI: 10.15430/jcp.2021.26.1.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
House dust mite (HDM) is one of the significant causes for airway inflammation such as asthma. It induces oxidative stress and an inflammatory response in the lungs through the release of chemokines such as interleukin-8 (IL-8). Reactive oxygen species (ROS) activate inflammatory signaling mediators such as mitogen-activated protein kinases (MAPKs) and redox-sensitive transcription factors including NF-κB and AP-1. Ascorbic acid shows an antioxidant and anti-inflammatory activities in various cells. It ameliorated the symptoms of HDM-induced rhinitis. The present study was aimed to investigate whether HDM could induce IL-8 expression through activation of MAPKs, NF-κB, and AP-1 and whether ascorbic acid could inhibit HDM-stimulated IL-8 expression by reducing ROS and suppressing activation of MAPKs, NF-κB, and AP-1 in respiratory epithelial H292 cells. H292 cells were treated with HDM (5 μg/mL) in the absence or presence of ascorbic acid (100 or 200 μM). HDM treatment increased ROS levels, and activated MAPKs, NF-κB, and AP-1 and thus, induced IL-8 expression in H292 cells. Ascorbic acid reduced ROS levels and inhibited activation of MAPKs, NF-κB and AP-1 and L-8 expression in H292 cells. In conclusion, consumption of ascorbic acid-rich foods may be beneficial for prevention of HDM-mediated respiratory inflammation by suppressing oxidative stress-mediated MAPK signaling pathways and activation of NF-kB and AP-1.
Collapse
Affiliation(s)
- An Jun Lee
- Department of Food and Nutrition, BK 21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, BK 21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, BK 21 FOUR, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
5
|
Li K, Xu Y, Yue W. Anti-viral activity of jatrophone against RSV-induced respiratory infection via increase in interferon-γ generating dendritic cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:888-894. [PMID: 32267089 DOI: 10.1002/tox.22925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Respiratory syncytial virus (RSV), a member of Paramyxoviridae family is responsible for bronchiolitis and pneumonia. The present study investigated anti-viral and anti-inflammatory activities of jatrophone against RSV-infection in pulmonary epithelial cells in vitro and in mice model in vivo. The changes in viabilities of RSV infected cells by jatrophone treatment were determined by MTT assay. The fluorescence associated with production of ROS was evaluated by fluorescence microscopy using H2DCFDA dye. The IFN-γ secreting cells were detected in mice BALF by stimulation with phorbol myristate acetate and ionomycin. The reduction of BEAS-2B cell viability by RSV was alleviated on treatment with jatrophone in dose based manner. The cytopathogenic changes by RSV infection were prevented and viral growth inhibited by jatrophone in BEAS-2B cells. Jatrophone treatment significantly alleviated RSV mediated overproduction of IL-6/-8 and suppressed ROS generation in the cells. The pulmonary viral titers were found to be markedly lower in mice treated with jatrophone relative to untreated group. The jatrophone treated mice also showed reduced IL-4/-5/-13 levels and elevated IFN-γ level in BALF relative to untreated RSV infected mice. Flow cytometry revealed elevated count of IFN-γ generating cells in RSV infected mice on treatment with jatrophone. Thus jatrophone inhibits viral growth and oxidative damage by RSV in pulmonary epithelial cells. In RSV infected mice jatrophone increased immunity for viral infection by modulating cell phenotype for promotion of anti-viral IFN-γ. Thus jatrophone acts as potential anti-viral compound and may be developed for treatment of respiratory treat infection.
Collapse
Affiliation(s)
- Kai Li
- Department of Respiratory Medicine, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Yuan Xu
- Department of Hematopathology, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Wei Yue
- Department of Respiratory Medicine, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
6
|
Griffiths CD, Bilawchuk LM, McDonough JE, Jamieson KC, Elawar F, Cen Y, Duan W, Lin C, Song H, Casanova JL, Ogg S, Jensen LD, Thienpont B, Kumar A, Hobman TC, Proud D, Moraes TJ, Marchant DJ. IGF1R is an entry receptor for respiratory syncytial virus. Nature 2020; 583:615-619. [PMID: 32494007 DOI: 10.1038/s41586-020-2369-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 03/25/2020] [Indexed: 11/09/2022]
Abstract
Pneumonia resulting from infection is one of the leading causes of death worldwide. Pulmonary infection by the respiratory syncytial virus (RSV) is a large burden on human health, for which there are few therapeutic options1. RSV targets ciliated epithelial cells in the airways, but how viruses such as RSV interact with receptors on these cells is not understood. Nucleolin is an entry coreceptor for RSV2 and also mediates the cellular entry of influenza, the parainfluenza virus, some enteroviruses and the bacterium that causes tularaemia3,4. Here we show a mechanism of RSV entry into cells in which outside-in signalling, involving binding of the prefusion RSV-F glycoprotein with the insulin-like growth factor-1 receptor, triggers the activation of protein kinase C zeta (PKCζ). This cellular signalling cascade recruits nucleolin from the nuclei of cells to the plasma membrane, where it also binds to RSV-F on virions. We find that inhibiting PKCζ activation prevents the trafficking of nucleolin to RSV particles on airway organoid cultures, and reduces viral replication and pathology in RSV-infected mice. These findings reveal a mechanism of virus entry in which receptor engagement and signal transduction bring the coreceptor to viral particles at the cell surface, and could form the basis of new therapeutics to treat RSV infection.
Collapse
Affiliation(s)
- Cameron D Griffiths
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Leanne M Bilawchuk
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - John E McDonough
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kyla C Jamieson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Farah Elawar
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Yuchen Cen
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Wenming Duan
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Cindy Lin
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Haeun Song
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Descartes University, Paris, France
- Pediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Steven Ogg
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Lionel Dylan Jensen
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Bernard Thienpont
- Laboratory for Functional Epigenetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Anil Kumar
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Tom C Hobman
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - David Proud
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Theo J Moraes
- Program of Translational Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David J Marchant
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Inhibition of respiratory syncytial virus replication and suppression of RSV-induced airway inflammation in neonatal rats by colchicine. 3 Biotech 2019; 9:392. [PMID: 31656730 DOI: 10.1007/s13205-019-1917-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
The present study investigated the role of colchicine in the treatment of RSV infection. Treatment of BEAS-2B cells following RSV infection with colchicine caused a significant decrease in the number of viral plaques. In RSV-infected BEAS-2B cells' treatment with colchicine leads to a significant up-regulation of both IFN-β1 and RIG-I genes. The levels of interleukin, NO, and MDA were suppressed in BEAS-2B cells infected with RSV by colchicine. The phosphorylation of Stat3, COX-2, and p38 was also suppressed significantly by colchicine. The phosphorylation of IkBα was promoted in RSV-infected BEAS-2B cells' oncolchicine treatment. In neonatal rats, replication of RSV was inhibited significantly by colchicine treatment which was evident by suppression of RSV-L gene expression. A significant decrease in the level of IL-6 and TNF-α was caused in neonatal rat BALF by colchicine treatment. The production of MDA, NO and MPO in the neonatal rat BALF was suppressed markedly by colchicine treatment. Treatment of the neonatal rats infected by RSV with colchicine suppressed the release of IκBα and COX-2 in the pulmonary epithelial cells. Colchicine treatment of the neonatal rats promoted the expression of IFN-α and IFN-β1. In summary, the current study showed that colchicine inhibited RSV infection in neonatal rats through regulation of anti-oxidative factor production. The expression of IFN-β1 and RIG-I genes was also up-regulated in the RSV-infected alveolar epithelial cells by treatment with colchicine. Therefore, colchicine may be developed as the therapeutic agent for the treatment of RSV infection.
Collapse
|
8
|
Wyatt TA, Bailey KL, Simet SM, Warren KJ, Sweeter JM, DeVasure JM, Pavlik JA, Sisson JH. Alcohol potentiates RSV-mediated injury to ciliated airway epithelium. Alcohol 2019; 80:17-24. [PMID: 31235345 PMCID: PMC7100607 DOI: 10.1016/j.alcohol.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023]
Abstract
Alcohol impairs resolution of respiratory viral infections. Numerous immune response pathways are altered in response to alcohol misuse, including alcohol-induced ciliary dysfunction in the lung. We hypothesized that mucociliary clearance-mediated innate immunity to respiratory syncytial virus (RSV) would be compromised by alcohol exposure. Cilia were assayed using Sisson-Ammons Video Analysis by quantitating the average number of motile points in multiple whole field measurements of mouse tracheal epithelial cells grown on an air-liquid interface. Pretreatment with ethanol alone (100 mM for 24 hours) had no effect on the number of motile cilia. A single dose (TCID50 1 × 105) of RSV resulted in a significant (p < 0.05) decrease in motile cilia after 2 days. Ethanol pretreatment significantly (p < 0.05) potentiated RSV-induced cilia loss by 2 days. Combined RSV and ethanol treatment led to a sustained activation-induced auto-downregulation of PKC epsilon (PKCε). Ethanol-induced enhancement of ciliated cell detachment was confirmed by dynein ELISA and LDH activity from the supernates. RSV-induced cilia loss was evident until 7 days, when RSV-only infected cells demonstrated no significant cilia loss vs. control cells. However, cells pretreated with ethanol showed significant cilia loss until 10 days post-RSV infection. To address the functional significance of ethanol-enhanced cilia detachment, mice fed alcohol ad libitum (20% for 12 weeks) were infected once with RSV, and clearance was measured by plaque-forming assay from lung homogenates for up to 7 days. After 3 days, RSV plaque formation was no longer detected from the lungs of control mice, while significant (p < 0.01) RSV plaque-forming units were detected at 7 days in alcohol-fed mice. Alcohol-fed mice demonstrated enhanced cilia loss and delayed cilia recovery from tracheal measurements in wild-type C57BL/6 mice, but not PKCε KO mice. These data suggest that alcohol worsens RSV-mediated injury to ciliated epithelium in a PKCε-dependent manner.
