1
|
Chastain DB, Spradlin M, Ahmad H, Henao-Martínez AF. Unintended Consequences: Risk of Opportunistic Infections Associated With Long-term Glucocorticoid Therapies in Adults. Clin Infect Dis 2024; 78:e37-e56. [PMID: 37669916 DOI: 10.1093/cid/ciad474] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Indexed: 09/07/2023] Open
Abstract
Glucocorticoids are widespread anti-inflammatory medications used in medical practice. The immunosuppressive effects of systemic glucocorticoids and increased susceptibility to infections are widely appreciated. However, the dose-dependent model frequently used may not accurately predict the risk of infection in all patients treated with long-term glucocorticoids. In this review, we examine the risks of opportunistic infections (OIs) in patients requiring glucocorticoid therapy by evaluating the influence of the glucocorticoid dose, duration, and potency, combined with biological and host clinical factors and concomitant immunosuppressive therapy. We propose strategies to prevent OIs, which involve screening, antimicrobial prophylaxis, and immunizations. While this review focuses on patients with autoimmune, inflammatory, or neoplastic diseases, the potential risks and preventative strategies are likely applicable to other populations. Clinicians should actively assess the benefit-harm ratios of systemic glucocorticoids and implement preventive efforts to decrease their associated infections complications.
Collapse
Affiliation(s)
- Daniel B Chastain
- Department of Clinical and Administrative Pharmacy, University of Georgia College of Pharmacy, Albany, Georgia, USA
| | - Megan Spradlin
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Hiba Ahmad
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
2
|
Zheng W, Zhou Z, Guo X, Zuo X, Zhang J, An Y, Zheng H, Yue Y, Wang G, Wang F. Efferocytosis and Respiratory Disease. Int J Mol Sci 2023; 24:14871. [PMID: 37834319 PMCID: PMC10573909 DOI: 10.3390/ijms241914871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Cells are the smallest units that make up living organisms, which constantly undergo the processes of proliferation, differentiation, senescence and death. Dead cells need to be removed in time to maintain the homeostasis of the organism and keep it healthy. This process is called efferocytosis. If the process fails, this may cause different types of diseases. More and more evidence suggests that a faulty efferocytosis process is closely related to the pathological processes of respiratory diseases. In this review, we will first introduce the process and the related mechanisms of efferocytosis of the macrophage. Secondly, we will propose some methods that can regulate the function of efferocytosis at different stages of the process. Next, we will discuss the role of efferocytosis in different lung diseases and the related treatment approaches. Finally, we will summarize the drugs that have been applied in clinical practice that can act upon efferocytosis, in order to provide new ideas for the treatment of lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqiang Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.Z.); (Z.Z.); (X.G.); (X.Z.); (J.Z.); (Y.A.); (H.Z.); (Y.Y.)
| | - Fang Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.Z.); (Z.Z.); (X.G.); (X.Z.); (J.Z.); (Y.A.); (H.Z.); (Y.Y.)
| |
Collapse
|
3
|
Pei L, Hou Y, Feng Y, Li F, Su H, Zhang Y, Song Y, Liu K, Cao G. Equine β-defensin 1 regulates cytokine expression and phagocytosis in S. aureus-infected mouse monocyte macrophages via the Paxillin-FAK-PI3K pathway. Int Immunopharmacol 2023; 123:110793. [PMID: 37582311 DOI: 10.1016/j.intimp.2023.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
β-defensin-1 (BD-1) is a rich source of disulfide bonds and antibacterial peptides that exhibit direct bactericidal function. The expression of BD-1 is primarily induced by external stimulation and is known to correlate with TLR-mediated inflammation, suggesting its association with innate immune responses. Equine β-defensin-1 (eBD-1) belongs to the BD-1 family. Our previous study demonstrated that eBD-1 enhances cytokine expression and promotes macrophage phagocytosis of S. aureus, although the underlying mechanism remains unknown. In this study, we utilized a PI-3K inhibitor (PKI-402) to treat eBD-1 -treated S. aureus-infected macrophages in vitro. Our results revealed that PKI-402 decreased the expression of eBD-1-promoted TNF-α, IL-6, CXCL10, CD40, RANTES, and p65 mRNA. To further investigate the relationship between eBD-1 and phagocytosis, we examined the expression of paxillin and FcγRIII (CD16 receptor) using western blot and immunofluorescence techniques. Our findings demonstrated that eBD-1 enhanced CD16 and paxillin expression in S. aureus -infected macrophages. Considering the correlation between paxillin expression and focal adhesion kinase (FAK), we transfected FAK siRNA into macrophages and evaluated paxillin expression using western blot analysis. Additionally, we quantified the number of S. aureus phagocytosed by macrophages. The results indicated a reduction in both paxillin expression and the number of S. aureus phagocytosed by macrophages upon FAK siRNA treatment. Our study showed the eBD-1 promotes cytokine mRNA expression in S. aureus-infected macrophages regulated by PI-3K-NF-κB pathway, and it increases macrophage phagocytosis of S. aureus associated with the FAK-paxillin signaling pathway.
Collapse
Affiliation(s)
- Le Pei
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China; Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Yongyue Hou
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China
| | - Ying Feng
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China
| | - Feng Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China
| | - Hong Su
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Huhhot, 010018, China
| | - Yuemei Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China
| | - Yue Song
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010013, China
| | - Kun Liu
- School of Public Healthy, Inner Mongolia Medical University, Huhhot 010110, China.
| | - Guifang Cao
- Inner Mongolia Key Laboratory of Basic Veterinary Medicine, College of Veterinary, Inner Mongolia Agricultural University, Huhhot, 010018, China.
| |
Collapse
|
4
|
Dobrev D, Heijman J, Hiram R, Li N, Nattel S. Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol 2023; 20:145-167. [PMID: 36109633 PMCID: PMC9477170 DOI: 10.1038/s41569-022-00759-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 02/08/2023]
Abstract
Inflammation has been implicated in atrial fibrillation (AF), a very common and clinically significant cardiac rhythm disturbance, but its precise role remains poorly understood. Work performed over the past 5 years suggests that atrial cardiomyocytes have inflammatory signalling machinery - in particular, components of the NLRP3 (NACHT-, LRR- and pyrin domain-containing 3) inflammasome - that is activated in animal models and patients with AF. Furthermore, work in animal models suggests that NLRP3 inflammasome activation in atrial cardiomyocytes might be a sufficient and necessary condition for AF occurrence. In this Review, we evaluate the evidence for the role and pathophysiological significance of cardiomyocyte NLRP3 signalling in AF. We first summarize the evidence for a role of inflammation in AF and review the biochemical properties of the NLRP3 inflammasome, as defined primarily in studies of classic inflammation. We then briefly consider the broader evidence for a role of inflammatory signalling in heart disease, particularly conditions that predispose individuals to develop AF. We provide a detailed discussion of the available information about atrial cardiomyocyte NLRP3 inflammasome signalling in AF and related conditions and evaluate the possibility that similar signalling might be important in non-myocyte cardiac cells. We then review the evidence on the role of active resolution of inflammation and its potential importance in suppressing AF-related inflammatory signalling. Finally, we consider the therapeutic potential and broader implications of this new knowledge and highlight crucial questions to be addressed in future research.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Roddy Hiram
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Na Li
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Duisburg, Germany.
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada.
