1
|
West EE, Kemper C. Complosome - the intracellular complement system. Nat Rev Nephrol 2023:10.1038/s41581-023-00704-1. [PMID: 37055581 PMCID: PMC10100629 DOI: 10.1038/s41581-023-00704-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA.
| |
Collapse
|
2
|
Golabi M, Fathi F, Samadi M, Hesamian MS, Eskandari N. Identification of Potential Biomarkers in the Peripheral Blood Mononuclear Cells of Relapsing-Remitting Multiple Sclerosis Patients. Inflammation 2022; 45:1815-1828. [PMID: 35347537 DOI: 10.1007/s10753-022-01662-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is described as an immune disorder with inflammation and neurodegeneration. Relapsing-remitting MS (RRMS) is one of the most common types of MS. The diagnostic manner for this disorder typically includes the usage of magnetic resonance imaging (MRI); however, this is not always a very precise diagnostic method. Identification of molecular biomarkers in RRMS body fluids samples compared to healthy subjects can be useful to indicate the normal and pathogenic biological processes or pharmacological responses to drug interaction. In this regard, this study evaluated different miRNAs in isolated peripheral blood mononuclear cells (PBMCs) of RRMS compared to controls and their correlations with altered T regulatory type 1 (Tr1) cells, osteopontin (OPN), and interleukin 10 (IL-10) levels. The frequency of Tr1 cells was measured using flow cytometry. Also, the expressions of different miRNAs were evaluated via quantitative real-time polymerase chain reaction (RT-qPCR) and plasma levels of IL-10 and OPN were tested by enzyme-linked immunosorbent assay (ELISA). The obtained results showed the Tr1 cells' frequency, Let7c-5p, and miR-299-5p levels decreased in RRMS patients to about 59%, 0.69%, and 20% of HCs, respectively, (P < 0.05). The miR-106a-5p levels increased about 7.5-fold in RRMS patients in comparison to HCs (P < 0.05). Moreover, the results showed that there was an increased negative association between Tr1 frequency and plasma-OPN levels in RRMS patients in comparison to HCs and also, we found a moderate positive correlation between plasma-IL-10 and miR-299-5p expression of RRMS patients. Overall, it may be possible to use these biomarkers to improve the diagnostic process. These biomarkers may also be considered for clinical and therapeutic studies in the future.
Collapse
Affiliation(s)
- Marjan Golabi
- Department of Medical Immunology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Samadi
- Recurrent Abortion Research Center, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Sadegh Hesamian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Kim D, Kim M, Kim TW, Choe YH, Noh HS, Jeon HM, Kim H, Lee Y, Hur G, Lee KM, Shin K, Lee SI, Lee SH. Lymph node fibroblastic reticular cells regulate differentiation and function of CD4 T cells via CD25. J Exp Med 2022; 219:e20200795. [PMID: 35315876 PMCID: PMC8943836 DOI: 10.1084/jem.20200795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 03/31/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Lymph node fibroblastic reticular cells (LN-FRCs) provide functional structure to LNs and play important roles in interactions between T cells and antigen-presenting cells. However, the direct impact of LN-FRCs on naive CD4+ T cell differentiation has not been explored. Here, we show that T cell zone FRCs of LNs (LN-TRCs) express CD25, the α chain of the IL-2 receptor heterotrimer. Moreover, LN-TRCs trans-present IL-2 to naive CD4+ T cells through CD25, thereby facilitating early IL-2-mediated signaling. CD25-deficient LN-TRCs exhibit attenuated STAT5 phosphorylation in naive CD4+ T cells during T cell differentiation, promoting T helper 17 (Th17) cell differentiation and Th17 response-related gene expression. In experimental autoimmune disease models, disease severity was elevated in mice lacking CD25 in LN-TRCs. Therefore, our results suggest that CD25 expression on LN-TRCs regulates CD4+ T cell differentiation by modulating early IL-2 signaling of neighboring, naive CD4+ T cells, influencing the overall properties of immune responses.
Collapse
Affiliation(s)
- Dongeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Biomedical Science and Engineering Interdisciplinary Program, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA
| | - Mingyo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Tae Woo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yong-ho Choe
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Hae Sook Noh
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Hyun Min Jeon
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - HyunSeok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Youngeun Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gayeong Hur
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- R&D Division, GenoFocus Inc., Daejeon, South Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Kihyuk Shin
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, South Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Sang-il Lee
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Biomedical Science and Engineering Interdisciplinary Program, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
4
|
Gérard A, Cope AP, Kemper C, Alon R, Köchl R. LFA-1 in T cell priming, differentiation, and effector functions. Trends Immunol 2021; 42:706-722. [PMID: 34266767 PMCID: PMC10734378 DOI: 10.1016/j.it.2021.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The integrin LFA-1 is crucial for T cell entry into mammalian lymph nodes and tissues, and for promoting interactions with antigen-presenting cells (APCs). However, it is increasingly evident that LFA-1 has additional key roles beyond the mere support of adhesion between T cells, the endothelium, and/or APCs. These include roles in homotypic T cell-T cell (T-T) communication, the induction of intracellular complement activity underlying Th1 effector cell polarization, and the support of long-lasting T cell memory. Here, we briefly summarize current knowledge of LFA-1 biology, discuss novel cytoskeletal regulators of LFA-1 functions, and review new aspects of LFA-1 mechanobiology that are relevant to its function in immunological synapses and in specific pathologies arising from LFA-1 dysregulation.
Collapse
Affiliation(s)
- Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew P Cope
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Claudia Kemper
- National Heart, Lung and Blood Institute (NHLBI), National Institute of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ronen Alon
- The Weizmann Institute of Science, Rehovot, Israel
| | - Robert Köchl
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
| |
Collapse
|
5
|
Heat-Inactivation of Human Serum Destroys C1 Inhibitor, Pro-motes Immune Complex Formation, and Improves Human T Cell Function. Int J Mol Sci 2021; 22:ijms22052646. [PMID: 33808005 PMCID: PMC7961502 DOI: 10.3390/ijms22052646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022] Open
Abstract
Heat-inactivation of sera is used to reduce possible disturbing effects of complement factors in cell-culture experiments, but it is controversially discussed whether this procedure is appropriate or could be neglected. Here, we report a strong impact of heat-inactivation of human sera on the activation and effector functions of human CD4+ T cells. While T cells cultured with native sera were characterized by a higher proliferation rate and higher expression of CD28, heat-inactivated sera shaped T cells towards on-blast formation, higher cytokine secretion (interferon γ, tumor necrosis factor, and interleukin-17), stronger CD69 and PD-1 expression, and increased metabolic activity. Heat-inactivated sera contained reduced amounts of complement factors and regulators like C1 inhibitor, but increased concentrations of circulating immune complexes. Substitution of C1 inhibitor reduced the beneficial effect of heat-inactivation in terms of cytokine release, whereas surface-molecule expression was affected by the addition of complex forming anti-C1q antibody. Our data clearly demonstrate a beneficial effect of heat-inactivation of human sera for T cell experiments but indicate that beside complement regulators and immune complexes other components might be relevant. Beyond that, this study further underpins the strong impact of the complement system on T cell function.
Collapse
|
6
|
Kunz N, Kemper C. Complement Has Brains-Do Intracellular Complement and Immunometabolism Cooperate in Tissue Homeostasis and Behavior? Front Immunol 2021; 12:629986. [PMID: 33717157 PMCID: PMC7946832 DOI: 10.3389/fimmu.2021.629986] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
The classical liver-derived and serum-effective complement system is well appreciated as a key mediator of host protection via instruction of innate and adaptive immunity. However, recent studies have discovered an intracellularly active complement system, the complosome, which has emerged as a central regulator of the core metabolic pathways fueling human immune cell activity. Induction of expression of components of the complosome, particularly complement component C3, during transmigration from the circulation into peripheral tissues is a defining characteristic of monocytes and T cells in tissues. Intracellular complement activity is required to induce metabolic reprogramming of immune cells, including increased glycolytic flux and OXPHOS, which drive the production of the pro-inflammatory cytokine IFN-γ. Consequently, reduced complosome activity translates into defects in normal monocyte activation, faulty Th1 and cytotoxic T lymphocyte responses and loss of protective tissue immunity. Intriguingly, neurological research has identified an unexpected connection between the physiological presence of innate and adaptive immune cells and certain cytokines, including IFN-γ, in and around the brain and normal brain function. In this opinion piece, we will first review the current state of research regarding complement driven metabolic reprogramming in the context of immune cell tissue entry and residency. We will then discuss how published work on the role of IFN-γ and T cells in the brain support a hypothesis that an evolutionarily conserved cooperation between the complosome, cell metabolism and IFN-γ regulates organismal behavior, as well as immunity.