Collapse
Affiliation(s)
- Todd A Wyatt
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, United States; University of Nebraska Medical Center, Department of Environmental, Agricultural, & Occupational Health, Omaha, NE, 68198-5910, United States.
| | - Kristina L Bailey
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, United States
| | - Samantha M Simet
- University of Nebraska Medical Center, Department of Genetics, Cell Biology & Anatomy, Omaha, NE, 68198-6395, United States
| | - Kristi J Warren
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States
| | - Jenea M Sweeter
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States
| | - Jane M DeVasure
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States
| | - Jaqueline A Pavlik
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States
| | - Joseph H Sisson
- University of Nebraska Medical Center, Pulmonary, Critical Care, Sleep & Allergy, 985910 Nebraska Medical Center, Omaha, NE, 68198-5910, United States
| |
Collapse
|
9
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|
10
|
Zhang C, Li N, Niu F. Baicalein triazole prevents respiratory tract infection by RSV through suppression of oxidative damage. Microb Pathog 2019; 131:227-233. [DOI: 10.1016/j.micpath.2019.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 11/29/2022]
|
11
|
Preugschas HF, Hrincius ER, Mewis C, Tran GVQ, Ludwig S, Ehrhardt C. Late activation of the Raf/MEK/ERK pathway is required for translocation of the respiratory syncytial virus F protein to the plasma membrane and efficient viral replication. Cell Microbiol 2018; 21:e12955. [PMID: 30223301 DOI: 10.1111/cmi.12955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Activation of the Raf/MEK/ERK cascade is required for efficient propagation of several RNA and DNA viruses, including human respiratory syncytial virus (RSV). In RSV infection, activation of the Raf/MEK/ERK cascade is biphasic. An early induction within minutes after infection is associated with viral attachment. Subsequently, a second activation occurs with, so far, unknown function in the viral life cycle. In this study, we aimed to characterise the role of Raf/MEK/ERK-mediated signalling during ongoing RSV infection. Our data show that inhibition of the kinase MEK after the virus has been internalised results in a reduction of viral titers. Further functional investigations revealed that the late-stage activation of ERK is required for a specific step in RSV replication, namely, the secretory transport of the RSV fusion protein F. Thus, MEK inhibition resulted in impaired surface accumulation of the F protein. F protein surface expression is essential for efficient replication as it is involved in viral filament formation, cell fusion, and viral transmission. In summary, we provide detailed insights of how host cell signalling interferes with RSV replication and identified the Raf/MEK/ERK kinase cascade as potential target for novel anti-RSV strategies.
Collapse
Affiliation(s)
- Hannah F Preugschas
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Carolin Mewis
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Giao V Q Tran
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,The Graduate School of the Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), WWU Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), WWU Muenster, Muenster, Germany.,Section for Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Pharmacological Inhibition of Protein Kinase C Reduces West Nile Virus Replication. Viruses 2018; 10:v10020091. [PMID: 29473907 PMCID: PMC5850398 DOI: 10.3390/v10020091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
Flaviviruses are relevant animal and human pathogens that include West Nile virus (WNV), Japanese encephalitis virus, dengue virus, or Zika virus, among others. Currently, no licensed therapy is available to fight flaviviral infections. Protein kinases C (PKCs) constitute a family of multifunctional lipid-dependent isoenzymes that regulate a wide variety of cellular processes (apoptosis, differentiation, proliferation, cellular transformation, motility, adhesion, etc.) being currently considered at the front line of drug development for the treatment of diverse human disorders. PKCs have also been implicated in different steps during viral replication; however, nowadays, results regarding their role in flavivirus replication are controversial. Here we demonstrate that calphostin C and chelerythrine, two broad-PKC inhibitors that target conventional, novel and atypical PKCs, significantly inhibit WNV multiplication in cell culture without affecting cell viability. A reduction of viral yields was observed in treated cells when compared with mock-treated cells. Likewise, immunofluorescence detection of viral enveloped E protein was reduced in treated cells, as was the amount of viral RNA released to the supernatant, mainly in those treated with chelerythrine. On the other hand, two PKC inhibitors specific for conventional and novel isoforms (staurosporine and enzastaurine) did not show any significant effect in WNV multiplication. These results suggested that PKCs, more probably atypical PKCs, are likely involved in WNV multiplication, although both broad-spectrum tested drugs seem to act through different mechanisms, and point to them as potential antiviral candidates for WNV, as well as for other related flaviviruses.
Collapse
|
13
|
Lê VB, Riteau B, Alessi MC, Couture C, Jandrot-Perrus M, Rhéaume C, Hamelin MÈ, Boivin G. Protease-activated receptor 1 inhibition protects mice against thrombin-dependent respiratory syncytial virus and human metapneumovirus infections. Br J Pharmacol 2017; 175:388-403. [PMID: 29105740 DOI: 10.1111/bph.14084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Protease-activated receptor 1 (PAR1) has been demonstrated to be involved in the pathogenesis of viral diseases. However, its role remains controversial. The goal of our study was to investigate the contribution of PAR1 to respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. EXPERIMENTAL APPROACH Pharmacological approaches were used to investigate the role of PAR1 during RSV and hMPV infection, in vitro using epithelial A549 cells and in vivo using a mouse model of virus infection. KEY RESULTS In vitro, the PAR1 antagonist RWJ-56110 reduced the replication of RSV and hMPV in A549 cells. In agreement with these results, RWJ-56110-treated mice were protected against RSV and hMPV infections, as indicated by less weight loss and mortality. This protective effect in mice correlated with decreased lung viral replication and inflammation. In contrast, hMPV-infected mice treated with the PAR1 agonist TFLLR-NH2 showed increased mortality, as compared to infected mice, which were left untreated. Thrombin generation was shown to occur downstream of PAR1 activation in infected mice via tissue factor exposure as part of the inflammatory response, and thrombin inhibition by argatroban reduced the pathogenicity of the infection with no additive effect to that induced by PAR1 inhibition. CONCLUSION AND IMPLICATIONS These data show that PAR1 plays a detrimental role during RSV and hMPV infections in mice via, at least, a thrombin-dependent mechanism. Thus, the use of PAR1 antagonists and thrombin inhibitors may have potential as a novel approach for the treatment of RSV and hMPV infections.
Collapse
Affiliation(s)
- Vuong Ba Lê
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Béatrice Riteau
- UMR INSERM U1062/INRA 1260/AMU, Aix Marseille University, Marseille, France
| | | | - Christian Couture
- Department of Anatomy-Pathology, Laval University Institute of Cardiology and Pneumology, Quebec City, Quebec, Canada
| | | | - Chantal Rhéaume
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Marie-Ève Hamelin
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
14
|
Weng Y, Mizuno N, Dong J, Segawa R, Yonezawa T, Cha BY, Woo JT, Moriya T, Hiratsuka M, Hirasawa N. Induction of thymic stromal lymphopoietin by a steroid alkaloid derivative in mouse keratinocytes. Int Immunopharmacol 2017; 55:28-37. [PMID: 29220720 DOI: 10.1016/j.intimp.2017.11.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 01/16/2023]
Abstract
Thymic stromal lymphopoietin (TSLP) plays critical roles in inducing and exacerbating allergic diseases. Chemical compounds that induce TSLP production can enhance sensitization to antigens and exacerbate allergic inflammation. Hence, identifying such chemicals will be important to prevent an increase in allergic diseases. In the present study, we found, for the first time, that a steroid alkaloid derivative, code no. 02F04, concentration and time dependently induced mRNA expression and production of TSLP in a mouse keratinocyte cell line, PAM212. In particular, the activity of 02F04 was selective to TSLP. As an analogue of the liver X receptor (LXR) endogenous ligand, 02F04 rapidly increased ATP-binding cassette transporter A1 (ABCA1) expression by regulating the nuclear receptor of LXR. However, instead of being inhibited by the LXR antagonist, 02F04-induced TSLP production was delayed and markedly suppressed by inhibitors of phospholipase C (PLC), pan-protein kinase C (PKC), PKCδ, Rho-associated protein kinase (ROCK), extracellular signal-regulated kinase (ERK) 1/2, and IκΒ kinase 2 (IKK2). Treatment with 02F04 caused the formation of F-actin filaments surrounding the nucleus of PAM212 cells, which then disappeared following addition of ROCK inhibitor. 02F04 also induced phosphorylation of ERK1/2 from 2h after treatment, with a maximum at 24h, and increased nuclear factor-κB (NF-κB) promoter activity by 1.3-fold. Taken together, these results indicate that 02F04-induced TSLP production is regulated via distinct signal transduction pathways, including PLC, PKC, ROCK, ERK1/2, and NF-κB but not nuclear receptors. 02F04, with a unique skeletal structure in inducing TSLP production, can represent a potential new tool for investigating the role of TSLP in allergic diseases.