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Ma Y, Kemp SS, Yang X, Wu MH, Yuan SY. Cellular mechanisms underlying the impairment of macrophage efferocytosis. Immunol Lett 2023; 254:41-53. [PMID: 36740099 PMCID: PMC9992097 DOI: 10.1016/j.imlet.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
The phagocytosis and clearance of dying cells by macrophages, a process termed efferocytosis, is essential for both maintaining homeostasis and promoting tissue repair after infection or sterile injury. If not removed in a timely manner, uncleared cells can undergo secondary necrosis, and necrotic cells lose membrane integrity, release toxic intracellular components, and potentially induce inflammation or autoimmune diseases. Efferocytosis also initiates the repair process by producing a wide range of pro-reparative factors. Accumulating evidence has revealed that macrophage efferocytosis defects are involved in the development and progression of a variety of inflammatory and autoimmune diseases. The underlying mechanisms of efferocytosis impairment are complex, disease-dependent, and incompletely understood. In this review, we will first summarize the current knowledge about the normal signaling and metabolic processes of macrophage efferocytosis and its importance in maintaining tissue homeostasis and repair. We then will focus on analyzing the molecular and cellular mechanisms underlying efferocytotic abnormality (impairment) in disease or injury conditions. Next, we will discuss the potential molecular targets for enhanced efferocytosis in animal models of disease. To provide a balanced view, we will also discuss some deleterious effects of efferocytosis.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
6
|
Jia WY, Zhang JJ. Effects of glucocorticoids on leukocytes: Genomic and non-genomic mechanisms. World J Clin Cases 2022; 10:7187-7194. [PMID: 36158016 PMCID: PMC9353929 DOI: 10.12998/wjcc.v10.i21.7187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/21/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) have been widely used as immunosuppressants and anti-inflammatory agents to treat a variety of autoimmune and inflammatory diseases, and they fully exert their anti-inflammatory and immune-regulating effects in the body. The effect of GCs on white blood cells is an important part of their action. GCs can cause changes in peripheral blood white blood cell counts by regulating the proliferation, differentiation, and apoptosis of white blood cells. Although the total number of white blood cells, neutrophil counts, lymphocytes, and eosinophils increases, the counts of basic granulocytes and macrophages decreases. In addition, GCs can regulate the activation and secretion of white blood cells, inhibit the secretion of a variety of pro-inflammatory cytokines, the expression of chemokines, and promote the production of anti-inflammatory cytokines. For patients on GC therapy, the effects of GCs on leukocytes were similar to the changes in peripheral blood caused by bacterial infections. Thus, we suggest that clinicians should be more cautious in assessing the presence of infection in children with long-term use of GCs and avoid overuse of antibiotics in the presence of elevated leukocytes. GCs work through genomic and non-genomic mechanisms in the human body, which are mediated by GC receptors. In recent years, studies have not fully clarified the mechanism of GCs, and further research on these mechanisms will help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Wan-Yu Jia
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Clinical Center of Pediatric Nephrology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jian-Jiang Zhang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Clinical Center of Pediatric Nephrology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
7
|
Ma S, Zhang J, Liu H, Li S, Wang Q. The Role of Tissue-Resident Macrophages in the Development and Treatment of Inflammatory Bowel Disease. Front Cell Dev Biol 2022; 10:896591. [PMID: 35721513 PMCID: PMC9199005 DOI: 10.3389/fcell.2022.896591] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn’s disease and ulcerative colitis, is a refractory disease with many immune abnormalities and pathologies in the gastrointestinal tract. Because macrophages can distinguish innocuous antigens from potential pathogens to maintain mucosa barrier functions, they are essential cells in the intestinal immune system. With numerous numbers in the intestinal tract, tissue-resident macrophages have a significant effect on the constant regeneration of intestinal epithelial cells and maintaining the immune homeostasis of the intestinal mucosa. They also have a significant influence on IBD through regulating pro-(M1) or anti-inflammatory (M2) phenotype polarization according to different environmental cues. The disequilibrium of the phenotypes and functions of macrophages, disturbed by intracellular or extracellular stimuli, influences the progression of disease. Further investigation of macrophages’ role in the progression of IBD will facilitate deciphering the pathogenesis of disease and exploring novel targets to develop novel medications. In this review, we shed light on the origin and maintenance of intestinal macrophages, as well as the role of macrophages in the occurrence and development of IBD. In addition, we summarize the interaction between gut microbiota and intestinal macrophages, and the role of the macrophage-derived exosome. Furthermore, we discuss the molecular and cellular mechanisms participating in the polarization and functions of gut macrophages, the potential targeted strategies, and current clinical trials for IBD.
Collapse
Affiliation(s)
- Shengjie Ma
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Jiaxin Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Heshi Liu
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Shuang Li
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| | - Quan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Chang Chun, China
| |
Collapse
|
8
|
Hiram R. Resolution-promoting autacoids demonstrate promising cardioprotective effects against heart diseases. Mol Biol Rep 2022; 49:5179-5197. [PMID: 35142983 PMCID: PMC9262808 DOI: 10.1007/s11033-022-07230-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Chronic heart diseases have in common an unresolved inflammatory status. In atherosclerosis, myocarditis, myocardial infarction, or atrial fibrillation, mounting evidence suggests that unresolved inflammation contributes to the chronicity, aggravation, and morbidity of the disease. Following cardiac injury or infection, acute inflammation is a normal and required process to repair damaged tissues or eliminate pathogens and promote restoration of normal functions and structures. However, if acute inflammation is not followed by resolution, a chronic and deleterious inflammatory status may occur, characterized by the persistence of inflammatory biomarkers, promoting aggravation of myocardial pathogenesis, abnormal structural remodeling, development of cardiac fibrosis, and loss of function. Although traditional antiinflammatory strategies, including the use of COX-inhibitors, to inhibit the production of inflammation promotors failed to promote homeostasis, mounting evidence suggests that activation of specific endogenous autacoids may promote resolution and perpetuate cardioprotective effects. The recent discovery of the active mechanism of resolution suggests that proresolving signals and cellular processes may help to terminate inflammation and combat the development of its chronic profile in cardiac diseases. This review discussed (I) the preclinical and clinical evidence of inflammation-resolution in cardiac disorders including atrial fibrillation; (II) how and why many traditional antiinflammatory treatments failed to prevent or cure cardiac inflammation and fibrosis; and (III) whether new therapeutic strategies may interact with the resolution machinery to have cardioprotective effects. RvD D-series resolving, RvE E-series resolving, LXA4 lipoxin A4, MaR1 maresin-1.
Collapse
Affiliation(s)
- Roddy Hiram
- Department of Medicine, Faculty of Medicine, Montreal Heart Institute (MHI), Université de Montréal, Research Center, 5000 Belanger, St. Montreal, QC, H1T 1C8, Canada.
| |
Collapse
|
9
|
Shirato K, Sato S. Macrophage Meets the Circadian Clock: Implication of the Circadian Clock in the Role of Macrophages in Acute Lower Respiratory Tract Infection. Front Cell Infect Microbiol 2022; 12:826738. [PMID: 35281442 PMCID: PMC8904936 DOI: 10.3389/fcimb.2022.826738] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The circadian rhythm is a biological system that creates daily variations of physiology and behavior with a 24-h cycle, which is precisely controlled by the molecular circadian clock. The circadian clock dominates temporal activity of physiological homeostasis at the molecular level, including endocrine secretion, metabolic, immune response, coupled with extrinsic environmental cues (e.g., light/dark cycles) and behavioral cues (e.g., sleep/wake cycles and feeding/fasting cycles). The other side of the clock is that the misaligned circadian rhythm contributes to the onset of a variety of diseases, such as cancer, metabolic diseases, and cardiovascular diseases, the acceleration of aging, and the development of systemic inflammation. The role played by macrophages is a key mediator between circadian disruption and systemic inflammation. At the molecular level, macrophage functions are under the direct control of the circadian clock, and thus the circadian misalignment remodels the phenotype of macrophages toward a ‘killer’ mode. Remarkably, the inflammatory macrophages induce systemic and chronic inflammation, leading to the development of inflammatory diseases and the dampened immune defensive machinery against infectious diseases such as COVID-19. Here, we discuss how the circadian clock regulates macrophage immune functions and provide the potential risk of misaligned circadian rhythms against inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Ken Shirato
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University School of Medicine, Mitaka, Japan
| | - Shogo Sato
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, United States
- *Correspondence: Shogo Sato,
| |
Collapse
|
10
|
Muscari I, Fierabracci A, Adorisio S, Moretti M, Cannarile L, Thi Minh Hong V, Ayroldi E, Delfino DV. Glucocorticoids and natural killer cells: A suppressive relationship. Biochem Pharmacol 2022; 198:114930. [PMID: 35149054 DOI: 10.1016/j.bcp.2022.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
Glucocorticoids exert their pharmacological actions by mimicking and amplifying the function of the endogenous glucocorticoid system's canonical physiological stress response. They affect the immune system at the levels of inflammation and adaptive and innate immunity. These effects are the basis for therapeutic use of glucocorticoids. Innate immunity is the body's first line of defense against disease conditions. It is relatively nonspecific and, among its mediators, natural killer(NK) cells link innate and acquired immunity. NK cell numbers are altered in patients with auto immune diseases, and research suggests that interactions between glucocorticoids and natural killer cells arecritical for successful glucocorticoid therapy. The aim of this review is to summarize these interactions while highlighting the latest and most important developments in this field. Production and release in theblood of endogenous glucocorticoids are strictly regulated by the hypothalamus-pituitary-adrenal axis. Aself-regulatory mechanism prevents excessive plasma levels of these hormones. However, exogenousstimuli such as stress, inflammation, infections, cancer, and autoimmune disease can trigger thehypothalamus-pituitary-adrenal axis response and lead to excessive systemic release of glucocorticoids.Thus, stress stimuli, such as sleep deprivation, intense exercise, depression, viral infections, andcancer, can result in release of glucocorticoids and associated immunosuppressant effects. Among theseeffects are decreases in the numbers and activities of NK cells in inflammatory and autoimmune diseases(e.g., giant cell arteritis, polymyalgia rheumatica, and familial hypogammaglobulinemia).