Collapse
Affiliation(s)
- Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, Bethesda, MD, United States.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Jia X, Zhai T, Wang B, Yao Q, Li Q, Mu K, Zhang JA. Decreased number and impaired function of type 1 regulatory T cells in autoimmune diseases. J Cell Physiol 2019; 234:12442-12450. [PMID: 30666652 DOI: 10.1002/jcp.28092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022]
Abstract
Type 1 regulatory T (Tr1) cell is a special type of T regulatory cells with surface molecular markers such as lymphocyte-activation gene 3 and CD49b. A key property of Tr1 cells is the capability to produce high-level interleukin 10 (IL-10) upon activation, in a FOXP3-independent manner. The immunosuppressive function of IL-10 producing Tr1 cells has been extensively studied for many years. Autoimmune diseases (AIDs) are conditions in which the immune system breaks down and starts to attack the body. AIDs include inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis (MS), type 1 diabetes mellitus, Greaves' disease, and so forth. In recent years, more and more studies have documented that the number of Tr1 cells is decreased and the function is inhibited in a variety of AIDs, among which MS is the most widely studied. The protocol for engineering Tr1 cell therapy has been established and is gradually being used in clinical practice in recent years. Tr1 cell therapy has been proven to be safe and effective, but it is mainly involved in myeloid leukemia, graft versus host disease currently. Its therapeutic role in AIDs still needs to be further explored. In this study, we will summarize the research advances of Tr1 cells in AIDs, which will provide useful information for treating AIDs through Tr1 cell therapy in the future.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Tianyu Zhai
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Bing Wang
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Qiuming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Qian Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Kaida Mu
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jin-An Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
8
|
Hansen CB, Willer A, Bayarri-Olmos R, Kemper C, Garred P. Expression of complement C3, C5, C3aR and C5aR1 genes in resting and activated CD4 + T cells. Immunobiology 2018; 224:307-315. [PMID: 30612786 DOI: 10.1016/j.imbio.2018.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023]
Abstract
Complement activation is traditionally thought to occur in the extracellular space. However, it has been suggested that complement proteins are activated and function at additional locations. T cells contain intracellular stores of C3 and C5 that can be cleaved into C3a and C5a and bind to intracellular receptors, which have been shown to be of vital importance for the differentiation and function of these cells. However, whether the origin of the complement proteins located within T cells is derived from endogenous produced complement or from an uptake dependent mechanism is unknown. The presence of intracellular C3 in T cells from normal donors was investigated by fluorescence microscopy and flow cytometry. Moreover, mRNA expression levels of several genes encoding for complement proteins with primary focus on C3, C3aR, C5 and C5aR1 during resting state and upon activation of CD4+ T cells were investigated by a quantitative PCR technique. Furthermore, the gene expression level was evaluated at different time points. We confirmed the presence of intracellular C3 protein in normal T-cells. However, we could not see any increase in mRNA levels using any activation strategy tested. On the contrary, we observed a slight increase in C3 and C5aR1 mRNA only in the non-activated T-cells compared to the activated T cells, and a decrease in the activated T-cells at different incubation time points. Our results show that there is a baseline intracellular expression of the complement C3, C5, C3aR and C5aR1 genes in normal CD4+ T cells, but that expression is not increased during T-cell activation, but rather down regulated. Thus, the pool of intracellular complement in CD4+ T cells may either be due to accumulated complement due low-grade expression or arise from the circulation from an uptake dependent mechanism, but these possibilities are not mutually exclusive.
Collapse
Affiliation(s)
- Cecilie Bo Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark
| | - Anton Willer
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark
| | - Claudia Kemper
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, MD, 20814, USA
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Faculty of Health and Medical Sciences, University Hospital of Copenhagen, Denmark.
| |
Collapse
|
9
|
Charvet B, Reynaud JM, Gourru-Lesimple G, Perron H, Marche PN, Horvat B. Induction of Proinflammatory Multiple Sclerosis-Associated Retrovirus Envelope Protein by Human Herpesvirus-6A and CD46 Receptor Engagement. Front Immunol 2018; 9:2803. [PMID: 30574140 PMCID: PMC6291489 DOI: 10.3389/fimmu.2018.02803] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of human endogenous retrovirus (HERV) elements of the HERV-W family has been associated with different diseases, including multiple sclerosis (MS). In particular, the expression of the envelope protein (Env) from the multiple sclerosis-associated retrovirus (MSRV), a member of HERV-W family and known for its potent proinflammatory activity, is repeatedly detected in the brain lesions and blood of MS patients. Furthermore, human herpesvirus 6 (HHV-6) infection has long been suspected to play a role in the pathogenesis of MS and neuroinflammation. We show here that both HHV-6A and stimulation of its receptor, transmembrane glycoprotein CD46, induce the expression of MSRV-Env. The engagement of extracellular domains SCR3 and SCR4 of CD46-Cyt1 isoform was required for MSRV-env transactivation, limiting thus the MSRV-Env induction to the CD46 ligands binding these domains, including C3b component of complement, specific monoclonal antibodies, and both infectious and UV-inactivated HHV-6A, but neither HHV-6B nor measles virus vaccine strain. Induction of MSRV-Env required CD46 Cyt-1 singling and was abolished by the inhibitors of protein kinase C. Finally, both membrane-expressed and secreted MSRV-Env trigger TLR4 signaling, displaying thus a proinflammatory potential, characteristic for this viral protein. These data expand the specter of HHV-6A effects in the modulation of the immune response and support the hypothesis that cross-talks between exogenous and endogenous viruses may contribute to inflammatory diseases and participate in neuroinflammation. Furthermore, they reveal a new function of CD46, known as an inhibitor of complement activation and receptor for several pathogens, in transactivation of HERV env genes, which may play an important role in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Benjamin Charvet
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,GeNeuro Innovation, Lyon, France
| | - Josephine M Reynaud
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Geraldine Gourru-Lesimple
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | | | - Patrice N Marche
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, IAPC, La Tronche, France
| | - Branka Horvat
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| |
Collapse
|
10
|
Abstract
The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
| | - Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
11
|
Killick J, Morisse G, Sieger D, Astier AL. Complement as a regulator of adaptive immunity. Semin Immunopathol 2018; 40:37-48. [PMID: 28842749 PMCID: PMC5794818 DOI: 10.1007/s00281-017-0644-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022]
Abstract
The complement system is an ancient and evolutionarily conserved effector system comprising in mammals over 50 circulating and membrane bound proteins. Complement has long been described as belonging to the innate immune system; however, a number of recent studies have demonstrated its key role in the modulation of the adaptive immune response. This review does not set out to be an exhaustive list of the numerous interactions of the many complement components with adaptive immunity; rather, we will focus more precisely on the role of some complement molecules in the regulation of antigen presenting cells, as well as on their direct effect on the activation of the core adaptive immune cells, B and T lymphocytes. Recent reports on the local production and activation of complement proteins also suggest a major role in the control of effector responses. The crucial role of complement in adaptive immunity is further highlighted by several examples of dysregulation of these pathways in human diseases.
Collapse
Affiliation(s)
- Justin Killick
- MRC Centre for Inflammation Research, Edinburgh Centre for MS Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Gregoire Morisse
- MRC Centre for Inflammation Research, Edinburgh Centre for MS Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
- Centre for NeuroRegeneration, Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Dirk Sieger
- Centre for NeuroRegeneration, Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Anne L Astier
- MRC Centre for Inflammation Research, Edinburgh Centre for MS Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK.
- Inserm U1043, CNRS U5282, Université de Toulouse, Centre de Physiopathologie Toulouse-Purpan (CPTP), F-31300, Toulouse, France.
| |
Collapse
|
12
|
Ni Choileain S, Hay J, Thomas J, Williams A, Vermeren MM, Benezech C, Gomez-Salazar M, Hugues OR, Vermeren S, Howie SEM, Dransfield I, Astier AL. TCR-stimulated changes in cell surface CD46 expression generate type 1 regulatory T cells. Sci Signal 2017; 10:10/502/eaah6163. [PMID: 29066539 DOI: 10.1126/scisignal.aah6163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A lack of regulatory T cell function is a critical factor in the pathogenesis of autoimmune diseases, such as multiple sclerosis (MS). Ligation of the complement regulatory protein CD46 facilitates the differentiation of T helper 1 (TH1) effector cells into interleukin-10 (IL-10)-secreting type 1 regulatory T cells (Tr1 cells), and this pathway is defective in MS patients. Cleavage of the ectodomain of CD46, which contains three N-glycosylation sites and multiple O-glycosylation sites, enables CD46 to activate T cells. We found that stimulation of the T cell receptor (TCR)-CD3 complex was associated with a reduction in the apparent molecular mass of CD46 in a manner that depended on O-glycosylation. CD3-stimulated changes in CD46 O-glycosylation status reduced CD46 processing and subsequent T cell signaling. During T cell activation, CD46 was recruited to the immune synapse in a manner that required its serine-, threonine-, and proline-rich (STP) region, which is rich in O-glycosylation sites. Recruitment of CD46 to the immune synapse switched T cells from producing the inflammatory cytokine interferon-γ (IFN-γ) to producing IL-10. Furthermore, CD4+ T cells isolated from MS patients did not exhibit a CD3-stimulated reduction in the mass of CD46 and thus showed increased amounts of cell surface CD46. Together, these data suggest a possible mechanism underlying the regulatory function of CD46 on T cells. Our findings may explain why this pathway is defective in patients with MS and provide insights into MS pathogenesis that could help to design future immunotherapies.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- Medical Research Council (MRC) Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Joanne Hay
- Medical Research Council (MRC) Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Joelle Thomas
- Université Claude Bernard Lyon I, CNRS UMR 5310-INSERM U1217, F-69100 Lyon, France
| | - Anna Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Matthieu M Vermeren
- Medical Research Council (MRC) Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Cecile Benezech
- UK Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mario Gomez-Salazar
- Medical Research Council (MRC) Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Owen R Hugues
- Millipore (U.K.) Limited, Croxley Green Business Park, Watford, Hertfordshire WD18 8ZB, UK
| | - Sonja Vermeren
- Medical Research Council (MRC) Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Sarah E M Howie
- Medical Research Council (MRC) Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Ian Dransfield
- Medical Research Council (MRC) Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Anne L Astier
- Medical Research Council (MRC) Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK. .,Centre de Physiopathologie Toulouse-Purpan, INSERM U1043, CNRS U5282, Université de Toulouse, Toulouse F-31300, France
| |
Collapse
|
13
|
Intracellular complement - the complosome - in immune cell regulation. Mol Immunol 2017; 89:2-9. [PMID: 28601357 PMCID: PMC7112704 DOI: 10.1016/j.molimm.2017.05.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/14/2017] [Accepted: 05/19/2017] [Indexed: 12/18/2022]
Abstract
The complement system was defined over a century ago based on its ability to "complement" the antibody-mediated and cell-mediated immune responses against pathogens. Today our understanding of this ancient part of innate immunity has changed substantially and we know now that complement plays an undisputed pivotal role in the regulation of both innate and adaptive immunity. The complement system consists of over 50 blood-circulating, cell-surface expressed and intracellular proteins. It is key in the recognition and elimination of invading pathogens, also in the removal of self-derived danger such as apoptotic cells, and it supports innate immune responses and the initiation of the general inflammatory reactions. The long prevailing classic view of complement was that of a serum-operative danger sensor and first line of defence system, however, recent experimental and clinical evidences have demonstrated that "local" tissue and surprisingly intracellular complement (the complosome) activation impacts on normal cell physiology. This review will focus on novel aspects of intracellular complement activation and its unexpected roles in basic cell processes such as metabolism. We also discuss what the existence of the complosome potentially means for how the host handles intracellular pathogens such as viruses.
