1
|
Fang X, Li M, Zhang W, Li J, Zhu T. Thrombin induces pro-inflammatory and anti-inflammatory cytokines secretion from human mast cell line (HMC-1) via protease-activated receptors. Mol Immunol 2021; 141:60-69. [PMID: 34808483 DOI: 10.1016/j.molimm.2021.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023]
Abstract
Thrombin-induced mast cell activation represents cross-talk between coagulation and inflammation. However, there is still controversy concerning the pro- or anti-inflammatory effects mast cells have in response to thrombin signaling. Human mast cell HMC-1 was incubated with 0.2 U/mL thrombin. Cells and supernatants were collected. Production of pro- and anti-inflammatory mediators was determined by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). Expression of proteinase-activated receptor-1 (PAR1) and -4 (PAR4) mRNA in HMC-1 cells was analyzed by qPCR. Activation of mitogen-activated protein kinases (MAPKs) was measured by immunoblotting. Furthermore, the impact of PAR1 inhibitor (SCH79797) and agonist (TFLLR-NH2), PAR4 inhibitor (BMS986120) and agonist (AYPGKF-NH2), and MAPK inhibitors (SB203580, PD98059, and SP600125) on the production of mediators was evaluated using qPCR and ELISA. Thrombin exposure increased pro- and anti-inflammatory mediators, expression of PAR1 and PAR4 mRNA, and phosphorylation of JNK, p38, and ERK1/2 MAPKs in HMC-1 cells. SCH79797, BMS986120, and MAPK inhibitors (SB203580, PD98059, and SP600125) were inhibited, while TFLLR-NH2 and AYPGKF-NH2 promoted pro- and anti-inflammatory cytokines in this process. HMC-1 produces pro- and anti-inflammatory cytokines after thrombin incubation, namely PAR1 and PAR4. Alongside HMC-1, MAPK signaling pathways are involved in the production of these mediators. The mast cells showed dual activation after thrombin stimulation.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, Sichuan 610041, China.
| | - Mengmeng Li
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Weiyi Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, Sichuan 610041, China.
| | - Jingyi Li
- Department of Dermatovenereology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Guo P, He Y, Chen L, Qi L, Liu D, Chen Z, Xiao M, Chen L, Luo Y, Zhang N, Guo H. Cytosolic phospholipase A2α modulates cell-matrix adhesion via the FAK/paxillin pathway in hepatocellular carcinoma. Cancer Biol Med 2019; 16:377-390. [PMID: 31516757 PMCID: PMC6713643 DOI: 10.20892/j.issn.2095-3941.2018.0386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To explore the effect of cytosolic phospholipase A2α (cPLA2α) on hepatocellular carcinoma (HCC) cell adhesion and the underlying mechanisms. Methods Cell adhesion, detachment, and hanging-drop assays were utilized to examine the effect of cPLA2α on the cell-matrix and cell-cell adhesion. Downstream substrates and effectors of cPLA2α were screened via a phospho-antibody microarray. Associated signaling pathways were identified by the functional annotation tool DAVID. Candidate proteins were verified using Western blot and colocalization was investigated via immunofluorescence. Western blot and immunohistochemistry were used to detect protein expression in HCC tissues. Prognosis evaluation was conducted using Kaplan-Meier and Cox-proportional hazards regression analyses.
Results Our findings showed that cPLA2α knockdown decreases cell-matrix adhesion but increases cell-cell adhesion in HepG2 cells. Microarray analysis revealed that phosphorylation of multiple proteins at specific sites were regulated by cPLA2α. These phosphorylated proteins were involved in various biological processes. In addition, our results indicated that the focal adhesion pathway was highly enriched in the cPLA2α-relevant signaling pathway. Furthermore, cPLA2α was found to elevate phosphorylation levels of FAK and paxillin, two crucial components of focal adhesion. Moreover, localization of p-FAK to focal adhesions in the plasma membrane was significantly reduced with the downregulation of cPLA2α. Clinically, cPLA2α expression was positively correlated with p-FAK levels. Additionally, high expression of both cPLA2α and p-FAK predicted the worst prognoses for HCC patients. Conclusions Our study indicated that cPLA2α may promote cell-matrix adhesion via the FAK/paxillin pathway, which partly explains the malignant cPLA2α phenotype seen in HCC.
Collapse
Affiliation(s)
- Piao Guo
- Department of Tumor Cell Biology
| | | | - Lu Chen
- Department of Hepatobiliary Cancer
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | | | | | | | | | - Yi Luo
- Department of Tumor Cell Biology
| | | | - Hua Guo
- Department of Tumor Cell Biology
| |
Collapse
|
3
|
Ku SK, Bae JS. Inhibitory Effect of FXa on Secretory Group IIA Phospholipase A2. Inflammation 2016; 38:987-94. [PMID: 25399323 DOI: 10.1007/s10753-014-0062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It is well known that the expression level of secretory group IIA phospholipase A2 (sPLA2-IIA) is elevated in inflammatory diseases and lipopolysaccharide (LPS) upregulates the expression of sPLA2-IIA in human umbilical vein endothelial cells (HUVECs). Activated factor X (FXa) is an important enzyme in the coagulation cascade responsible for thrombin generation, and it influences cell signaling in various cell types by activating protease-activated receptors (PARs). Here, FX or FXa was examined for its effects on the expression and activity of sPLA2-IIA in HUVECs and mouse. Prior treatment of cells or mouse with FXa inhibited LPS-induced expression and activity of sPLA2-IIA via interacting with FXa receptor (effective cell protease receptor-1, EPR-1). And FXa suppressed the activation of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK) 1/2 by LPS. Therefore, these results suggest that FXa may inhibit LPS-mediated expression of sPLA2-IIA by suppression of cPLA2 and ERK 1/2.