Collapse
Affiliation(s)
- Isabella Muscari
- Section of Onco-hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Immunology and Pharmacotherapy Research Area Bambino Gesù Children's Hospital, Rome, Italy
| | - Sabrina Adorisio
- Foligno Nursing School, Department of Medicine, University of Perugia, Foligno, PG, Italy
| | - Marina Moretti
- Section of Onco-hematology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lorenza Cannarile
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | | | - Emira Ayroldi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Domenico V Delfino
- Foligno Nursing School, Department of Medicine, University of Perugia, Foligno, PG, Italy; Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
11
|
Dacic M, Shibu G, Rogatsky I. Physiological Convergence and Antagonism Between GR and PPARγ in Inflammation and Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:123-141. [PMID: 36107316 DOI: 10.1007/978-3-031-11836-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nuclear receptors (NRs) are transcription factors that modulate gene expression in a ligand-dependent manner. The ubiquitously expressed glucocorticoid receptor (GR) and peroxisome proliferator-activated receptor gamma (PPARγ) represent steroid (type I) and non-steroid (type II) classes of NRs, respectively. The diverse transcriptional and physiological outcomes of their activation are highly tissue-specific. For example, in subsets of immune cells, such as macrophages, the signaling of GR and PPARγ converges to elicit an anti-inflammatory phenotype; in contrast, in the adipose tissue, their signaling can lead to reciprocal metabolic outcomes. This review explores the cooperative and divergent outcomes of GR and PPARγ functions in different cell types and tissues, including immune cells, adipose tissue and the liver. Understanding the coordinated control of these NR pathways should advance studies in the field and potentially pave the way for developing new therapeutic approaches to exploit the GR:PPARγ crosstalk.
Collapse
Affiliation(s)
- Marija Dacic
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
- Graduate Program in Physiology, Biophysics and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Gayathri Shibu
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosenzweig Genomics Center, New York, NY, USA.
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
12
|
Juban G, Chazaud B. Efferocytosis during Skeletal Muscle Regeneration. Cells 2021; 10:cells10123267. [PMID: 34943775 PMCID: PMC8699096 DOI: 10.3390/cells10123267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Efferocytosis, i.e., engulfment of dead cells by macrophages, is a crucial step during tissue repair after an injury. Efferocytosis delineates the transition from the pro-inflammatory phase of the inflammatory response to the recovery phase that ensures tissue reconstruction. We present here the role of efferocytosis during skeletal muscle regeneration, which is a paradigm of sterile tissue injury followed by a complete regeneration. We present the molecular mechanisms that have been described to control this process, and particularly the metabolic control of efferocytosis during skeletal muscle regeneration.
Collapse
|
13
|
Glucocorticoid circadian rhythms in immune function. Semin Immunopathol 2021; 44:153-163. [PMID: 34580744 DOI: 10.1007/s00281-021-00889-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/15/2023]
Abstract
Adrenal glucocorticoid (GC) hormones are important regulators of energy metabolism, brain functions, and the immune system. Their release follows robust diurnal rhythms and GCs themselves serve as entrainment signals for circadian clocks in various tissues. In the clinics, synthetic GC analogues are widely used as immunosuppressive drugs. GC inhibitory effects on the immune system are well documented and include suppression of cytokines and increased immune cell death. However, the circadian dynamics of GC action are often neglected. Synthetic GC medications fail to mimic complex GC natural rhythms. Several recent publications have shown that endogenous GCs and their daily concentration rhythms prepare the immune system to face anticipated environmental threats. That includes migration patterns that direct specific cell population to organs and tissues best exemplified by the rhythmic expression of chemoattractants and their receptors. On the other hand, chronotherapeutic approaches may benefit the treatment of immunological diseases such as asthma. In this review, we summarise our current knowledge on the circadian regulation of GCs, their role in innate and adaptive immune functions and the implications for the clinics.
Collapse
|
14
|
Galaz J, Romero R, Arenas-Hernandez M, Panaitescu B, Para R, Gomez-Lopez N. Betamethasone as a potential treatment for preterm birth associated with sterile intra-amniotic inflammation: a murine study. J Perinat Med 2021; 49:897-906. [PMID: 33878254 PMCID: PMC8440410 DOI: 10.1515/jpm-2021-0049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Preterm birth remains the leading cause of perinatal morbidity and mortality worldwide. Preterm birth is preceded by spontaneous preterm labor, which is commonly associated with sterile intra-amniotic inflammation; yet, no approved treatment exists for this clinical condition. Corticosteroids are the standard of care to improve neonatal outcomes in women at risk of preterm birth. Herein, we first validated our model of alarmin-induced preterm birth. Next, we investigated whether treatment with betamethasone could prevent preterm birth resulting from sterile intra-amniotic inflammation in mice. METHODS Under ultrasound guidance, the first cohort of dams received an intra-amniotic injection of the alarmin high-mobility group box-1 (HMGB1, n=10) or phosphate-buffered saline (PBS, n=9) as controls. A second cohort of dams received HMGB1 intra-amniotically and were subcutaneously treated with betamethasone (n=15) or vehicle (n=15). Dams were observed until delivery, and perinatal outcomes were observed. RESULTS Intra-amniotic HMGB1 reduced gestational length (p=0.04), inducing preterm birth in 40% (4/10) of cases, of which 100% (4/4) were categorized as late preterm births. Importantly, treatment with betamethasone extended the gestational length (p=0.02), thereby reducing the rate of preterm birth by 26.6% (from 33.3% [5/15] to 6.7% [1/15]). Treatment with betamethasone did not worsen the rate of neonatal mortality induced by HMGB1 or alter weight gain in the first three weeks of life. CONCLUSIONS Treatment with betamethasone prevents preterm birth induced by the alarmin HMGB1. This study supports the potential utility of betamethasone for treating women with sterile intra-amniotic inflammation.
Collapse
Affiliation(s)
- Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States,Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, United States
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
15
|
Luvanda MK, Posch W, Vosper J, Zaderer V, Noureen A, Lass-Flörl C, Wilflingseder D. Dexamethasone Promotes Aspergillus fumigatus Growth in Macrophages by Triggering M2 Repolarization via Targeting PKM2. J Fungi (Basel) 2021; 7:70. [PMID: 33498318 PMCID: PMC7909285 DOI: 10.3390/jof7020070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
Since long-term corticosteroid treatment is associated with emerging opportunistic fungal infections causing high morbidity and mortality in immune-suppressed individuals, here we characterized the impact of dexamethasone (Dex) treatment on Aspergillus fumigatus-related immune modulation. We found by high content screening and flow cytometric analyses that during monocyte-to-macrophage differentiation, as little as 0.1 µg/mL Dex resulted in a shift in macrophage polarization from M1 to M2-like macrophages. This macrophage repolarization mediated via Dex was characterized by significant upregulation of the M2 marker CD163 and downmodulation of M1 markers CD40 and CD86 as well as changes in phenotypic properties and adherence. These Dex-mediated phenotypic alterations were furthermore associated with a metabolic switch in macrophages orchestrated via PKM2. Such treated macrophages lost their ability to prevent Aspergillus fumigatus germination, which was correlated with accelerated fungal growth, destruction of macrophages, and induction of an anti-inflammatory cytokine profile. Taken together, repolarization of macrophages following corticosteroid treatment and concomitant switch to an anti-inflammatory phenotype might play a prominent role in triggering invasive aspergillosis (IA) due to suppression of innate immunological responses necessary to combat extensive fungal outgrowth.
Collapse
Affiliation(s)
- Maureen K. Luvanda
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Jonathan Vosper
- Institute of Medical Biochemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Asma Noureen
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.K.L.); (W.P.); (V.Z.); (A.N.); (C.L.-F.)
| |
Collapse
|
16
|
He YJ, Xu JQ, Sun MM, Fang XZ, Peng ZK, Pan SW, Zhou T, Wang YX, Shang Y. Glucocorticoid-Induced Leucine Zipper: A Promising Marker for Monitoring and Treating Sepsis. Front Immunol 2020; 11:606649. [PMID: 33424852 PMCID: PMC7793647 DOI: 10.3389/fimmu.2020.606649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a clinical syndrome that resulting from a dysregulated inflammatory response to infection that leads to organ dysfunction. The dysregulated inflammatory response transitions from a hyper-inflammatory phase to a hypo-inflammatory or immunosuppressive phase. Currently, no phase-specific molecular-based therapies are available for monitoring the complex immune response and treating sepsis due to individual variations in the timing and overlap of the dysregulated immune response in most patients. Glucocorticoid-induced leucine zipper (GILZ), is broadly present in multiple tissues and circumvent glucocorticoid resistance (GCR) or unwanted side effects. Recently, the characteristics of GILZ downregulation during acute hyperinflammation and GILZ upregulation during the immunosuppressive phase in various inflammatory diseases have been well documented, and the protective effects of GILZ have gained attention in the field of sepsis. However, whether GILZ could be a promising candidate biomarker for monitoring and treating septic patients remains unknown. Here, we discuss the effect of GILZ in sepsis and sepsis-induced immunosuppression.
