1
|
Redondo-García S, Barritt C, Papagregoriou C, Yeboah M, Frendeus B, Cragg MS, Roghanian A. Human leukocyte immunoglobulin-like receptors in health and disease. Front Immunol 2023; 14:1282874. [PMID: 38022598 PMCID: PMC10679719 DOI: 10.3389/fimmu.2023.1282874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023] Open
Abstract
Human leukocyte immunoglobulin (Ig)-like receptors (LILR) are a family of 11 innate immunomodulatory receptors, primarily expressed on lymphoid and myeloid cells. LILRs are either activating (LILRA) or inhibitory (LILRB) depending on their associated signalling domains (D). With the exception of the soluble LILRA3, LILRAs mediate immune activation, while LILRB1-5 primarily inhibit immune responses and mediate tolerance. Abnormal expression and function of LILRs is associated with a range of pathologies, including immune insufficiency (infection and malignancy) and overt immune responses (autoimmunity and alloresponses), suggesting LILRs may be excellent candidates for targeted immunotherapies. This review will discuss the biology and clinical relevance of this extensive family of immune receptors and will summarise the recent developments in targeting LILRs in disease settings, such as cancer, with an update on the clinical trials investigating the therapeutic targeting of these receptors.
Collapse
Affiliation(s)
- Silvia Redondo-García
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christopher Barritt
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Lister Department of General Surgery, Glasgow Royal Infirmary, Glasgow, United Kingdom
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Charys Papagregoriou
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Muchaala Yeboah
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Björn Frendeus
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- BioInvent International AB, Lund, Sweden
| | - Mark S. Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
Hara H, Foote JB, Hansen-Estruch C, Bikhet MH, Nguyen HQ, Javed M, Oscherwitz M, Collins DE, Ayares D, Yamamoto T, King TW, Cooper DK. In vitro and in vivo immune assessments of genetically-engineered pig skin grafts in New World (squirrel) monkeys. Xenotransplantation 2023; 30:e12832. [PMID: 37870485 PMCID: PMC10843142 DOI: 10.1111/xen.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Genetic manipulations (GM) of pigs offer the possibility of reducing primate humoral and cellular rejection of pig skin xenografts and thus extending graft survival. We compared the survival of skin grafts from pigs with 9-GM with that of autografts and allografts in squirrel monkeys. Monitoring for rejection was by (1) macroscopic examination, (2) histopathological examination of skin biopsies, and (3) measurement of anti-monkey and anti-pig IgM and IgG antibodies. Autografts (n = 5) survived throughout the 28 days of follow-up without histopathological features of rejection. Median survival of allografts (n = 6) was 14 days and of pig xenografts (n = 12) 21 days. Allotransplantation was associated with an increase in anti-monkey IgM, but the anticipated subsequent rise in IgG had not yet occurred at the time of euthanasia. Pig grafts were associated with increases in anti-pig IgM and IgG. In all cases, histopathologic features of rejection were similar. 9-GM pig skin xenografts survive at least as long as monkey skin allografts (and trended to survive longer), suggesting that they are a realistic clinical option for the temporary treatment of burns. Although monkeys with pig skin grafts developed anti-pig IgM and IgG antibodies, these did not cross-react with monkey antigens, indicating that a primary 9-GM pig skin graft would not be detrimental to a subsequent monkey skin allograft.
Collapse
Affiliation(s)
- Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B. Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christophe Hansen-Estruch
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed H. Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Q. Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariyam Javed
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Max Oscherwitz
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dalis E. Collins
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy W. King
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Cross-Najafi AA, Farag K, Isidan A, Li W, Zhang W, Lin Z, Walsh JR, Lopez K, Park Y, Higgins NG, Cooper DK, Ekser B, Li P. Co-expression of HLA-E and HLA-G on genetically modified porcine endothelial cells attenuates human NK cell-mediated degranulation. Front Immunol 2023; 14:1217809. [PMID: 37529053 PMCID: PMC10387534 DOI: 10.3389/fimmu.2023.1217809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Natural killer (NK) cells play an important role in immune rejection in solid organ transplantation. To mitigate human NK cell activation in xenotransplantation, introducing inhibitory ligands on xenografts via genetic engineering of pigs may protect the graft from human NK cell-mediated cytotoxicity and ultimately improve xenograft survival. In this study, non-classical HLA class I molecules HLA-E and HLA-G were introduced in an immortalized porcine liver endothelial cell line with disruption of five genes (GGTA1, CMAH, β4galNT2, SLA-I α chain, and β-2 microglobulin) encoding three major carbohydrate xenoantigens (αGal, Neu5Gc, and Sda) and swine leukocyte antigen class I (SLA-I) molecules. Expression of HLA-E and/or HLA-G on pig cells were confirmed by flow cytometry. Endogenous HLA-G molecules as well as exogenous HLA-G VL9 peptide could dramatically enhance HLA-E expression on transfected pig cells. We found that co-expression of HLA-E and HLA-G on porcine cells led to a significant reduction in human NK cell activation compared to the cells expressing HLA-E or HLA-G alone and the parental cell line. NK cell activation was assessed by analysis of CD107a expression in CD3-CD56+ population gated from human peripheral blood mononuclear cells. CD107a is a sensitive marker of NK cell activation and correlates with NK cell degranulation and cytotoxicity. HLA-E and/or HLA-G on pig cells did not show reactivity to human sera IgG and IgM antibodies. This in vitro study demonstrated that co-expression of HLA-E and HLA-G on genetically modified porcine endothelial cells provided a superior inhibition in human xenoreactive NK cells, which may guide further genetic engineering of pigs to prevent human NK cell mediated rejection.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kristine Farag
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zhansong Lin
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Julia R. Walsh
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nancy G. Higgins
- Transplant Immunology, Indiana University Health, Indianapolis, IN, United States
| | - David K.C. Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Cambridge, MA, United States
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Sykes M, Sachs DH. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol 2022; 18:745-761. [PMID: 36198911 DOI: 10.1038/s41581-022-00624-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
A major limitation of organ allotransplantation is the insufficient supply of donor organs. Consequently, thousands of patients die every year while waiting for a transplant. Progress in xenotransplantation that has permitted pig organ graft survivals of years in non-human primates has led to renewed excitement about the potential of this approach to alleviate the organ shortage. In 2022, the first pig-to-human heart transplant was performed on a compassionate use basis, and xenotransplantation experiments using pig kidneys in deceased human recipients provided encouraging data. Many advances in xenotransplantation have resulted from improvements in the ability to genetically modify pigs using CRISPR-Cas9 and other methodologies. Gene editing has the capacity to generate pig organs that more closely resemble those of humans and are hence more physiologically compatible and less prone to rejection. Despite such modifications, immune responses to xenografts remain powerful and multi-faceted, involving innate immune components that do not attack allografts. Thus, the induction of innate and adaptive immune tolerance to prevent rejection while preserving the capacity of the immune system to protect the recipient and the graft from infection is desirable to enable clinical xenotransplantation.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, USA.
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Zheng D, Wang X, Zhang Z, Li E, Yeung C, Borkar R, Qin G, Wu Y, Xu RH. Engineering of human mesenchymal stem cells resistant to multiple natural killer subtypes. Int J Biol Sci 2022; 18:426-440. [PMID: 34975342 PMCID: PMC8692142 DOI: 10.7150/ijbs.64640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stem cells (MSCs) as a therapeutic promise are often quickly cleared by innate immune cells of the host including natural killer (NK) cells. Efforts have been made to generate immune-escaping human embryonic stem cells (hESCs) where T cell immunity is evaded by defecting β-2-microglobulin (B2M), a common unit for human leukocyte antigen (HLA) class I, and NK cells are inhibited via ectopic expression of HLA-E or -G. However, NK subtypes vary among recipients and even at different pathologic statuses. It is necessary to dissect and optimize the efficacy of the immune-escaping cells against NK subtypes. Here, we first generated B2M knockout hESCs and differentiated them to MSCs (EMSCs) and found that NK resistance occurred with B2M-/- EMSCs expressing HLA-E and -G only when they were transduced via an inducible lentiviral system in a dose-dependent manner but not when they were inserted into a safe harbor. HLA-E and -G expressed at high levels together in transduced EMSCs inhibited three major NK subtypes, including NKG2A+/LILRB1+, NKG2A+/LILRB1-, and NKG2A-/LILRB1+, which was further potentiated by IFN-γ priming. Thus, this study engineers MSCs with resistance to multiple NK subtypes and underscores that dosage matters when a transgene is used to confer a novel effect to host cells, especially for therapeutic cells to evade immune rejection.