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan, 712-715, Republic of Korea
| | | |
Collapse
|
4
|
|
5
|
Gorska MM, Alam R. The signaling mechanism of eosinophil activation. Expert Rev Clin Immunol 2010; 1:247-56. [PMID: 20476938 DOI: 10.1586/1744666x.1.2.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Eosinophils play an important role in certain aspects of asthma pathogenesis. This review focuses on the mechanism of activation of eosinophils by the growth factor interleukin-5 and the CC chemokine receptor-3. Interleukin-5 activates members of the Janus and Src family of kinases. The latter kinases are largely responsible for the generation of initial signaling events. CC chemokine receptor-3, in contrast, signals through heterotrimeric G-proteins. Subsequently, various signaling pathways are activated, which converge on four major pathways - the mitogen-activated protein kinase pathway, the phosphoinositide-3 kinase pathway, the calcium signaling pathway and the Janus-signal transducer and activator of transcription signaling pathway. The biologic consequences of many of these signaling pathways are also discussed.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Division of Allergy & Immunology, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | |
Collapse
|
6
|
Bates ME, Sedgwick JB, Zhu Y, Liu LY, Heuser RG, Jarjour NN, Kita H, Bertics PJ. Human airway eosinophils respond to chemoattractants with greater eosinophil-derived neurotoxin release, adherence to fibronectin, and activation of the Ras-ERK pathway when compared with blood eosinophils. THE JOURNAL OF IMMUNOLOGY 2010; 184:7125-33. [PMID: 20495064 DOI: 10.4049/jimmunol.0900634] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human blood eosinophils exposed ex vivo to hematopoietic cytokines (e.g., IL-5 or GM-CSF) subsequently display enhanced responsiveness to numerous chemoattractants, such as chemokines, platelet-activating factor, or FMLP, through a process known as priming. Airway eosinophils, obtained by bronchoalveolar lavage after segmental Ag challenge, also exhibit enhanced responsiveness to selected chemoattractants, suggesting that they are primed during cell trafficking from the blood to the airway. Earlier work has shown that chemoattractants stimulate greater activation of ERK1 and ERK2 following IL-5 priming in vitro, thus revealing that ERK1/ERK2 activity can be a molecular readout of priming under these circumstances. Because few studies have examined the intracellular mechanisms regulating priming as it relates to human airway eosinophils, we evaluated the responsiveness of blood and airway eosinophils to chemoattractants (FMLP, platelet-activating factor, CCL11, CCL5, CXCL8) with respect to degranulation, adherence to fibronectin, or Ras-ERK signaling cascade activation. When compared with blood eosinophils, airway eosinophils exhibited greater FMLP-stimulated eosinophil-derived neurotoxin release as well as augmented FMLP- and CCL11-stimulated adherence to fibronectin. In airway eosinophils, FMLP, CCL11, and CCL5 stimulated greater activation of Ras or ERK1/ERK2 when compared with baseline. Ras activation by FMLP in blood eosinophils was also enhanced following IL-5 priming. These studies are consistent with a model of in vivo priming of eosinophils by IL-5 or related cytokines following allergen challenge, and further demonstrate the key role of priming in the chemoattractant-stimulated responses of eosinophils. These data also demonstrate the importance of the Ras-ERK signaling pathway in the regulation of eosinophil responses to chemoattractants in the airway. Human airway eosinophils respond to several chemoattractants with increased activation of the Ras-ERK cascade, eosinophil-derived neurotoxin release, and adherence to fibronectin relative to blood eosinophils.
Collapse
Affiliation(s)
- Mary Ellen Bates
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Meliton AY, Muñoz NM, Meliton LN, Binder DC, Osan CM, Zhu X, Dudek SM, Leff AR. Cytosolic group IVa phospholipase A2 mediates IL-8/CXCL8-induced transmigration of human polymorphonuclear leukocytes in vitro. JOURNAL OF INFLAMMATION-LONDON 2010; 7:14. [PMID: 20298597 PMCID: PMC2848033 DOI: 10.1186/1476-9255-7-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/18/2010] [Indexed: 12/18/2022]
Abstract
Background Cytosolic gIVaPLA2 is a critical enzyme in the generation of arachidonate metabolites and in induction of β2-integrin adhesion in granulocytes. We hypothesized that gIVaPLA2 activation also is an essential downstream step for post adhesive migration of PMN in vitro. Methods Migration of PMNs caused by IL-8/CXCL8 was assessed using a transwell migration chamber. PMNs were pretreated with two structurally unrelated inhibitors of gIVaPLA2, arachidonyl trifluoromethylketone (TFMK) or pyrrophenone, prior to IL-8/CXCL8 exposure. The fraction of migrated PMNs present in the lower chamber was measured as total myeloperoxidase content. GIVaPLA2 enzyme activity was analyzed using [14C-PAPC] as specific substrate F-actin polymerization and cell structure were examined after rhodamine-phalloidin staining. Results IL-8/CXCL8-induced migration of PMNs was elicited in concentration- and time-dependent manner. Time-related phosphorylation and translocation of cytosolic gIVaPLA2 to the nucleus was observed for PMNs stimulated with IL-8/CXCL8 in concentration sufficient to cause upstream phosphorylation of MAPKs (ERK-1/2 and p38) and Akt/PKB. Inhibition of gIVaPLA2 corresponded to the magnitude of blockade of PMN migration. Neither AA nor LTB4 secretion was elicited following IL-8/CXCL8 activation. In unstimulated PMNs, F-actin was located diffusely in the cytosol; however, a clear polarized morphology with F-actin-rich ruffles around the edges of the cell was observed after activation with IL-8/CXCL8. Inhibition of gIVaPLA2 blocked change in cell shape and migration caused by IL-8/CXCL8 but did not cause F-actin polymerization or translocation of cytosolic F-actin to inner leaflet of the PMN membrane. Conclusion We demonstrate that IL-8/CXCL8 causes a) phosphorylation and translocation of cytosolic gIVaPLA2 to the nucleus, b) change in cell shape, c) polymerization of F-actin, and d) chemoattractant/migration of PMN in vitro. Inhibition of gIVaPLA2 blocks the deformability and subsequent migration of PMNs caused by IL-8/CXCL8. Our data suggest that activation of gIVaPLA2 is an essential step in PMN migration in vitro.
Collapse
Affiliation(s)
- Angelo Y Meliton
- Section of Pulmonary and Critical Care Medicine, Departments of Medicine, The University of Chicago, 5841 S Maryland Avenue, MC 6026, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Khanna S, Parinandi NL, Kotha SR, Roy S, Rink C, Bibus D, Sen CK. Nanomolar vitamin E alpha-tocotrienol inhibits glutamate-induced activation of phospholipase A2 and causes neuroprotection. J Neurochem 2009; 112:1249-60. [PMID: 20028458 DOI: 10.1111/j.1471-4159.2009.06550.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our previous works have elucidated that the 12-lipoxygenase pathway is directly implicated in glutamate-induced neural cell death, and that such that toxicity is prevented by nM concentrations of the natural vitamin E alpha-tocotrienol (TCT). In the current study we tested the hypothesis that phospholipase A(2) (PLA(2)) activity is sensitive to glutamate and mobilizes arachidonic acid (AA), a substrate for 12-lipoxygenase. Furthermore, we examined whether TCT regulates glutamate-inducible PLA(2) activity in neural cells. Glutamate challenge induced the release of [(3)H]AA from HT4 neural cells. Such response was attenuated by calcium chelators (EGTA and BAPTA), cytosolic PLA(2) (cPLA(2))-specific inhibitor (AACOCF(3)) as well as TCT at 250 nM. Glutamate also caused the elevation of free polyunsaturated fatty acid (AA and docosahexaenoic acid) levels and disappearance of phospholipid-esterified AA in neural cells. Furthermore, glutamate induced a time-dependent translocation and enhanced serine phosphorylation of cPLA(2) in the cells. These effects of glutamate on fatty acid levels and on cPLA(2) were significantly attenuated by nM TCT. The observations that AACOCF(3), transient knock-down of cPLA(2) as well as TCT significantly protected against the glutamate-induced death of neural cells implicate cPLA(2) as a TCT-sensitive mediator of glutamate induced neural cell death. This work presents first evidence recognizing glutamate-induced changes in cPLA(2) as a novel mechanism responsible for neuroprotection observed in response to nanomolar concentrations of TCT.
Collapse
Affiliation(s)
- Savita Khanna
- Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death--apoptosis, autophagy and senescence. FEBS J 2009; 277:2-21. [PMID: 19843174 DOI: 10.1111/j.1742-4658.2009.07366.x] [Citation(s) in RCA: 1019] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras/Raf/extracellular signal-regulated kinase (ERK) signaling pathway plays a crucial role in almost all cell functions and therefore requires exquisite control of its spatiotemporal activity. Depending on the cell type and stimulus, ERK activity will mediate different antiproliferative events, such as apoptosis, autophagy and senescence in vitro and in vivo. ERK activity can promote either intrinsic or extrinsic apoptotic pathways by induction of mitochondrial cytochrome c release or caspase-8 activation, permanent cell cycle arrest or autophagic vacuolization. These unusual effects require sustained ERK activity in specific subcellular compartments and could depend on the presence of reactive oxygen species. We will summarize the mechanisms involved in Ras/Raf/ERK antiproliferative functions.