Collapse
Affiliation(s)
- Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao-Miao Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Kang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shang-Wen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
New insights into the cell- and tissue-specificity of glucocorticoid actions. Cell Mol Immunol 2020; 18:269-278. [PMID: 32868909 PMCID: PMC7456664 DOI: 10.1038/s41423-020-00526-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids (GCs) are endogenous hormones that are crucial for the homeostasis of the organism and adaptation to the external environment. Because of their anti-inflammatory effects, synthetic GCs are also extensively used in clinical practice. However, almost all cells in the body are sensitive to GC regulation. As a result, these mediators have pleiotropic effects, which may be undesirable or detrimental to human health. Here, we summarize the recent findings that contribute to deciphering the molecular mechanisms downstream of glucocorticoid receptor activation. We also discuss the complex role of GCs in infectious diseases such as sepsis and COVID-19, in which the balance between pathogen elimination and protection against excessive inflammation and immunopathology needs to be tightly regulated. An understanding of the cell type- and context-specific actions of GCs from the molecular to the organismal level would help to optimize their therapeutic use.
Collapse
|
18
|
Intestinal Macrophages at the Crossroad between Diet, Inflammation, and Cancer. Int J Mol Sci 2020; 21:ijms21144825. [PMID: 32650452 PMCID: PMC7404402 DOI: 10.3390/ijms21144825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal macrophages are key players in the regulation of the oral tolerance, controlling gut homeostasis by discriminating innocuous antigens from harmful pathogens. Diet exerts a significant impact on human health, influencing the composition of gut microbiota and the developing of several non-communicable diseases, including cancer. Nutrients and microbiota are able to modify the profile of intestinal macrophages, shaping their key function in the maintenance of the gut homeostasis. Intestinal disease often occurs as a breakdown of this balance: defects in monocyte-macrophage differentiation, wrong dietary habits, alteration of microbiota composition, and impairment in the resolution of inflammation may contribute to the development of intestinal chronic inflammation and colorectal cancer. Accordingly, dietary interventions and macrophage-targeted therapies are emerging as innovative tools for the treatment of several intestinal pathologies. In this review, we will describe the delicate balance between diet, microbiota and intestinal macrophages in homeostasis and how the perturbation of this equilibrium may lead to the occurrence of inflammatory conditions in the gut. The understanding of the molecular pathways and dietary factors regulating the activity of intestinal macrophages might result in the identification of innovative targets for the treatments of intestinal pathologies.
Collapse
|
19
|
Ferreira TPT, Lima JGME, Farias-Filho FA, Jannini de Sá YAP, de Arantes ACS, Guimarães FV, Carvalho VDF, Hogaboam C, Wallace J, Martins MA, Silva PMRE. Intranasal Flunisolide Suppresses Pathological Alterations Caused by Silica Particles in the Lungs of Mice. Front Endocrinol (Lausanne) 2020; 11:388. [PMID: 32625168 PMCID: PMC7311565 DOI: 10.3389/fendo.2020.00388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Silicosis is an occupational disease triggered by the inhalation of fine particles of crystalline silica and characterized by inflammation and scarring in the form of nodular lesions in the lungs. In spite of the therapeutic arsenal currently available, there is no specific treatment for the disease. Flunisolide is a potent corticosteroid shown to be effective for controlling chronic lung inflammatory diseases. In this study, the effect of flunisolide on silica-induced lung pathological changes in mice was investigated. Swiss-Webster mice were injected intranasally with silica particles and further treated with flunisolide from day 21 to 27 post-silica challenge. Lung function was assessed by whole body invasive plethysmography. Granuloma formation was evaluated morphometrically, collagen deposition by Picrus sirius staining and quantitated by Sircol. Chemokines and cytokines were evaluated using enzyme-linked immunosorbent assay. The sensitivity of lung fibroblasts was also examined in in vitro assays. Silica challenge led to increased leukocyte numbers (mononuclear cells and neutrophils) as well as production of the chemokine KC/CXCL-1 and the cytokines TNF-α and TGF-β in the bronchoalveolar lavage. These alterations paralleled to progressive granuloma formation, collagen deposition and impairment of lung function. Therapeutic administration of intranasal flunisolide inhibited granuloma and fibrotic responses, noted 28 days after silica challenge. The upregulation of MIP-1α/CCL-3 and MIP-2/CXCL-2 and the cytokines TNF-α and TGF-β, as well as deposition of collagen and airway hyper-reactivity to methacholine were shown to be clearly sensitive to flunisolide, as compared to silica-challenge untreated mice. Additionally, flunisolide effectively suppressed the responses of proliferation and MCP-1/CCL-2 production from IL-13 stimulated lung fibroblasts from silica- or saline-challenged mice. In conclusion, we report that intranasal treatment with the corticosteroid flunisolide showed protective properties on pathological features triggered by silica particles in mice, suggesting that the compound may constitute a promising strategy for the treatment of silicosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cory Hogaboam
- Department of Medicine, Cedars-Sinai Medical Center, Women's Guild Lung Institute, Los Angeles, CA, United States
| | - John Wallace
- Departments of Physiology and Pharmacology, and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia Machado Rodrigues e Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Patrícia Machado Rodrigues e Silva
| |
Collapse
|
20
|
Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 2019; 16:531-543. [PMID: 31312042 DOI: 10.1038/s41575-019-0172-4] [Citation(s) in RCA: 490] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Macrophages are the gatekeepers of intestinal immune homeostasis as they discriminate between innocuous antigens and potential pathogens to maintain oral tolerance. However, in individuals with a genetic and environmental predisposition, regulation of intestinal immunity is impaired, leading to chronic relapsing immune activation and pathologies of the gastrointestinal tract, such as IBD. As evidence suggests a causal link between defects in the resolution of intestinal inflammation and altered monocyte-macrophage differentiation in patients with IBD, macrophages have been considered as a novel potential target to develop new treatment approaches. This Review discusses the molecular and cellular mechanisms involved in the differentiation and function of intestinal macrophages in homeostasis and inflammation, and their role in resolving the inflammatory process. Understanding the molecular pathways involved in the specification of intestinal macrophages might lead to a new class of targets that promote remission in patients with IBD.
Collapse
Affiliation(s)
- Yi Rang Na
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University Medical College, Seoul, South Korea
| | - Michelle Stakenborg
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University Medical College, Seoul, South Korea.
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Ehrchen JM, Roth J, Barczyk-Kahlert K. More Than Suppression: Glucocorticoid Action on Monocytes and Macrophages. Front Immunol 2019; 10:2028. [PMID: 31507614 PMCID: PMC6718555 DOI: 10.3389/fimmu.2019.02028] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Uncontrolled inflammation is a leading cause of many clinically relevant diseases. Current therapeutic strategies focus mainly on immunosuppression rather than on the mechanisms of inflammatory resolution. Glucocorticoids (GCs) are still the most widely used anti-inflammatory drugs. GCs affect most immune cells but there is growing evidence for cell type specific mechanisms. Different subtypes of monocytes and macrophages play a pivotal role both in generation as well as resolution of inflammation. Activation of these cells by microbial products or endogenous danger signals results in production of pro-inflammatory mediators and initiation of an inflammatory response. GCs efficiently inhibit these processes by down-regulating pro-inflammatory mediators from macrophages and monocytes. On the other hand, GCs act on “naïve” monocytes and macrophages and induce anti-inflammatory mediators and differentiation of anti-inflammatory phenotypes. GC-induced anti-inflammatory monocytes have an increased ability to migrate toward inflammatory stimuli. They remove endo- and exogenous danger signals by an increased phagocytic capacity, produce anti-inflammatory mediators and limit T-cell activation. Thus, GCs limit amplification of inflammation by repressing pro-inflammatory macrophage activation and additionally induce anti-inflammatory monocyte and macrophage populations actively promoting resolution of inflammation. Further investigation of these mechanisms should lead to the development of novel therapeutic strategies to modulate undesirable inflammation with fewer side effects via induction of inflammatory resolution rather than non-specific immunosuppression.