Collapse
Affiliation(s)
- Dejin Zheng
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Xiaoyan Wang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Zhenwu Zhang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Enqin Li
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Cheungkwan Yeung
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Roma Borkar
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Guihui Qin
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| |
Collapse
|
6
|
Mociornita AG, Adamson MB, Tumiati LC, Ross HJ, Rao V, Delgado DH. Effects of everolimus and HLA-G on cellular proliferation and neutrophil adhesion in an in vitro model of cardiac allograft vasculopathy. Am J Transplant 2018; 18:3038-3044. [PMID: 29985558 DOI: 10.1111/ajt.15015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 01/25/2023]
Abstract
Human leukocyte antigen-G (HLA-G) expression is modulated by immunosuppressant use and is associated with lower incidence of graft rejection and cardiac allograft vasculopathy (CAV). We examined whether everolimus induces HLA-G expression and inhibits human coronary artery smooth muscle cell (HCASMC) proliferation, a critical event in CAV. Also, we examined whether TNFα-stimulated neutrophil adhesion is inhibited by HLA-G on human coronary artery endothelial cells (HCAECs). HLA-G expression in HCASMCs following everolimus treatment was determined by western-blot densitometric analysis. HCASMCs proliferation following incubation with recombinant HLA-G was determined by automated cell counter detecting 2-10 µm particles. Assessment of recombinant HLA-G on neutrophil adhesion to HCAECs in response to TNF-α induced-injury was determined by nonstatic adhesion assays. HLA-G expression was upregulated in HCASMCs following everolimus exposure (1000 ng/ml; P < .05). HLA-G (500, 1000 ng/ml; both P < .05) reduced HCASMC proliferation and inhibited TNFα-stimulated neutrophil adhesion to endothelial cells at all concentrations (0.1-1 ng/ml; all P < .001). Our study reveals novel regulation of HLA-G by everolimus, by demonstrating HLA-G upregulation and subsequent inhibition of HCASMC proliferation. HLA-G is a potent inhibitor of neutrophil adhesion to HCAECs. Findings support HLA-G's importance and potential use in heart transplantation for preventative therapy or as a marker to identify patients at high risk for developing CAV.
Collapse
Affiliation(s)
| | - Mitchell B Adamson
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Laura C Tumiati
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Heather J Ross
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, University Health Network, Toronto, Ontario, Canada
| | - Diego H Delgado
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Sykes M. IXA Honorary Member Lecture, 2017: The long and winding road to tolerance. Xenotransplantation 2018; 25:e12419. [PMID: 29913040 DOI: 10.1111/xen.12419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
The last 15 years or so have seen exciting progress in xenotransplantation, with porcine organ grafts surviving months or even years in non-human primates. These advances reflect the application of new scientific knowledge, improved immunosuppressive agents, and genetic engineering. The field has recently enjoyed a renaissance of interest and hope, largely due to the exponential increase in our capacity to genetically engineer porcine source animals. However, immune responses to xenografts are very powerful and widespread clinical application of xenotransplantation will depend on the ability to suppress these immune responses while preserving the capacity to protect both the recipient and the graft from infectious microorganisms. Our work over the last three decades has aimed to engineer the immune system of the recipient in a manner that achieves specific tolerance to the xenogeneic donor while preserving otherwise normal immune function. Important proofs of principle have been obtained, first in rodents, and later in human immune systems in "humanized mice" and finally in non-human primates, demonstrating the capacity and potential synergy of mixed xenogeneic chimerism and xenogeneic thymic transplantation in tolerizing multiple arms of the immune system. Considering the fact that clinical tolerance has recently been achieved for allografts and the even greater importance of avoiding excessive immunosuppression for xenografts, it is my belief that it is both possible and imperative that we likewise achieve xenograft tolerance. I expect this to be accomplished through the availability of targeted approaches to recipient immune conditioning, understanding of immunological mechanisms of tolerance, advanced knowledge of physiological incompatibilities, and the availability of inbred miniature swine with optimized use of genetic engineering.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, USA.,Department of Medicine, Columbia University, New York, NY, USA.,Department of Microbiology & Immunology, Columbia University, New York, NY, USA.,Department of Surgery, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Lin A, Yan WH. Heterogeneity of HLA-G Expression in Cancers: Facing the Challenges. Front Immunol 2018; 9:2164. [PMID: 30319626 PMCID: PMC6170620 DOI: 10.3389/fimmu.2018.02164] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Phenotypic heterogeneity has been observed in most malignancies, which represents a considerable challenge for tumor therapy. In recent decades, the biological function and clinical significance of the human leukocyte antigen (HLA)-G have been intensively explored. It is now widely accepted that HLA-G is a critical marker of immunotolerance in cancer cell immune evasion and is strongly associated with disease progress and prognosis for cancer patients. Moreover, it has recently been emphasized that the signaling pathway linking HLA-G and immunoglobulin-like transcripts (ILTs) is considered an immune checkpoint. In addition, HLA-G itself can generate at least seven distinct isoforms, and intertumor and intratumor heterogeneity of HLA-G expression is common across different tumor types. Furthermore, HLA-G heterogeneity in cancers has been related to disease stage and outcomes, metastatic status and response to different therapies. This review focuses on the heterogeneity of HLA-G expression in malignant lesions, and clinical implications of this heterogeneity that might be relevant to personalized treatments are also discussed.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
9
|
Yamamoto T, Iwase H, King TW, Hara H, Cooper DKC. Skin xenotransplantation: Historical review and clinical potential. Burns 2018; 44:1738-1749. [PMID: 29602717 DOI: 10.1016/j.burns.2018.02.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/02/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Pig skin xenografts may provide temporary coverage. However, preformed xenoreactive antibodies in the human recipient activate complement, and thus result in rapid rejection of the graft. Because burn patients usually have some degree of immune dysfunction and are therefore at increased risk of infection, immunosuppressive therapy is undesirable. Genetic engineering of the pig has increased the survival of pig heart, kidney, islet, and corneal grafts in immunosuppressed non-human primates from minutes to months or occasionally years. We summarize the current status of research into skin xenotransplantation for burns, with special emphasis on developments in genetic engineering of pigs to protect the graft from immunological injury. A genetically-engineered pig skin graft now survives as long as an allograft and, importantly, rejection of a skin xenograft is not detrimental to a subsequent allograft. Nevertheless, currently, systemic immunosuppressive therapy would still be required to inhibit a cellular response, and so we discuss what further genetic manipulations could be carried out to inhibit the cellular response.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy W King
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
The Role of NK Cells in Pig-to-Human Xenotransplantation. J Immunol Res 2017; 2017:4627384. [PMID: 29410970 PMCID: PMC5749293 DOI: 10.1155/2017/4627384] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023] Open
Abstract
Recruitment of human NK cells to porcine tissues has been demonstrated in pig organs perfused ex vivo with human blood in the early 1990s. Subsequently, the molecular mechanisms leading to adhesion and cytotoxicity in human NK cell-porcine endothelial cell (pEC) interactions have been elucidated in vitro to identify targets for therapeutic interventions. Specific molecular strategies to overcome human anti-pig NK cell responses include (1) blocking of the molecular events leading to recruitment (chemotaxis, adhesion, and transmigration), (2) expression of human MHC class I molecules on pECs that inhibit NK cells, and (3) elimination or blocking of pig ligands for activating human NK receptors. The potential of cell-based strategies including tolerogenic dendritic cells (DC) and regulatory T cells (Treg) and the latest progress using transgenic pigs genetically modified to reduce xenogeneic NK cell responses are discussed. Finally, we present the status of phenotypic and functional characterization of nonhuman primate (NHP) NK cells, essential for studying their role in xenograft rejection using preclinical pig-to-NHP models, and summarize key advances and important perspectives for future research.
Collapse
|
11
|
Puga Yung G, Bongoni AK, Pradier A, Madelon N, Papaserafeim M, Sfriso R, Ayares DL, Wolf E, Klymiuk N, Bähr A, Constantinescu MA, Voegelin E, Kiermeir D, Jenni H, Rieben R, Seebach JD. Release of pig leukocytes and reduced human NK cell recruitment during ex vivo perfusion of HLA-E/human CD46 double-transgenic pig limbs with human blood. Xenotransplantation 2017; 25. [PMID: 29057510 DOI: 10.1111/xen.12357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/15/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND In pig-to-human xenotransplantation, interactions between human natural killer (NK) cells and porcine endothelial cells (pEC) are characterized by recruitment and cytotoxicity. Protection from xenogeneic NK cytotoxicity can be achieved in vitro by the expression of the non-classical human leukocyte antigen-E (HLA-E) on pEC. Thus, the aim of this study was to analyze NK cell responses to vascularized xenografts using an ex vivo perfusion system of pig limbs with human blood. METHODS Six pig forelimbs per group, respectively, stemming from either wild-type (wt) or HLA-E/hCD46 double-transgenic (tg) animals, were perfused ex vivo with heparinized human blood for 12 hours. Blood samples were collected at defined time intervals, cell numbers counted, and peripheral blood mononuclear cells analyzed for phenotype by flow cytometry. Muscle biopsies were analyzed for NK cell infiltration. In vitro NK cytotoxicity assays were performed using pEC derived from wt and tg animals as target cells. RESULTS Ex vivo, a strong reduction in circulating human CD45 leukocytes was observed after 60 minutes of xenoperfusion in both wt and tg limb groups. NK cell numbers dropped significantly. Within the first 10 minutes, the decrease in NK cells was more significant in the wt limb perfusions as compared to tg limbs. Immunohistology of biopsies taken after 12 hours showed less NK cell tissue infiltration in the tg limbs. In vitro, NK cytotoxicity against hCD46 single tg pEC and wt pEC was similar, while lysis of double tg HLA-E/hCD46 pEC was significantly reduced. Finally, circulating cells of pig origin were observed during the ex vivo xenoperfusions. These cells expressed phenotypes mainly of monocytes, B and T lymphocytes, NK cells, as well as some activated endothelial cells. CONCLUSIONS Ex vivo perfusion of pig forelimbs using whole human blood represents a powerful tool to study humoral and early cell-mediated rejection mechanisms of vascularized pig-to-human xenotransplantation, although there are several limitations of the model. Here, we show that (i) transgenic expression of HLA-E/hCD46 in pig limbs provides partial protection from human NK cell-mediated xeno responses and (ii) the emergence of a pig cell population during xenoperfusions with implications for the immunogenicity of xenografts.