Collapse
|
14
|
Libro R, Scionti D, Diomede F, Marchisio M, Grassi G, Pollastro F, Piattelli A, Bramanti P, Mazzon E, Trubiani O. Cannabidiol Modulates the Immunophenotype and Inhibits the Activation of the Inflammasome in Human Gingival Mesenchymal Stem Cells. Front Physiol 2016; 7:559. [PMID: 27932991 PMCID: PMC5121123 DOI: 10.3389/fphys.2016.00559] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/04/2016] [Indexed: 01/05/2023] Open
Abstract
Human Gingival Mesenchymal Stem Cells (hGMSCs) are multipotential cells that can expand and differentiate in culture under specific and standardized conditions. In the present study, we have investigated whether in vitro pre-treatment of hGMSCs with Cannabidiol (CBD) can influence their expression profile, improving the therapeutic potential of this cell culture. Following CBD treatment (5 μM) for 24 h, gene expression analysis through Next Generation Sequencing (NGS) has revealed several genes differentially expressed between CBD-treated hGMSCs (CBD-hGMSCs) and control cells (CTR-hGMSCs) that were linked to inflammation and apoptosis. In particular, we have demonstrated that CBD treatment in hGMSCs prevented the activation of the NALP3-inflammasome pathway by suppressing the levels of NALP3, CASP1, and IL18, and in parallel, inhibited apoptosis, as demonstrated by the suppression of Bax. CBD treatment was also able to modulate the expression of the well-known mesenchymal stem cell markers (CD13, CD29, CD73, CD44, CD90, and CD166), and other surface antigens. Specifically, CBD led to the downregulation of genes codifying for antigens involved in the activation of the immune system (CD109, CD151, CD40, CD46, CD59, CD68, CD81, CD82, CD99), while it led to the upregulation of those implicated in the inhibition of the immune responses (CD47, CD55, CD276). In conclusion, the present study will provide a new simple and reproducible method for preconditioning hGMSCs with CBD, before transplantation, as an interesting strategy for improving the hGMSCs molecular phenotype, reducing the risk of immune or inflammatory reactions in the host, and in parallel, for increasing their survival and thus, their long-term therapeutic efficacy.
Collapse
Affiliation(s)
- Rosaliana Libro
- Experimental Neurology Laboratory, IRCCS Centro Neurolesi “Bonino-Pulejo”Messina, Italy
| | - Domenico Scionti
- Experimental Neurology Laboratory, IRCCS Centro Neurolesi “Bonino-Pulejo”Messina, Italy
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, University “G. d'Annunzio”Chieti-Pescara, Chieti, Italy
| | - Gianpaolo Grassi
- Council for Research and Experimentation in Agriculture - Research Centre for Industrial Crops (CRA-CIN)Rovigo, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte OrientaleNovara, Italy
| | - Adriano Piattelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”Chieti-Pescara, Chieti, Italy
| | - Placido Bramanti
- Experimental Neurology Laboratory, IRCCS Centro Neurolesi “Bonino-Pulejo”Messina, Italy
| | - Emanuela Mazzon
- Experimental Neurology Laboratory, IRCCS Centro Neurolesi “Bonino-Pulejo”Messina, Italy
| | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”Chieti-Pescara, Chieti, Italy
| |
Collapse
|
15
|
Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction. Sci Rep 2016; 6:33714. [PMID: 27666019 PMCID: PMC5036054 DOI: 10.1038/srep33714] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
The acrosome reaction (AR) is a process of membrane fusion and lytic enzyme release, which enables sperm to penetrate the egg surroundings. It is widely recognized that specific sperm proteins form an active network prior to fertilization, and their dynamic relocation is crucial for the sperm-egg fusion. The unique presence of the membrane cofactor protein CD46 in the sperm acrosomal membrane was shown, however, its behaviour and connection with other sperm proteins has not been explored further. Using super resolution microscopy, we demonstrated a dynamic CD46 reorganisation over the sperm head during the AR, and its interaction with transmembrane protein integrins, which was confirmed by proximity ligation assay. Furthermore, we propose their joint involvement in actin network rearrangement. Moreover, CD46 and β1 integrins with subunit α3, but not α6, are localized into the apical acrosome and are expected to be involved in signal transduction pathways directing the acrosome stability and essential protein network rearrangements prior to gamete fusion.
Collapse
|
16
|
King BC, Esguerra JLS, Golec E, Eliasson L, Kemper C, Blom AM. CD46 Activation Regulates miR-150-Mediated Control of GLUT1 Expression and Cytokine Secretion in Human CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1636-45. [PMID: 26746193 DOI: 10.4049/jimmunol.1500516] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/08/2015] [Indexed: 01/05/2023]
Abstract
CD46 is a cell surface complement inhibitor widely expressed in human tissues, in contrast to mice, where expression is limited to the testes. In humans, it has been identified as an important T cell costimulatory receptor, and patients deficient in CD46 or its endogenous ligands are unable to mount effective Th1 T cell responses. Stimulation of human CD4(+) T cells with CD3 and CD46 also leads to the differentiation of a "switched" Th1 population, which shuts down IFN-γ secretion and upregulates IL-10 and is thought to be important for negative feedback regulation of the Th1 response. In the present study, we show that CD46 costimulation leads to amplified microRNA (miR) expression changes in human CD4(+) T cells, with associated increases in activation more potent than those mediated by the "classic" costimulator CD28. Blockade of cell surface CD46 inhibited CD28-mediated costimulation, identifying autocrine CD46 signaling as downstream of CD28. We also identify a downregulation of miR-150 in CD46-costimulated T cells and identify the glucose transporter 1 encoding transcript SLC2A1 as a target of miR-150 regulation, connecting miR-150 with modulation of glucose uptake. We also investigated microRNA expression profiles of CD46-induced switched IL-10-secreting Th1 T cells and found increased expression of miR-150, compared with IFN-γ-secreting Th1 cells. Knockdown of miR-150 led to a reduction in IL-10 but not IFN-γ. CD46 therefore controls both Th1 activation and regulation via a miR-150-dependent mechanism.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205-02 Malmö, Sweden
| | - Jonathan L S Esguerra
- Islet Cell Exocytosis Unit, Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, 205-02 Malmö, Sweden; and
| | - Ewelina Golec
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205-02 Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis Unit, Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, 205-02 Malmö, Sweden; and
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205-02 Malmö, Sweden;
| |
Collapse
|
17
|
Nur I, Abdelkhalek NK, Motobe S, Nakamura R, Tsujikura M, Somamoto T, Nakao M. Functional analysis of membrane-bound complement regulatory protein on T-cell immune response in ginbuna crucian carp. Mol Immunol 2015; 70:1-7. [PMID: 26688068 DOI: 10.1016/j.molimm.2015.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 12/12/2022]
Abstract
Complements have long been considered to be a pivotal component in innate immunity. Recent researches, however, highlight novel roles of complements in T-cell-mediated adaptive immunity. Membrane-bound complement regulatory protein CD46, a costimulatory protein for T cells, is a key molecule for T-cell immunomodulation. Teleost CD46-like molecule, termed Tecrem, has been newly identified in common carp and shown to function as a complement regulator. However, it remains unclear whether Tecrem is involved in T-cell immune response. We investigated Tecrem function related to T-cell responses in ginbuna crucian carp. Ginbuna Tecrem (gTecrem) proteins were detected by immunoprecipitation using anti-common carp Tecrem monoclonal antibody (mAb) and were ubiquitously expressed on blood cells including CD8α(+) and CD4(+) lymphocytes. gTecrem expression on leucocyte surface was enhanced after stimulation with the T-cell mitogen, phytohaemagglutinin (PHA). Coculture with the anti-Tecrem mAb significantly inhibited the proliferative activity of PHA-stimulated peripheral blood lymphocytes, suggesting that cross-linking of Tecrems on T-cells interferes with a signal transduction pathway for T-cell activation. These findings indicate that Tecrem may act as a T-cell moderator and imply that the complement system in teleost, as well as mammals, plays an important role for linking adaptive and innate immunity.