Collapse
Affiliation(s)
- Jan M Ehrchen
- Department of Dermatology, University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | | |
Collapse
|
22
|
Arienti S, Barth ND, Dorward DA, Rossi AG, Dransfield I. Regulation of Apoptotic Cell Clearance During Resolution of Inflammation. Front Pharmacol 2019; 10:891. [PMID: 31456686 PMCID: PMC6701246 DOI: 10.3389/fphar.2019.00891] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 01/17/2023] Open
Abstract
Programmed cell death (apoptosis) has an important role in the maintenance of tissue homeostasis as well as the progression and ultimate resolution of inflammation. During apoptosis, the cell undergoes morphological and biochemical changes [e.g., phosphatidylserine (PtdSer) exposure, caspase activation, changes in mitochondrial membrane potential and DNA cleavage] that act to shut down cellular function and mark the cell for phagocytic clearance. Tissue phagocytes bind and internalize apoptotic cells, bodies, and vesicles, providing a mechanism for the safe disposal of apoptotic material. Phagocytic removal of apoptotic cells before they undergo secondary necrosis reduces the potential for bystander damage to adjacent tissue and importantly initiates signaling pathways within the phagocytic cell that act to dampen inflammation. In a pathological context, excessive apoptosis or failure to clear apoptotic material results in secondary necrosis with the release of pro-inflammatory intracellular contents. In this review, we consider some of the mechanisms by which phagocytosis of apoptotic cells can be controlled. We suggest that matching apoptotic cell load with the capacity for apoptotic cell clearance within tissues may be important for therapeutic strategies that target the apoptotic process for treatment of inflammatory disease.
Collapse
Affiliation(s)
- Simone Arienti
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nicole D Barth
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David A Dorward
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian Dransfield
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Flynn JK, Dankers W, Morand EF. Could GILZ Be the Answer to Glucocorticoid Toxicity in Lupus? Front Immunol 2019; 10:1684. [PMID: 31379872 PMCID: PMC6652235 DOI: 10.3389/fimmu.2019.01684] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GC) are used globally to treat autoimmune and inflammatory disorders. Their anti-inflammatory actions are mainly mediated via binding to the glucocorticoid receptor (GR), creating a GC/GR complex, which acts in both the cytoplasm and nucleus to regulate the transcription of a host of target genes. As a result, signaling pathways such as NF-κB and AP-1 are inhibited, and cell activation, differentiation and survival and cytokine and chemokine production are suppressed. However, the gene regulation by GC can also cause severe side effects in patients. Systemic lupus erythematosus (SLE or lupus) is a multisystem autoimmune disease, characterized by a poorly regulated immune response leading to chronic inflammation and dysfunction of multiple organs, for which GC is the major current therapy. Long-term GC use, however, can cause debilitating adverse consequences for patients including diabetes, cardiovascular disease and osteoporosis and contributes to irreversible organ damage. To date, there is no alternative treatment which can replicate the rapid effects of GC across multiple immune cell functions, effecting disease control during disease flares. Research efforts have focused on finding alternatives to GC, which display similar immunoregulatory actions, without the devastating adverse metabolic effects. One potential candidate is the glucocorticoid-induced leucine zipper (GILZ). GILZ is induced by low concentrations of GC and is shown to mimic the action of GC in several inflammatory processes, reducing immunity and inflammation in in vitro and in vivo studies. Additionally, GILZ has, similar to the GC-GR complex, the ability to bind to both NF-κB and AP-1 as well as DNA directly, to regulate immune cell function, while potentially lacking the GC-related side effects. Importantly, in SLE patients GILZ is under-expressed and correlates negatively with disease activity, suggesting an important regulatory role of GILZ in SLE. Here we provide an overview of the actions and use of GC in lupus, and discuss whether the regulatory mechanisms of GILZ could lead to the development of a novel therapeutic for lupus. Increased understanding of the mechanisms of action of GILZ, and its ability to regulate immune events leading to lupus disease activity has important clinical implications for the development of safer anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jacqueline K Flynn
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Wendy Dankers
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Eric F Morand
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Desgeorges T, Caratti G, Mounier R, Tuckermann J, Chazaud B. Glucocorticoids Shape Macrophage Phenotype for Tissue Repair. Front Immunol 2019; 10:1591. [PMID: 31354730 PMCID: PMC6632423 DOI: 10.3389/fimmu.2019.01591] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation is a complex process which is highly conserved among species. Inflammation occurs in response to injury, infection, and cancer, as an allostatic mechanism to return the tissue and to return the organism back to health and homeostasis. Excessive, or chronic inflammation is associated with numerous diseases, and thus strategies to combat run-away inflammation is required. Anti-inflammatory drugs were therefore developed to switch inflammation off. However, the inflammatory response may be beneficial for the organism, in particular in the case of sterile tissue injury. The inflammatory response can be divided into several parts. The first step is the mounting of the inflammatory reaction itself, characterized by the presence of pro-inflammatory cytokines, and the infiltration of immune cells into the injured area. The second step is the resolution phase, where immune cells move toward an anti-inflammatory phenotype and decrease the secretion of pro-inflammatory cytokines. The last stage of inflammation is the regeneration process, where the tissue is rebuilt. Innate immune cells are major actors in the inflammatory response, of which, macrophages play an important role. Macrophages are highly sensitive to a large number of environmental stimuli, and can adapt their phenotype and function on demand. This change in phenotype in response to the environment allow macrophages to be involved in all steps of inflammation, from the first mounting of the pro-inflammatory response to the post-damage tissue repair.
Collapse
Affiliation(s)
- Thibaut Desgeorges
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Giorgio Caratti
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Rémi Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5310, INSERM U1217, Lyon, France
| |
Collapse
|
25
|
Changes in the Activity of Ovine Blood-derived Macrophages Stimulated with Antimicrobial Peptide Extract (AMP) or Platelet-rich Plasma (PRP). J Vet Res 2019; 63:235-242. [PMID: 31276063 PMCID: PMC6598179 DOI: 10.2478/jvetres-2019-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction Antimicrobial peptides (AMP) are a large group of innate immune effectors, which apart from antimicrobial activity show immunomodulative properties. Platelet-rich plasma (PRP) is a source of autologous growth factors and is used for stimulation of bone and soft tissue healing. The purpose of this study was to assess the influence of PRP and AMP extract on ovine monocyte-derived macrophage cultures. Material and Methods The study was conducted on ovine macrophages (Mfs) previously stimulated with LPS or dexamethasone and then with preparations of PRP or AMP. Following activation of the Mfs their morphological and functional features were assessed. Results The study revealed pro-inflammatory influence of both examined preparations on Mfs cultures on the basis of morphology, ROS generation and arginase activity. Both preparations enhanced the pro-inflammatory response of cultured Mfs. Conclusion This activity may intensify the antimicrobial action of Mfs, however, in cases of excessive and prolonged inflammation the use of these preparations should be limited.
Collapse
|
26
|
Wang C, Nanni L, Novakovic B, Megchelenbrink W, Kuznetsova T, Stunnenberg HG, Ceri S, Logie C. Extensive epigenomic integration of the glucocorticoid response in primary human monocytes and in vitro derived macrophages. Sci Rep 2019; 9:2772. [PMID: 30809020 PMCID: PMC6391480 DOI: 10.1038/s41598-019-39395-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoid receptor is a transcription factor that is ubiquitously expressed. Glucocorticoids are circadian steroids that regulate a wide range of bodily functions, including immunity. Here we report that synthetic glucocorticoids affect 1035 mRNAs in isolated healthy human blood monocytes but only 165 in the respective six day-old monocyte-derived macrophages. The majority of the glucocorticoid response in monocytes concerns genes that are dynamic upon monocyte to macrophage differentiation, whereby macrophage-like mRNA levels are often reached in monocytes within four hours of treatment. Concomitantly, over 5000 chromosomal H3K27ac regions undergo remodelling, of which 60% involve increased H3K27ac signal. We find that chromosomal glucocorticoid receptor binding sites correlate with positive but not with negative local epigenomic effects. To investigate further we assigned our data to topologically associating domains (TADs). This shows that about 10% of macrophage TADs harbour at least one GR binding site and that half of all the glucocorticoid-induced H3K27ac regions are confined to these TADs. Our analyses are therefore consistent with the notion that TADs naturally accommodate information from sets of distal glucocorticoid response elements.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands
| | - Luca Nanni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Boris Novakovic
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Wout Megchelenbrink
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands
| | - Tatyana Kuznetsova
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands
- Department of Medical Biochemistry, Academic Medical Centre of the University of Amsterdam, Amsterdam, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands
| | - Stefano Ceri
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Colin Logie
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science Radboud University, PO box 9101, 6500 HG, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Thomas J, Guénette J, Thomson EM. Stress axis variability is associated with differential ozone-induced lung inflammatory signaling and injury biomarker response. ENVIRONMENTAL RESEARCH 2018; 167:751-758. [PMID: 30236519 DOI: 10.1016/j.envres.2018.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 05/05/2023]
Abstract
Ozone (O3), a ubiquitous urban air pollutant, causes adverse pulmonary and extrapulmonary effects. A large variability in acute O3-induced effects has been observed; however, the basis for interindividual differences in susceptibility is unclear. We previously demonstrated a role for the hypothalamic-pituitary-adrenal (HPA) stress axis and glucocorticoid response in acute O3 toxicity. Glucocorticoids have important anti-inflammatory actions, and have been shown to regulate lung inflammatory responses. We hypothesised that a hyporesponsive HPA axis would be associated with greater O3-dependent lung inflammatory signaling. Two genetically-related rat strains with known differences in stress axis reactivity, highly-stress responsive Fischer (F344) and less responsive Lewis (LEW), were exposed for 4 h by nose-only inhalation to clean air or 0.8 ppm O3, and euthanized immediately after exposure. As expected, baseline (air-exposed) plasma corticosterone was significantly lower in the hypo-stress responsive LEW. Although O3 exposure increased plasma corticosterone in both strains, corticosterone remained significantly lower in LEW when compared to F334. LEW exhibited greater O3-induced inflammatory cytokine/chemokine signaling compared to F344, consistent with the lower corticosterone levels. Since we observed strain-specific differences in inflammatory signaling, we further investigated injury biomarkers (total protein, albumin and lactate dehydrogenase). Although the hyper-responsive F344 exhibited lower inflammatory signaling in response to O3 compared with LEW, they had greater levels of lung injury biomarkers. Our results indicate that stress axis variability is associated with differential O3-induced lung toxicity. Given the large variability in stress axis reactivity among humans, stress axis regulation could potentially be a determining factor underlying O3 sensitivity.