Collapse
Affiliation(s)
- Yan Weng
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan; Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Natsumi Mizuno
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Jiangxu Dong
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Ryosuke Segawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Takayuki Yonezawa
- Research Institute for Biological Functions, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Byung Yoon Cha
- Research Institute for Biological Functions, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Je-Tae Woo
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Takahiro Moriya
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Miyagi, Japan.
| |
Collapse
|
15
|
Joo D, Woo JS, Cho KH, Han SH, Min TS, Yang DC, Yun CH. Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells. BMB Rep 2017; 49:220-5. [PMID: 26879318 PMCID: PMC4915241 DOI: 10.5483/bmbrep.2016.49.4.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer cells have different characteristics due to the genetic differences where these unique features may strongly influence the effectiveness of therapeutic interventions. Here, we show that the spontaneous reactivation of extracellular signalregulated kinase (ERK), distinct from conventional ERK activation, represents a potent mechanism for cancer cell survival. We studied ERK1/2 activation in vitro in SW480 colorectal cancer cells. Although ERK signaling tends to be transiently activated, we observed the delayed reactivation of ERK1/2 in epidermal growth factor (EGF)-stimulated SW480 cells. This effect was observed even after EGF withdrawal. While phosphorylated ERK1/2 translocated into the nucleus following its primary activation, it remained in the cytoplasm during late-phase activation. The inhibition of primary ERK1/2 activation or protein trafficking, blocked reactivation and concurrently increased caspase 3 activity. Our results suggest that the biphasic activation of ERK1/2 plays a role in cancer cell survival; thus, regulation of ERK1/2 activation may improve the efficacy of cancer therapies that target ERK signaling. [BMB Reports 2016; 49(4): 220-225]
Collapse
Affiliation(s)
- Donghyun Joo
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong Soo Woo
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kwang-Hyun Cho
- 2Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, Dental Research Institute, and BK21 Program, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Tae Sun Min
- National Research Foundation of Korea, Daejeon 34113, Korea
| | - Deok-Chun Yang
- Korean Ginseng Center and Ginseng Genetic Resource Bank, Kyung Hee University, Yongin 17104, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Center for Agricultural Biomaterials; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
16
|
Histone deacetylase inhibitors suppress RSV infection and alleviate virus-induced airway inflammation. Int J Mol Med 2016; 38:812-22. [PMID: 27460781 PMCID: PMC4990302 DOI: 10.3892/ijmm.2016.2691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/05/2016] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and young children. However, the majority of RSV-infected patients only show mild symptoms. Different severities of infection and responses among the RSV-infected population indicate that epigenetic regulation as well as personal genetic background may affect RSV infectivity. Histone deacetylase (HDAC) is an important epigenetic regulator in lung diseases. The present study aimed to explore the possible connection between HDAC expression and RSV-induced lung inflammation. To address this question, RSV-infected airway epithelial cells (BEAS-2B) were prepared and a mouse model of RSV infection was established, and then treated with various concentrations of HDAC inhibitors (HDACis), namely trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA). Viral replication and markers of virus-induced airway inflammation or oxidative stress were assessed. The activation of the nuclear factor-κB (NF-κB), cyclo-oxygenase-2 (COX-2), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signaling pathways was evaluated by western blot analysis. Our results showed that RSV infection in airway epithelial cells (AECs) significantly decreased histone acetylation levels by altering HDAC2 expression. The treatment of RSV-infected AECs with HDACis significantly restricted RSV replication by upregulating the interferon-α (IFN-α) related signaling pathways. The treatment of RSV-infected AECs with HDACis also significantly inhibited RSV-induced pro-inflammatory cytokine release [interleukin (IL)-6 and IL-8] and oxidative stress-related molecule production [malondialdehyde (MDA), and nitrogen monoxide (NO)]. The activation of NF-κB, COX-2, MAPK and Stat3, which orchestrate pro-inflammatory gene expression and oxidative stress injury, was also significantly inhibited. Our in vivo study using a mouse model of RSV infection validated these results. Treatment with HDACis alleviated airway inflammation and reduced in vivo RSV replication. Our data demonstrated that RSV reduced histone acetylation by enhancing HDAC2 expression. Treatment with HDACis (TSA/SAHA) significantly inhibited RSV replication and decreased RSV-induced airway inflammation and oxidative stress. Therefore, the inhibition of HDACs represents a novel therapeutic approach in modulating RSV-induced lung disease.
Collapse
|
17
|
Chandran A, Antony C, Jose L, Mundayoor S, Natarajan K, Kumar RA. Mycobacterium tuberculosis Infection Induces HDAC1-Mediated Suppression of IL-12B Gene Expression in Macrophages. Front Cell Infect Microbiol 2015; 5:90. [PMID: 26697414 PMCID: PMC4667035 DOI: 10.3389/fcimb.2015.00090] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/17/2015] [Indexed: 11/13/2022] Open
Abstract
Downregulation of host gene expression is one of the many strategies employed by intracellular pathogens such as Mycobacterium tuberculosis (MTB) to survive inside the macrophages and cause disease. The underlying molecular mechanism behind the downregulation of host defense gene expression is largely unknown. In this study we explored the role of histone deacetylation in macrophages in response to infection by virulent MTB H37Rv in manipulating host gene expression. We show a significant increase in the levels of HDAC1 with a concomitant and marked reduction in the levels of histone H3-acetylation in macrophages containing live, but not killed, virulent MTB. Additionally, we show that HDAC1 is recruited to the promoter of IL-12B in macrophages infected with live, virulent MTB, and the subsequent hypoacetylation of histone H3 suppresses the expression of this gene which plays a key role in initiating Th1 responses. By inhibiting immunologically relevant kinases, and by knockdown of crucial transcriptional regulators, we demonstrate that protein kinase-A (PKA), CREB, and c-Jun play an important role in regulating HDAC1 level in live MTB-infected macrophages. By chromatin immunoprecipitation (ChIP) analysis, we prove that HDAC1 expression is positively regulated by the recruitment of c-Jun to its promoter. Knockdown of HDAC1 in macrophages significantly reduced the survival of intracellular MTB. These observations indicate a novel HDAC1-mediated epigenetic modification induced by live, virulent MTB to subvert the immune system to survive and replicate in the host.
Collapse
Affiliation(s)
- Aneesh Chandran
- Mycobacterium Research Group, Tropical Disease Biology, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| | - Cecil Antony
- Infectious Diseases Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi Delhi, India
| | - Leny Jose
- Mycobacterium Research Group, Tropical Disease Biology, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| | - Sathish Mundayoor
- Mycobacterium Research Group, Tropical Disease Biology, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| | - Krishnamurthy Natarajan
- Infectious Diseases Laboratory, Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi Delhi, India
| | - R Ajay Kumar
- Mycobacterium Research Group, Tropical Disease Biology, Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, India
| |
Collapse
|
18
|
O'Donnell LA, Henkins KM, Kulkarni A, Matullo CM, Balachandran S, Pattisapu AK, Rall GF. Interferon gamma induces protective non-canonical signaling pathways in primary neurons. J Neurochem 2015; 135:309-22. [PMID: 26190522 DOI: 10.1111/jnc.13250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 12/29/2022]
Abstract
The signal transduction molecule, Stat1, is critical for the expression of type I and II interferon (IFN)-responsive genes in most cells; however, we previously showed that primary hippocampal mouse neurons express low basal Stat1, with delayed and attenuated expression of IFN-responsive genes. Moreover, IFNγ-dependent resolution of a neurotropic viral challenge in permissive mice is Stat1-independent. Here, we show that exogenous IFNγ has no deleterious impact on neuronal viability, and staurosporine-induced apoptosis in neurons is significantly blunted by the addition of IFNγ, suggesting that IFNγ confers a pro-survival signal in neurons. To identify the pathways induced by IFNγ in neurons, the activation of alternative signal transducers associated with IFNγ signaling was assessed. Rapid and pronounced activation of extracellular signal regulated kinase (Erk1/2) was observed in neurons, compared to a modest response in fibroblasts. Moreover, the absence of Stat1 in primary fibroblasts led to enhanced Erk activation following IFNγ addition, implying that the cell-specific availability of signal transducers can diversify the cellular response following IFN engagement.
Collapse
Affiliation(s)
- Lauren A O'Donnell
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA.,Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Kristen M Henkins
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Apurva Kulkarni
- Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Christine M Matullo
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Siddharth Balachandran
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Anil K Pattisapu
- Duquesne University, Mylan School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Glenn F Rall
- Fox Chase Cancer Center, Program in Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Martin C, Frija-Masson J, Burgel PR. Targeting Mucus Hypersecretion: New Therapeutic Opportunities for COPD? Drugs 2014; 74:1073-89. [DOI: 10.1007/s40265-014-0235-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi. PLoS One 2013; 8:e80684. [PMID: 24260453 PMCID: PMC3834299 DOI: 10.1371/journal.pone.0080684] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
Emiliania huxleyi, a key player in the global carbon cycle is one of the best studied coccolithophores with respect to biogeochemical cycles, climatology, and host-virus interactions. Strains of E. huxleyi show phenotypic plasticity regarding growth behaviour, light-response, calcification, acidification, and virus susceptibility. This phenomenon is likely a consequence of genomic differences, or transcriptomic responses, to environmental conditions or threats such as viral infections. We used an E. huxleyi genome microarray based on the sequenced strain CCMP1516 (reference strain) to perform comparative genomic hybridizations (CGH) of 16 E. huxleyi strains of different geographic origin. We investigated the genomic diversity and plasticity and focused on the identification of genes related to virus susceptibility and coccolith production (calcification). Among the tested 31940 gene models a core genome of 14628 genes was identified by hybridization among 16 E. huxleyi strains. 224 probes were characterized as specific for the reference strain CCMP1516. Compared to the sequenced E. huxleyi strain CCMP1516 variation in gene content of up to 30 percent among strains was observed. Comparison of core and non-core transcripts sets in terms of annotated functions reveals a broad, almost equal functional coverage over all KOG-categories of both transcript sets within the whole annotated genome. Within the variable (non-core) genome we identified genes associated with virus susceptibility and calcification. Genes associated with virus susceptibility include a Bax inhibitor-1 protein, three LRR receptor-like protein kinases, and mitogen-activated protein kinase. Our list of transcripts associated with coccolith production will stimulate further research, e.g. by genetic manipulation. In particular, the V-type proton ATPase 16 kDa proteolipid subunit is proposed to be a plausible target gene for further calcification studies.