Collapse
Affiliation(s)
- Indriyani Nur
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; Aquaculture Department, Fisheries and Marine Science Faculty, Halu Oleo University, Kendari 93232, Indonesia
| | - Nevien K Abdelkhalek
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan; Department of Internal Medicine, Infectious and Fish diseases, Faculty of Veterinary Medicine, El-Mansoura University, Egypt
| | - Shiori Motobe
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Ryota Nakamura
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Masakazu Tsujikura
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan.
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
18
|
Monocyte:T-cell interaction regulates human T-cell activation through a CD28/CD46 crosstalk. Immunol Cell Biol 2015; 93:796-803. [PMID: 25787182 PMCID: PMC4519525 DOI: 10.1038/icb.2015.42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/20/2015] [Accepted: 03/15/2015] [Indexed: 01/20/2023]
Abstract
T cell activation requires engagement of the T cell receptor and of at least one costimulatory molecule. The key role of CD28 in inducing T cell activation has been reported several decades ago and the molecular mechanisms involved well described. The complement regulator CD46 also acts as a costimulatory molecule for T cells but, in contrast to CD28, has the ability to drive T cell differentiation from producing some IFNγ to secreting some potent anti-inflammatory IL-10, acquiring a so-called Type I regulatory phenotype (Tr1). Proteolytic cleavage of CD46 occurs upon costimulation and is important for T cell activation and IL-10 production. The observation that CD46 cleavage was reduced when PBMC were costimulated compared to purified naive T cells led us to hypothesize that interactions between different cell types within the PBMC were able to modulate the CD46 pathway. We show that CD46 downregulation is also reduced when CD4+ T cells are co-cultured with autologous monocytes. Indeed, monocyte:T cell co-cultures impaired CD46–mediated T cell differentiation and coactivation, by reducing downregulation of surface CD46, lowering induction of the early activation marker CD69, as well as reducing the levels of IL-10 secretion. Blocking of CD86 could partly restore CD69 expression and cytokine secretion, demonstrating that the CD28-CD86 pathway regulates CD46 activation. Direct concomitant ligation of CD28 and CD46 on CD4+ T cells also modulated CD46 expression and regulated cytokine production. These data identify a crosstalk between two main costimulatory pathways and provide novel insights into the regulation of human T cell activation.
Collapse
|
19
|
Hay J, Carter D, Lieber A, Astier AL. Recombinant Ad35 adenoviral proteins as potent modulators of human T cell activation. Immunology 2014; 144:453-460. [PMID: 25251258 PMCID: PMC4557682 DOI: 10.1111/imm.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022] Open
Abstract
The protein CD46 protects cells from complement attack by regulating cleavage of C3b and C3d. CD46 also regulates the adaptive immune response by controlling T cell activation and differentiation. Co-engagement of the T cell receptor and CD46 notably drives T cell differentiation by switching production of IFNγ to secretion of anti-inflammatory IL-10. This regulatory pathway is altered in several chronic inflammatory diseases highlighting its key role for immune homeostasis. The manipulation of the CD46 pathway may therefore provide a powerful means to regulate immune responses. Herein, we investigated the effect of recombinant proteins derived from the fiber knob of the adenovirus serotype 35 (Ad35) that uses CD46 as its entry receptor, on human T cell activation. We compared the effects of Ad35K++, engineered to exhibit enhanced affinity to CD46, and of Ad35K-, mutated in the binding site for CD46. Ad35K++ profoundly affects T cell activation by decreasing the levels of CD46 at the surface of primary T cells, and impairing T cell co-activation, shown by decreased CD25 expression, reduced proliferation and lower secretion of IL-10 and IFNγ. In contrast, Ad35K- acts a potent coactivator of T cells, enhancing T cell proliferation and cytokine production. These data show that recombinant Ad35 proteins are potent modulators of human T cell activation, and support their further development as potential drugs targeting T cell responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joanne Hay
- MRC Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research InstituteEdinburgh, UK
| | - Darrick Carter
- PAI Life Sciences Inc.Seattle, WA, USA
- Compliment Corp.Seattle, WA, USA
| | - André Lieber
- Department of Medical Genetics, University of WashingtonSeattle, WA, USA
| | - Anne L Astier
- MRC Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research InstituteEdinburgh, UK
| |
Collapse
|
20
|
Human herpesvirus 6A infection in CD46 transgenic mice: viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9. J Virol 2014; 88:5421-36. [PMID: 24574405 DOI: 10.1128/jvi.03763-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Human herpesvirus 6 (HHV-6) is widely spread in the human population and has been associated with several neuroinflammatory diseases, including multiple sclerosis. To develop a small-animal model of HHV-6 infection, we analyzed the susceptibility of several lines of transgenic mice expressing human CD46, identified as a receptor for HHV-6. We showed that HHV-6A (GS) infection results in the expression of viral transcripts in primary brain glial cultures from CD46-expressing mice, while HHV-6B (Z29) infection was inefficient. HHV-6A DNA persisted for up to 9 months in the brain of CD46-expressing mice but not in the nontransgenic littermates, whereas HHV-6B DNA levels decreased rapidly after infection in all mice. Persistence in the brain was observed with infectious but not heat-inactivated HHV-6A. Immunohistological studies revealed the presence of infiltrating lymphocytes in periventricular areas of the brain of HHV-6A-infected mice. Furthermore, HHV-6A stimulated the production of a panel of proinflammatory chemokines in primary brain glial cultures, including CCL2, CCL5, and CXCL10, and induced the expression of CCL5 in the brains of HHV-6A-infected mice. HHV-6A-induced production of chemokines in the primary glial cultures was dependent on the stimulation of toll-like receptor 9 (TLR9). Finally, HHV-6A induced signaling through human TLR9 as well, extending observations from the murine model to human infection. Altogether, this study presents a first murine model for HHV-6A-induced brain infection and suggests a role for TLR9 in the HHV-6A-initiated production of proinflammatory chemokines in the brain, opening novel perspectives for the study of virus-associated neuropathology. IMPORTANCE HHV-6 infection has been related to neuroinflammatory diseases; however, the lack of a suitable small-animal infection model has considerably hampered further studies of HHV-6-induced neuropathogenesis. In this study, we have characterized a new model for HHV-6 infection in mice expressing the human CD46 protein. Infection of CD46 transgenic mice with HHV-6A resulted in long-term persistence of viral DNA in the brains of infected animals and was followed by lymphocyte infiltration and upregulation of the CCL5 chemokine in the absence of clinical signs of disease. The secretion of a panel of chemokines was increased after infection in primary murine brain glial cultures, and the HHV-6-induced chemokine expression was inhibited when TLR9 signaling was blocked. These results describe the first murine model for HHV-6A-induced brain infection and suggest the importance of the TLR9 pathway in HHV-6A-initiated neuroinflammation.
Collapse
|
21
|
Yamamoto H, Fara AF, Dasgupta P, Kemper C. CD46: the 'multitasker' of complement proteins. Int J Biochem Cell Biol 2013; 45:2808-20. [PMID: 24120647 DOI: 10.1016/j.biocel.2013.09.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Complement is undeniably quintessential for innate immunity by detecting and eliminating infectious microorganisms. Recent work, however, highlights an equally profound impact of complement on the induction and regulation of a wide range of immune cells. In particular, the complement regulator CD46 emerges as a key sensor of immune activation and a vital modulator of adaptive immunity. In this review, we summarize the current knowledge of CD46-mediated signalling events and their functional consequences on immune-competent cells with a specific focus on those in CD4(+) T cells. We will also discuss the promises and challenges that potential therapeutic modulation of CD46 may hold and pose.
Collapse
Affiliation(s)
- Hidekazu Yamamoto
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, UK; The Urology Centre, Guy's and St. Thomas' NHS Foundations Trust, London SE1 9RT, UK
| | | | | | | |
Collapse
|
22
|
Ng THS, Britton GJ, Hill EV, Verhagen J, Burton BR, Wraith DC. Regulation of adaptive immunity; the role of interleukin-10. Front Immunol 2013; 4:129. [PMID: 23755052 PMCID: PMC3668291 DOI: 10.3389/fimmu.2013.00129] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of interleukin-10 (IL-10) in the 1980s, a large body of work has led to its recognition as a pleiotropic immunomodulatory cytokine that affects both the innate and adaptive immune systems. IL-10 is produced by a wide range of cell types, but for the purposes of this review we shall focus on IL-10 secreted by CD4(+) T cells. Here we describe the importance of IL-10 as a mediator of suppression used by both FoxP3(+) and FoxP3(-) T regulatory cells. Moreover, we discuss the molecular events leading to the induction of IL-10 secretion in T helper cell subsets, where it acts as a pivotal negative feedback mechanism. Finally we discuss how a greater understanding of this principle has allowed for the design of more efficient, antigen-specific immunotherapy strategies to exploit this natural phenomenon clinically.