Collapse
Affiliation(s)
- Jith Thomas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Josée Guénette
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada K1A 0K9.
| |
Collapse
|
28
|
Barth ND, Marwick JA, Heeb MJ, Gale AJ, Rossi AG, Dransfield I. Augmentation of Human Monocyte Responses to Lipopolysaccharide by the Protein S and Mer/Tyro3 Receptor Tyrosine Kinase Axis. THE JOURNAL OF IMMUNOLOGY 2018; 201:2602-2611. [PMID: 30249810 DOI: 10.4049/jimmunol.1800249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
Abstract
Resolution of the inflammatory response requires coordinated regulation of pro- and anti-inflammatory mediator production, together with clearance of recruited inflammatory cells. Many different receptors have been implicated in phagocytosis of apoptotic cells (efferocytosis), including Mer, a receptor tyrosine kinase that can mediate recognition and subsequent internalization of apoptotic cells. In this manuscript, we examine the expression and function of the Tyro3/Axl/Mer (TAM) family of receptors by human monocytes. We demonstrate that the Mer ligand, protein S, binds to the surface of viable monocytes via phosphatidylserine-dependent and -independent mechanisms. Importantly, we have identified a novel role for receptor tyrosine kinase signaling in the augmentation of monocyte cytokine release in response to LPS. We propose that low-level phosphatidylserine exposure on the plasma membrane of viable monocytes allows protein S binding that leads to TAM-dependent augmentation of proinflammatory cytokine production. Our findings identify a potentially important role for TAM-mediated signaling during the initiation phase of inflammation.
Collapse
Affiliation(s)
- Nicole D Barth
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom; and
| | - John A Marwick
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom; and
| | - Mary Jo Heeb
- The Scripps Research Institute, La Jolla, CA 92037
| | | | - Adriano G Rossi
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom; and
| | - Ian Dransfield
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom; and
| |
Collapse
|
29
|
Belchamber KB, Thomas CM, Dunne AE, Barnes PJ, Donnelly LE. Comparison of fluticasone propionate and budesonide on COPD macrophage and neutrophil function. Int J Chron Obstruct Pulmon Dis 2018; 13:2883-2897. [PMID: 30271135 PMCID: PMC6147211 DOI: 10.2147/copd.s169337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background Inhaled corticosteroid use is associated with increased rates of pneumonia in COPD patients. The underlying mechanism is unknown, although recent data suggest that pneumonia is more frequent in patients treated with fluticasone propionate (FP) than budesonide. Macrophages and neutrophils from COPD patients are deficient in clearing bacteria, and this might explain increased bacterial colonization in COPD. Inhaled corticosteroid may further suppress this response; therefore, we examined the effect of FP and budesonide on phagocytosis of common respiratory pathogens by monocyte-derived macrophages (MDMs) and neutrophils. Methods MDMs from COPD patients (n=20–24) were preincubated with FP or budesonide for 1 or 18 hours, after which phagocytosis of fluorescently labeled inert beads or heat-killed Haemophilus influenzae/Streptococcus pneumoniae were measured fluorimetrically after 1 or 4 hours. Additionally, CXCL8, IL6, and TNFα concentrations in supernatants by ELISA, MDM-scavenger-receptor expression by flow cytometry, and MDM ability to kill bacteria were measured. Neutrophils from COPD patients (n=8) were preincubated with corticosteroids for 1 hour and bacteria phagocytosis measured by flow cytometry. Results After 1 hour’s preincubation, neither corticosteroid altered MDM phagocytosis of beads or H. influenzae; however, budesonide (10−7 M) increased S. pneumoniae phagocytosis by 23% (P<0.05). After 18 hours’ preincubation, neither corticosteroid altered MDM phagocytosis of any prey, although H. influenzae phagocytosis by budesonide was significantly greater compared to FP at 10−6 and 10−5 M (P<0.05). The 1-hour preincubation with either corticosteroid inhibited bacteria-induced CXCL8 release (at 10−7 and 10−5 M, P<0.05); however, this effect was lost at 18-hour preincubation. There was no change in receptor expression, bacterial killing, or neutrophil phagocytosis by either corticosteroid. Conclusion These data suggest that dissolved FP and budesonide do not have an overall effect on MDM or neutrophil phagocytosis of bacteria.
Collapse
Affiliation(s)
- Kylie Br Belchamber
- Airway Disease Section, National Heart and Lung Institute, Dovehouse Street, Imperial College London, London, UK,
| | - Catherine Mr Thomas
- Airway Disease Section, National Heart and Lung Institute, Dovehouse Street, Imperial College London, London, UK,
| | - Amy E Dunne
- Airway Disease Section, National Heart and Lung Institute, Dovehouse Street, Imperial College London, London, UK,
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Dovehouse Street, Imperial College London, London, UK,
| | - Louise E Donnelly
- Airway Disease Section, National Heart and Lung Institute, Dovehouse Street, Imperial College London, London, UK,
| |
Collapse
|
30
|
Heming M, Gran S, Jauch SL, Fischer-Riepe L, Russo A, Klotz L, Hermann S, Schäfers M, Roth J, Barczyk-Kahlert K. Peroxisome Proliferator-Activated Receptor-γ Modulates the Response of Macrophages to Lipopolysaccharide and Glucocorticoids. Front Immunol 2018; 9:893. [PMID: 29867927 PMCID: PMC5949563 DOI: 10.3389/fimmu.2018.00893] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Although glucocorticoids (GC) represent the most frequently used immunosuppressive drugs, their effects are still not well understood. In our previous studies, we have shown that treatment of monocytes with GC does not cause a global suppression of monocytic effector functions, but rather induces differentiation of a specific anti-inflammatory phenotype. The anti-inflammatory role of peroxisome proliferator-activated receptor (PPAR)-γ has been extensively studied during recent years. However, a relationship between GC treatment and PPAR-γ expression in macrophages has not been investigated so far. Studies using PPAR-γ-deficient mice have frequently provided controversial results. A potential reason is the use of primary cells, which commonly represent inhomogeneous populations burdened with side effects and influenced by bystander cells. To overcome this constraint, we established ER-Hoxb8-immortalized bone marrow-derived macrophages from Ppargfl/fl and LysM-Cre Ppargfl/fl mice in this study. In contrast to primary macrophages, the ER-Hoxb8 system allows the generation of a homogeneous and well-defined population of resting macrophages. We could show that the loss of PPAR-γ resulted in delayed kinetic of differentiation of monocytes into macrophages as assessed by reduced F4/80, but increased Ly6C expression in early phases of differentiation. As expected, PPAR-γ-deficient macrophages displayed an increased pro-inflammatory phenotype upon long-term LPS stimulation characterized by an elevated production of pro-inflammatory cytokines TNF-α, IL1-β, IL-6, IL-12 and a reduced production of anti-inflammatory cytokine IL-10 compared to PPAR-γ WT cells. Moreover, PPAR-γ-deficient macrophages showed impaired phagocytosis. GC treatment of macrophages led to the upregulation of PPAR-γ expression. However, there were no differences in GC-induced suppression of cytokines between both cell types, implicating a PPAR-γ-independent mechanism. Intriguingly, GC treatment resulted in an increased in vitro migration only in PPAR-γ-deficient macrophages. Performing a newly developed in vivo cell-tracking experiment, we could confirm that GC induces an increased recruitment of PPAR-γ KO, but not PPAR-γ WT macrophages to the site of inflammation. Our findings suggest a specific effect of PPAR-γ on GC-induced migration in macrophages. In conclusion, we could demonstrate that PPAR-γ exerts anti-inflammatory activities and shapes macrophage functions. Moreover, we identified a molecular link between GC and PPAR-γ and could show for the first time that PPAR-γ modulates GC-induced migration in macrophages.