Collapse
Affiliation(s)
- Gisella Puga Yung
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Anjan K Bongoni
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Amandine Pradier
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Natacha Madelon
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Maria Papaserafeim
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| | - Riccardo Sfriso
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University, Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University, Munich, Germany
| | - Andrea Bähr
- Institute of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian University, Munich, Germany
| | | | - Esther Voegelin
- Clinic of Plastic and Hand Surgery, University Hospital, Bern, Switzerland
| | - David Kiermeir
- Clinic of Plastic and Hand Surgery, University Hospital, Bern, Switzerland
| | - Hansjörg Jenni
- Clinic of Cardiovascular Surgery, University Hospital, Bern, Switzerland
| | - Robert Rieben
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Jörg D Seebach
- Division of Immunology and Allergology, University Hospital and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
12
|
Liu Z, Hu W, He T, Dai Y, Hara H, Bottino R, Cooper DKC, Cai Z, Mou L. Pig-to-Primate Islet Xenotransplantation: Past, Present, and Future. Cell Transplant 2017; 26:925-947. [PMID: 28155815 PMCID: PMC5657750 DOI: 10.3727/096368917x694859] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
Abstract
Islet allotransplantation results in increasing success in treating type 1 diabetes, but the shortage of deceased human donor pancreata limits progress. Islet xenotransplantation, using pigs as a source of islets, is a promising approach to overcome this limitation. The greatest obstacle is the primate immune/inflammatory response to the porcine (pig) islets, which may take the form of rapid early graft rejection (the instant blood-mediated inflammatory reaction) or T-cell-mediated rejection. These problems are being resolved by the genetic engineering of the source pigs combined with improved immunosuppressive therapy. The results of pig-to-diabetic nonhuman primate islet xenotransplantation are steadily improving, with insulin independence being achieved for periods >1 year. An alternative approach is to isolate islets within a micro- or macroencapsulation device aimed at protecting them from the human recipient's immune response. Clinical trials using this approach are currently underway. This review focuses on the major aspects of pig-to-primate islet xenotransplantation and its potential for treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Zhengzhao Liu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Wenbao Hu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Tian He
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hidetaka Hara
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - David K. C. Cooper
- Xenotransplantation Program/Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
13
|
Li HW, Vishwasrao P, Hölzl MA, Chen S, Choi G, Zhao G, Sykes M. Impact of Mixed Xenogeneic Porcine Hematopoietic Chimerism on Human NK Cell Recognition in a Humanized Mouse Model. Am J Transplant 2017; 17:353-364. [PMID: 27401926 PMCID: PMC5414033 DOI: 10.1111/ajt.13957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 01/25/2023]
Abstract
Mixed chimerism is a promising approach to inducing allograft and xenograft tolerance. Mixed allogeneic and xenogeneic chimerism in mouse models induced specific tolerance and global hyporesponsiveness, respectively, of host mouse natural killer (NK) cells. In this study, we investigated whether pig/human mixed chimerism could tolerize human NK cells in a humanized mouse model. Our results showed no impact of induced human NK cell reconstitution on porcine chimerism. NK cells from most pig/human mixed chimeric mice showed either specifically decreased cytotoxicity to pig cells or global hyporesponsiveness in an in vitro cytotoxicity assay. Mixed xenogeneic chimerism did not hamper the maturation of human NK cells but was associated with an alteration in NK cell subset distribution and interferon gamma (IFN-γ) production in the bone marrow. In summary, we demonstrate that mixed xenogeneic chimerism induces human NK cell hyporesponsiveness to pig cells. Our results support the use of this approach to inducing xenogeneic tolerance in the clinical setting. However, additional approaches are required to improve the efficacy of tolerance induction while ensuring adequate NK cell functions.
Collapse
Affiliation(s)
- Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Paresh Vishwasrao
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY,Department of Hematology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Markus A. Hölzl
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Stephanie Chen
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Goda Choi
- Department of Hematology, Academic Medical Center, University of Amsterdam, The Netherlands,Department of Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Guiling Zhao
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
14
|
Abstract
Peptide-specific conventional T cells have been major targets for designing most antimycobacterial vaccines. Immune responses mediated by conventional T cells exhibit a delayed onset upon primary infection and are highly variable in different human populations. In contrast, innate-like T cells quickly respond to pathogens and display effector functions without undergoing extensive clonal expansion. Specifically, the activation of innate-like T cells depends on the promiscuous interaction of highly conserved antigen-presenting molecules, non-peptidic antigens, and likely semi-invariant T cell receptors. In antimicrobial immune responses, mucosal-associated invariant T cells are activated by riboflavin precursor metabolites presented by major histocompatibility complex-related protein I, while lipid-specific T cells including natural killer T cells are activated by lipid metabolites presented by CD1 proteins. Multiple innate-like T cell subsets have been shown to be protective or responsive in mycobacterial infections. Through rapid cytokine secretion, innate-like T cells function in early defense and memory response, offering novel advantages over conventional T cells in the design of anti-tuberculosis strategies.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine , Cincinnati, OH , USA
| |
Collapse
|
15
|
Abstract
Antibody-mediated rejection (AMR) has been identified among the most important factors limiting long-term outcome in cardiac and renal transplantation. Therapeutic management remains challenging and the development of effective treatment modalities is hampered by insufficient understanding of the underlying pathophysiology. However, recent findings indicate that in addition to AMR-triggered activation of the classical complement pathway, antibody-dependent cellular cytotoxicity by innate immune cell subsets also promotes vascular graft injury. This review summarizes the accumulating evidence for the contribution of natural killer cells, the key mediators of antibody-dependent cellular cytotoxicity, to human AMR in allotransplantation and xenotransplantation and illustrates the current mechanistic conceptions drawn from animal models.
Collapse
|
16
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D. The role of genetically engineered pigs in xenotransplantation research. J Pathol 2016; 238:288-99. [PMID: 26365762 PMCID: PMC4689670 DOI: 10.1002/path.4635] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/22/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022]
Abstract
There is a critical shortage in the number of deceased human organs that become available for the purposes of clinical transplantation. This problem might be resolved by the transplantation of organs from pigs genetically engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in non-human primates (NHPs) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified, as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing five or six manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart and islet transplantation will become feasible in the near future.
Collapse
Affiliation(s)
- David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | |
Collapse
|
18
|
Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev 2015; 258:241-58. [PMID: 24517437 DOI: 10.1111/imr.12152] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The discrepancy between organ need and organ availability represents one of the major limitations in the field of transplantation. One possible solution to this problem is xenotransplantation. Research in this field has identified several obstacles that have so far prevented the successful development of clinical xenotransplantation protocols. The main immunologic barriers include strong T-cell and B-cell responses to solid organ and cellular xenografts. In addition, components of the innate immune system can mediate xenograft rejection. Here, we review these immunologic and physiologic barriers and describe some of the strategies that we and others have developed to overcome them. We also describe the development of two strategies to induce tolerance across the xenogeneic barrier, namely thymus transplantation and mixed chimerism, from their inception in rodent models through their current progress in preclinical large animal models. We believe that the addition of further beneficial transgenes to Gal knockout swine, combined with new therapies such as Treg administration, will allow for successful clinical application of xenotransplantation.
Collapse
Affiliation(s)
- Adam Griesemer
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | |
Collapse
|
19
|
Boksa M, Zeyland J, Słomski R, Lipiński D. Immune modulation in xenotransplantation. Arch Immunol Ther Exp (Warsz) 2014; 63:181-92. [PMID: 25354539 PMCID: PMC4429136 DOI: 10.1007/s00005-014-0317-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/22/2014] [Indexed: 01/17/2023]
Abstract
The use of animals as donors of tissues and organs for xenotransplantations may help in meeting the increasing demand for organs for human transplantations. Clinical studies indicate that the domestic pig best satisfies the criteria of organ suitability for xenotransplantation. However, the considerable phylogenetic distance between humans and the pig causes tremendous immunological problems after transplantation, thus genetic modifications need to be introduced to the porcine genome, with the aim of reducing xenotransplant immunogenicity. Advances in genetic engineering have facilitated the incorporation of human genes regulating the complement into the porcine genome, knockout of the gene encoding the formation of the Gal antigen (α1,3-galactosyltransferase) or modification of surface proteins in donor cells. The next step is two-fold. Firstly, to inhibit processes of cell-mediated xenograft rejection, involving natural killer cells and macrophages. Secondly, to inhibit rejection caused by the incompatibility of proteins participating in the regulation of the coagulation system, which leads to a disruption of the equilibrium in pro- and anti-coagulant activity. Only a simultaneous incorporation of several gene constructs will make it possible to produce multitransgenic animals whose organs, when transplanted to human recipients, would be resistant to hyperacute and delayed xenograft rejection.