Collapse
Affiliation(s)
- T H Sky Ng
- School of Cellular and Molecular Medicine, University of Bristol , Bristol , UK
| | | | | | | | | | | |
Collapse
|
23
|
Kolev M, Le Friec G, Kemper C. The role of complement in CD4+ T cell homeostasis and effector functions. Semin Immunol 2013; 25:12-9. [DOI: 10.1016/j.smim.2013.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/30/2013] [Indexed: 01/22/2023]
|
24
|
Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:55-81. [PMID: 23402019 DOI: 10.1007/978-1-4614-4118-2_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For the last two decades, there had been remarkable advancement in understanding the role of complement regulatory proteins in autoimmune disorders and importance of complement inhibitors as therapeutics. Systemic lupus erythematosus is a prototype of systemic autoimmune disorders. The disease, though rare, is potentially fatal and afflicts women at their reproductive age. It is a complex disease with multiorgan involvement, and each patient presents with a different set of symptoms. The diagnosis is often difficult and is based on the diagnostic criteria set by the American Rheumatology Association. Presence of antinuclear antibodies and more specifically antidouble-stranded DNA indicates SLE. Since the disease is multifactorial and its phenotypes are highly heterogeneous, there is a need to identify multiple noninvasive biomarkers for SLE. Lack of validated biomarkers for SLE disease activity or response to treatment is a barrier to the efficient management of the disease, drug discovery, as well as development of new therapeutics. Recent studies with gene knockout mice have suggested that membrane-bound complement regulatory proteins (CRPs) may critically determine the sensitivity of host tissues to complement injury in autoimmune and inflammatory disorders. Case-controlled and followup studies carried out in our laboratory suggest an intimate relation between the level of DAF, MCP, CR1, and CD59 transcripts and the disease activity in SLE. Based on comparative evaluation of our data on these four membrane-bound complement regulatory proteins, we envisaged CR1 and MCP transcripts as putative noninvasive disease activity markers and the respective proteins as therapeutic targets for SLE. Following is a brief appraisal on membrane-bound complement regulatory proteins DAF, MCP, CR1, and CD59 as biomarkers and therapeutic targets for SLE.
Collapse
|
25
|
Kickler K, Ni Choileain S, Williams A, Richards A, Astier AL. Calcitriol modulates the CD46 pathway in T cells. PLoS One 2012; 7:e48486. [PMID: 23144765 PMCID: PMC3483209 DOI: 10.1371/journal.pone.0048486] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/02/2012] [Indexed: 11/19/2022] Open
Abstract
The complement regulator CD46 is a costimulatory molecule for human T cells that induces a regulatory Tr1 phenotype, characterized by large amounts of IL-10 secretion. Secretion of IL-10 upon CD46 costimulation is largely impaired in T cells from patients with multiple sclerosis (MS). Vitamin D can exert a direct effect on T cells, and may be beneficial in several pathologies, including MS. In this pilot study, we examined whether active vitamin D (1,25(OH)(2)D(3) or calcitriol) could modulate the CD46 pathway and restore IL-10 production by CD46-costimulated CD4+ T cells from patients with MS. In healthy T cells, calcitriol profoundly affects the phenotype of CD46-costimulated CD4+ T cells, by increasing the expression of CD28, CD25, CTLA-4 and Foxp3 while it concomitantly decreased CD46 expression. Similar trends were observed in MS CD4+ T cells except for CD25 for which a striking opposite effect was observed: while CD25 was normally induced on MS T cells by CD46 costimulation, addition of calcitriol consistently inhibited its induction. Despite the aberrant effect on CD25 expression, calcitriol increased the IL-10:IFNγ ratio, characteristic of the CD46-induced Tr1 phenotype, in both T cells from healthy donors and patients with MS. Hence, we show that calcitriol affects the CD46 pathway, and that it promotes anti-inflammatory responses mediated by CD46. Moreover, it might be beneficial for T cell responses in MS.
Collapse
Affiliation(s)
- Karoline Kickler
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Siobhan Ni Choileain
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
- Multiple Sclerosis Research Centre, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Anna Williams
- Multiple Sclerosis Research Centre, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Anna Richards
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Anne L. Astier
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
- Multiple Sclerosis Research Centre, MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Tsai YG, Niu DM, Yang KD, Hung CH, Yeh YJ, Lee CY, Lin CY. Functional defects of CD46-induced regulatory T cells to suppress airway inflammation in mite allergic asthma. J Transl Med 2012; 92:1260-9. [PMID: 22751347 DOI: 10.1038/labinvest.2012.86] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Defective recruitment of regulatory T cells (Treg) function to the airway is important in the pathogenesis of allergic asthma. Complement regulatory protein (CD46) is a newly defined costimulatory molecule for Treg activation, which together with IL-10/granzyme B production may aid in suppressing asthmatic inflammation. This study examines chemotaxis and adhesion molecule expression on CD3/CD46-activated CD4(+) T cells (Tregs) from patients with and without asthma to suppress mite allergen-induced respiratory epithelial cells inflammation and to elucidate the mechanism of CD46-mediated Treg activation. Diminished IL-10/granzyme B and CCR4 expression from CD3/CD46-activated Tregs appeared in asthmatic subjects. CD3/CD46-activated Tregs from asthma patients co-cultured with BEAS-2B cells suppressed Dermatophagoides pteronyssinus 2 induced nuclear factor-κB/p65 by cell contact inhibition. Decreased interaction of CD3/CD46-mediated Tregs and BEAS-2B cells from asthmatics was associated with downregulated phosphorylation of protein kinase B (AKT) expression. Results provide the first evidence that decreased interaction between CD46-mediated Tregs and lung epithelial cells with less IL-10/granzyme B production may cause airway inflammation in allergic asthma.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Hospital, Changhua, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Kickler K, Maltby K, Ni Choileain S, Stephen J, Wright S, Hafler DA, Jabbour HN, Astier AL. Prostaglandin E2 affects T cell responses through modulation of CD46 expression. THE JOURNAL OF IMMUNOLOGY 2012; 188:5303-10. [PMID: 22544928 DOI: 10.4049/jimmunol.1103090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ubiquitous protein CD46, a regulator of complement activity, promotes T cell activation and differentiation toward a regulatory Tr1-like phenotype. The CD46-mediated differentiation pathway is defective in several chronic inflammatory diseases, underlying the importance of CD46 in controlling T cell function and the need to understand its regulatory mechanisms. Using an RNA interference-based screening approach in primary T cells, we have identified that two members of the G protein-coupled receptor kinases were involved in regulating CD46 expression at the surface of activated cells. We have investigated the role of PGE(2), which binds to the E-prostanoid family of G protein-coupled receptors through four subtypes of receptors called EP 1-4, in the regulation of CD46 expression and function. Conflicting roles of PGE(2) in T cell functions have been reported, and the reasons for these apparent discrepancies are not well understood. We show that addition of PGE(2) strongly downregulates CD46 expression in activated T cells. Moreover, PGE(2) differentially affects T cell activation, cytokine production, and phenotype depending on the activation signals received by the T cells. This was correlated with a distinct pattern of the PGE(2) receptors expressed, with EP4 being preferentially induced by CD46 activation. Indeed, addition of an EP4 antagonist could reverse the effects observed on cytokine production after CD46 costimulation. These data demonstrate a novel role of the PGE(2)-EP4 axis in CD46 functions, which might at least partly explain the diverse roles of PGE(2) in T cell functions.
Collapse
Affiliation(s)
- Karoline Kickler
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Frolíková M, Stopková R, Antalíková J, Johnson PM, Stopka P, Dvořáková-Hortová K. Role of complement regulatory proteins CD46, CD55 and CD59 in reproduction. FOLIA ZOOLOGICA 2012. [DOI: 10.25225/fozo.v61.i1.a12.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Michaela Frolíková
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague, Czech Republic
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague, Czech Republic
| | - Jana Antalíková
- Department of Immunogenetics, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, 900 28 Ivanka pri Dunaji, Slovak Republic
| | - Peter M. Johnson
- Division of Immunology, School of Infection and Host Defence, Duncan Building, University of Liverpool, L69 3BX, Liverpool, U.K
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague, Czech Republic
| | - Kateřina Dvořáková-Hortová
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague, Czech Republic
| |
Collapse
|
29
|
Ni Choileain S, Astier AL. CD46 processing: a means of expression. Immunobiology 2011; 217:169-75. [PMID: 21742405 DOI: 10.1016/j.imbio.2011.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 12/15/2022]
Abstract
CD46 is a ubiquitously expressed type I transmembrane protein, first identified as a regulator of complement activation, and later as an entry receptor for a variety of pathogens. The last decade has also revealed the role of CD46 in regulating the adaptive immune response, acting as an additional costimulatory molecule for human T cells and inducing their differentiation into Tr1 cells, a subset of regulatory T cells. Interestingly, CD46 regulatory pathways are defective in T cells from patients with multiple sclerosis, asthma and rheumatoid arthritis, illustrating its importance in regulating T cell homeostasis. Indeed, CD46 expression at the cell surface is tightly regulated in many different cell types, highlighting its importance in several biological processes. Notably, CD46 is the target of enzymatic processing, being cleaved by metalloproteinases and by the presenilin/gamma secretase complex. This processing is required for its functions, at least in T cells. This review will summarize the latest updates on the regulation of CD46 expression and on its effects on T cell activation.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- MRC Centre for Inflammation Research, Centre for MS Research, University of Edinburgh, UK
| | | |
Collapse
|
30
|
Heeger PS, Kemper C. Novel roles of complement in T effector cell regulation. Immunobiology 2011; 217:216-24. [PMID: 21742404 DOI: 10.1016/j.imbio.2011.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 06/12/2011] [Indexed: 12/17/2022]
Abstract
Our understanding of the complement system has markedly evolved from its early beginnings as a protein system merely detecting and tagging a pathogen for further clearance. For example, the repertoire of danger that complement recognizes covers currently a wide range of distinct self and non-self danger signals. Further, complement is now firmly established as instructor of adaptive B and T cell immunity. This review focuses on two the recent emerging paradigms in the field. Firstly, that complement is not only vitally required for the induction of Th1 immunity but also for the timely contraction of this protective response and therefore for prevention of autoimmunity and immune homeostasis. Secondly, that local rather than systemic complement is impacting on immune modulation during a T cell response.