Collapse
Affiliation(s)
- Michael Heming
- Institute of Immunology, University of Muenster, Muenster, Germany.,Department of Neurology, University of Muenster, Muenster, Germany
| | - Sandra Gran
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Saskia-L Jauch
- Institute of Immunology, University of Muenster, Muenster, Germany
| | | | - Antonella Russo
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Luisa Klotz
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany
| | | |
Collapse
|
31
|
Motwani MP, Bennett F, Norris PC, Maini AA, George MJ, Newson J, Henderson A, Hobbs AJ, Tepper M, White B, Serhan CN, MacAllister R, Gilroy DW. Potent Anti-Inflammatory and Pro-Resolving Effects of Anabasum in a Human Model of Self-Resolving Acute Inflammation. Clin Pharmacol Ther 2018; 104:675-686. [PMID: 29238967 PMCID: PMC6175297 DOI: 10.1002/cpt.980] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/31/2017] [Accepted: 11/25/2017] [Indexed: 12/13/2022]
Abstract
Anabasum is a synthetic analog of Δ8‐tetrahydrocannabinol (THC)‐11‐oic acid that in preclinical models of experimental inflammation exerts potent anti‐inflammatory actions with minimal central nervous system (CNS) cannabimimetic activity. Here we used a novel model of acute inflammation driven by i.d. UV‐killed E. coli in healthy humans and found that anabasum (5 mg) exerted a potent anti‐inflammatory effect equivalent to that of prednisolone in terms of inhibiting neutrophil infiltration, the hallmark of acute inflammation. These effects arose from the inhibition of the neutrophil chemoattractant LTB4, while the inhibition of antiphagocytic prostanoids (PGE2, TxB2, and PGF2α) resulted in enhanced clearance of inflammatory stimulus from the injected site. Anabasum at the higher dose of 20 mg possessed the additional properties of triggering the biosynthesis of specialized pro‐resolving lipid mediators including LXA4, LXB4, RvD1, and RvD3. Collectively, we demonstrate for the first time a striking anti‐inflammatory and pro‐resolution effects of a synthetic analog of THC in healthy humans.
Collapse
Affiliation(s)
- Madhur P Motwani
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Frances Bennett
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexander A Maini
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Marc J George
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Justine Newson
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Alice Henderson
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Heart Centre, Barts & the London School of Medicine, Queen Mary University of London, London, UK
| | - Mark Tepper
- Corbus Pharmaceuticals, Norwood, Massachusetts, USA
| | | | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Raymond MacAllister
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, University College London, London, UK
| |
Collapse
|
32
|
Kubin ME, Hellberg L, Palatsi R. Glucocorticoids: The mode of action in bullous pemphigoid. Exp Dermatol 2017; 26:1253-1260. [PMID: 28771827 DOI: 10.1111/exd.13408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 12/16/2022]
Abstract
Bullous pemphigoid (BP) is the most common of pemphigoid diseases caused by autoantibodies against the structures of dermoepidermal junction followed by complement activation, innate immune cell infiltration, neutrophil proteinase secretion and subepidermal blister formation. The first-line treatment of BP is topical and systemic glucocorticoids (GC). Regulation of the immune system and inflammatory cells is the main target of GC actions. GCs act through genomic and non-genomic mechanisms. The human glucocorticoid receptor (GR) mediates most of the biologic effects of GC: cytosolic GR binds GCs and is capable to bind to glucocorticoid response elements in DNA and either transactivate or transrepress genes depending on the tissue and cell type. In addition, GR exerts rapid, non-genomic effects possibly mediated by membrane-localized receptors or by translocation to mitochondria. GCs can also interact directly with several enzymes and cytokines. As a target treatment for BP, the production of autoantibodies should be discontinued. GCs, in spite of their wide immunosuppressive actions, are weak to stop immunoglobulin G (IgG) autoantibody formation. However, both systemic and topical GCs are able to reduce the clinical symptoms of BP. GCs are used to inhibit the secondary inflammation and symptoms, such as blistering and pruritus, and it is shown that GC treatment will gradually decrease also the autoantibody formation. Our review article analyses the mode of action of GC treatment in BP, as far it is possible due to paucity of modern immunological studies.
Collapse
Affiliation(s)
- Minna E Kubin
- PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Lars Hellberg
- Institute for Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Riitta Palatsi
- PEDEGO Research Unit, Oulu Center for Cell-Matrix Research, Department of Dermatology and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
33
|
Abstract
The engulfment of apoptotic cells by phagocytes, a process referred to as efferocytosis, is essential for maintenance of normal tissue homeostasis and a prerequisite for the resolution of inflammation. Neutrophils are the predominant circulating white blood cell in humans, and contain an arsenal of toxic substances that kill and degrade microbes. Neutrophils are short-lived and spontaneously die by apoptosis. This review will highlight how the engulfment of apoptotic neutrophils by human phagocytes occurs, how heterogeneity of phagocyte populations influences efferocytosis signaling, and downstream consequences of efferocytosis. The efferocytosis of apoptotic neutrophils by macrophages promotes anti-inflammatory signaling, prevents neutrophil lysis, and dampens immune responses. Given the immunomodulatory properties of efferocytosis, understanding pathways that regulate and enhance efferocytosis could be harnessed to combat infection and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Mallary C Greenlee-Wacker
- Inflammation Program, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine University of Iowa, Veterans Administration Medical Center, Iowa City, IA, USA
| |
Collapse
|
34
|
Abstract
In metazoans, removal of cells in situ is involved in larval maturation, metamorphosis, and embryonic development. In adults, such cell removal plays a role in the homeostatic maintenance of cell numbers and tissue integrity as well as in the response to cell injury and damage. This removal involves uptake of the whole or fragmented target cells into phagocytes. Depending on the organism, these latter may be near-neighbor tissue cells and/or professional phagocytes such as, in vertebrates, members of the myeloid family of cells, especially macrophages. The uptake processes appear to involve specialized and highly conserved recognition ligands and receptors, intracellular signaling in the phagocytes, and mechanisms for ingestion. The recognition of cells destined for this form of removal is critical and, significantly, is distinguished for the most part from the recognition of foreign materials and organisms by the innate and adaptive immune systems. In keeping with the key role of cell removal in maintaining tissue homeostasis, constant cell removal is normally silent, i.e., does not initiate a local tissue reaction. This article discusses these complex and wide-ranging processes in general terms as well as the implications when these processes are disrupted in inflammation, immunity, and disease.
Collapse
Affiliation(s)
- Peter M Henson
- Department of Pediatrics, National Jewish Health, and Departments of Immunology and Medicine, University of Colorado, Denver, Colorado 80206;
| |
Collapse
|
35
|
Szponder T, Wessely-Szponder J, Smolira A. Evaluation of Platelet-Rich Plasma and Neutrophil Antimicrobial Extract as Two Autologous Blood-Derived Agents. Tissue Eng Regen Med 2017; 14:287-296. [PMID: 30603485 PMCID: PMC6171590 DOI: 10.1007/s13770-017-0035-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/11/2016] [Accepted: 08/10/2016] [Indexed: 11/28/2022] Open
Abstract
The platelet-rich plasma (PRP) and antimicrobial peptides neutrophil extract (AMP extract) were prepared from rabbit neutrophils as two autologous blood-derived preparations, which could be applied locally to enhance healing process of tissues. Both preparations were analyzed using the MALDI TOF method for accurate qualitative assay. Growth factors (PDGF and VEGF) and microbicidal protein were reported in PRP. In AMP extract α-defensins, namely; NP-1, -2, -3a, -3b, -4, and -5 and cathelicidins represented among other by 15-kDa antibacterial protein (p15s) were detected. In the second part of our study the influence of antimicrobial extract on macrophages in vitro was tested. Then, degranulation of neutrophils in vitro and generation of reactive intermediates by these cells under the influence of AMP extract were assessed. As estimated, the addition of AMP extract into cultures of macrophages decreased superoxide anion generation after 5 days of incubation. Furthermore, AMP extract inhibited degranulation and respiratory burst in neutrophils, therefore in this regard it suppress proinflammatory effect of two studied populations of leukocytes.