Collapse
Affiliation(s)
- Sebastien Cagnol
- Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | |
Collapse
|
10
|
Mashimo M, Hirabayashi T, Murayama T, Shimizu T. Cytosolic PLA2(alpha) activation in Purkinje neurons and its role in AMPA-receptor trafficking. J Cell Sci 2008; 121:3015-24. [PMID: 18713832 DOI: 10.1242/jcs.032987] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) selectively releases arachidonic acid from membrane phospholipids and has been proposed to be involved in the induction of long-term depression (LTD), a form of synaptic plasticity in the cerebellum. This enzyme requires two events for its full activation: Ca(2+)-dependent translocation from the cytosol to organelle membranes in order to access phospholipids as substrates, and phosphorylation by several kinases. However, the subcellular distribution and activation of cPLA(2)alpha in Purkinje cells and the role of arachidonic acid in cerebellar LTD have not been fully elucidated. In cultured Purkinje cells, stimulation of AMPA receptors, but not metabotropic glutamate receptors, triggered translocation of cPLA(2)alpha to the somatic and dendritic Golgi compartments. This translocation required Ca(2+) influx through P-type Ca(2+) channels. AMPA plus PMA, a chemical method for inducing LTD, released arachidonic acid via phosphorylation of cPLA(2)alpha. AMPA plus PMA induced a decrease in surface GluR2 for more than 2 hours. Interestingly, this reduction was occluded by a cPLA(2)alpha-specific inhibitor. Furthermore, PMA plus arachidonic acid caused the prolonged internalization of GluR2 without activating AMPA receptors. These results suggest that cPLA(2)alpha regulates the persistent decrease in the expression of AMPA receptors, underscoring the role of cPLA(2)alpha in cerebellar LTD.
Collapse
Affiliation(s)
- Masato Mashimo
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | |
Collapse
|
11
|
Lintomen L, Franchi G, Nowill A, Condino-Neto A, de Nucci G, Zanesco A, Antunes E. Human eosinophil adhesion and degranulation stimulated with eotaxin and RANTES in vitro: lack of interaction with nitric oxide. BMC Pulm Med 2008; 8:13. [PMID: 18700028 PMCID: PMC2527293 DOI: 10.1186/1471-2466-8-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Accepted: 08/12/2008] [Indexed: 01/21/2023] Open
Abstract
Background Airway eosinophilia is considered a central event in the pathogenesis of asthma. The toxic components of eosinophils are thought to be important in inducing bronchial mucosal injury and dysfunction. Previous studies have suggested an interaction between nitric oxide (NO) and chemokines in modulating eosinophil functions, but this is still conflicting. In the present study, we have carried out functional assays (adhesion and degranulation) and flow cytometry analysis of adhesion molecules (VLA-4 and Mac-1 expression) to evaluate the interactions between NO and CC-chemokines (eotaxin and RANTES) in human eosinophils. Methods Eosinophils were purified using a percoll gradient followed by immunomagnetic cell separator. Cell adhesion and degranulation were evaluated by measuring eosinophil peroxidase (EPO) activity, whereas expression of Mac-1 and VLA-4 was detected using flow cytometry. Results At 4 h incubation, both eotaxin (100 ng/ml) and RANTES (1000 ng/ml) increased by 133% and 131% eosinophil adhesion, respectively. L-NAME alone (but not D-NAME) also increased the eosinophil adhesion, but the co-incubation of L-NAME with eotaxin or RANTES did not further affect the increased adhesion seen with chemokines alone. In addition, L-NAME alone (but not D-NAME) caused a significant cell degranulation, but it did not affect the CC-chemokine-induced cell degranulation. Incubation of eosinophils with eotaxin or RANTES, in absence or presence of L-NAME, did not affect the expression of VLA-4 and Mac-1 on eosinophil surface. Eotaxin and RANTES (100 ng/ml each) also failed to elevate the cyclic GMP levels above baseline in human eosinophils. Conclusion Eotaxin and RANTES increase the eosinophil adhesion to fibronectin-coated plates and promote cell degranulation by NO-independent mechanisms. The failure of CC-chemokines to affect VLA-4 and Mac-1 expression suggests that changes in integrin function (avidity or affinity) are rather involved in the enhanced adhesion.
Collapse
Affiliation(s)
- Letícia Lintomen
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas (São Paulo), Brazil.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ulfman LH, Kamp VM, van Aalst CW, Verhagen LP, Sanders ME, Reedquist KA, Buitenhuis M, Koenderman L. Homeostatic intracellular-free Ca2+ is permissive for Rap1-mediated constitutive activation of alpha4 integrins on eosinophils. THE JOURNAL OF IMMUNOLOGY 2008; 180:5512-9. [PMID: 18390735 DOI: 10.4049/jimmunol.180.8.5512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although much progress has been made in understanding the molecular mechanisms underlying agonist-induced "inside-out" activation of integrins, little is known about how basal levels of integrin function are maintained. This is particularly important for nonactivated eosinophils, where intermediate activation of alpha(4)beta(1) integrin supports recruitment to endothelial cells under flow conditions. Depletion of intracellular Ca(2+) and pharmacological inhibition of phospholipase C (but not other intracellular signaling molecules, including PI3K, ERK1/2, p38 MAPK, and tyrosine kinase activity) abrogated basal alpha(4) integrin activity in nonactivated eosinophils. Basal alpha(4) integrin activation was associated with activation of the small GTPase Rap1, a known regulator of agonist-induced integrin function. Basal Rap activation was dependent upon phospholipase C, but not intracellular Ca(2+). However, depletion of intracellular Ca(2+) in CD34(+) hematopoietic progenitor cells abolished RapV12-mediated induction of alpha(4) integrin activity. Thus, residual Rap activity or constitutively active Rap activity in Ca(2+)-depleted cells is not sufficient to induce alpha(4) integrin activation. These data suggest that activation of functional alpha(4) integrin activity in resting eosinophils is mediated by Rap1 provided that the intracellular-free Ca(2+) is at a normal homeostatic concentration.