Collapse
Affiliation(s)
- Peter S Heeger
- Department of Medicine, Recanati Miller Transplant Institute and Immunology Institute, Mount Sinai School of Medicine, New York, USA
| | | |
Collapse
|
31
|
The Th1 life cycle: molecular control of IFN-γ to IL-10 switching. Trends Immunol 2011; 32:278-86. [PMID: 21531623 DOI: 10.1016/j.it.2011.03.010] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/23/2011] [Accepted: 03/29/2011] [Indexed: 12/25/2022]
Abstract
Control of IFN-γ-secreting T helper (Th) 1 cells prevents autoimmunity and immunopathology during infection. IL-10-mediated suppression of Th1 cells is achieved not only through IL-10 produced extrinsically, but also through a negative feedback loop that induces "intrinsic" IL-10 expression in cells also expressing IFN-γ, during Th1 lineage differentiation. Targeting this Th1 cell IFN-γ to IL-10 switching is a tantalising prospect for developing therapeutics for Th1-mediated diseases. In this review, the molecular pathways that regulate IFN-γ versus IL-10 expression in Th1 cells are examined, with focus on the role of complement regulator and T cell co-stimulatory molecule CD46, and also discussed are challenges and controversies in the field.
Collapse
|
32
|
Abstract
CD46 was discovered in 1986 during a search for novel C3b-binding proteins. CD46 is expressed ubiquitously and functions as a co-factor in the factor I-mediated proteolytic cleavage of C3b and C4b. Its vital role in preventing complement deposition on host tissue is underpinned by the fact that deficiency of CD46 is a predisposing factor for numerous disease conditions arising from complement-mediated 'self-attack'. However, in the last 10 years, it has become apparent that CD46 is also heavily involved in a new and somewhat surprising functional aspect of the complement system: the down-modulation of adaptive T helper type 1 (Th1) immune responses by regulating the production of interferon (IFN)-γ versus interleukin (IL)-10 within these cells. Specifically, this latter function of CD46 is a tantalizing discovery - it may not only have delivered the explanation as to why so many pathogens use and abuse CD46 as cell entry receptor but clearly has important clinical implications for the better understanding of Th1-mediated disease states and novel therapeutic approaches for their amelioration. Here, we summarize and discuss the current knowledge about CD46 and its expanding roles in the immune system.
Collapse
Affiliation(s)
- J Cardone
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | | | | |
Collapse
|
33
|
Measles virus glycoprotein-pseudotyped lentiviral vector-mediated gene transfer into quiescent lymphocytes requires binding to both SLAM and CD46 entry receptors. J Virol 2011; 85:5975-85. [PMID: 21450813 DOI: 10.1128/jvi.00324-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gene transfer into quiescent T and B cells is of importance for gene therapy and immunotherapy approaches to correct hematopoietic disorders. Previously, we generated lentiviral vectors (LVs) pseudotyped with the Edmonston measles virus (MV) hemagglutinin and fusion glycoproteins (Hgps and Fgps) (H/F-LVs), which, for the first time, allowed efficient transduction of quiescent human B and T cells. These target cells express both MV entry receptors used by the vaccinal Edmonston strain, CD46 and signaling lymphocyte activation molecule (SLAM). Interestingly, LVs pseudotyped with an MV Hgp, blind for the CD46 binding site, were completely inefficient for resting-lymphocyte transduction. Similarly, SLAM-blind H mutants that recognize only CD46 as the entry receptor did not allow stable LV transduction of resting T cells. The CD46-tropic LVs accomplished vector-cell binding, fusion, entry, and reverse transcription at levels similar to those achieved by the H/F-LVs, but efficient proviral integration did not occur. Our results indicate that both CD46 and SLAM binding sites need to be present in cis in the Hgp to allow successful stable transduction of quiescent lymphocytes. Moreover, the entry mechanism utilized appears to be crucial: efficient transduction was observed only when CD46 and SLAM were correctly engaged and an entry mechanism that strongly resembles macropinocytosis was triggered. Taken together, our results suggest that although vector entry can occur through the CD46 receptor, SLAM binding and subsequent signaling are also required for efficient LV transduction of quiescent lymphocytes to occur.
Collapse
|
34
|
Cytoskeletal dynamics: concepts in measles virus replication and immunomodulation. Viruses 2011; 3:102-117. [PMID: 22049305 PMCID: PMC3206598 DOI: 10.3390/v3020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 12/17/2022] Open
Abstract
In common with most viruses, measles virus (MV) relies on the integrity of the cytoskeleton of its host cells both with regard to efficient replication in these cells, but also retention of their motility which favors viral dissemination. It is, however, the surface interaction of the viral glycoprotein (gp) complex with receptors present on lymphocytes and dendritic cells (DCs), that signals effective initiation of host cell cytoskeletal dynamics. For DCs, these may act to regulate processes as diverse as viral uptake and sorting, but also the ability of these cells to successfully establish and maintain functional immune synapses (IS) with T cells. In T cells, MV signaling causes actin cytoskeletal paralysis associated with a loss of polarization, adhesion and motility, which has been linked to activation of sphingomyelinases and subsequent accumulation of membrane ceramides. MV modulation of both DC and T cell cytoskeletal dynamics may be important for the understanding of MV immunosuppression at the cellular level.
Collapse
|
35
|
Ni Choileain S, Astier AL. CD46 plasticity and its inflammatory bias in multiple sclerosis. Arch Immunol Ther Exp (Warsz) 2011; 59:49-59. [PMID: 21267793 DOI: 10.1007/s00005-010-0109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/16/2010] [Indexed: 01/13/2023]
Abstract
Known as a link to the adaptive immune system, a complement regulator, a "pathogen magnet" and more recently as an inducer of autophagy, CD46 is the human receptor that refuses to be put in a box. This review summarizes the current roles of CD46 during immune responses and highlights the role of CD46 as both a promoter and attenuator of the immune response. In patients with multiple sclerosis (MS), CD46 responses are overwhelmingly pro-inflammatory with notable defects in cytokine and chemokine production. Understanding the role of CD46 as an inflammatory regulator is a distant goal considering the darkness in which its regulatory mechanisms reside. Further research into the regulation of CD46 expression through its internalization and processing will undoubtedly extend our knowledge of how the balance is tipped in favor of inflammation in MS patients.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
36
|
The Reorientation of T-Cell Polarity and Inhibition of Immunological Synapse Formation by CD46 Involves Its Recruitment to Lipid Rafts. J Lipids 2011; 2011:521863. [PMID: 21490803 PMCID: PMC3067059 DOI: 10.1155/2011/521863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/01/2010] [Indexed: 12/14/2022] Open
Abstract
Many infectious agents utilize CD46 for infection of human cells, and therapeutic applications of CD46-binding viruses are now being explored. Besides mediating internalization to enable infection, binding to CD46 can directly alter immune function. In particular, ligation of CD46 by antibodies or by measles virus can prevent activation of T cells by altering T-cell polarity and consequently preventing the formation of an immunological synapse. Here, we define a mechanism by which CD46 reorients T-cell polarity to prevent T-cell receptor signaling in response to antigen presentation. We show that CD46 associates with lipid rafts upon ligation, and that this reduces recruitment of both lipid rafts and the microtubule organizing centre to the site of receptor cross-linking. These data combined indicate that polarization of T cells towards the site of CD46 ligation prevents formation of an immunological synapse, and this is associated with the ability of CD46 to recruit lipid rafts away from the site of TCR ligation.