Collapse
Affiliation(s)
- Magdalena Boksa
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland,
| | | | | | | |
Collapse
|
20
|
del Rio ML, Seebach JD, Fernández-Renedo C, Rodriguez-Barbosa JI. ITIM-dependent negative signaling pathways for the control of cell-mediated xenogeneic immune responses. Xenotransplantation 2013; 20:397-406. [PMID: 23968542 DOI: 10.1111/xen.12049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/31/2013] [Indexed: 12/24/2022]
Abstract
Xenotransplantation is an innovative field of research with the potential to provide us with an alternative source of organs to face the severe shortage of human organ donors. For several reasons, pigs have been chosen as the most suitable source of organs and tissues for transplantation in humans. However, porcine xenografts undergo cellular immune responses representing a major barrier to their acceptance and normal functioning. Innate and adaptive xenogeneic immunity is mediated by both the recognition of xenogeneic tissue antigens and the lack of inhibition due to molecular cross-species incompatibilities of regulatory pathways. Therefore, the delivery of immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent and related negative signals to control innate (NK cells, macrophages) and adaptive T and B cells might overcome cell-mediated xenogeneic immunity. The proof of this concept has already been achieved in vitro by the transgenic overexpression of human ligands of several inhibitory receptors in porcine cells resulting in their resistance against xenoreactivity. Consequently, several transgenic pigs expressing tissue-specific human ligands of inhibitory coreceptors (HLA-E, CD47) or soluble competitors of costimulation (belatacept) have already been generated. The development of these robust and innovative approaches to modulate human anti-pig cellular immune responses, complementary to conventional immunosuppression, will help to achieve long-term xenograft survival. In this review, we will focus on the current strategies to enhance negative signaling pathways for the regulation of undesirable cell-mediated xenoreactive immune responses.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon, Leon, Spain; Leon University Hospital, Castilla and Leon Transplantation Regional Agency, Leon, Spain
| | | | | | | |
Collapse
|
21
|
Li J, Ezzelarab MB, Cooper DKC. Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation 2013; 19:273-85. [PMID: 22978461 DOI: 10.1111/xen.12000] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Allogeneic mesenchymal stem (stromal) cells (MSC) are a promising therapy for various pathological conditions. Genetically modified pig MSC have been demonstrated to downregulate the human T-cell response to pig antigens in vitro. Before genetically modified pig MSC can be used clinically, however, evidence needs to be provided to indicate whether they will survive in a human (xenogeneic) host. LITERATURE SEARCH AND RESULTS A literature search through the end of 2011 identified 94 reports of the in vivo cross-species administration of MSC in a variety of experimental models. The majority (n = 89) involved the use of human MSC in various other species, with an occasional study using pig, rat, or guinea-pig MSC. When human MSC were used, they were largely derived from the bone marrow, adipose tissue, or umbilical cord blood. The routes of administration were varied, although almost half of the studies utilized the intravenous route. In 88 experiments (93.6%), there was evidence that the MSC engrafted and functioned across the species barrier, and in only six cases (6.4%) was there evidence of failure to function. Importantly, MSC function was confirmed in several different cross-species models. For example, human MSC functioned in no fewer than seven different recipient species. CONCLUSIONS The data provided by this literature search strengthen the hypothesis that pig MSC will function satisfactorily in a different species, for example, humans. The data also suggest that our own in vitro observations on the efficacy of pig MSC in downregulating the strength of the human T-cell response to pig antigens will likely be reproduced in vivo in pre-clinical large animal models and in clinical trials.
Collapse
Affiliation(s)
- Jiang Li
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
22
|
Hanssens S, Salzet M, Vinatier D. [Immunological aspect of pregnancy]. ACTA ACUST UNITED AC 2012; 41:595-611. [PMID: 22921357 DOI: 10.1016/j.jgyn.2012.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 06/22/2012] [Accepted: 07/05/2012] [Indexed: 12/11/2022]
Abstract
Pregnancy is a temporary semi-allograft that survives for nine months. The importance of this event for the survival of the species justifies several tolerance mechanisms that are put into place at the beginning of pregnancy, some of which occur even at the time of implantation. The presence of multiple tolerance mechanisms and the richness of the means employed underline the central importance of the trophoblast. Understanding these mechanisms, and in particular, their integration into an overall scheme, enables the anomalies encountered in certain pathologies of pregnancy to be placed into context. Understanding these mechanisms and their interruption at the end of pregnancy should improve our understanding of disappointing results from current immunological treatments facilitate the implementation of new prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- S Hanssens
- Service de chirurgie gynécologique, hôpital Jeanne-de-Flandre, Lille cedex, France
| | | | | |
Collapse
|
23
|
Kumar G, Hara H, Long C, Shaikh H, Ayares D, Cooper DKC, Ezzelarab M. Adipose-derived mesenchymal stromal cells from genetically modified pigs: immunogenicity and immune modulatory properties. Cytotherapy 2012; 14:494-504. [PMID: 22264190 DOI: 10.3109/14653249.2011.651529] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND AIMS The immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSC) could prove to be a potential therapeutic approach for prolongation of survival of cell xenotransplantation. Adipose (Ad) MSC from genetically modified pigs could be an abundant source of pig donor-specific MSC. METHODS Pig (p) MSC were isolated from adipose tissue of α1,3-galactosyltransferase gene knock-out pigs transgenic for human (h) CD46 (GTKO/hCD46), a potential source of islets. After characterization with differentiation and flow cytometry (FCM), AdMSC were compared with bone marrow (BM) MSC of the same pig and human adipose-derived (hAd) MSC. The modulation of human peripheral blood mononuclear cell (hPBMC) responses to GTKO pig aortic endothelial cells (pAEC) by different MSC was compared by measuring 3H-thymidine uptake. The supernatants from the AdMSC cultures were used to determine the role of soluble factors. RESULTS GTKO/hCD46 pAdMSC (i) did not express galactose-α1,3-galactose (Gal) but expressed hCD46, (ii) differentiated into chondroblasts, osteocytes and adipocytes, (iii) expressed stem cell markers, (iv) expressed lower levels of Swine Leucocyte Antigen I (SLAI), Swine Leucocyte Antigen II DR (SLAIIDR) and CD80 than pAEC before and after pig interferon (IFN)-γ stimulation. The proliferative responses of hPBMC to GTKO/hCD46 pAdMSC and hAdMSC stimulators were similar, and both were significantly lower than to GTKO pAEC (P < 0.05). The proliferation of hPBMC to GTKO pAEC was equally suppressed by GTKO/hCD46 pAdMSC and hAdMSC (P > 0.05). The supernatant from GTKO/hCD46 pAdMSC did not suppress the human xenoresponse to GTKO pAEC, which was cell-cell contact-dependent. CONCLUSIONS Initial evidence suggests that genetically modified pAdMSC function across the xenogeneic barrier and may have a role in cellular xenotransplantation.
Collapse
Affiliation(s)
- Goutham Kumar
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Peña J, Frías M, Castro-Orgaz L, González R, García F, Gallart T, Gatell JM, Plana M. Effects on innate immunity of a therapeutic dendritic cell-based vaccine for HIV-1 infection. Viral Immunol 2012; 25:37-44. [PMID: 22233253 DOI: 10.1089/vim.2011.0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Changes in natural killer (NK) cells according to their phenotype and expression of certain regulatory receptors were analyzed in a double-blind, controlled study of antiretroviral therapy (ART)-untreated HIV-seropositive patients, who had been vaccinated with monocyte-derived dendritic cells pulsed with inactivated HIV-1 autologous virus. This work extends other recently published studies of the same group of HIV-1(+) vaccinated patients, which demonstrated that the viral load significantly decreases and correlates inversely with an increase in HIV-specific T-cell responses in vaccinated patients, but not in controls who received placebo. Our results indicate that this vaccine raises the level of the NK CD56(neg) cell subpopulation, while levels of the NK CD56(dim) and NK CD56(bright) cells expressing the inhibitory receptor CD85j/ILT-2 fell in vaccinated patients. Taken together, these results suggest that this vaccine might enhance innate immunity by amplifying the inflammatory and cytolytic capacity.