Collapse
Affiliation(s)
- Laurien H Ulfman
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
UV-O3-treated and protein-coated polymer surfaces facilitate endothelial cell adhesion and proliferation mediated by the PKCα/ERK/cPLA2 pathway. Microvasc Res 2008; 75:330-42. [DOI: 10.1016/j.mvr.2007.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/02/2007] [Accepted: 11/26/2007] [Indexed: 12/29/2022]
|
14
|
Kudo M, Ishiwata T, Nakazawa N, Kawahara K, Fujii T, Teduka K, Naito Z. Keratinocyte growth factor-transfection-stimulated adhesion of colorectal cancer cells to extracellular matrices. Exp Mol Pathol 2007; 83:443-52. [PMID: 17706640 DOI: 10.1016/j.yexmp.2007.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/18/2022]
Abstract
The keratinocyte growth factor (KGF) regulates cell growth and behavior in an autocrine or paracrine manner. In colorectal cancer tissues, KGF is expressed in tumor cells and adjacent stromal fibroblasts. We have constructed a KGF-gene-transfected cell line (HCT15-KGF) from a colorectal cancer cell line, HCT-15, that expresses the KGF receptor, and studied the effects of KGF on cell behavior, particularly growth and adhesion to extracellular matrices (ECMs). The amount of KGF secreted from HCT15-KGF was significantly higher than that from a mock-transfected cell line (HCT15-MOCK). The modes of growth of these cell lines were similar. The degree of adhesion of HCT15-KGF to ECMs, including type-IV collagen and fibronectin was higher than that of HCT15-MOCK. The expressions of integrins in both cell lines were not significantly different. However, extracellular-regulated kinase-1 and -2 (ERK1/2) phosphorylation and focal adhesion kinase (FAK) expression that regulate the adhesive functions of integrin families were enhanced in HCT15-KGF. U0126, an inhibitor of the ERK upstream regulator MEK, attenuated the adhesion and spreading of HCT15-KGF cells to type-IV collagen. These results indicate that KGF enhances the adhesion of colorectal cancer cells to type-IV collagen through ERK and FAK signaling pathways.
Collapse
Affiliation(s)
- Mitsuhiro Kudo
- Department of Integrative Oncological Pathology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Adyshev DM, Kolosova IA, Verin AD. Potential protein partners for the human TIMAP revealed by bacterial two-hybrid screening. Mol Biol Rep 2007; 33:83-9. [PMID: 16817016 DOI: 10.1007/s11033-005-2311-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2005] [Indexed: 11/30/2022]
Abstract
BacterioMatch Two-Hybrid System (Stratagene) was applied in order to identify potential human TIMAP interaction proteins in the lung. TIMAP highly expressed in endothelial cells and may be involved in endothelial cytoskeletal and barrier regulation. Seven TIMAP interacting partner proteins were identified. Four of identified proteins: cystein and glycine-rich protein 1, eukaryotic translation elongation factor 2, U5 snRNP-specific protein 116 kD, and solute carrier family 3 member 2 are involved in actin cytoskeleton organization, cell adhesion or translation and transcriptional regulation.
Collapse
Affiliation(s)
- Djanybek M Adyshev
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, 5200 Eastern Avenue, MFL Building Center Tower, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
16
|
Muñoz NM, Meliton AY, Lambertino A, Boetticher E, Learoyd J, Sultan F, Zhu X, Cho W, Leff AR. Transcellular Secretion of Group V Phospholipase A2 from Epithelium Induces β2-Integrin-Mediated Adhesion and Synthesis of Leukotriene C4 in Eosinophils. THE JOURNAL OF IMMUNOLOGY 2006; 177:574-82. [PMID: 16785555 DOI: 10.4049/jimmunol.177.1.574] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the mechanism by which secretory group V phospholipase A(2) (gVPLA(2)) secreted from stimulated epithelial cells activates eosinophil adhesion to ICAM-1 surrogate protein and secretion of leukotriene (LT)C(4). Exogenous human group V PLA(2) (hVPLA(2)) caused an increase in surface CD11b expression and focal clustering of this integrin, which corresponded to increased beta(2) integrin-mediated adhesion. Human IIaPLA(2), a close homolog of hVPLA(2), or W31A, an inactive mutant of hVPLA(2), did not affect these responses. Exogenous lysophosphatidylcholine but not arachidonic acid mimicked the beta(2) integrin-mediated adhesion caused by hVPLA(2) activation. Inhibition of hVPLA(2) with MCL-3G1, a mAb against gVPLA(2), or with LY311727, a global secretory phospholipase A(2) (PLA(2)) inhibitor, attenuated the activity of hVPLA(2); trifluoromethylketone, an inhibitor of cytosolic group IVA PLA(2) (gIVA-PLA(2)), had no inhibitory effect on hVPLA(2)-mediated adhesion. Activation of beta(2) integrin-dependent adhesion by hVPLA(2) did not cause ERK1/2 activation and was independent of gIVA-PLA(2) phosphorylation. In other studies, eosinophils cocultured with epithelial cells were stimulated with FMLP/cytochalasin B (FMLP/B) and/or endothelin-1 (ET-1) before LTC(4) assay. FMLP/B alone caused release of LTC(4) from eosinophils, which was augmented by coculture with epithelial cells activated with ET-1. Addition of MCL-3G1 to cocultured cells caused approximately 50% inhibition of LTC(4) secretion elicited by ET-1, which was blocked further by trifluoromethylketone. Our data indicate that hVPLA(2) causes focal clustering of CD11b and beta(2) integrin adhesion by a novel mechanism that is independent of arachidonic acid synthesis and gIVA-PLA(2) activation. We also demonstrate that gVPLA(2), endogenously secreted from activated epithelial cells, promotes secretion of LTC(4) in cocultured eosinophils.
Collapse
Affiliation(s)
- Nilda M Muñoz
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee HJ, Hyun EA, Yoon WJ, Kim BH, Rhee MH, Kang HK, Cho JY, Yoo ES. In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. JOURNAL OF ETHNOPHARMACOLOGY 2006; 103:208-16. [PMID: 16182479 DOI: 10.1016/j.jep.2005.08.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 08/04/2005] [Accepted: 08/05/2005] [Indexed: 05/04/2023]
Abstract
Cinnamomum camphora Sieb (Lauraceae) has long been prescribed in traditional medicine for the treatment of inflammation-related diseases such as rheumatism, sprains, bronchitis and muscle pains. In this study, therefore, we aimed to investigate the inhibitory effects of Cinnamomum camphora on various inflammatory phenomena to explore its potential anti-inflammatory mechanisms under non-cytotoxic (less than 100 microg/ml) conditions. The total crude extract (100 microg/ml) prepared with 80% methanol (MeOH extract) and its fractions (100 microg/ml) obtained by solvent partition with hexane and ethyl acetate (EtOAc) significantly blocked the production of interleukin (IL)-1 beta, IL-6 and the tumor necrosis factor (TNF)-alpha from RAW264.7 cells stimulated by lipopolysaccharide (LPS) up to 20-70%. The hexane and EtOAc extracts (100 microg/ml) also inhibited nitric oxide (NO) production in LPS/interferon (IFN)-gamma-activated macrophages by 65%. The MeOH extract (100 microg/ml) as well as two fractions (100 microg/ml) prepared by solvent partition with n-butanol (BuOH) and EtOAc strongly suppressed the prostaglandin E(2) (PGE(2)) production in LPS/IFN-gamma-activated macrophages up to 70%. It is interesting to note that hexane, BuOH and EtOAc extracts (100 microg/ml) also inhibited the functional activation of beta1-integrins (CD29) assessed by U937 homotypic aggregation up to 70-80%. Furthermore, EtOAc and BuOH extracts displayed strong anti-oxidative activity with IC(50) values of 14 and 15 microM, respectively, when tested by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and xanthine oxide (XO) assays. Taken together, these data suggest that the anti-inflammatory actions of Cinnamomum camphora may be due to the modulation of cytokine, NO and PGE(2) production and oxidative stress, and of the subfractions tested, the EtOAc extract may be further studied to isolate the active anti-inflammatory principles.