Collapse
|
37
|
Ni Choileain S, Weyand NJ, Neumann C, Thomas J, So M, Astier AL. The dynamic processing of CD46 intracellular domains provides a molecular rheostat for T cell activation. PLoS One 2011; 6:e16287. [PMID: 21283821 PMCID: PMC3023775 DOI: 10.1371/journal.pone.0016287] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022] Open
Abstract
Background Adequate termination of an immune response is as important as the induction of an appropriate response. CD46, a regulator of complement activity, promotes T cell activation and differentiation towards a regulatory Tr1 phenotype. This Tr1 differentiation pathway is defective in patients with MS, asthma and rheumatoid arthritis, underlying its importance in controlling T cell function and the need to understand its regulatory mechanisms. CD46 has two cytoplasmic tails, Cyt1 and Cyt2, derived from alternative splicing, which are co-expressed in all nucleated human cells. The regulation of their expression and precise functions in regulating human T cell activation has not been fully elucidated. Methodology/Principal Findings Here, we first report the novel role of CD46 in terminating T cell activation. Second, we demonstrate that its functions as an activator and inhibitor of T cell responses are mediated through the temporal processing of its cytoplasmic tails. Cyt1 processing is required to turn T cell activation on, while processing of Cyt2 switches T cell activation off, as demonstrated by proliferation, CD25 expression and cytokine secretion. Both tails require processing by Presenilin/γSecretase (P/γS) to exert these functions. This was confirmed by expressing wild-type Cyt1 and Cyt2 tails and uncleavable mutant tails in primary T cells. The role of CD46 tails was also demonstrated with T cells expressing CD19 ectodomain-CD46 C-Terminal Fragment (CTF) fusions, which allowed specific triggering of each tail individually. Conclusions/Significance We conclude that CD46 acts as a molecular rheostat to control human T cell activation through the regulation of processing of its cytoplasmic tails.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- Institute of Immunology and Infection Research, Edinburgh, United Kingdom
- Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nathan J. Weyand
- BIO5 Institute and Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Christian Neumann
- Institute of Immunology and Infection Research, Edinburgh, United Kingdom
- Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joelle Thomas
- Université Lyon 1, Lyon, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, France
| | - Magdalene So
- BIO5 Institute and Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Anne L. Astier
- Institute of Immunology and Infection Research, Edinburgh, United Kingdom
- Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Pekkarinen PT, Vaali K, Junnikkala S, Rossi LH, Tuovinen H, Meri S, Vaarala O, Arstila TP. A functional complement system is required for normal T helper cell differentiation. Immunobiology 2010; 216:737-43. [PMID: 21074891 DOI: 10.1016/j.imbio.2010.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Complement is a fundamental part of the innate immune system, and also modulates B cell responses. Its effects on T cells, however, are less well studied. Here we have studied antigen-specific T cell responses in C3-knockout (C3-KO) C57BL/6 mice. The animals were immunized with ovalbumin (OVA) in complete Freund's adjuvant, which favors T helper 1 (Th1)-type responses. Splenic lymphocytes from C3-KO mice proliferated less in response to OVA stimulation than splenocytes from control wild type (WT) mice. The response in the C3-KO mice was also qualitatively different. The expression of Th1 lineage determining transcription factor T-bet was decreased in OVA-stimulated splenocytes, and the induction of Th1-associated IgG subclasses impaired. In WT mice T cell proliferation in response to OVA was positively correlated with antigen-specific IgG2a and IgG3 levels. In C3-KO mice the proliferative response correlated with antigen-specific IgE levels, consistent with Th2 deviation. The expression of Th1-inducing cytokines IL-12 and IFN-γ was also decreased in the collecting lymph nodes in the C3-KO mice after immunization. Our results show that the complement system and its component C3 participate in the regulation of T cell responses, and that complement function is required for normal T helper cell differentiation.
Collapse
Affiliation(s)
- Pirkka T Pekkarinen
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
CD46 engagement on human CD4+ T cells produces T regulatory type 1-like regulation of antimycobacterial T cell responses. Infect Immun 2010; 78:5295-306. [PMID: 20921150 DOI: 10.1128/iai.00513-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding the regulation of human immune responses is critical for vaccine development and treating infectious diseases. We have previously shown that simultaneous engagement of the T cell receptor (TCR) and complement regulator CD46 on human CD4(+) T cells in the presence of interleukin-2 (IL-2) induces potent secretion of the immunomodulatory cytokine IL-10. These T cells mediate IL-10-dependent suppression of bystander CD4(+) T cells activated in vitro with anti-CD3 and anti-CD28 costimulation, reflecting a T regulatory type 1 (Tr1)-like phenotype. However, CD46-mediated negative regulation of pathogen-specific T cells has not been described. Therefore, we studied the ability of CD46-activated human CD4(+) T cells to suppress T cell responses to Mycobacterium bovis BCG, the live vaccine that provides infants protection against the major human pathogen Mycobacterium tuberculosis. Our results demonstrate that soluble factors secreted by CD46-activated human CD4(+) T cells suppress mycobacterium-specific CD4(+), CD8(+), and γ(9)δ(2) TCR(+) T cells. Dendritic cell functions were not downregulated in our experiments, indicating that CD46-triggered factors directly suppress pathogen-specific T cells. Interestingly, IL-10 appeared to play a less pronounced role in our system, especially in the suppression of γ(9)δ(2) TCR(+) T cells, suggesting the presence of additional undiscovered soluble immunoregulatory factors. Blocking endogenous CD46 signaling 3 days after mycobacterial infection enhanced BCG-specific T cell responses in a subset of volunteers. Taken together, these results indicate that CD46-dependent negative regulatory mechanisms can impair T cell responses vital for immune defense against mycobacteria. Therefore, modulating CD46-induced immune regulation could be integral to the development of improved tuberculosis therapeutics or vaccines.
Collapse
|
40
|
Hawkins ED, Oliaro J. CD46 signaling in T cells: Linking pathogens with polarity. FEBS Lett 2010; 584:4838-44. [DOI: 10.1016/j.febslet.2010.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 08/19/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
|
41
|
Cardone J, Le Friec G, Vantourout P, Roberts A, Fuchs A, Jackson I, Suddason T, Lord G, Atkinson JP, Cope A, Hayday A, Kemper C. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat Immunol 2010; 11:862-71. [PMID: 20694009 PMCID: PMC4011020 DOI: 10.1038/ni.1917] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/13/2010] [Indexed: 12/13/2022]
Abstract
In this study we demonstrate a new form of immunoregulation: engagement on CD4(+) T cells of the complement regulator CD46 promoted the effector potential of T helper type 1 cells (T(H)1 cells), but as interleukin 2 (IL-2) accumulated, it switched cells toward a regulatory phenotype, attenuating IL-2 production via the transcriptional regulator ICER/CREM and upregulating IL-10 after interaction of the CD46 tail with the serine-threonine kinase SPAK. Activated CD4(+) T cells produced CD46 ligands, and blocking CD46 inhibited IL-10 production. Furthermore, CD4(+) T cells in rheumatoid arthritis failed to switch, consequently producing excessive interferon-gamma (IFN-gamma). Finally, gammadelta T cells, which rarely produce IL-10, expressed an alternative CD46 isoform and were unable to switch. Nonetheless, coengagement of T cell antigen receptor (TCR) gammadelta and CD46 suppressed effector cytokine production, establishing that CD46 uses distinct mechanisms to regulate different T cell subsets during an immune response.
Collapse
Affiliation(s)
- John Cardone
- Division of Immunology, Infection and Inflammatory Diseases, King's College London, Medical Research Council Centre for Transplantation, Guy's Hospital, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yao K, Graham J, Akahata Y, Oh U, Jacobson S. Mechanism of neuroinflammation: enhanced cytotoxicity and IL-17 production via CD46 binding. J Neuroimmune Pharmacol 2010; 5:469-78. [PMID: 20661655 DOI: 10.1007/s11481-010-9232-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 06/28/2010] [Indexed: 12/18/2022]
Abstract
The membrane co-factor protein CD46 is the cellular receptor for a number of pathogens including the human herpesvirus 6 (HHV-6). In addition to its function as an inhibitory complement receptor, engagement of CD46 in the context of T-cell receptor (TCR) signaling influences T-cell activation. Simultaneous cross-linking of the CD3/CD46 molecules led to differentiation of a unique population of CD4+ T-cell subset characterized by enhanced expressions of IFN-gamma, IL-10, granzyme B, adhesion molecule MAdCAM-1 (alpha-4-beta-7), surface-bound cytokine LIGHT, and chemokine receptor CCR9. Multiple sclerosis is a chronic inflammatory neurodegenerative disorder of the central nervous system (CNS) with unknown etiology. The HHV-6 is a candidate pathogen in MS and uses the CD46 molecule as its receptor. We hypothesize that binding of the HHV-6 glycoprotein to CD46 may trigger a pro-inflammatory response that could contribute to CNS tissue damage. To address this question, we examined immunological parameters such as proliferation, cytokine production and cytotoxic functions in CD4+ T cells of healthy individuals and MS patients following CD3/CD46 co-engagement by using anti-CD3 and anti-CD46 monoclonal antibodies as surrogates to mimic T-cell receptor and CD46 signaling. Our results demonstrated that CD3/CD46 cross-linking induced expression of IL-1beta and IL-17A in multiple sclerosis patient T cells. Additionally, increase in transient surface expression of lysosomal associated protein CD107a suggested enhanced CD4+ T-cell cytotoxic functions following CD3/CD46 co-stimulation. Collectively, this study demonstrated evidence to suggest a potential mechanism of virus-induced neuroinflammation that may be involved in MS disease pathogenesis.
Collapse
Affiliation(s)
- Karen Yao
- Viral Immunology Section, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Dunkelberger JR, Song WC. Role and mechanism of action of complement in regulating T cell immunity. Mol Immunol 2010; 47:2176-86. [PMID: 20603023 DOI: 10.1016/j.molimm.2010.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complement is a part of the innate immune system that contributes to first-line host defense. It is also implicated in a number of human inflammatory conditions and has attracted interest as a potential therapeutic target. Understanding the basic biology of complement and its mechanism(s) of action is imperative for developing complement-based treatments for infectious and autoimmune diseases. One of the exciting new developments in this regard is the revelation that complement plays an important role in T cell immunity. In this review, we highlight recent published studies implicating complement in models of CD4+ and CD8+ T cell immune responses, and discuss its potential mechanism(s) action in these processes. We also comment on issues that may impact data interpretation and draw attention to their consideration in future studies.