Collapse
Affiliation(s)
- José Peña
- Immunology Service, Maimonides Institute for Biomedical Research of Córdoba, University of Córdoba, Córdoba, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ekser B, Cooper DKC. Overcoming the barriers to xenotransplantation: prospects for the future. Expert Rev Clin Immunol 2010; 6:219-30. [PMID: 20402385 PMCID: PMC2857338 DOI: 10.1586/eci.09.81] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cross-species transplantation (xenotransplantation) has immense potential to solve the critical need for organs, tissues and cells for clinical transplantation. The increasing availability of genetically engineered pigs is enabling progress to be made in pig-to-nonhuman primate experimental models. Potent pharmacologic immunosuppressive regimens have largely prevented T-cell rejection and a T-cell-dependent elicited antibody response. However, coagulation dysfunction between the pig and primate is proving to be a major problem, and this can result in life-threatening consumptive coagulopathy. This complication is unlikely to be overcome until pigs expressing a human 'antithrombotic' or 'anticoagulant' gene, such as thrombomodulin, tissue factor pathway inhibitor or CD39, become available. Progress in islet xenotransplantation has been more encouraging, and diabetes has been controlled in nonhuman primates for periods in excess of 6 months, although this has usually been achieved using immunosuppressive protocols that might not be clinically applicable. Further advances are required to overcome the remaining barriers.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, and Department of Surgery and Organ Transplantation, University of Padua, Padua, Italy
| | - David KC Cooper
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Starzl Biomedical Science Tower, W1543, 200 Lothrop Street, Pittsburgh, PA 15261, USA, Tel.: +1 412 383 6961, Fax: +1 412 624 1172,
| |
Collapse
|
26
|
Tran PD, Christiansen D, Winterhalter A, Brooks A, Gorrell M, Lilienfeld BG, Seebach JD, Sandrin M, Sharland A. Porcine cells express more than one functional ligand for the human lymphocyte activating receptor NKG2D. Xenotransplantation 2009; 15:321-32. [PMID: 19134162 DOI: 10.1111/j.1399-3089.2008.00489.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Xenotransplantation could ameliorate the severe shortage of donor organs. The initial results of transplantation from genetically-modified pig donors to primate recipients suggest that hyperacute rejection can be overcome, but thrombotic microangiopathy and the human anti-pig cellular immune response remain as significant impediments to successful clinical xenotransplantation. NKG2D is an activating immunoreceptor found on human natural killer (HuNK) cells, CD8(+) and gammadelta T cells. Signaling through NKG2D mediates cytotoxicity and cytokine secretion by NK cells and co-stimulation of T cells. METHODS Chinese hamster ovary P (CHOP) cells were transfected with human NKG2D and used in cell-cell binding studies with porcine epithelial, and endothelial cell lines. Soluble recombinant NKG2D-Fc was used to stain various porcine cells and tissues to indicate ligand expression. Porcine cells were used as targets in cytotoxicity assays with the HuNK cell lines NKL and YT, with and without enzymatic removal of pULBP1 and antibody blockade of NKG2D signaling. RESULTS AND CONCLUSIONS In this study, we demonstrate the expression of ligands for human NKG2D on porcine cell lines of endothelial and epithelial origin, islet cell clusters and rejecting kidney. HuNK cells were activated to kill pig cells expressing NKG2D ligands, and cytotoxicity was inhibited by antibody blockade of NKG2D. A previous study identified pULBP1 as the principal ligand for human NKG2D on pig aortic endothelial cells. In the current study, renal epithelial and intestinal endothelial cells each expressed high surface levels of pULBP1, but binding of soluble recombinant NKG2D and NKG2D-dependent cytotoxicity against these cells persisted after the enzymatic removal of pULBP1, strongly suggesting the presence of at least one additional functional ligand for human NKG2D in these cell types.
Collapse
Affiliation(s)
- Peter D Tran
- Collaborative Transplantation Research Group, Bosch Institute, Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Forte P, Baumann BC, Schneider MKJ, Seebach JD. HLA-Cw4 expression on porcine endothelial cells reduces cytotoxicity and adhesion mediated by CD158a+ human NK cells. Xenotransplantation 2009; 16:19-26. [PMID: 19243557 DOI: 10.1111/j.1399-3089.2009.00510.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Human natural killer (NK) cell-mediated cytotoxicity represents a hurdle in pig-to-human xenotransplantation. It was previously reported that the expression of human major histocompatibility complex class I molecules, including HLA-B27, -Cw3, -E, and -G, partially protects porcine endothelial cells (pEC) from human NK-mediated cytotoxicity and that HLA-G inhibits NK adhesion to pEC. Here, we tested if HLA-Cw4 expression on pEC alone, or concurrently with HLA-Cw3, prevents human NK adhesion and cytotoxicity against pEC via recognition of the killer-cell immunoglobulin-like receptors (KIR) CD158a (KIR2DL1) and CD158b (KIR2DL2/3), respectively. METHODS Two pEC lines (2A2 and PEDSV.15) were transfected with HLA-Cw3 and HLA-Cw4. HLA and KIR expression on porcine and human cells were analyzed by flow cytometry. The effect of HLA expression on pEC on human NK-mediated cytotoxicity and adhesion was tested by (51)Cr-release and dynamic adhesion assays, respectively. RESULTS HLA-Cw4 expression on pEC reduced cytotoxicity mediated by CD158a(+) polyclonal human NK cells by an average of 58%, and by CD158a(bright) NK cell clones by 68%, but not by NK cells expressing low levels of CD158. Co-expression of HLA-Cw3 and HLA-Cw4 on pEC did not mediate further protection against NK cytotoxicity. The expression of HLA-Cw4 reduced the adhesion of human NK cells on pEC by a mean of 53%. CONCLUSIONS While transgenic expression of HLA-Cw4 on pEC reduces NK cell adhesion and cytotoxicity, co-expression with HLA-Cw3 is not sufficient to completely overcome human NK-mediated cytotoxicity in vitro.
Collapse
Affiliation(s)
- Pietro Forte
- Laboratory for Transplantation Immunology, Department of Internal Medicine, University Hospital Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
28
|
Xenotransplantation: role of natural immunity. Transpl Immunol 2008; 21:70-4. [PMID: 18992342 DOI: 10.1016/j.trim.2008.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/09/2008] [Indexed: 11/20/2022]
Abstract
Hyperacute rejection, mediated by natural anti-Galalpha1,3Galbeta1,4GlcNAc (alphaGal) antibodies and the classically activated complement pathway, was identified as the first major barrier to the survival of porcine organs in humans. Subsequently, discordant pig-to-nonhuman primate and concordant rodent models revealed key roles for T and B lymphocytes in the second form of rejection, acute vascular rejection (AVR) or delayed xenograft rejection (DXR). As significant progress was made in strategies to circumvent or suppress xenoreactivity of the adaptive immune system, it became clear that, apart from natural antibodies, other innate immune system elements actively participate in AVR/DXR and represent a barrier to xenograft acceptance that may be particularly difficult to overcome. Observations in pig-to-primate and semi-discordant and concordant rodent models indicate that Natural Killer (NK) cells play a more prominent role in xenograft than in allograft rejection. Several mechanisms through which human NK cells recognize porcine endothelial cells have been elucidated and these appear to be more diverse than those involved in NK cell alloreactivity. Further, it has been demonstrated that human macrophages and neutrophils can directly recognize pig derived cells and can mediate direct xenograft damage. Here, we review the recent progress in the understanding of the xenoreactivity of the natural immune system, focussing on preclinical pig-to-(non)human primate systems, and discuss the proposed strategies to overcome these barriers.
Collapse
|
29
|
Gibbons C, Sykes M. Manipulating the immune system for anti-tumor responses and transplant tolerance via mixed hematopoietic chimerism. Immunol Rev 2008; 223:334-60. [PMID: 18613846 PMCID: PMC2680695 DOI: 10.1111/j.1600-065x.2008.00636.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SUMMARY Stem cells (SCs) with varying potentiality have the capacity to repair injured tissues. While promising animal data have been obtained, allogeneic SCs and their progeny are subject to immune-mediated rejection. Here, we review the potential of hematopoietic stem cells (HSCs) to promote immune tolerance to allogeneic and xenogeneic organs and tissues, to reverse autoimmunity, and to be used optimally to cure hematologic malignancies. We also review the mechanisms by which hematopoietic cell transplantation (HCT) can promote anti-tumor responses and establish donor-specific transplantation tolerance. We discuss the barriers to clinical translation of animal studies and describe some recent studies indicating how they can be overcome. The recent achievements of durable mixed chimerism across human leukocyte antigen barriers without graft-versus-host disease and of organ allograft tolerance through combined kidney and bone marrow transplantation suggest that the potential of this approach for use in the treatment of many human diseases may ultimately be realized.
Collapse
Affiliation(s)
- Carrie Gibbons
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
30
|
Current cellular innate immune hurdles in pig-to-primate xenotransplantation. Curr Opin Organ Transplant 2008; 13:171-7. [DOI: 10.1097/mot.0b013e3282f88a30] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Crispim JCO, Mendes-Junior CT, Wastowski IJ, Costa R, Castelli EC, Saber LT, Donadi EA. Frequency of insertion/deletion polymorphism in exon 8 of HLA-G and kidney allograft outcome. ACTA ACUST UNITED AC 2007; 71:35-41. [DOI: 10.1111/j.1399-0039.2007.00961.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Kawahara T, Rodriguez-Barbosa JI, Zhao Y, Zhao G, Sykes M. Global unresponsiveness as a mechanism of natural killer cell tolerance in mixed xenogeneic chimeras. Am J Transplant 2007; 7:2090-7. [PMID: 17640313 DOI: 10.1111/j.1600-6143.2007.01905.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mixed xenogeneic chimerism induces T- and B-cell tolerance in mice receiving T-cell-depleted rat bone marrow cells (BMC) following nonmyeloablative conditioning that includes alphabeta and gammadelta T cell and Natural killer (NK) cell-depleting mAbs. NK-cell depletion is essential to permit marrow engraftment, but NK-cell tolerance has not been previously assessed in mixed xenogeneic chimeras. We assessed NK-cell tolerance in rat --> mouse mixed xenogeneic chimeras using in vivo(125)I-5iodo-2-deoxyuridine assays. Additional rapid marrow rejection mechanisms resulted in a requirement for 10-fold more rat than ss2 microglobulin knockout (ss2M(-/-)) (MHC class I-deficient) mouse BMC to achieve engraftment in NK-cell-depleted mice. Both 12-week mixed xenogeneic chimeras and conditioned controls showed reduced resistance to engraftment of ss2M(-/-) mouse and rat BMC. While conditioned control mice recovered NK-cell-mediated resistance to ss2M(-/-) and rat BMC by 16 weeks, mixed chimeras lacked resistance to either, similar to NK-cell-deficient Ly49A transgenic mice. Thus, global NK-cell unresponsiveness is induced by mixed xenogeneic chimerism. Our data suggest that NK-cell anergy is induced by interactions with xenogeneic hematopoietic cells that express activating but not inhibitory ligands for recipient NK cells.