Collapse
Affiliation(s)
- Hye Ja Lee
- Department of Pharmacology, College of Medicine, Cheju National University, Ara-1 dong, Jeju 690-756, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Brill A, Baram D, Sela U, Salamon P, Mekori YA, Hershkoviz R. Induction of mast cell interactions with blood vessel wall components by direct contact with intact T cells or T cell membranes in vitro. Clin Exp Allergy 2004; 34:1725-31. [PMID: 15544597 DOI: 10.1111/j.1365-2222.2004.02093.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mast cells exert profound pleiotropic effects on immune cell reactions at inflammatory sites, where they are most likely influenced not only by the extracellular matrix (ECM) and inflammatory mediators but also by the proximity of activated T lymphocytes. We recently reported that activated T cells induce mast cell degranulation with the release of TNF-alpha, and that this activation pathway is mediated by lymphocyte function-associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) binding. OBJECTIVE To determine how this contact between the two cell types can modulate mast cell behaviour in an inflammatory milieu by examining the adhesion of mast cells to endothelial cells and ECM ligands in an integrin-dependent manner. METHODS Human mast cells (HMC-1) were co-cultured with resting or activated T cells followed by testing their adhesion to endothelial cell and ECM ligands, stromal derived factor-1alpha (SDF-1alpha)-induced migration, and western blotting. RESULTS Co-culturing HMC-1 with activated, but not with resting T cells resulted in marked stimulation of mast cell adhesion to vascular cell adhesion molecule-1 and ICAM-1 in a very late antigen-4- and LFA-1-dependent fashion. In addition, activated T cells or T cell membranes promoted HMC-1 adhesion to fibronectin (FN) and laminin. This effect was accompanied by the phosphorylation of extracellular regulated kinase and p38, but not of c-Jun N-terminal kinase. Importantly, the adhesive property of mast cells depended exclusively on the direct contact between the two cell types, since neither supernatants from activated T cells nor separation of the two cell populations with a porous membrane affected mast cell adhesion to FN. Furthermore, similar results were obtained when mast cells were incubated with purified membranes from activated T cells. These results suggest that, in addition to stimulating mast cell degranulation, the proximity of activated T lymphocytes to mast cells can mediate the adhesion of mast cell precursors to the endothelial ligands and ECM. Activated T cells also stimulated SDF-1alpha-induced mast cell migration. CONCLUSION This symbiotic relationship between the two types of immune cells may serve to direct mast cells to specific sites of inflammation where their effector functions are required.
Collapse
Affiliation(s)
- A Brill
- Hematology Department, Hadassah Medical Center, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
19
|
Esnault S, Malter JS. Hyaluronic acid or TNF-alpha plus fibronectin triggers granulocyte macrophage-colony-stimulating factor mRNA stabilization in eosinophils yet engages differential intracellular pathways and mRNA binding proteins. THE JOURNAL OF IMMUNOLOGY 2004; 171:6780-7. [PMID: 14662883 DOI: 10.4049/jimmunol.171.12.6780] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eosinophils (Eos) accumulate in airways and lung parenchyma of active asthmatics. GM-CSF is a potent inhibitor of Eos apoptosis both in vitro and in vivo and is produced by activated fibroblasts, mast cells, T lymphocytes as well as Eos. Cytokine release by Eos is preceded by GM-CSF mRNA stabilization induced by TNF-alpha plus fibronectin. Hyaluronic acid (HA) is a major extracellular matrix proteoglycan, which also accumulates in the lung during asthma exacerbations. In this study we have analyzed the effects of HA on Eos survival and GM-CSF expression. We demonstrate that like TNF-alpha plus fibronectin, HA stabilizes GM-CSF mRNA, increases GM-CSF secretion, and prolongs in vitro Eos survival. GM-CSF mRNA stabilization accounts for most of the observed GM-CSF mRNA accumulation and protein production. Unlike TNF-alpha plus fibronectin, GM-CSF mRNA stabilization induction by HA requires continuous extracellular signal-regulated kinase phosphorylation. Finally, to identify potential protein regulators responsible for GM-CSF mRNA stabilization, immunoprecipitation-RT-PCR studies revealed increased GM-CSF mRNA associated with YB-1, HuR, and heterogeneous nuclear ribonucleoprotein (hnRNP) C after TNF-alpha plus fibronectin but only hnRNP C after HA. Thus, our data suggest that both TNF-alpha plus fibronectin and HA, which are relevant physiological effectors in asthma, contributes to long-term Eos survival in vivo by enhancing GM-CSF production through two different posttranscriptional regulatory pathways involving extracellular signal-regulated kinase phosphorylation and RNA binding proteins YB-1, HuR, and hnRNP C.
Collapse
Affiliation(s)
- Stéphane Esnault
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, WI 53792, USA
| | | |
Collapse
|
20
|
Sandberg EM, Ma X, VonDerLinden D, Godeny MD, Sayeski PP. Jak2 Tyrosine Kinase Mediates Angiotensin II-dependent Inactivation of ERK2 via Induction of Mitogen-activated Protein Kinase Phosphatase 1. J Biol Chem 2004; 279:1956-67. [PMID: 14551204 DOI: 10.1074/jbc.m303540200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work has shown that inhibition of Jak2 via the pharmacological compound AG490 blocks the angiotensin II (Ang II)-dependent activation of ERK2, thereby suggesting an essential role of Jak2 in ERK activation. However, recent studies have thrown into question the specificity of AG490 and therefore the role of Jak2 in ERK activation. To address this, we reconstituted an Ang II signaling system in a Jak2-/-cell line and measured the ability of Ang II to activate ERK2 in these cells. Controls for this study were the same cells expressing Jak2 via the addition of a Jak2 expression plasmid. In the cells expressing Jak2, Ang II induced a marked increase in ERK2 activity as measured by Western blot analysis and in vitro kinase assays. ERK2 activity returned to basal levels within 30 min. However, in the cells lacking Jak2, Ang II treatment resulted in ERK2 activation that did not return to basal levels until 120 min after ligand addition. Analysis of phosphatase gene expression revealed that Ang II induced mitogen-activated protein kinase phosphatase 1 (MKP-1) expression in cells expressing Jak2 but failed to induce MKP-1 expression in cells lacking Jak2. Therefore, our results suggest that Jak2 is not required for Ang II-induced ERK2 activation. Rather Jak2 is required for Ang II-induced ERK2 inactivation via induction of MKP-1 gene expression.
Collapse
Affiliation(s)
- Eric M Sandberg
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
21
|
Hong S, Kim SH, Rhee MH, Kim AR, Jung JH, Chun T, Yoo ES, Cho JY. In vitro anti-inflammatory and pro-aggregative effects of a lipid compound, petrocortyne A, from marine sponges. Naunyn Schmiedebergs Arch Pharmacol 2003; 368:448-56. [PMID: 14615882 DOI: 10.1007/s00210-003-0848-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 10/18/2003] [Indexed: 01/08/2023]
Abstract
(3 S,14 S)-Petrocortyne A, a lipid compound (a C(46) polyacetylenic alcohol), from marine sponges ( Petrosia sp.) is potently cytotoxic against several solid tumour cells. In this study, we investigated in vitro anti-inflammatory and pro-aggregative effects of petrocortyne A at non-cytotoxic concentrations on various cellular inflammatory phenomena using the macrophage and monocytic cell lines RAW264.7 and U937. Petrocortyne A blocked tumour necrosis factor-alpha (TNF-alpha) production strongly and concentration-dependently in lipopolysaccharide (LPS)-activated RAW264.7 cells and phorbol 12-myristate 13-acetate (PMA)/LPS-treated U937 cells. It also blocked NO production concentration-dependently in LPS- or interferon (IFN)-gamma-treated RAW264.7 cells. Among the migration factors tested, the compound selectively blocked the expression of hepatocyte growth factor/scatter factor (HGF/SF). On the other hand, as assessed by a cell-cell adhesion assay, petrocortyne A did not block the activation of adhesion molecules induced by aggregative antibodies to adhesion molecules, but suppressed PMA-induced cell-cell adhesion significantly. Intriguingly, petrocortyne A induced U937 homotypic aggregation following long exposure (2 and 3 days), accompanied by weak induction of pro-aggregative signals such as tyrosine phosphorylation of p132 and phosphorylation of extracellular signal-related kinase 1 and 2 (ERK 1/2). Petrocortyne A may thus inhibit cellular inflammatory processes and immune cell migration to inflamed tissue.