Collapse
|
21
|
Rezaee F, DeSando SA, Ivanov AI, Chapman TJ, Knowlden SA, Beck LA, Georas SN. Sustained protein kinase D activation mediates respiratory syncytial virus-induced airway barrier disruption. J Virol 2013; 87:11088-95. [PMID: 23926335 PMCID: PMC3807305 DOI: 10.1128/jvi.01573-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/29/2013] [Indexed: 01/08/2023] Open
Abstract
Understanding the regulation of airway epithelial barrier function is a new frontier in asthma and respiratory viral infections. Despite recent progress, little is known about how respiratory syncytial virus (RSV) acts at mucosal sites, and very little is known about its ability to influence airway epithelial barrier function. Here, we studied the effect of RSV infection on the airway epithelial barrier using model epithelia. 16HBE14o- bronchial epithelial cells were grown on Transwell inserts and infected with RSV strain A2. We analyzed (i) epithelial apical junction complex (AJC) function, measuring transepithelial electrical resistance (TEER) and permeability to fluorescein isothiocyanate (FITC)-conjugated dextran, and (ii) AJC structure using immunofluorescent staining. Cells were pretreated or not with protein kinase D (PKD) inhibitors. UV-irradiated RSV served as a negative control. RSV infection led to a significant reduction in TEER and increase in permeability. Additionally it caused disruption of the AJC and remodeling of the apical actin cytoskeleton. Pretreatment with two structurally unrelated PKD inhibitors markedly attenuated RSV-induced effects. RSV induced phosphorylation of the actin binding protein cortactin in a PKD-dependent manner. UV-inactivated RSV had no effect on AJC function or structure. Our results suggest that RSV-induced airway epithelial barrier disruption involves PKD-dependent actin cytoskeletal remodeling, possibly dependent on cortactin activation. Defining the mechanisms by which RSV disrupts epithelial structure and function should enhance our understanding of the association between respiratory viral infections, airway inflammation, and allergen sensitization. Impaired barrier function may open a potential new therapeutic target for RSV-mediated lung diseases.
Collapse
Affiliation(s)
- Fariba Rezaee
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Samantha A. DeSando
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Andrei I. Ivanov
- Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Timothy J. Chapman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Sara A. Knowlden
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Steve N. Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
22
|
Ng SSM, Li A, Pavlakis GN, Ozato K, Kino T. Viral infection increases glucocorticoid-induced interleukin-10 production through ERK-mediated phosphorylation of the glucocorticoid receptor in dendritic cells: potential clinical implications. PLoS One 2013; 8:e63587. [PMID: 23667643 PMCID: PMC3648469 DOI: 10.1371/journal.pone.0063587] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/03/2013] [Indexed: 12/16/2022] Open
Abstract
The hypothalamic-pituitary-adrenal axis plays a central role in the adaptive response to stress including infection of pathogens through glucocorticoids. Physical and/or mental stress alter susceptibility to viral infection possibly by affecting this regulatory system, thus we explored potential cellular targets and mechanisms that underlie this phenomenon in key immune components dendritic cells (DCs). Dexamethasone (DEX) treatment and subsequent Newcastle disease virus (NDV) infection most significantly and cooperatively stimulated mRNA expression of the interleukin (IL)-10 in murine bone marrow-derived DCs among 89 genes involved in the Toll-like receptor signaling pathways. NDV increased DEX-induced IL-10 mRNA and protein expression by 7- and 3-fold, respectively, which was observed from 3 hours after infection. Conventional DCs (cDCs), but not plasmacytoid DCs (pDCs) were major sources of IL-10 in bone marrow-derived DCs treated with DEX and/or infected with NDV. Murine cytomegalovirus and DEX increased serum IL-10 cooperatively in female mice. Pre-treatment of DCs with the extracellular signal-regulated kinase (ERK) inhibitor U0126 abolished cooperative induction of IL-10 by DEX and NDV. Further, ERK overexpression increased IL-10 promoter activity stimulated by wild-type human GR but not by its mutant defective in serine 203, whereas ERK knockdown abolished NDV/DEX cooperation on IL-10 mRNA and phosphorylation of the mouse GR at serine 213. NDV also increased DEX-induced mRNA expression of three known glucocorticoid-responsive genes unrelated to the Toll-like receptor signaling pathways in DCs. These results indicate that virus and glucocorticoids cooperatively increase production of anti-inflammatory cytokine IL-10 by potentiating the transcriptional activity of GR in DCs, through which virus appears to facilitate its own propagation in infected hosts. The results may further underlie in part known exacerbation of IL-10/T helper-2-related allergic disorders by stress and viral infection.
Collapse
Affiliation(s)
- Sinnie Sin Man Ng
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Andrew Li
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - George N. Pavlakis
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Keiko Ozato
- Laboratory of Molecular Growth and Regulation, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tomoshige Kino
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
p38 and OGT sequestration into viral inclusion bodies in cells infected with human respiratory syncytial virus suppresses MK2 activities and stress granule assembly. J Virol 2012; 87:1333-47. [PMID: 23152511 DOI: 10.1128/jvi.02263-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) forms cytoplasmic inclusion bodies (IBs) that are thought to be sites of nucleocapsid accumulation and viral RNA synthesis. The present study found that IBs also were the sites of major sequestration of two proteins involved in cellular signaling pathways. These are phosphorylated p38 mitogen-activated protein kinase (MAPK) (p38-P), a key regulator of cellular inflammatory and stress responses, and O-linked N-acetylglucosamine (OGN) transferase (OGT), an enzyme that catalyzes the posttranslational addition of OGN to protein targets to regulate cellular processes, including signal transduction, transcription, translation, and the stress response. The virus-induced sequestration of p38-P in IBs resulted in a substantial reduction in the accumulation of a downstream signaling substrate, MAPK-activated protein kinase 2 (MK2). Sequestration of OGT in IBs was associated with suppression of stress granule (SG) formation. Thus, while the RSV IBs are thought to play an essential role in viral replication, the present results show that they also play a role in suppressing the cellular response to viral infection. The sequestration of p38-P and OGT in IBs appeared to be reversible: oxidative stress resulting from arsenite treatment transformed large IBs into a scattering of smaller bodies, suggestive of partial disassembly, and this was associated with MK2 phosphorylation and OGN addition. Unexpectedly, the RSV M2-1 protein was found to localize in SGs that formed during oxidative stress. This protein was previously shown to be a viral transcription elongation factor, and the present findings provide the first evidence of possible involvement in SG activities during RSV infection.
Collapse
|
24
|
Tayyari F, Hegele RG. Identifying targets in the hunt for effective respiratory syncytial virus interventions. Expert Rev Respir Med 2012; 6:215-22. [PMID: 22455493 DOI: 10.1586/ers.12.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) is a major cause of human infections worldwide. There is currently no effective vaccine or antiviral therapy available for widespread clinical use; prophylaxis with anti-RSV antibodies is used in only a small percentage of potential recipients. New targets for effective RSV interventions are needed. Previous anti-RSV intervention strategies have focused on targeting aspects of the virus, an approach that can lead to the emergence of resistant RSV strains. Increased understanding of the biology of RSV-host interactions provides an alternative approach for identifying novel targets for RSV interventions that focus on host factors, and exploiting them with the aim to limit the incidence and severity of RSV infections.
Collapse
Affiliation(s)
- Farnoosh Tayyari
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Room 6231, Toronto, ON, M5S 1A8, Canada
| | | |
Collapse
|
25
|
Distinct roles for extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the structure and production of a primate gammaherpesvirus. J Virol 2012; 86:9721-36. [PMID: 22740395 DOI: 10.1128/jvi.00695-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During their progression from intranuclear capsids to mature trilaminar virions, herpesviruses incorporate an extensive array of viral as well as a smaller subset of cellular proteins. Our laboratory previously reported that rhesus monkey rhadinovirus (RRV), a close homolog of the human pathogen Kaposi's sarcoma-associated herpesvirus (KSHV), is comprised of at least 33 different virally encoded proteins. In the current study, we found that RRV infection activated the extracellular signal-regulated kinase (ERK) pathway and nascent virions preferentially incorporated the activated form of ERK2 (pERK2) into the tegument. This was evident even in the face of greatly diminished stores of intracellular ERK2, suggesting a clear bias toward the incorporation of pERK2 into the RRV particle. Similar to earlier findings with KSHV, activation of ERK was essential for the production of lytic viral proteins and virions. Knockdown of intracellular ERK, however, failed to inhibit virus production, likely due to maintenance of residual pools of intracellular pERK2. Paradoxically, selective knockdown of ERK1 enhanced virion production nearly 5-fold and viral titers more than 10-fold. These data are the first to implicate ERK1 as a negative regulator of lytic replication in a herpesvirus and the first to demonstrate the incorporation of an activated signaling molecule within a herpesvirus. Together, the results further our understanding of how herpesviruses interact with host cells during infection and demonstrate how this family of viruses can exploit cellular signal transduction pathways to modulate their own replication.
Collapse
|
26
|
Huang Y, Huang X, Cai J, Ye F, Qin Q. Involvement of the mitogen-activated protein kinase pathway in soft-shelled turtle iridovirus-induced apoptosis. Apoptosis 2011; 16:581-93. [PMID: 21442306 DOI: 10.1007/s10495-011-0595-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iridoviruses are large DNA viruses that infect invertebrates and poikilothermic vertebrates, and result in significant economic losses in aquaculture production, and drastic declines in amphibian populations. Soft-shelled turtle iridovirus (STIV) is the causative agent of severe systemic diseases in farm-raised soft-shelled turtles (Trionyx sinensis). In the present study, the mechanisms of STIV-induced cell death and the roles of the mitogen-activated protein kinase (MAPK) signaling pathway were investigated. STIV infection evoked typical apoptosis in fish cells, as demonstrated by the formation of apoptotic bodies, positive terminal deoxynucleotidyl transferase-mediated nicked-end labeling, and caspase-3 activation. The translocation of cytochrome c from mitochondria to cytoplasm, and caspase-9 activation suggested that a mitochondria-mediated pathway was involved in STIV-induced apoptosis. Moreover, MAPK pathways, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK signaling were activated during STIV infection. Using specific inhibitors, we found that MAPK signaling molecules, including ERK, JNK and p38 MAPK, were important for virus release, whereas, only ERK and p38 MAPK were involved in STIV-induced apoptosis by modulating caspase-3 activity. Taken together, our findings shed light on the roles of the MAPK signaling pathway in iridovirus-induced apoptosis and virus replication, which provides new insights into understanding iridovirus-host interaction.