Collapse
Affiliation(s)
- T Kawahara
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
33
|
Monsiváis-Urenda A, Niño-Moreno P, Abud-Mendoza C, Baranda L, Layseca-Espinosa E, López-Botet M, González-Amaro R. Analysis of expression and function of the inhibitory receptor ILT2 (CD85j/LILRB1/LIR-1) in peripheral blood mononuclear cells from patients with systemic lupus erythematosus (SLE). J Autoimmun 2007; 29:97-105. [PMID: 17601702 DOI: 10.1016/j.jaut.2007.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 05/15/2007] [Accepted: 05/15/2007] [Indexed: 12/13/2022]
Abstract
The aim of this work was to study the expression and function of the inhibitory receptor ILT2/CD85j in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). We studied 23 SLE patients as well as 17 patients with rheumatoid arthritis, 10 with fibromyalgia, and 23 healthy individuals. We found a variable level of expression of ILT2 in the PBMC from both SLE patients and controls, with no significant differences among them. However, when the expression of this receptor was assessed in cell subsets, significantly lower levels were detected in CD19+ lymphocytes from SLE patients compared with healthy controls. Functional assays performed in unfractionated PBMC, showed a significant diminished inhibitory activity of ILT2 in CD4+ and CD8+ cell subsets from SLE patients compared to either rheumatoid arthritis or fibromyalgia patients, and healthy individuals. Our results show that the PBMC from some patients with SLE show a defective expression of ILT2, and that most of them exhibit a poor function of this inhibitory receptor.
Collapse
MESH Headings
- Adult
- Antigens, CD/immunology
- Antigens, CD/physiology
- Apoptosis
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Case-Control Studies
- Cell Cycle
- Cells, Cultured
- Female
- Fibromyalgia/immunology
- Fibromyalgia/metabolism
- Humans
- Leukocyte Immunoglobulin-like Receptor B1
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lymphocyte Activation
- Lymphocyte Subsets/cytology
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- Male
- Middle Aged
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
Collapse
Affiliation(s)
- A Monsiváis-Urenda
- Departamento de Inmunología, UASLP, Ave. V. Carranza 2405, 78210 San Luis Potosí, S.L.P., Mexico
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Human NK cell-mediated graft rejection is likely to be one of several biological obstacles to routine pig-to-human xenotransplantation. Abrogating NK cell activation by either elimination of activating ligands on porcine cells or expression of molecules serving as ligands for NK cell inhibitory receptors, or both, could overcome this hurdle. HLA-E and -G exhibit very limited polymorphism and are ligands for NK cell inhibitory receptors. This review summarizes successes and limitations of their use in xenotransplantation as inferred from ex vivo analyses of NK cell activity, highlights potential effects they may have on T-cell responses, and considers prospects of preclinical trials and potential outcomes.
Collapse
Affiliation(s)
- Mark D Crew
- Central Arkansas Veterans Healthcare System and Department of Microbiology & Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
35
|
Hunt JS, Morales PJ, Pace JL, Fazleabas AT, Langat DK. A commentary on gestational programming and functions of HLA-G in pregnancy. Placenta 2007; 28 Suppl A:S57-63. [PMID: 17350091 PMCID: PMC2709074 DOI: 10.1016/j.placenta.2007.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/21/2006] [Accepted: 01/03/2007] [Indexed: 11/21/2022]
Abstract
HLA-G is an HLA class Ib gene that is highly expressed in human trophoblast cells. The single HLA-G mRNA is alternatively spliced to generate at least seven transcripts, three of which encode soluble isoforms. Many studies have shown that high levels of soluble antigens are associated with successful implantation and graft acceptance. To study expression, regulation and functions of two of the soluble isoforms, HLA-G5 and HLA-G6, we generated recombinant proteins in eukaryotic cells and developed monoclonal antibodies specific for each of the two proteins. In addition, we investigated the olive baboon Paan-AG gene as a potential functional correlate of HLA-G. Here, we present summaries of the studies that have been conducted in our laboratory using these tools and discuss the results within the context of the research on this topic that is ongoing in ours and other laboratories worldwide. Collectively, the data indicate that soluble HLA-G is a critical contributor to immune privilege in pregnancy and imply that this placenta-derived substance may impact other pathways leading to successful reproduction.
Collapse
Affiliation(s)
- J S Hunt
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Mail Stop 3038, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
36
|
Lilienfeld BG, Crew MD, Forte P, Baumann BC, Seebach JD. Transgenic expression of HLA-E single chain trimer protects porcine endothelial cells against human natural killer cell-mediated cytotoxicity. Xenotransplantation 2007; 14:126-34. [PMID: 17381687 DOI: 10.1111/j.1399-3089.2007.00378.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The susceptibility of porcine endothelial cells (pEC) to human natural killer (NK) cells is related to the failure of human major histocompatibility complex (MHC)-specific killer inhibitory receptors to recognize porcine MHC class I molecules. The aims of this study were (i) to assess the protection of pEC against xenogeneic NK-mediated cytotoxicity afforded by the stable expression of HLA-E single chain trimers (SCT) composed of a canonical HLA-E binding peptide antigen, VMAPRTLIL, the mature human beta2-microglobulin, and the mature HLA-E heavy chain, and (ii) to test whether HLA-E expression on pEC and porcine lymphoblastoid cells affects the adhesion of human NK cells. METHODS Porcine EC lines expressing different levels of HLA-E SCT were generated by Ca(2)PO(4)-transfection followed by limiting dilution cloning. Surface expression of HLA-E was measured by flow cytometry. Susceptibility of transfected pEC lines against human NK cells was tested in (51)Cr-release cytotoxicity assays. Interactions between human NK cells and HLA-E positive pEC or porcine lymphoblastoid cells were further addressed in adhesion and conjugation assays. RESULTS The level of protection of pEC from human NK-mediated cytotoxicity correlated with the intensity of surface HLA-E expression. Furthermore, the HLA-E SCT-mediated protection was specifically reversed by blocking the HLA-E specific NK inhibitory receptor CD94/NKG2A. HLA-E expression does neither affect the adhesion of human NK cells to pEC nor the heteroconjugate formation between human NK and porcine 13271.10 cells. CONCLUSIONS Stable surface expression of HLA-E on pEC was achieved in the absence of extrinsic peptide pulsing and provided partial protection from human NK cytotoxicity. Though insufficient to inhibit xenogeneic NK cell reactivity completely, transgenic HLA-E expression on pig organs might contribute to a successful application of clinical xenotransplantation in combination with other protective strategies.
Collapse
Affiliation(s)
- Benjamin G Lilienfeld
- Laboratory for Transplantation Immunology, Department of Internal Medicine, University Hospital Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Abstract
Various changes take place during the progression of cancer, some of which are favorable for tumor development and may help to escape the immunosurvillance. These include changes in the microenvironment around the developing tumor, which could be produced in response to phenotypic alterations or could modulate the expression of certain markers of tumor development. One such newly discovered molecule is HLA-G, which has been found to have immunosuppressive and immunomodulatory roles in the cancer development. The regulatory sequences, as seen, may be induced by various factors that may be present in tumor microenvironment. A recent study has investigated the antigen -G as a marker of susceptibility to chemotherapy. Further, its expression on tumors and how it can be exploited for diagnosis and therapy is discussed in this article.
Collapse
Affiliation(s)
- Piyush Tripathi
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | |
Collapse
|
38
|
Banz Y, Rieben R. Endothelial cell protection in xenotransplantation: looking after a key player in rejection. Xenotransplantation 2006; 13:19-30. [PMID: 16497209 DOI: 10.1111/j.1399-3089.2005.00266.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The endothelium, as an organ at the interface between the intra- and extravascular space, actively participates in maintaining an anti-inflammatory and anti-coagulant environment under physiological conditions. Severe humoral as well as cellular rejection responses, which accompany cross-species transplantation of vascularized organs as well as ischemia/reperfusion injury, primarily target the endothelium and disrupt this delicate balance. Activation of pro-inflammatory and pro-coagulant pathways often lead to irreversible injury not only of the endothelial layer but also of the entire graft, with ensuing rejection. This review focuses on strategies targeted at protecting the endothelium from such damaging effects, ranging from genetic manipulation of the donor organ to soluble, as well as membrane-targeted, protective strategies.