Collapse
Affiliation(s)
- Sungyoul Hong
- Department of Genetic Engineering, Sungkyunkwan University, 440-746, Suwon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cho JY, Katz DR, Chain BM. Staurosporine induces rapid homotypic intercellular adhesion of U937 cells via multiple kinase activation. Br J Pharmacol 2003; 140:269-76. [PMID: 12970105 PMCID: PMC1574032 DOI: 10.1038/sj.bjp.0705436] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Staurosporine is a broad-specificity kinase inhibitor, which has acted as lead compound for the development of some novel cytotoxic compounds for treatment of cancer. This study investigates the unexpected observation that staurosporine can also induce homotypic cellular aggregation. 2. In this study, staurosporine is shown to activate rapid homotypic aggregation of U937 cells, at concentrations below those required to induce cell death. This activity is a particular feature of staurosporine, and is not shared by a number of other kinase inhibitors. The proaggregating activity of staurosporine is inhibited by deoxyglucose, cytochalasin B and colchicine. Staurosporine-induced aggregation can be distinguished from that induced by the phorbol 12-myristate 13-acetate by faster kinetics and insensitivity to cycloheximide. Staurosporine induces translocation of conventional and novel, but not atypical isoforms of protein kinase C (PKC). Aggregation induced by staurosporine is inhibited by a number of inhibitors of PKC isoforms, and by inhibitors of protein tyrosine kinases. Staurosporine also induces rapid phosphorylation of ERK and p38, and inhibitors of both these enzymes block aggregation. 3. Staurosporine induces dysregulated activation of multiple kinase signaling pathways in U937 cells, and the combined activity of several of these pathways is essential for the induction of aggregation.
Collapse
Affiliation(s)
- Jae Youl Cho
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF
| | - David R Katz
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF
| | - Benjamin M Chain
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF
- Author for correspondence:
| |
Collapse
|
23
|
Cho JY, Skubitz KM, Katz DR, Chain BM. CD98-dependent homotypic aggregation is associated with translocation of protein kinase Cdelta and activation of mitogen-activated protein kinases. Exp Cell Res 2003; 286:1-11. [PMID: 12729789 DOI: 10.1016/s0014-4827(03)00106-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CD98 is a protein found on the surface of many activated cell types, and is implicated in the regulation of cellular differentiation, adhesion, growth, and apoptosis. Despite many studies addressing CD98 function, there is little information on the intracellular signalling pathways that mediate its activity. In this study, we examine protein kinase pathways that are activated following ligation by the CD98 antibody AHN-18, an antibody that induces U937 homotypic aggregation and inhibits antigen presenting activity and T-cell activation. Ligation by CD98 antibody AHN-18 induces tyrosine kinase activity, but inhibition of this activity does not affect U937 aggregation. Ligation also induces membrane translocation of the serine/threonine kinase novel PKCdelta, but not other members of the PKC family. Translocation is blocked by rottlerin, and this inhibitor also blocks aggregation. PKCdelta activation in turn mediates activation of ERK1/2 and p38, as well as tyrosine phosphorylation of multiple proteins, and MAPK activation is essential for cellular aggregation. One of the targets of CD98-induced tyrosine phosphorylation is itself PKCdelta, suggesting that this phosphorylation may act as a negative feedback to limit the overall activation of the CD98 pathway.
Collapse
Affiliation(s)
- Jae Youl Cho
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 6JF, UK
| | | | | | | |
Collapse
|
24
|
Holub A, Byrnes J, Anderson S, Dzaidzio L, Hogg N, Huttenlocher A. Ligand density modulates eosinophil signaling and migration. J Leukoc Biol 2003; 73:657-64. [PMID: 12714581 DOI: 10.1189/jlb.0502264] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eosinophils are a major component of the inflammatory response in persistent airway inflammation in asthma. The factors that determine the retention of eosinophils in the airway remain poorly understood. Elevated levels of fibronectin have been observed in the airway of patients with asthma, and the levels correlate with eosinophil numbers. To determine if fibronectin density modulates eosinophil function, we investigated the effect of fibronectin and vascular cell adhesion molecule 1 (VCAM-1) density on eosinophil migration and signaling via the p38 and extracellular regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) signaling pathways. There was a dose-dependent inhibition of eosinophil spreading and migration on increasing concentrations of fibronectin but not VCAM-1. In addition, activation of p38 MAPK was inhibited at high fibronectin but not high VCAM-1 concentrations, and ERK activity was slightly reduced at high VCAM-1 and fibronectin concentrations. Together, the results demonstrate that fibronectin but not VCAM-1 inhibits eosinophil migration and signaling.