Collapse
Affiliation(s)
- Youhua Huang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | | | | | | | | |
Collapse
|
27
|
Masaki T, Kojima T, Okabayashi T, Ogasawara N, Ohkuni T, Obata K, Takasawa A, Murata M, Tanaka S, Hirakawa S, Fuchimoto J, Ninomiya T, Fujii N, Tsutsumi H, Himi T, Sawada N. A nuclear factor-κB signaling pathway via protein kinase C δ regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells. Mol Biol Cell 2011; 22:2144-56. [PMID: 21562222 PMCID: PMC3128518 DOI: 10.1091/mbc.e10-11-0875] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We established a respiratory syncytial virus (RSV)-infected model in polarized normal human nasal epithelial cells and found that the replication of RSV and the epithelial cell responses including induction of tight junctions were regulated via a protein kinase C δ/hypoxia-inducible factor-1α/nuclear factor-κβ pathway. The control of this pathway may be useful in therapy for RSV-induced respiratory pathogenesis. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma, and severe lower respiratory tract disease in infants and young children. The airway epithelium, which has a well-developed barrier regulated by tight junctions, is the first line of defense during respiratory virus infection. In upper airway human nasal epithelial cells (HNECs), however, the primary site of RSV infection, the mechanisms of replication and budding of RSV, and the epithelial cell responses, including the tight junctional barrier, remain unknown. To investigate the detailed mechanisms of replication and budding of RSV in HNECs and the epithelial cell responses, we established an RSV-infected model using human telomerase reverse transcriptase–-transfected HNECs. We first found that the expression and barrier function of tight junction molecules claudin-4 and occludin were markedly induced together with production of proinflammatory cytokines interleukin 8 and tumor necrosis factor-α in HNECs after RSV infection, and the induction of tight junction molecules possibly contributed to budding of RSV. Furthermore, the replication and budding of RSV and the epithelial cell responses in HNECs were regulated via a protein kinase C δ/hypoxia-inducible factor-1α/nuclear factor-κB pathway. The control of this pathway in HNECs may be useful not only for prevention of replication and budding of RSV, but also in therapy for RSV-induced respiratory pathogenesis.
Collapse
Affiliation(s)
- Tomoyuki Masaki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sharon H, Amar D, Levdansky E, Mircus G, Shadkchan Y, Shamir R, Osherov N. PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death. PLoS One 2011; 6:e17509. [PMID: 21412410 PMCID: PMC3055868 DOI: 10.1371/journal.pone.0017509] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/04/2011] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus is the most commonly encountered mold pathogen of humans, predominantly infecting the respiratory system. Colonization and penetration of the lung alveolar epithelium is a key but poorly understood step in the infection process. This study focused on identifying the transcriptional and cell-signaling responses activated in A549 alveolar carcinoma cells incubated in the presence of A. fumigatus wild-type and ΔPrtT protease-deficient germinating conidia and culture filtrates (CF). Microarray analysis of exposed A549 cells identified distinct classes of genes whose expression is altered in the presence of germinating conidia and CF and suggested the involvement of both NFkB and MAPK signaling pathways in mediating the cellular response. Phosphoprotein analysis of A549 cells confirmed that JNK and ERK1/2 are phosphorylated in response to CF from wild-type A. fumigatus and not phosphorylated in response to CF from the ΔPrtT protease-deficient strain. Inhibition of JNK or ERK1/2 kinase activity substantially decreased CF-induced cell damage, including cell peeling, actin-cytoskeleton damage, and reduction in metabolic activity and necrotic death. These results suggest that inhibition of MAPK-mediated host responses to treatment with A. fumigatus CF decreases cellular damage, a finding with possible clinical implications.
Collapse
Affiliation(s)
- Haim Sharon
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hegele RG. Role of cytoplasmic stress granules in respiratory syncytial virus replication: a new frontier in virus–host interactions. Future Virol 2011. [DOI: 10.2217/fvl.11.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Lindquist ME, Lifland AW, Utley TJ, Santangelo PJ, Crowe JE Jr: Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication. J. Virol. 84(23), 12274–12284 (2010). Respiratory syncytial virus (RSV) is a major cause of respiratory illnesses worldwide. No safe, effective vaccine or good antiviral therapy is available. Respiratory epithelial cells are an important target for RSV infection and the interactions of RSV with cellular machinery during the viral life cycle are not well defined. Here, Lindquist et al. studied the kinetics of RSV replication in the context of stress granule formation, a host response known to decrease protein translation by epithelial cells in vitro. Results showed that stress granules and viral inclusion bodies, despite having similar appearance and intracellular localization, are biochemically distinct, yet share several host protein and viral RNA components. Interestingly, the authors show that formation of stress granules favors RSV replication, thereby going against intuition that stress granules have an antiviral function. These intriguing findings raise a number of unanswered questions to stimulate future studies designed to better understand RSV–host cell interactions.
Collapse
Affiliation(s)
- Richard G Hegele
- Keenan Research Centre, Li Ka Shing Knowledge Institute at St. Michael’s Hospital, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
30
|
Hinzey A, Alexander J, Corry J, Adams KM, Claggett AM, Traylor ZP, Davis IC, Webster Marketon JI. Respiratory syncytial virus represses glucocorticoid receptor-mediated gene activation. Endocrinology 2011; 152:483-94. [PMID: 21190962 PMCID: PMC3037158 DOI: 10.1210/en.2010-0774] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Respiratory syncytial virus (RSV) is a common cause of bronchiolitis in infants. Although antiinflammatory in nature, glucocorticoids have been shown to be ineffective in the treatment of RSV-induced bronchiolitis and wheezing. In addition, the effectiveness of glucocorticoids at inhibiting RSV-induced proinflammatory cytokine production in cell culture has been questioned. In this study, we have investigated the effect of RSV infection on glucocorticoid-induced gene activation in lung epithelium-derived cells. We show that RSV infection inhibits dexamethasone induction of three glucocorticoid receptor (GR)-regulated genes (glucocorticoid-inducible leucine zipper, FK506 binding protein, and MAPK phosphatase 1) in A549, BEAS-2B cells, and primary small airway epithelial cells. UV irradiation of the virus prevents this repression, suggesting that viral replication is required. RSV is known to activate the nuclear factor κB (NFκB) pathway, which is mutually antagonistic towards the GR pathway. However, specific inhibition of NFκB had no effect on the repression of GR-induced genes by RSV infection, indicating that RSV repression of GR is independent of NFκB. RSV infection of A549 cells does not alter GR protein levels or GR nuclear translocation but does reduce GR binding to the promoters of the glucocorticoid responsive genes analyzed in this study. Repression of GR by RSV infection may account for the apparent clinical ineffectiveness of glucocorticoids in RSV bronchiolitis therapy. In addition, this data adds to our previously published data suggesting that GR may be a general target for infectious agents. Identifying the mechanisms through which this suppression occurs may lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Adam Hinzey
- Division of Pulmonary, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Minor RAC, Limmon GV, Miller-DeGraff L, Dixon D, Andrews DMK, Kaufman RJ, Imani F. Double-stranded RNA-activated protein kinase regulates early innate immune responses during respiratory syncytial virus infection. J Interferon Cytokine Res 2010; 30:263-72. [PMID: 20038207 DOI: 10.1089/jir.2009.0051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of childhood viral bronchiolitis and lung injury. Inflammatory responses significantly contribute to lung pathologies during RSV infections and bronchiolitis but the exact mechanisms have not been completely defined. The double-stranded RNA-activated protein kinase (PKR) functions to inhibit viral replication and participates in several signaling pathways associated with innate inflammatory immune responses. Using a functionally defective PKR (PKR(-/-)) mouse model, we investigated the role of this kinase in early events of RSV-induced inflammation. Our data showed that bronchoalveolar lavage (BAL) fluid from infected PKR(-/-) mice had significantly lower levels of several innate inflammatory cytokines and chemokines. Histological examinations revealed that there was less lung injury in infected PKR(-/-) mice as compared to the wild type. A genome-wide analysis showed that several early antiviral and immune regulatory genes were affected by PKR activation. These data suggest that PKR is a signaling molecule for immune responses during RSV infections.
Collapse
|
32
|
Vitiello M, Finamore E, Falanga A, Raieta K, Cantisani M, Galdiero F, Pedone C, Galdiero M, Galdiero S. Viral fusion peptides induce several signal transduction pathway activations that are essential for interleukin-10 and beta-interferon production. Intervirology 2010; 53:381-9. [PMID: 20606459 PMCID: PMC7179556 DOI: 10.1159/000317287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 12/22/2009] [Indexed: 01/22/2023] Open
Abstract
Objectives The deciphering of intracellular signaling pathways that are activated by the interaction between viral fusion peptides and cellular membranes are important for the understanding of both viral replication strategies and host defense mechanisms. Methods Fusion peptides of several enveloped viruses belonging to different virus families were prepared by standard 9-fluorenylmethoxycarbonyl polyamine solid-phase synthesis and used to stimulate U937 cells in vitro to analyze the phosphorylation patterns of the signaling pathways (PKC, Src, Akt, and MAPK pathways). Immunoprecipitation and Western blotting were carried out by using phosphospecific antibodies. All samples were also assayed for the presence of IL-10 and IFN-β by ELISA and activation of nuclear factors (AP-1 and NF-κB). Results We have demonstrated that hydrophobic domains of fusion proteins are able to induce several transduction pathways that lead to cytokine (IFN-β and IL-10) production, an event that appears to be dependent on early activation of AP-1 and NF-κB. Conclusions The results obtained on the signaling activity of fusion peptides from different viruses enabled us to shed some light on the complex mechanism of viral entry and more precisely we focused on the exact signaling event induced by hydrophobic domains characteristic of fusion peptides interacting with the cell membrane.