Collapse
Affiliation(s)
- Jason R Dunkelberger
- Institute for Translational Medicine and Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
44
|
Fuchs A, Atkinson JP, Fremeaux-Bacchi V, Kemper C. CD46-induced human Treg enhance B-cell responses. Eur J Immunol 2010; 39:3097-109. [PMID: 19784949 DOI: 10.1002/eji.200939392] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Regulatory CD4(+) T cells (Treg) are important modulators of the immune response. Different types of Treg have been identified based on whether they are thymically derived (natural Treg) or induced in the periphery (adaptive Treg). We recently reported on an adaptive Treg phenotype that can be induced by the concomitant stimulation of human CD4(+) T cells through CD3 and the membrane complement regulator CD46. These complement (CD46)-induced regulatory T cells (cTreg) potently inhibit bystander T-cell proliferation through high-level secretion of IL-10. In addition, cTreg express granzyme B and exhibit cytotoxic effects toward activated effector T cells. Here, we analyzed the effect of cTreg on B-cell functions in a co-culture system. We found that cTreg enhance B-cell Ab production. This B-cell support is dependent on cell/cell contact as well as cTreg-derived IL-10. In addition, we show that T cells from a CD46-deficient patient are not capable of promoting B-cell responses, whereas CD46-deficient B cells have no intrinsic defect in Ig production. This finding may relate to a subset of CD46-deficient patients, who present with common variable immunodeficiency. Thus, the lack of cTreg function in optimizing B-cell responses could explain why some CD46-deficient patients develop common variable immunodeficiency.
Collapse
Affiliation(s)
- Anja Fuchs
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | |
Collapse
|
45
|
Sekine Y, Ikeda O, Tsuji S, Yamamoto C, Muromoto R, Nanbo A, Oritani K, Yoshimura A, Matsuda T. Signal-transducing adaptor protein-2 regulates stromal cell-derived factor-1 alpha-induced chemotaxis in T cells. THE JOURNAL OF IMMUNOLOGY 2010; 183:7966-74. [PMID: 19933863 DOI: 10.4049/jimmunol.0902096] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2-like domains, as well as a YXXQ motif in its C-terminal region. Our previous studies revealed that STAP-2 regulates integrin-mediated T cell adhesion. In the present study, we find that STAP-2 expression affects Jurkat T cell migration after stromal cell-derived factor-1alpha (SDF-1alpha)-treatment. Furthermore, STAP-2-deficient T cells exhibit reduced cell migration after SDF-1alpha-treatment. Importantly, overexpression of STAP-2 in Jurkat T cells induces activation of small guanine triphosphatases, such as Rac1 and Cdc42. Regarding the mechanism for this effect, we found that STAP-2 associates with Vav1, the guanine-nucleotide exchanging factor for Rac1, and enhances downstream Vav1/Rac1 signaling. These results reveal a novel STAP-2-mediated mechanism for the regulation of SDF-1alpha-induced chemotaxis of T cells via activation of Vav1/Rac1 signaling.
Collapse
Affiliation(s)
- Yuichi Sekine
- Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Szalmás A, Kónya J, Sziklai I, Karosi T. Detection and identification of CD46 splicing isoforms by nested RT-PCR. Methods Mol Biol 2010; 630:83-95. [PMID: 20300992 DOI: 10.1007/978-1-60761-629-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
CD46 (Membrane Cofactor Protein, MCP) is a transmembrane glycoprotein, which is expressed by all nucleated human cells whose purpose is to protect against autologous complement attack. In addition, CD46 can serve as a receptor for several viruses and bacteria and as a potent regulator of the inflammatory response by affecting T cell differentiation. Multiple isoforms of CD46 exist due to alternative splicing and are coexpressed in human cells in various patterns and expression levels. However, specific diseases have not been associated with isoform coexpression. We applied a nested RT-PCR method to investigate the coexpression pattern of CD46 splicing variants in otosclerotic and normal stapes footplate specimens. Using this method, we detected an altered isoform expression pattern and identified four novel CD46 splicing variants overexpressed in otosclerotic bone. This study is the first comprehensive report to provide evidence for disease associated alternative splicing of CD46.
Collapse
Affiliation(s)
- Anita Szalmás
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | |
Collapse
|
47
|
Abstract
Regulatory T cells (Treg cells) play critical roles in the induction of peripheral tolerance to self- and foreign antigens. Naturally occurring CD4(+)CD25(+) Treg cells, which characteristically express the transcription factor forkhead box protein P3 (Foxp3), have been studied intensively because their deficiency abrogates self-tolerance and causes autoimmune disease. However, several lines of evidence suggest that additional important mechanisms other than the Foxp3 system are required to enforce immunological self-tolerance in the periphery. Interleukin-10 (IL-10) is a regulatory cytokine that plays a central role in controlling inflammatory processes, and IL-10-secreting T cells may constitute an additional mechanism that are responsible for peripheral tolerance. Type-1 T regulatory (Tr1) cells, CD46-stimulated IL-10-secreting T cells, and IL-10-secreting T cells induced by vitamin D3 (VitD3) and dexamethasone (Dex) are induced populations with significant regulatory activities. However, assessing the detailed physiological function of these cells is difficult, because of the lack of specific markers that can reliably differentiate the population of IL-10-secreting Treg cells from other T cells. Recently, CD4(+)CD25(-)LAP(+) T cells, CD4(+)NKG2D(+) T cells, CD4(+)IL-7R(-) T cells, and CD4(+)CD25(-)LAG3(+) T cells have been reported as naturally present IL-10-secreting Treg cells. Although the relationship between these induced and naturally present IL-10-secreting Treg cells is unclear, elucidation of their respective roles in modulating immune responses is crucial to understand T cell-mediated tolerance. Furthermore, the identification of specific markers and molecular signatures will enable the purification or induction of IL-10-secreting Treg cells for the treatment of patients having inflammatory diseases.
Collapse
Affiliation(s)
- Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
48
|
Weyand NJ, Calton CM, Higashi DL, Kanack KJ, So M. Presenilin/gamma-secretase cleaves CD46 in response to Neisseria infection. THE JOURNAL OF IMMUNOLOGY 2009; 184:694-701. [PMID: 20018629 DOI: 10.4049/jimmunol.0900522] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD46 is a type I transmembrane protein with complement and T cell regulatory functions in human cells. CD46 has signaling and receptor properties in immune and nonimmune cells, many of which are dependent on the expression of cytoplasmic tail (cyt) isoforms cyt1 or cyt2. Little is known about how cyt1 and cyt2 mediate cellular responses. We show that CD46-cyt1 and CD46-cyt2 are substrates for presenilin/gamma-secretase (PS/gammaS), an endogenous protease complex that regulates many important signaling proteins through proteolytic processing. PS/gammaS processing of CD46 releases immunoprecipitable cyt1 and cyt2 tail peptides into the cell, is blocked by chemical inhibitors, and is prevented in dominant negative presenilin mutant cell lines. Two human pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, stimulate PS/gammaS processing of CD46-cyt1 and CD46-cyt2. This stimulation requires type IV pili and PilT, the type IV pilus retraction motor, implying that mechanotransduction plays a role in this event. We present a model for PS/gammaS processing of CD46 that provides a mechanism by which signals are transduced via the cyt1 and cyt2 tails to regulate CD46-dependent cellular responses. Our findings have broad implications for understanding the full range of CD46 functions in infection and noninfection situations.
Collapse
Affiliation(s)
- Nathan J Weyand
- BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | |
Collapse
|
49
|
Receptors and ligands implicated in human T cell costimulatory processes. Immunol Lett 2009; 128:89-97. [PMID: 19941899 DOI: 10.1016/j.imlet.2009.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 12/17/2022]
Abstract
It is well established that full activation of T cells that recognize antigens requires additional signals. These second signals are generated by the interaction of costimulatory ligands expressed on antigen presenting cells with their receptors on T cells. In addition, T cell activation processes are negatively regulated by inhibitory costimulatory pathways. Interaction of members of the B7 and the TNF superfamilies with members of the CD28 and TNF-R-superfamilies plays major roles in costimulatory processes. However, a large number of molecules that do not belong to these families have been reported to be involved in the generation of T cell costimulatory signals. In addition to well-defined costimulatory pathways, where both receptors and ligands are known, there are many T cell surface molecules that have been described to generate a second signal under certain experimental conditions, f.i. when ligated with antibodies. Furthermore there are several ligands that have been shown to positively or negatively modulate T cell activation by interacting with as of yet unknown T cell receptors. Here we give a comprehensive overview of molecules that have been implicated in human T cell activation processes and propose criteria that define genuine T cell costimulatory pathways.
Collapse
|
50
|
Plant L, Jonsson AB. Contacting the Host: Insights and Implications of Pathogenic Neisseria Cell Interactions. ACTA ACUST UNITED AC 2009; 35:608-13. [PMID: 14620143 DOI: 10.1080/00365540310016349] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neisseria is a highly adapted human specific pathogen that initiates infection at the mucosal epithelia by using multiple adhesins to interact with host cell receptors. Colonization begins at the apical cell surface with a multi-step adhesion cascade, followed by invasion and persistence within the cell and finally transcytosis at the basolateral surface. The type IV pill are implicated in mediating the initial attachment of both meningococci and gonococci, and this association has been shown to involve contact with the cellular receptor CD46. In this review we describe the initial events in the adhesion, invasion and signaling of pathogenic Neisseria focusing on the initial attachment and signaling induced by the interaction of the type IV pili with CD46.
Collapse
Affiliation(s)
- Laura Plant
- Microbiology and Tumor Biology Center, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|