Collapse
Affiliation(s)
- Yara Banz
- Department of Clinical Research, University of Bern, Switzerland
| | | |
Collapse
|
39
|
Abstract
The immune system must effectively regulate the balance between beneficial and detrimental inflammation. This process is achieved in part through cell surface receptors that rapidly integrate activating and inhibitory signals. The inhibitory members of the leukocyte Ig-like receptor (LILR) family, termed LILRBs, are broadly distributed among cell populations in the immune system and potently counterregulate cell activation induced by stimuli of innate and adaptive immune responses. Studies in mice and humans indicate that LILRBs appreciably downregulate harmful inflammatory responses induced by microbial, allergic, and cytotoxic mechanisms. Hence, the LILRBs likely play significant roles in regulating the incidence and severity of many inflammatory diseases, making them potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Howard R Katz
- Division of Rheumatology, Immunology, and Allergy, Harvard Medical School/Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Volz A, Radeloff B. Detecting the unusual: natural killer cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:473-541. [PMID: 16891179 DOI: 10.1016/s0079-6603(06)81012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Armin Volz
- Institut für Immungenetik Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Spanndauer Damm 130, 14050 Berlin, Germany
| | | |
Collapse
|
41
|
Forte P, Lilienfeld BG, Baumann BC, Seebach JD. Human NK Cytotoxicity against Porcine Cells Is Triggered by NKp44 and NKG2D. THE JOURNAL OF IMMUNOLOGY 2005; 175:5463-70. [PMID: 16210654 DOI: 10.4049/jimmunol.175.8.5463] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pig-to-human xenotransplantation has been proposed as a means to alleviate the shortage of human organs for transplantation, but cellular rejection remains a hurdle for successful xenograft survival. NK cells have been implicated in xenograft rejection and are tightly regulated by activating and inhibitory receptors recognizing ligands on potential target cells. The aim of the present study was to analyze the role of activating NK receptors including NKp30, NKp44, NKp46, and NKG2D in human xenogeneic NK cytotoxicity against porcine endothelial cells (pEC). (51)Cr release and Ab blocking assays were performed using freshly isolated, IL-2-activated polyclonal NK cell populations as well as a panel of NK clones. Freshly isolated NK cells are NKp44 negative and lysed pEC exclusively in an NKG2D-dependent fashion. In contrast, the lysis of pEC mediated by activated human NK cells depended on both NKp44 and NKG2D, since a complete protection of pEC was achieved only by simultaneous blocking of these activating NK receptors. Using a panel of NK clones, a highly significant correlation between anti-pig NK cytotoxicity and NKp44 expression levels was revealed. Other triggering receptors such as NKp30 and NKp46 were not involved in xenogeneic NK cytotoxicity. Finally, Ab-dependent cell-mediated cytotoxicity of pEC mediated by human NK cells in the presence of xenoreactive Ab was not affected by blocking of activating NK receptors. In conclusion, strategies aimed to inhibit interactions between NKp44 and NKG2D on human NK cells and so far unknown ligands on pEC may prevent direct NK responses against xenografts but not xenogeneic Ab-dependent cell-mediated cytotoxicity.
Collapse
Affiliation(s)
- Pietro Forte
- Department of Internal Medicine, Laboratory for Transplantation Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
42
|
Forte P, Baumann BC, Weiss EH, Seebach JD. HLA-E expression on porcine cells: protection from human NK cytotoxicity depends on peptide loading. Am J Transplant 2005; 5:2085-93. [PMID: 16095487 DOI: 10.1111/j.1600-6143.2005.00987.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human NK cells lyse porcine cells and may play an important role in the cell-mediated rejection of pig-to-human xenografts. Lysis is probably a consequence of the failure of human MHC-specific killer inhibitory receptors to recognize porcine MHC class I molecules. A majority of activated human NK cells express the HLA-E-specific inhibitory receptor CD94/NKG2A. The aim of this study was therefore to test the hypothesis that stable surface expression of HLA-E on porcine cells protects against xenogeneic NK-mediated cytotoxicity. Porcine lymphoblastoid (13 271) and endothelial (pEC) cell lines were transfected with constructs coding for HLA-E together with the leader sequence of HLA-B7 or -A2. HLA-E was correctly expressed on 13 271 cells while pEC required peptide-pulsing and/or IFN-gamma stimulation to express the HLA-E complex on the cell surface. HLA-E-expressing porcine cells were partially protected from lysis mediated by human polyclonal NK populations and completely protected from killing by NKG2Abright NK clones. In conclusion, the capability of different porcine cell types to express HLA-E on the cell surface can differ considerably depending decisively on the availability of peptides. These findings are important for the applicability of transgenic HLA-E expression as an approach to protect porcine tissues from human NK cytotoxicity.
Collapse
Affiliation(s)
- Pietro Forte
- Department of Internal Medicine, Laboratory for Transplantation Immunology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
43
|
Burlak C, Twining LM, Rees MA. Terminal Sialic Acid Residues on Human Glycophorin A Are Recognized by Porcine Kupffer Cells. Transplantation 2005; 80:344-52. [PMID: 16082330 DOI: 10.1097/01.tp.0000162974.94890.9f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have previously shown that recognition of human erythrocytes by porcine Kupffer cells is mediated by a carbohydrate-dependent mechanism. The present study explores the possible ligands existing on human glycophorin A and tests their ability to inhibit erythrocyte rosette formation. METHODS Human erythrocytes were tested for ABO and MN specificity and used as targets in a 51Chromium quantitative erythrocyte rosette assay. Monosaccharides present on human glycophorin A, neuraminyl lactoses, bovine and porcine submaxillary mucins (BSM and PSM), and hyaluronic acid as well as proteoglycan N-linked glycosidase F(PNGaseF)- and sialidase A-treated human erythrocyte glycoproteins (hEGP) and human erythrocytes were all tested for inhibitory potential in the rosetting assay. RESULTS Porcine Kupffer-cell recognition of human erythrocytes was insensitive to differences in blood groups A, B, O, or MN. At 30 mM, the monosaccharide, N-acetylneuraminic acid, and the trisaccharide mixture, neuraminyl lactoses, disrupted human erythrocyte recognition by 25% and 30%, respectively. A dilution of BSM but not PSM inhibited the rosetting assay by 17% (.2 mg/mL), 33% (1 mg/mL), and 53% (2 mg/mL). The same dilution of hyaluronic acid had no effect on rosetting. Removal of N-linked oligosaccharides from hEGP with PNGaseF did not impair its ability to inhibit the rosetting assay. In contrast, removal of sialic acid completely abrogated its inhibitory ability. Treatment of whole human erythrocytes with sialidase A likewise prevented recognition by porcine Kupffer cells. CONCLUSIONS Terminal sialic acid on human erythrocytes is a target recognized by porcine Kupffer cells, suggesting a role for a sialic-acid receptor in innate cellular recognition of xenogeneic epitopes. Inasmuch as this work reveals a carbohydrate-recognition mechanism for cellular rejection, we shed light on a potential new boundary that will need to be overcome within xenotransplantation.
Collapse
|
44
|
Crew MD, Cannon MJ, Phanavanh B, Garcia-Borges CN. An HLA-E single chain trimer inhibits human NK cell reactivity towards porcine cells. Mol Immunol 2005; 42:1205-14. [PMID: 15829309 DOI: 10.1016/j.molimm.2004.11.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Indexed: 10/25/2022]
Abstract
HLA-E, when expressed by pig cells, could alleviate human natural killer (NK) cell-mediated rejection of porcine xenografts by providing a potent inhibitory ligand for human NK cells expressing CD94/NKG2A. Yet cell-surface expression of HLA-E on porcine epithelial (LLC-PK1) cells was not observed after transfection with an expression vector harboring HLA-E alone or in combination with an expression vector containing human beta2m. A single chain trimer (SCT) of HLA-E consisting of, in the following order (from N- to C-terminus), the leader peptide of human beta2m, VMAPRTLIL (an HLA-E-binding peptide), a 15 amino acid linker, mature human beta2m, a 20 amino acid linker, and mature HLA-E heavy chain was engineered. Cell-surface expression and correct folding of HLA-E SCT was shown by FACS analyses of stably transfected LLC-PK1 cells. Untransfected LLC-PK1 cells were readily lysed by the NK cell lines NKL and NK-92, while LLC-PK1 cells expressing HLA-E SCT were almost completely protected. In addition, the HLA-E SCT recapitulates the peptide dependent properties of normal HLA-E trimeric complexes in that an HLA-E SCT with an hsp60 derived peptide, though expressed at the cell-surface, did not inhibit NK cell-mediated lysis. The HLA-E SCT, which conferred protection against NK cell-mediated killing, also inhibited NK cell IFN-gamma secretion elicited by co-culture of NKL cells with LLC-PK1 cells. Thus, HLA-E SCT, in which all three components of a normal HLA-E protein complex are in one polypeptide chain, is immunologically functional as it is able to modulate NK cell cytotoxicity and cytokine secretion.