Collapse
Affiliation(s)
- Mariateresa Vitiello
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cho JY, Katz DR, Skubitz KM, Chain BM. Conventional protein kinase C plays a critical role in negative regulation of CD98-induced homotypic aggregation. ACTA ACUST UNITED AC 2009; 75:19-29. [PMID: 19895572 DOI: 10.1111/j.1399-0039.2009.01389.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CD98, a heterodimeric type II transmembrane protein, is involved in many different cellular events, ranging from amino acid transport to cell-cell adhesion. Little is known about the positive and negative signalling pathways involved in these responses. Therefore, we examined the role of conventional protein kinase C (PKC) isoforms during CD98-induced intracellular signalling and homotypic aggregation of U937 cells. The CD98-induced aggregation was enhanced by the general protein kinase inhibitors GF109203X and staurosporin, and by specific PKC-alpha/-beta peptide inhibitor 19-27, but inhibited by PKC activators such as phorbol 12-myristate 13-acetate (PMA). PMA-inhibition was reversed by PKC inhibitors recognising the ATP-binding site in PKC (e.g. staurosporin, GF109203X and Go6983). Inhibitors which bind to diacylglycerol (DAG) or Ca(2+)-binding sites of PKC (calphostin C and Go6967) had no effect. PMA-induced translocation of conventional PKC (cPKC) isozymes (alpha, beta and gamma), but decreased the expression of PKC-delta, which plays an important role in CD98-induced homotypic aggregation. PMA treatment also suppressed the surface level of CD98 but not CD29, CD18 and CD147, dose- and time-dependently. These data provide evidence that PMA-responsive cPKC isoforms (alpha, beta and gamma) play a key role in negative regulation of CD98 signalling and homotypic aggregation.
Collapse
Affiliation(s)
- J Y Cho
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London Medical School, London, UK
| | | | | | | |
Collapse
|
34
|
|
35
|
Activation of intracellular signaling pathways by the murine cytomegalovirus G protein-coupled receptor M33 occurs via PLC-{beta}/PKC-dependent and -independent mechanisms. J Virol 2009; 83:8141-52. [PMID: 19494016 DOI: 10.1128/jvi.02116-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The presence of numerous G protein-coupled receptor (GPCR) homologs within the herpesvirus genomes suggests an essential role for these genes in viral replication in the infected host. Such is the case for murine cytomegalovirus (MCMV), where deletion of the M33 GPCR or replacement of M33 with a signaling defective mutant has been shown to severely attenuate replication in vivo. In the present study we utilized a genetically altered version of M33 (termed R131A) in combination with pharmacological inhibitors to further characterize the mechanisms by which M33 activates downstream signaling pathways. This R131A mutant of M33 fails to support salivary gland replication in vivo and, as such, is an important tool that can be used to examine the signaling activities of M33. We show that M33 stimulates the transcription factor CREB via heterotrimeric G(q/11) proteins and not through promiscuous coupling of M33 to the G(s) pathway. Using inhibitors of signaling molecules downstream of G(q/11), we demonstrate that M33 stimulates CREB transcriptional activity in a phospholipase C-beta and protein kinase C (PKC)-dependent manner. Finally, utilizing wild-type and R131A versions of M33, we show that M33-mediated activation of other signaling nodes, including the mitogen-activated protein kinase family member p38alpha and transcription factor NF-kappaB, occurs in the absence of G(q/11) and PKC signaling. The results from the present study indicate that M33 utilizes multiple mechanisms to modulate intracellular signaling cascades and suggest that signaling through PLC-beta and PKC plays a central role in MCMV pathogenesis in vivo.
Collapse
|
36
|
Huang L, Li B, Li W, Guo H, Zou F. ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity. Carcinogenesis 2009; 30:737-44. [PMID: 19176641 DOI: 10.1093/carcin/bgp034] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ion channels are found in a variety of cancer cells and necessary for cell cycle and cell proliferation. The roles of K(+) channels in the process are, however, poorly understood. In the present study, we report that adenosine triphosphate (ATP)-sensitive potassium channel activity plays a critical role in the proliferation of glioma cells. The expression of K(ATP) channels in glioma tissues was greatly increased than that in normal tissues. Treatment of glioma cells with tolbutamide, K(ATP) channels inhibitor, suppressed the proliferation of glioma cells and blocked glioma cell cycle in G(0)/G(1) phase. Similarly, downregulation of K(ATP) channels by small interfering RNA (siRNA) inhibited glioma cell proliferation. On the other hand, K(ATP) channels agonist diazoxide and overexpression of K(ATP) channels promoted the proliferation of glioma cells. Moreover, inhibiting K(ATP) channels slowed the formation of tumor in nude mice generated by injection of glioma cells. Whereas activating K(ATP) channels promoted development of tumor in vivo. The effect of K(ATP) channels activity on glioma cells proliferation is mediated by extracellular signal-regulated kinase (ERK) activation. We found that activating K(ATP) channel triggered ERK activation and inhibiting K(ATP) channel depressed ERK activation. U-0126, the mitogen-activated protein kinase kinase (MAPK kinase) inhibitors blocked ERK activation and cell proliferation induced by diazoxide. Furthermore, constitutively activated MEK plasmids transfection reversed the inhibitory effects of tolbutamide on glioma proliferation, lending further support for a role of ERK in mediating this process. Our results suggest that K(ATP) channels control glioma cell proliferation via regulating ERK pathway. We concluded that K(ATP) channels are important in pathological cell proliferation and open a promising pathway for novel targeted therapies.
Collapse
Affiliation(s)
- Lianyan Huang
- Department of Occupational Health and Occupational medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | | | | | | | | |
Collapse
|
37
|
Pleschka S. RNA viruses and the mitogenic Raf/MEK/ERK signal transduction cascade. Biol Chem 2008; 389:1273-82. [DOI: 10.1515/bc.2008.145] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractThe Raf/MEK/ERK signal transduction cascade belongs to the mitogen-activated protein kinase (MAPK) cascades. Raf/MEK/ERK signaling leads to stimulus-specific changes in gene expression, alterations in cell metabolism or induction of programmed cell death (apoptosis), and thus controls cell differentiation and proliferation. It is induced by extracellular agents, including pathogens such as RNA viruses. Many DNA viruses are known to induce cellular signaling via this pathway. As these pathogens partly use the DNA synthesis machinery for their replication, they aim to drive cells into a proliferative state. In contrast, the consequences of RNA virus-induced Raf/MEK/ERK signaling were less clear for a long time, but since the turn of the century the number of publications on this topic has rapidly increased. Research on this virus/host-interaction will broaden our understanding of its relevance in viral replication. This important control center of cellular responses is differently employed to support the replication of several important human pathogenic RNA viruses including influenza, Ebola, hepatitis C and SARS corona viruses.
Collapse
|
38
|
Holden NS, Squires PE, Kaur M, Bland R, Jones CE, Newton R. Phorbol ester-stimulated NF-kappaB-dependent transcription: roles for isoforms of novel protein kinase C. Cell Signal 2008; 20:1338-48. [PMID: 18436431 DOI: 10.1016/j.cellsig.2008.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 03/02/2008] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
Abstract
Since protein kinase C (PKC) isoforms are variously implicated in the activation of NF-kappaB, we have investigated the role of PKC in the activation of NF-kappaB-dependent transcription by the diacyl glycerol (DAG) mimetic, phorbol 12-myristate 13-acetate (PMA), and by tumour necrosis factor (TNF) alpha in pulmonary A549 cells. The PKC selective inhibitors, Ro31-8220, Gö6976, GF109203X and Gö6983, revealed no effect on TNFalpha-induced NF-kappaB DNA binding and a similar lack of effect on serine 32/36 phosphorylated IkappaBalpha and the loss of total IkappaBalpha indicates that activation of the core IKK-IkappaBalpha-NF-kappaB cascade by TNFalpha does not involve PKC. In contrast, differential sensitivity of an NF-kappaB-dependent reporter to Ro31-8220, Gö6976, GF109203X and Gö6983 (EC(50)s 0.46 microM, 0.34 microM, >10 microM and >10 microM respectively) suggests a role for protein kinase D in transcriptional activation by TNFalpha. Compared with TNFalpha, PMA weakly induces NF-kappaB DNA binding and this effect was not associated with serine 32/36 phosphorylation of IkappaBalpha. However, PMA-stimulated NF-kappaB DNA binding was inhibited by Ro31-8220 (10 microM), GF109203X (10 microM) and Gö6983 (10 microM), but not by Gö6976 (10 microM), suggesting a role for novel PKC isoforms. Furthermore, a lack of positive effect of calcium mobilising agents on both NF-kappaB DNA binding and on transcriptional activation argues against major roles for classical PKCs. This, combined with the ability of both GF109203X and Gö6983 to prevent enhancement of TNFalpha-induced NF-kappaB-dependent transcription by PMA, further indicates a role for novel PKCs in NF-kappaB transactivation. Finally, siRNA-mediated knockdown of PKCdelta and epsilon expression did not affect TNFalpha-induced NF-kappaB-dependent transcription. However, knockdown of PKCdelta expression significantly inhibited PMA-stimulated luciferase activity, whereas knockdown of PKCepsilon was without effect. Furthermore, combined knockdown of PKCdelta and epsilon revealed an increased inhibitory effect on PMA-stimulated NF-kappaB-dependent transcription suggesting that PMA-induced NF-kappaB-dependent transcription is driven by novel PKC isoforms, particularly PKCdelta and epsilon.