Collapse
Affiliation(s)
- A Holub
- Department of Pediatrics, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|
25
|
Zhu X, Jacobs B, Boetticher E, Myou S, Meliton A, Sano H, Lambertino AT, Muñoz NM, Leff AR. IL‐5‐induced integrin adhesion of human eosinophils caused by ERK1/2‐mediated activation of cPLA
2. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.5.1046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Xiangdong Zhu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine and Department of Neurobiology, Pharmacology and Physiology, Pediatrics, Anesthesia and Critical Care, and Committees on Clinical Pharmacology, Cell Physiology and Molecular Medicine, Division of the Biological Sciences, The University of Chicago, Illinois; and
| | - Benjamin Jacobs
- Section of Pulmonary and Critical Care Medicine, Department of Medicine and Department of Neurobiology, Pharmacology and Physiology, Pediatrics, Anesthesia and Critical Care, and Committees on Clinical Pharmacology, Cell Physiology and Molecular Medicine, Division of the Biological Sciences, The University of Chicago, Illinois; and
| | - Evan Boetticher
- Section of Pulmonary and Critical Care Medicine, Department of Medicine and Department of Neurobiology, Pharmacology and Physiology, Pediatrics, Anesthesia and Critical Care, and Committees on Clinical Pharmacology, Cell Physiology and Molecular Medicine, Division of the Biological Sciences, The University of Chicago, Illinois; and
| | - Shigeharu Myou
- Section of Pulmonary and Critical Care Medicine, Department of Medicine and Department of Neurobiology, Pharmacology and Physiology, Pediatrics, Anesthesia and Critical Care, and Committees on Clinical Pharmacology, Cell Physiology and Molecular Medicine, Division of the Biological Sciences, The University of Chicago, Illinois; and
| | - Angelo Meliton
- Section of Pulmonary and Critical Care Medicine, Department of Medicine and Department of Neurobiology, Pharmacology and Physiology, Pediatrics, Anesthesia and Critical Care, and Committees on Clinical Pharmacology, Cell Physiology and Molecular Medicine, Division of the Biological Sciences, The University of Chicago, Illinois; and
| | - Hiroyuki Sano
- Third Department of Internal Medicine, Tottori University, Japan
| | - Anissa T. Lambertino
- Section of Pulmonary and Critical Care Medicine, Department of Medicine and Department of Neurobiology, Pharmacology and Physiology, Pediatrics, Anesthesia and Critical Care, and Committees on Clinical Pharmacology, Cell Physiology and Molecular Medicine, Division of the Biological Sciences, The University of Chicago, Illinois; and
| | - Nilda M. Muñoz
- Section of Pulmonary and Critical Care Medicine, Department of Medicine and Department of Neurobiology, Pharmacology and Physiology, Pediatrics, Anesthesia and Critical Care, and Committees on Clinical Pharmacology, Cell Physiology and Molecular Medicine, Division of the Biological Sciences, The University of Chicago, Illinois; and
| | - Alan R. Leff
- Section of Pulmonary and Critical Care Medicine, Department of Medicine and Department of Neurobiology, Pharmacology and Physiology, Pediatrics, Anesthesia and Critical Care, and Committees on Clinical Pharmacology, Cell Physiology and Molecular Medicine, Division of the Biological Sciences, The University of Chicago, Illinois; and
| |
Collapse
|
26
|
Vliagoftis H. Thrombin induces mast cell adhesion to fibronectin: evidence for involvement of protease-activated receptor-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4551-8. [PMID: 12370392 DOI: 10.4049/jimmunol.169.8.4551] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thrombin activates mast cells to release inflammatory mediators through a mechanism involving protease-activated receptor-1 (PAR-1). We hypothesized that PAR-1 activation would induce mast cell adhesion to fibronectin (FN). Fluorescent adhesion assay was performed in 96-well plates coated with FN (20 microg/ml). Murine bone marrow cultured mast cells (BMCMC) were used after 3-5 wk of culture (>98% mast cells by flow cytometry for c-Kit expression). Thrombin induced beta-hexosaminidase, IL-6, and matrix metalloproteinase-9 release from BMCMC. Thrombin and the PAR-1-activating peptide AparafluoroFRCyclohexylACitY-NH(2) (cit) induced BMCMC adhesion to FN in a dose-dependent fashion, while the PAR-1-inactive peptide FSLLRY-NH(2) had no effect. Thrombin and cit induced also BMCMC adhesion to laminin. Thrombin-mediated adhesion to FN was inhibited by anti-alpha(5) integrin Ab (51.1 +/- 6.7%; n = 5). The combination of anti-alpha(5) and anti-alpha(4) Abs induced higher inhibition (65.7 +/- 7.1%; n = 5). Unlike what is known for FcepsilonRI-mediated adhesion, PAR-1-mediated adhesion to FN did not increase mediator release. We then explored the signaling pathways involved in PAR-1-mediated mast cell adhesion. Thrombin and cit induced p44/42 and p38 phosphorylation. Pertussis toxin inhibited PAR-1-mediated BMCMC adhesion by 57.3 +/- 7.3% (n = 4), indicating that G(i) proteins are involved. Wortmannin and calphostin almost completely inhibited PAR-1-mediated mast cell adhesion, indicating that PI-3 kinase and protein kinase C are involved. Adhesion was partially inhibited by the mitogen-activated protein kinase kinase 1/2 inhibitor U0126 (24.5 +/- 3.3%; n = 3) and the p38 inhibitor SB203580 (25.1 +/- 10.4%; n = 3). The two inhibitors had additive effects. Therefore, thrombin mediates mast cell adhesion through the activation of G(i) proteins, phosphoinositol 3-kinase, protein kinase C, and mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Harissios Vliagoftis
- Pulmonary Research Group, Department of Medicine, 550 HMRC, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| |
Collapse
|
27
|
Myou S, Zhu X, Boetticher E, Myo S, Meliton A, Lambertino A, Munoz NM, Leff AR. Blockade of focal clustering and active conformation in beta 2-integrin-mediated adhesion of eosinophils to intercellular adhesion molecule-1 caused by transduction of HIV TAT-dominant negative Ras. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2670-6. [PMID: 12193740 DOI: 10.4049/jimmunol.169.5.2670] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We transduced dominant negative (dn) HIV TAT-Ras protein into mature human eosinophils to determine the signaling pathways and mechanism involved in integrin-mediated adhesion caused by cytokine, chemokine, and chemoattractant stimulation. Transduction of TAT-dnRas into nondividing eosinophils inhibited endogenous Ras activation and extracellular signal-regulated kinase (ERK) phosphorylation caused by IL-5, eotaxin-1, and fMLP. IL-5, eotaxin-1, or fMLP caused 1) change of Mac-1 to its active conformation and 2) focal clustering of Mac-1 on the eosinophil surface. TAT-dnRas or PD98059, a pharmacological mitogen-activated protein/ERK kinase inhibitor, blocked both focal surface clustering of Mac-1 and the change to active conformational structure of this integrin assessed by the mAb CBRM1/5, which binds the activation epitope. Eosinophil adhesion to the endothelial ligand ICAM-1 was correspondingly blocked by TAT-dnRas and PD98059. As a further control, we used PMA, which activates ERK phosphorylation by postmembrane receptor induction of protein kinase C, a mechanism which bypasses Ras. Neither TAT-dnRas nor PD98059 blocked eosinophil adhesion to ICAM-1, up-regulation of CBRM1/5, or focal surface clustering of Mac-1 caused by PMA. In contrast to beta(2)-integrin adhesion, neither TAT-dnRas nor PD98059 blocked the eosinophil adhesion to VCAM-1. Thus, a substantially different signaling mechanism was identified for beta(1)-integrin adhesion. We conclude that H-Ras-mediated activation of ERK is critical for beta(2)-integrin adhesion and that Ras-protein functions as the common regulator for cytokine-, chemokine-, and G-protein-coupled receptors in human eosinophils.
Collapse
Affiliation(s)
- Shigeharu Myou
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Myou S, Zhu X, Boetticher E, Qin Y, Myo S, Meliton A, Lambertino A, Munoz NM, Hamann KJ, Leff AR. Regulation of adhesion of AML14.3D10 cells by surface clustering of beta2-integrin caused by ERK-independent activation of cPLA2. Immunology 2002; 107:77-85. [PMID: 12225365 PMCID: PMC1782764 DOI: 10.1046/j.1365-2567.2002.01486.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the role of cell surface clustering of beta2-integrin caused by protein kinase C (PKC)-activated-cPLA2 in adhesion of eosinophilic AML14.3D10 (AML) cells. Phorbol 12-myristate 13-acetate (PMA) caused time- and concentration-dependent adhesion of AML cells to plated bovine serum albumin (BSA), which was blocked by anti-CD11b or anti-CD18 monoclonal antibodies (mAb) directed against beta2-integrin. Inhibition of PKC with Ro-31-8220 or rottlerin blocked PMA-induced cell adhesion in a concentration-dependent fashion. Inhibition of cytosolic phospholipase A2 (cPLA2) with trifluoromethyl ketone or methyl arachidonyl fluorophosphonate also blocked PMA-induced cell adhesion. PMA caused time-dependent p42/44 mitogen-activated protein kinase (MAPK) (ERK) phosphorylation in these cells. U0126, a MAPK/extracellular signal-regulated protein kinase kinase (MEK) inhibitor, at the concentrations that blocked PMA-induced ERK phosphorylation, had no effect on PMA stimulated AML cell adhesion. Neither p38 MAPK nor c-Jun N-terminal kinase (JNK) was phosphorylated by PMA. PMA also caused increased cPLA2 activity, which was inhibited by Ro-31-8220, but not U0126. Confocal immunofluorescence microscopy showed that PMA caused clustering of CD11b on the cell surface, which was blocked by either PKC or cPLA2 inhibition. PMA stimulation also caused up-regulation of CD11b on the AML cell surface. However, this up-regulation was not affected by cPLA2- or PKC-inhibition. Using the mAb, CBRM1/5, we also demonstrated that PMA does not induce the active conformation of CD11b/CD18. Our data indicate that PMA causes AML cell adhesion through beta2-integrin by PKC activation of cPLA2. This pathway is independent of MEK/ERK and does not require change of CD11b/CD18 to its active conformation. We find that avidity caused by integrin surface clustering - rather than conformational change or up-regulation of CD11b/CD18 - causes PMA stimulated adhesion of AML cells.