Collapse
Affiliation(s)
- Mark D Crew
- Central Arkansas Veterans Healthcare System, University of Arkansas for Medical Sciences 151 Research, 4300 West 7th Street, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
45
|
Brown D, Trowsdale J, Allen R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. ACTA ACUST UNITED AC 2005; 64:215-25. [PMID: 15304001 DOI: 10.1111/j.0001-2815.2004.00290.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Leukocyte immunoglobulin (Ig)-like receptors [LILRs, also known as Ig-like transcripts (ILTs)] are a family of inhibitory and stimulatory receptors encoded within the leukocyte receptor complex and are expressed by immune cell types of both myeloid and lymphoid lineage. Several members of the LILR family recognize major histocompatibility complex class I. The immunomodulatory role of LILR receptors indicates that they may exert an influence on signaling pathways of both innate and adaptive immune systems. LILR activity can also influence the antigen-presenting properties of macrophages and dendritic cells and may thus play a role in T-cell tolerance. The wide-ranging effects of LILR signaling on immune cell activity imply that these receptors are likely to play an important role in a range of clinical situations including pregnancy, transplantation, and arthritis (including the human leukocyte antigen B27-associated spondyloarthropathies). In this review, we summarize current knowledge on the nature and function of LILRs, focusing on their regulation of immune cell activity and their potential role in disease.
Collapse
Affiliation(s)
- D Brown
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, England
| | | | | |
Collapse
|
46
|
Bigger CB, Guerra B, Brasky KM, Hubbard G, Beard MR, Luxon BA, Lemon SM, Lanford RE. Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees. J Virol 2004; 78:13779-92. [PMID: 15564486 PMCID: PMC533929 DOI: 10.1128/jvi.78.24.13779-13792.2004] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/30/2004] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) infections represent a global health problem and are a major contributor to end-stage liver disease including cirrhosis and hepatocellular carcinoma. An improved understanding of the parameters involved in disease progression is needed to develop better therapies and diagnostic markers of disease manifestation. To better understand the dynamics of host gene expression resulting from persistent virus infection, DNA microarray analyses were conducted on livers from 10 chimpanzees persistently infected with HCV. A total of 162 genes were differentially regulated in chronically infected animals compared to uninfected controls. Many genes exhibited a remarkable consistency in changes in expression in the 10 chronically infected animals. A second method of analysis identified 971 genes altered in expression during chronic infection at a 99% confidence level. As with acute-resolving HCV infections, many interferon (IFN)-stimulated genes (ISGs) were transcriptionally elevated, suggesting an ongoing response to IFN and/or double-stranded RNA which is amplified in downstream ISG expression. Thus, persistent infection with HCV results in a complex and partially predictable pattern of gene expression, although the underlying mechanisms regulating the different pathways are not well defined. A single genotype 3-infected animal was available for analysis, and this animal exhibited reduced levels of ISG expression compared to levels of expression with genotype 1 infections and increased expression of a number of genes potentially involved in steatosis. Gene expression data in concert with other observations from HCV infections permit speculation on the regulation of specific aspects of HCV infection.
Collapse
Affiliation(s)
- Catherine B Bigger
- Department of Virology and Immunology, Southwest National Primate Research Center, Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78227, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Crosby K, Yatko C, Dersimonian H, Pan L, Edge ASB. A novel monoclonal antibody inhibits the immune response of human cells against porcine cells: identification of a porcine antigen homologous to CD58. Transplantation 2004; 77:1288-94. [PMID: 15114100 DOI: 10.1097/01.tp.0000120377.57543.d8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Human CD58 is an adhesion molecule that interacts with CD2 on lymphocytes. We describe here an antibody that blocks responses of human peripheral blood mononuclear cells (PBMCs) to porcine cells and reacts with a porcine protein with homology to CD58. METHODS Antibodies were isolated with a screen for inhibition of the human antiporcine response. One of these antibodies was used for immunoaffinity purification of a protein that was identified by molecular weight determination, endoglycosidase sensitivity, and microsequencing analysis as a porcine homologue of CD58. RESULTS The antigen recognized by this antibody was a cell surface protein of relative molecular mass (Mr)=45,000 containing N-linked carbohydrate chains. Immunoaffinity purification of this protein and microsequencing revealed homology to sheep CD58 as well as sequences that were common to this protein and both sheep and human CD58. The protein was widely distributed on porcine cells, including lymphocytes, endothelial cells, muscle cells, and neuronal cells. This antibody efficiently inhibited lysis of porcine targets by human PBMCs in addition to preventing proliferation of the human PBMCs in response to the porcine cells. CONCLUSIONS The CD2 interaction with porcine cells is important for the efficient recognition of porcine tissue, and inhibition of the human antiporcine immune response with the antibody is likely to be caused by the disruption of the human CD2 interaction with this porcine homologue of CD58. The antibody may prove to be useful for the blocking of this interaction without interfering with other functions of T cells.
Collapse
|
48
|
Baumann BC, Forte P, Hawley RJ, Rieben R, Schneider MKJ, Seebach JD. Lack of Galactose-α-1,3-Galactose Expression on Porcine Endothelial Cells Prevents Complement-Induced Lysis but Not Direct Xenogeneic NK Cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2004; 172:6460-7. [PMID: 15128838 DOI: 10.4049/jimmunol.172.10.6460] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.
Collapse
MESH Headings
- Animals
- Antibodies, Heterophile/metabolism
- Antibody-Dependent Cell Cytotoxicity/genetics
- Antigens, Heterophile/immunology
- Antigens, Heterophile/physiology
- Binding Sites, Antibody/genetics
- Cell Adhesion/genetics
- Cell Adhesion/immunology
- Cell Line
- Cell Line, Transformed
- Clone Cells
- Complement System Proteins/physiology
- Cytotoxicity, Immunologic/genetics
- Disaccharides/deficiency
- Disaccharides/genetics
- Disaccharides/immunology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Humans
- Immune Tolerance/genetics
- Killer Cells, Natural/immunology
- Stress, Mechanical
- Swine
Collapse
Affiliation(s)
- Bettina C Baumann
- Department of Internal Medicine, Laboratory for Transplantation Immunology, University Hospital, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
Le Maoult J, Rouas-Freiss N, Le Discorde M, Moreau P, Carosella ED. HLA-G en transplantation d’organes. ACTA ACUST UNITED AC 2004; 52:97-103. [PMID: 15001239 DOI: 10.1016/j.patbio.2003.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 04/04/2003] [Indexed: 11/20/2022]
Abstract
The HLA-G molecule plays a crucial role in the protection of the fetus against aggression by the mother's immune system. Recently, it was shown that HLA-G was involved in the protection of the transplanted tissues, via the inhibition of all immune effectors that mediate graft rejection. The inhibitory functions of HLA-G were studied in vitro using allo- and xeno-geneic models, ex vivo on transplanted tissues biopsies, and in an in vivo animal model. In this review, we will summarize recent results which show that HLA-G acts as a regulator of immune function, seems to be directly involved in transplant acceptation, and should be taken into consideration when monitoring transplanted patients' status.
Collapse
Affiliation(s)
- J Le Maoult
- Service de recherches en hémato-immunologie, CEA-DSV-DRM, hôpital Saint-Louis, IUH, 1, avenue Claude-Vellefaux, 75010 Paris cedex 10, France
| | | | | | | | | |
Collapse
|
50
|
Kim JS, Choi SE, Yun IH, Kim JY, Ahn C, Kim SJ, Ha J, Hwang ES, Cha CY, Miyagawa S, Park CG. Human cytomegalovirus UL18 alleviated human NK-mediated swine endothelial cell lysis. Biochem Biophys Res Commun 2004; 315:144-50. [PMID: 15013438 DOI: 10.1016/j.bbrc.2004.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Indexed: 11/18/2022]
Abstract
Human cytomegalovirus UL18, a MHC class I homologue, is known to serve as a natural killer cell (NK) decoy and to ligate NK inhibitory receptors to prevent lysis of an infected target cell. To explore whether the cell surface expression of UL18 represents a potential immune suppressive approach to evade NK-mediated cytotoxicity in the prevention of xenograft rejection, we examined the effect of the UL18 expression in vitro upon human NK-mediated cytotoxicity against swine endothelial cells (SECs). UL18 expression on SECs by a retroviral vector (PLNCX2) significantly suppressed NK-mediated SEC lysis by approximately 25-100%. The protective effect of UL18 could be mediated through ILT-2 inhibitory receptor on NKs. Additionally, the interaction between UL18 and NKs resulted in the significant reduction of IFN-gamma production. This study demonstrates that UL18 can serve as an effective tool for the evasion of NK-mediated cytotoxicity and for the inhibition of IFN-gamma production during xenograft rejection.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/immunology
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Capsid Proteins/metabolism
- Cell Line
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cytotoxicity, Immunologic
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/transplantation
- Endothelium, Vascular/virology
- Flow Cytometry
- Fluorescent Antibody Technique, Indirect
- HLA Antigens/biosynthesis
- HLA Antigens/genetics
- HLA Antigens/immunology
- HLA-G Antigens
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Humans
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Leukocyte Immunoglobulin-like Receptor B1
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Swine
- Transfection
- Transplantation, Heterologous/immunology
Collapse
Affiliation(s)
- Jung-Sik Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|