Collapse
Affiliation(s)
- Neil S Holden
- Airways Inflammation Group, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
39
|
The fusion protein of respiratory syncytial virus triggers p53-dependent apoptosis. J Virol 2008; 82:3236-49. [PMID: 18216092 DOI: 10.1128/jvi.01887-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with respiratory syncytial virus (RSV) frequently causes inflammation and obstruction of the small airways, leading to severe pulmonary disease in infants. We show here that the RSV fusion (F) protein, an integral membrane protein of the viral envelope, is a strong elicitor of apoptosis. Inducible expression of F protein in polarized epithelial cells triggered caspase-dependent cell death, resulting in rigorous extrusion of apoptotic cells from the cell monolayer and transient loss of epithelial integrity. A monoclonal antibody directed against F protein inhibited apoptosis and was also effective if administered to A549 lung epithelial cells postinfection. F protein expression in epithelial cells caused phosphorylation of tumor suppressor p53 at serine 15, activation of p53 transcriptional activity, and conformational activation of proapoptotic Bax. Stable expression of dominant-negative p53 or p53 knockdown by RNA interference inhibited the apoptosis of RSV-infected A549 cells. HEp-2 tumor cells with low levels of p53 were not sensitive to RSV-triggered apoptosis. We propose a new model of RSV disease with the F protein as an initiator of epithelial cell shedding, airway obstruction, secondary necrosis, and consequent inflammation. This makes the RSV F protein a key target for the development of effective postinfection therapies.
Collapse
|
40
|
Felber M, Sonnemann J, Beck JF. Inhibition of novel protein kinase Cɛ augments TRAIL-induced cell death in A549 lung cancer cells. Pathol Oncol Res 2007; 13:295-301. [DOI: 10.1007/bf02940308] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 09/20/2007] [Indexed: 11/29/2022]
|
41
|
Monick MM, Powers LS, Hassan I, Groskreutz D, Yarovinsky TO, Barrett CW, Castilow EM, Tifrea D, Varga SM, Hunninghake GW. Respiratory syncytial virus synergizes with Th2 cytokines to induce optimal levels of TARC/CCL17. THE JOURNAL OF IMMUNOLOGY 2007; 179:1648-58. [PMID: 17641031 PMCID: PMC4060898 DOI: 10.4049/jimmunol.179.3.1648] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Respiratory syncytial virus (RSV) is a ubiquitous virus that preferentially infects airway epithelial cells, causing asthma exacerbations and severe disease in immunocompromised hosts. Acute RSV infection induces inflammation in the lung. Thymus- and activation-regulated chemokine (TARC) recruits Th2 cells to sites of inflammation. We found that acute RSV infection of BALB/c mice increased TARC production in the lung. Immunization of BALB/c mice with individual RSV proteins can lead to the development of Th1- or Th2-biased T cell responses in the lung after RSV infection. We primed animals with a recombinant vaccinia virus expressing either the RSV fusion (F) protein or the RSV attachment (G) protein, inducing Th1- and Th2-biased pulmonary memory T cell responses, respectively. After RSV infection, TARC production significantly increased in the vaccinia virus G-primed animals only. These data suggest a positive feedback loop for TARC production between RSV infection and Th2 cytokines. RSV-infected lung epithelial cells cultured with IL-4 or IL-13 demonstrated a marked increase in the production of TARC. The synergistic effect of RSV and IL-4/IL-13 on TARC production reflected differential induction of NF kappa B and STAT6 by the two stimuli (both are in the TARC promoter). These findings demonstrate that RSV induces a chemokine TARC that has the potential to recruit Th2 cells to the lung.
Collapse
Affiliation(s)
- Martha M Monick
- Department of Internal Medicine, University of Iowa Carver College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Slager RE, Devasure JM, Pavlik JA, Sisson JH, Wyatt TA. RACK1, a PKC targeting protein, is exclusively localized to basal airway epithelial cells. J Histochem Cytochem 2007; 56:7-14. [PMID: 17875659 PMCID: PMC2323118 DOI: 10.1369/jhc.7a7249.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The novel isoform of protein kinase C (PKC), PKCepsilon, is an important regulator of ciliated cell function in airway epithelial cells, including cilia motility and detachment of ciliated cells after environmental insult. However, the mechanism of PKCepsilon signaling in the airways and the potential role of the PKCepsilon-interacting protein, receptor for activated C kinase 1 (RACK1), has not been widely explored. We used immunohistochemistry and Western blot analysis to show that RACK1 is localized exclusively to basal, non-ciliated (and non-goblet) bovine and human bronchial epithelial cells. Our immunohistochemistry experiments used the basal body marker pericentrin, a marker for cilia, beta-tubulin, and an airway goblet cell marker, MUC5AC, to confirm that RACK1 was excluded from differentiated airway cell subtypes and is only expressed in the basal cells. These results suggest that PKCepsilon signaling in the basal airway cell may involve RACK1; however, PKCepsilon regulation in ciliated cells uses RACK1-independent pathways.
Collapse
Affiliation(s)
- Rebecca E Slager
- Department of Internal Medicine, Pulmonary and Critical Care Medicine Section, University of Nebraska Medical Center, 985300 Nebraska Medical Center, Omaha, NE 68198-5300, USA
| | | | | | | | | |
Collapse
|
43
|
Davis IC, Xu A, Gao Z, Hickman-Davis JM, Factor P, Sullender WM, Matalon S. Respiratory syncytial virus induces insensitivity to beta-adrenergic agonists in mouse lung epithelium in vivo. Am J Physiol Lung Cell Mol Physiol 2007; 293:L281-9. [PMID: 17435077 PMCID: PMC2084466 DOI: 10.1152/ajplung.00458.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and children worldwide. We wished to determine whether intratracheal administration of beta-agonists improved alveolar fluid clearance (AFC) across the distal respiratory epithelium of RSV-infected mice. Following intranasal infection with RSV strain A2, AFC was measured in anesthetized, ventilated BALB/c mice by instillation of 5% BSA into the dependent lung. We found that direct activation of protein kinase A by forskolin or 8-bromo-cAMP increased AFC at day 2 after infection with RSV. In contrast, short- and long-acting beta-agonists had no effect at either day 2 or day 4. Insensitivity to beta-agonists was not a result of elevated plasma catecholamines or lung epithelial cell beta-adrenergic receptor degradation. Instead, RSV-infected mice had significantly higher levels of phosphorylated PKCzeta in the membrane fractions of their lung epithelial cells. In addition, insensitivity to beta-agonists was mediated in a paracrine fashion by KC (the murine homolog of CXCL8) and reversed by inhibition of either PKCzeta or G protein-coupled receptor kinase 2 (GRK2). These results indicate that insufficient response to beta-agonists in RSV may be caused, at least in part, by impaired beta-adrenergic receptor signaling, as a consequence of GRK2-mediated uncoupling of beta-adrenergic receptors from adenylyl cyclase.
Collapse
Affiliation(s)
- Ian C. Davis
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Anna Xu
- Department of Pulmonary Medicine, Columbia University Medical Center, New York, NY, USA
| | - Zhiqian Gao
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Judy M. Hickman-Davis
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Phillip Factor
- Department of Pulmonary Medicine, Columbia University Medical Center, New York, NY, USA
| | - Wayne M. Sullender
- Department of Pediatrics & Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Physiology & Biophysics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
44
|
O'Kane CM, Boyle JJ, Horncastle DE, Elkington PT, Friedland JS. Monocyte-Dependent Fibroblast CXCL8 Secretion Occurs in Tuberculosis and Limits Survival of Mycobacteria within Macrophages. THE JOURNAL OF IMMUNOLOGY 2007; 178:3767-76. [PMID: 17339475 DOI: 10.4049/jimmunol.178.6.3767] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CXCL8 is a chemokine that is implicated in the formation of tuberculous (TB) granulomas and in immunity to Mycobacterium tuberculosis (Mtb). Fibroblast chemokine secretion is important for modulating inflammatory responses in chronic lung disease and inflammatory arthritis but has not been investigated in the pathophysiology of TB. In this study, we used a cellular model to examine monocyte/macrophage-dependent stimulation of fibroblasts by Mtb in the regulation of chemokine secretion, particularly that of CXCL8. Human lung fibroblasts grown in collagen were stimulated with conditioned medium from Mtb-infected monocytes (CoMTb). CoMTb-induced prolonged dose-dependent, p38-mediated expression of stable CXCL8 mRNA by fibroblasts accompanied by a >10-fold increase in CXCL8 secretion (487 +/- 88 ng/ml vs 48.6 +/- 34 ng/ml in controls) at 120 h. Fibroblasts strongly expressed CXCL8 in vivo in human TB granulomas. Inhibition of TNF-alpha or IL-1 in CoMTb abrogated the induction of CXCL8 at a pretranscriptional level. CXCL8 secretion was NF-kappaB, C/EBP, and JNK dependent. Sustained NF-kappaB activation was demonstrated beyond 24 h in response to CoMTb. Exogenous CXCL8 reduced the survival of Mtb within macrophages, and inhibition of CXCL8 was associated with intracellular mycobacterial proliferation. These data show that fibroblasts have a previously unrecognized role in modulating inflammation in TB by their CXCL8-dependent contribution to cell recruitment and mycobacterial killing within the granuloma.