Collapse
Affiliation(s)
- Shigeharu Myou
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hoyos B, Imam A, Korichneva I, Levi E, Chua R, Hammerling U. Activation of c-Raf kinase by ultraviolet light. Regulation by retinoids. J Biol Chem 2002; 277:23949-57. [PMID: 11971897 DOI: 10.1074/jbc.m110750200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The present study highlights retinoids as modulators of c-Raf kinase activation by UV light. Whereas a number of retinoids, including retinol, 14-hydroxyretroretinol, anhydroretinol (AR), and retinoic acid bound the c-Raf cysteine-rich domain (CRD) with equal affinity in vitro as well as in vivo, they displayed different, even opposing, effects on UV-mediated kinase activation; retinol and 14-hydroxyretroretinol augmented responses, whereas retinoic acid and AR were inhibitory. Oxidation of thiol groups of cysteines by reactive oxygen, generated during UV irradiation, was the primary event in c-Raf activation, causing the release of zinc ions and, by inference, a change in CRD structure. Retinoids modulated these oxidation events directly: retinol enhanced, whereas AR suppressed, zinc release, precisely mirroring the retinoid effects on c-Raf kinase activation. Oxidation of c-Raf was not sufficient for kinase activation, productive interaction with Ras being mandatory. Further, canonical tyrosine phosphorylation and the action of phosphatase were essential for optimal c-Raf kinase competence. Thus, retinoids bound c-Raf with high affinity, priming the molecule for UV/reactive oxygen species-mediated changes of the CRD that set off GTP-Ras interaction and, in context with an appropriate phosphorylation pattern, lead to full phosphotransferase capacity.
Collapse
Affiliation(s)
- Beatrice Hoyos
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
30
|
Esnault S, Malter JS. Extracellular signal-regulated kinase mediates granulocyte-macrophage colony-stimulating factor messenger RNA stabilization in tumor necrosis factor-alpha plus fibronectin-activated peripheral blood eosinophils. Blood 2002; 99:4048-52. [PMID: 12010806 DOI: 10.1182/blood.v99.11.4048] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is critical for promoting the long-term survival of lung- or airway-based eosinophils. Previously, we have shown that fibronectin and tumor necrosis factor alpha induced autocrine production of GM-CSF that markedly enhanced eosinophil survival. Cytokine release was preceded by and dependent on messenger RNA (mRNA) stabilization. Here, we show that mitogen-activated protein kinase (MAPK) activation is responsible for GM-CSF mRNA stabilization in peripheral blood eosinophils (pbeos). Activation of extracellular signal-regulated kinase (ERK) but not p38 correlated with GM-CSF mRNA stability. Although ERK inhibition completely prevented GM-CSF mRNA stabilization, p38 inhibition had a partial effect. To establish which MAPK was crucial, we transduced pbeos with dominant-active TatMEK1(E) or TatMKK3b(E) proteins that selectively phosphorylate ERK or p38, respectively. These studies showed that ERK but not p38 was sufficient for GM-CSF mRNA stabilization. These data are in contradistinction to the c-Jun NH(2)-terminal kinase-mediated regulation of interleukin 2 and 3 mRNAs and suggest unique regulatory features for GM-CSF mRNA in eosinophils.
Collapse
Affiliation(s)
- Stéphane Esnault
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison 53792, USA
| | | |
Collapse
|
31
|
Cussac D, Schaak S, Denis C, Paris H. alpha 2B-adrenergic receptor activates MAPK via a pathway involving arachidonic acid metabolism, matrix metalloproteinases, and epidermal growth factor receptor transactivation. J Biol Chem 2002; 277:19882-8. [PMID: 11891218 DOI: 10.1074/jbc.m110142200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the mechanisms whereby alpha(2B)-adrenergic receptor (alpha(2B)-AR) promotes MAPK activation in a clone of the renal tubular cell line, LLC-PK1, transfected with the rat nonglycosylated alpha(2)-AR gene. Treatment of LLC-PK1-alpha(2B) with UK14304 or dexmedetomidine caused arachidonic acid (AA) release and ERK2 phosphorylation. AA release was abolished by prior treatment of the cells with pertussis toxin, quinacrine, or methyl arachidonyl fluorophosphonate but not by the addition of the MEK inhibitor U0126. The effects of alpha(2)-agonists on MAPK phosphorylation were mimicked by cell exposure to exogenous AA. On the other hand, quinacrine abolished the effects of UK14304, but not of AA, suggesting that AA released through PLA2 is responsible for MAPK activation by alpha(2B)-AR. The effects of alpha(2)-agonists or AA were PKC-independent and were attenuated by indomethacin and nordihydroguaiaretic acid. Treatment with batimastat, CRM 197, or tyrphostin AG1478 suppressed MAPK phosphorylation promoted by alpha(2)-agonist or AA. Furthermore, conditioned culture medium from UK14304-treated LLC-PK1-alpha(2B) induced MAPK phosphorylation in wild-type LLC-PK1. Based on these data, we propose a model whereby activation of MAPK by alpha(2B)-AR is mediated through stimulation of PLA2, AA release, generation of AA derivatives, activation of matrix metalloproteinases, release of heparin-binding EGF-like growth factor, transactivation of epidermal growth factor receptor, and recruitment of Shc. Whether this pathway is particular to alpha(2B)-AR and LLC-PK1 or whether it can be extended to other cell types and/or other G-protein-coupled receptors remains to be established.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Arachidonic Acid/metabolism
- Bacterial Proteins/pharmacology
- Brimonidine Tartrate
- Butadienes/pharmacology
- Cell Line
- Cell Nucleus/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- ErbB Receptors/metabolism
- MAP Kinase Signaling System
- Matrix Metalloproteinases/metabolism
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Nitriles/pharmacology
- Pertussis Toxin
- Phosphorylation
- Protein Binding
- Proteins/metabolism
- Quinacrine/pharmacology
- Quinazolines
- Quinoxalines/pharmacology
- Rats
- Receptors, Adrenergic, alpha-2/metabolism
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Swine
- Transcriptional Activation
- Tyrphostins/pharmacology
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- Daniel Cussac
- INSERM, Unité 388, Institut L. Bugnard, CHU Rangueil, 31403 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|