Collapse
Affiliation(s)
- Cecilia M O'Kane
- Department of Infectious Diseases Immunity, Imperial College, Hammersmith Campus, Du Cane Road, London, UK
| | | | | | | | | |
Collapse
|
45
|
N'Guessan PD, Etouem MO, Schmeck B, Hocke AC, Scharf S, Vardarova K, Opitz B, Flieger A, Suttorp N, Hippenstiel S. Legionella pneumophila-induced PKCα-, MAPK-, and NF-κB-dependent COX-2 expression in human lung epithelium. Am J Physiol Lung Cell Mol Physiol 2007; 292:L267-77. [PMID: 17012371 DOI: 10.1152/ajplung.00100.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Legionella pneumophila causes community- and hospital-acquired pneumonia. Lung airway and alveolar epithelial cells comprise an important barrier against airborne pathogens. Cyclooxygenase (COX) and microsomal PGE2synthase-1 (mPGES-1)-derived prostaglandins like prostaglandin E2(PGE2) are considered as important regulators of lung function. Herein we tested the hypothesis that L. pneumophila induced COX-2 and mPGES-1-dependent PGE2production in pulmonary epithelial cells. Legionella induced the release of PGE2in primary human small airway epithelial cells and A549 cells. This was accompanied by an increased expression of COX-2 and mPGES-1 as well as an increased PLA2activity in infected cells. Deletion of the type IV secretion system Dot/Icm did not impair Legionella-related COX-2 expression or PGE2release in A549 cells. L. pneumophila induced the degradation of IκBα and activated NF-κB. Inhibition of IKK blocked L. pneumophila-induced PGE2release and COX-2 expression. We noted activation of p38 and p42/44 MAP kinase in Legionella-infected A549 cells. Moreover, membrane translocation and activation of PKCα was observed in infected cells. PKCα and p38 and p42/44 MAP kinase inhibitors reduced PGE2release and COX-2 expression. In summary, PKCα and p38 and p42/44 MAP kinase controlled COX-2 expression and subsequent PGE2release by Legionella-infected lung epithelial cells. These pathways may significantly contribute to the host response in Legionnaires' disease.
Collapse
Affiliation(s)
- Philippe Dje N'Guessan
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Slager RE, Sisson JH, Pavlik JA, Johnson JK, Nicolarsen JR, Jerrells TR, Wyatt TA. Inhibition of protein kinase C epsilon causes ciliated bovine bronchial cell detachment. Exp Lung Res 2006; 32:349-62. [PMID: 17090476 PMCID: PMC2100410 DOI: 10.1080/01902140600959630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study defines the in vitro phenomenon of ciliated bovine bronchial epithelial cell (BBEC) detachment from the basal epithelium and regulation of cilia motility mediated through protein kinase C epsilon (PKCepsilon). The authors determined the time course of activation and downregulation of PKCepsilon by the known PKC activator phorbol 12-myristate 13-acetate (PMA) and demonstrate that chemical inhibition of PKC by calphostin C or the novel PKC isoform inhibitor Ro 31-8220 induced striking detachment of ciliated BBECs from the basal cell monolayer within 1 hour, independent of apoptosis or necrotic cell death. The results of this study support a possible novel PKCepsilon-mediated signaling pathway through which ciliated cell attachment is maintained.
Collapse
Affiliation(s)
- Rebecca E Slager
- Pulmonary, Critical Care and Sleep Medicine Section, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5300, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Ennaciri J, Ahmad R, Menezes J. Interaction of monocytic cells with respiratory syncytial virus results in activation of NF-kappaB and PKC-alpha/beta leading to up-regulation of IL-15 gene expression. J Leukoc Biol 2006; 81:625-31. [PMID: 17158609 DOI: 10.1189/jlb.0806507] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major human respiratory pathogen, particularly for infants. RSV is also a powerful inducer of cytokines, one of which is IL-15, an important immunoregulatory cytokine. IL-15 plays a key role in NK and T cell development and differentiation and also regulates NK cell/macrophage interaction, as well as monocyte/macrophage and granulocyte function. We have shown previously that different viruses up-regulate IL-15 gene expression in human PBMCs. Recently, we found that RSV induces the expression of IL-15 mRNA in the monocytic line THP-1. The signaling pathway involved in such virus-induced up-regulation of IL-15 has not yet been identified. We report here a study describing this mechanism. Because of the involvement of the protein kinase C (PKC) and the transcription factor NF-kappaB in the regulation of others cytokines by RSV as well as the involvement of NF-kappaB in the transactivation of IL-15, our hypothesis was that RSV induced the expression of IL-15 in THP-1 cells through the PKC and NF-kappaB activation. We demonstrate here that RSV-induced up-regulation of IL-15 expression in THP-1 cells involves the phosphorylation of PKC-alpha/beta. Further, inhibition of PKC by different specific inhibitors blocks this up-regulation. Using the electromobility shift assay, we show that the activated form of NF-kappaB binds to the IL-15 promoter sequence. We further confirm, using an ELISA assay, the involvement of p65 in the transcription of IL-15. This study, demonstrating the ability of RSV to induce IL-15 expression, might explain, at least in part, the exacerbated, inflammatory response triggered by RSV infection.
Collapse
Affiliation(s)
- Jamila Ennaciri
- Laboratory of Immunovirology, Sainte-Justine Hospital Research Center, Montreal, QC, Canada
| | | | | |
Collapse
|
48
|
Bitko V, Shulyayeva O, Mazumder B, Musiyenko A, Ramaswamy M, Look DC, Barik S. Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF-kappaB-dependent, interferon-independent mechanism and facilitate virus growth. J Virol 2006; 81:1786-95. [PMID: 17151097 PMCID: PMC1797585 DOI: 10.1128/jvi.01420-06] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The two nonstructural (NS) proteins NS1 and NS2 of respiratory syncytial virus (RSV) are abundantly expressed in the infected cell but are not packaged in mature progeny virions. We found that both proteins were expressed early in infection, whereas the infected cells underwent apoptosis much later. Coincident with NS protein expression, a number of cellular antiapoptotic factors were expressed or activated at early stages, which included NF-kappaB and phosphorylated forms of protein kinases AKT, phosphoinositide-dependent protein kinase, and glycogen synthase kinase. Using specific short interfering RNAs (siRNAs), we achieved significant knockdown of one or both NS proteins in the infected cell, which resulted in abrogation of the antiapoptotic functions and led to early apoptosis. NS-dependent suppression of apoptosis was observed in Vero cells that are naturally devoid of type I interferons (IFN). The siRNA-based results were confirmed by the use of NS-deleted RSV mutants. Early activation of epidermal growth factor receptor (EGFR) in the RSV-infected cell did not require NS proteins. Premature apoptosis triggered by the loss of NS or by apoptosis-promoting drugs caused a severe reduction of RSV growth. Finally, recombinantly expressed NS1 and NS2, individually and together, reduced apoptosis by tumor necrosis factor alpha, suggesting an intrinsic antiapoptotic property of both. We conclude that the early-expressed nonstructural proteins of RSV boost viral replication by delaying the apoptosis of the infected cell via a novel IFN- and EGFR-independent pathway.
Collapse
Affiliation(s)
- Vira Bitko
- Department of Biochemistry and Molecular Biology, University of South Alabama, College of Medicine, 307 University Blvd., Mobile, AL 36688-0002, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Petrovic N, Knight DA, Bomalaski JS, Thompson PJ, Misso NLA. Concomitant activation of extracellular signal-regulated kinase and induction of COX-2 stimulates maximum prostaglandin E2 synthesis in human airway epithelial cells. Prostaglandins Other Lipid Mediat 2006; 81:126-35. [PMID: 17085321 DOI: 10.1016/j.prostaglandins.2006.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/01/2006] [Accepted: 08/30/2006] [Indexed: 11/26/2022]
Abstract
The intracellular regulation and kinetics of prostaglandin (PG)E(2) synthesis in human airway epithelial (NCI-H292) cells was investigated. Interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and lipopolysaccharide (LPS) all induced PGE(2) synthesis (p<0.001) and transient (5-15 min) phosphorylation of extracellular signal-regulated kinase (ERK). Phorbol myristate acetate (PMA) and calcium ionophore, A23187 further enhanced PGE(2) synthesis (p<0.001) and caused phosphorylation of ERK that was sustained for up to 16 h. COX-2 protein expression and PGE(2) synthesis were increased following exposure to combinations of stimuli that increased intracellular Ca(2+), and activated protein kinase C as well as ERK. Inhibition of ERK almost completely abrogated PGE(2) synthesis in response to all stimuli. Sustained, maximum PGE(2) synthesis was observed when cells were stimulated such that ERK phosphorylation was concomitant with increased COX-2 protein expression. These results argue against redundancy in pathways for PGE(2) synthesis, and suggest that at various stages of inflammation different stimuli may influence ERK activation and COX-2 expression, so as to tightly regulate the kinetics and amount of PGE(2) produced by airway epithelial cells in response to lung inflammation.
Collapse
Affiliation(s)
- Nenad Petrovic
- Lung Institute of Western Australia and Centre for Asthma, Allergy and Respiratory Research, The University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
50
|
San-Juan-Vergara H, Peeples ME, Lockey RF, Mohapatra SS. Protein kinase C-alpha activity is required for respiratory syncytial virus fusion to human bronchial epithelial cells. J Virol 2004; 78:13717-26. [PMID: 15564481 PMCID: PMC533893 DOI: 10.1128/jvi.78.24.13717-13726.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection activates protein kinase C (PKC), but the precise PKC isoform(s) involved and its role(s) remain to be elucidated. On the basis of the activation kinetics of different signaling pathways and the effect of various PKC inhibitors, it was reasoned that PKC activation is important in the early stages of RSV infection, especially RSV fusion and/or replication. Herein, the role of PKC-alpha during the early stages of RSV infection in normal human bronchial epithelial cells is determined. The results show that the blocking of PKC-alpha activation by classical inhibitors, pseudosubstrate peptides, or the overexpression of dominant-negative mutants of PKC-alpha in these cells leads to significantly decreased RSV infection. RSV induces phosphorylation, activation, and cytoplasm-to-membrane translocation of PKC-alpha. Also, PKC-alpha colocalizes with virus particles and is required for RSV fusion to the cell membrane. Thus, PKC-alpha could provide a new pharmacological target for controlling RSV infection.
Collapse
Affiliation(s)
- Homero San-Juan-Vergara
- The Joy McCann Culverhouse Airways Disease Research Center, Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|