Collapse
Affiliation(s)
- Tomasz Szponder
- 1Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland
| | - Joanna Wessely-Szponder
- Department of Pathophysiology, Chair of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, Akademicka 12, 20-033 Lublin, Poland
| | - Anna Smolira
- 3Mass Spectrometry Laboratory Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
| |
Collapse
|
36
|
Abstract
Endogenous glucocorticoids are crucial to various physiological processes, including metabolism, development and inflammation. Since 1948, synthetic glucocorticoids have been used to treat various immune-related disorders. The mechanisms that underlie the immunosuppressive properties of these hormones have been intensely scrutinized, and it is widely appreciated that glucocorticoids have pleiotropic effects on the immune system. However, a clear picture of the cellular and molecular basis of glucocorticoid action has remained elusive. In this Review, we distil several decades of intense (and often conflicting) research that defines the interface between the endocrine stress response and the immune system.
Collapse
Affiliation(s)
- Derek W Cain
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
37
|
Chatzopoulou A, Heijmans JPM, Burgerhout E, Oskam N, Spaink HP, Meijer AH, Schaaf MJM. Glucocorticoid-Induced Attenuation of the Inflammatory Response in Zebrafish. Endocrinology 2016; 157:2772-84. [PMID: 27219276 DOI: 10.1210/en.2015-2050] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucocorticoids are steroid hormones that are secreted upon stress. Their effects are mediated by the glucocorticoid receptor, which acts as a transcription factor. Because the antiinflammatory activity of glucocorticoids has been well established, they are widely used clinically to treat many inflammatory and immune-related diseases. However, the exact specificity, mechanisms, and level of regulation of different inflammatory pathways have not been fully elucidated. In the present study, a tail fin amputation assay was used in 3-day-old zebrafish larvae to study the immunomodulatory effects of the synthetic glucocorticoid beclomethasone. First, a transcriptome analysis was performed, which showed that upon amputation mainly immune-related genes are regulated. This regulation was inhibited by beclomethasone for 86% of regulated genes. For two immune-related genes, tlr4bb and alox5ap, the amputation-induced increase was not attenuated by beclomethasone. Alox5ap is involved in eicosanoid biosynthesis, but the increase in leukotriene B4 concentration upon amputation was abolished, and lipoxin A4 levels were unaffected by beclomethasone. Furthermore, we studied the migration of neutrophils and macrophages toward the wound site. Our results show that amputation induced migration of both types of leukocytes and that this migration was dependent on de novo protein synthesis. Beclomethasone treatment attenuated the migratory behavior of neutrophils in a glucocorticoid receptor-dependent manner but left the migration of macrophages unaffected. In conclusion, beclomethasone has a dramatic inhibitory effect on the amputation-induced proinflammatory gene regulation, and this is reflected in an inhibition of the neutrophil migration but not the migration of macrophages, which are likely to be involved in inflammation resolution.
Collapse
Affiliation(s)
| | | | - Erik Burgerhout
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Nienke Oskam
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| | | | - Marcel J M Schaaf
- Institute of Biology, Leiden University, 2333CC Leiden, The Netherlands
| |
Collapse
|
38
|
Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol 2016; 38:425-48. [PMID: 27116944 PMCID: PMC4896979 DOI: 10.1007/s00281-016-0560-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered.
Collapse
Affiliation(s)
- C T Robb
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - K H Regan
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
39
|
Stelzer IA, Arck PC. Immunity and the Endocrine System. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7151910 DOI: 10.1016/b978-0-12-374279-7.19001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Affiliation(s)
- Madhur P Motwani
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom
| | - Derek W Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom.
| |
Collapse
|
41
|
Gilroy D, De Maeyer R. New insights into the resolution of inflammation. Semin Immunol 2015; 27:161-8. [PMID: 26037968 DOI: 10.1016/j.smim.2015.05.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
Abstract
The goal of treating chronic inflammatory diseases must be to inhibit persistent inflammation and restore tissue function. To achieve this we need to improve our understanding of the pathways that drive inflammation as well as those that bring about its resolution. In particular, resolution of inflammation is driven by a complex set of mediators that regulate cellular events required to clear inflammatory cells from sites of injury or infection and restore homeostasis. Indeed, it may be argued that dysfunctional resolution may underpin the aetiology of some chronic inflammatory disease and that a novel goal in treating such diseases is to develop drugs based on the mode of endogenous pro-resolution factors in order to drive on-going inflammation down a pro-resolution pathway. And while we are improving our understanding of the resolution of acute and chronic inflammation, much remains to be discovered. Here we will discuss the key endogenous checkpoints necessary for mounting an effective yet limited inflammatory response and the crucial biochemical pathways necessary to prevent its persistence and trigger its resolution. In doing so, we will provide an update on what is known about resolution of acute inflammation, in particular its link with adaptive immunity.
Collapse
Affiliation(s)
- Derek Gilroy
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom.
| | - Roel De Maeyer
- Centre for Clinical Pharmacology and Therapeutics, Division of Medicine, 5 University Street, University College London, London WC1E 6JJ, United Kingdom
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is characterized by autoantibodies directed against nuclear autoantigens normally concealed from immune recognition in healthy individuals. Here, we summarize recently identified mechanisms of abnormal cell death leading to exposure and aberrant processing of nucleoprotein self antigens, and discuss their role in the SLE pathogenesis. RECENT FINDINGS During the past few years, the unveiling of several new forms of cell death has expanded our understanding beyond the simple view of 'apoptotic' versus 'necrotic' cell death. SLE patients show abnormalities in cell death at several levels, including increased rates of apoptosis, necrosis, and autophagy, as well as reduced clearance of dying cells. These abnormalities lead to an increased autoantigen burden and antigen modifications, such as nucleic acid oxidation that increases the inflammatory properties of self antigens. Recent investigations have highlighted the role of opsonins in determining the immunogenic versus tolerogenic characteristics of self antigens. SUMMARY Dysregulation of different forms of programmed cell death contributes to increased exposure, availability, and immunogenic characteristics of intracellular self antigens, which all participate in development of lupus autoimmunity. As our understanding of abnormalities of cell death in SLE advances, potential therapeutic opportunities await human implementation.
Collapse
|
43
|
Dransfield I, Zagórska A, Lew ED, Michail K, Lemke G. Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells. Cell Death Dis 2015; 6:e1646. [PMID: 25695599 PMCID: PMC4669813 DOI: 10.1038/cddis.2015.18] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 01/06/2015] [Indexed: 01/12/2023]
Abstract
Billions of inflammatory leukocytes die and are phagocytically cleared each day. This regular renewal facilitates the normal termination of inflammatory responses, suppressing pro-inflammatory mediators and inducing their anti-inflammatory counterparts. Here we investigate the role of the receptor tyrosine kinase (RTK) Mer and its ligands Protein S and Gas6 in the initial recognition and capture of apoptotic cells (ACs) by macrophages. We demonstrate extremely rapid binding kinetics of both ligands to phosphatidylserine (PtdSer)-displaying ACs, and show that ACs can be co-opsonized with multiple PtdSer opsonins. We further show that macrophage phagocytosis of ACs opsonized with Mer ligands can occur independently of a requirement for αV integrins. Finally, we demonstrate a novel role for Mer in the tethering of ACs to the macrophage surface, and show that Mer-mediated tethering and subsequent AC engulfment can be distinguished by their requirement for Mer kinase activity. Our results identify Mer as a receptor uniquely capable of both tethering ACs to the macrophage surface and driving their subsequent internalization.
Collapse
Affiliation(s)
- I Dransfield
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - A Zagórska
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, USA
| | - E D Lew
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, USA
| | - K Michail
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - G Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, USA
| |
Collapse
|
44
|
Albert R, Kristóf E, Zahuczky G, Szatmári-Tóth M, Veréb Z, Oláh B, Moe MC, Facskó A, Fésüs L, Petrovski G. Triamcinolone regulated apopto-phagocytic gene expression patterns in the clearance of dying retinal pigment epithelial cells. A key role of Mertk in the enhanced phagocytosis. Biochim Biophys Acta Gen Subj 2014; 1850:435-46. [PMID: 25450174 DOI: 10.1016/j.bbagen.2014.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/03/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The apopto-phagocytic gene expression patterns during clearance of dying cells in the retina and the effect of triamcinolone (TC) upon these processes have relevance to development of age-related macular degeneration (AMD). METHODS ARPE-19 cells and primary human retinal pigment epithelium (hRPE) were induced to undergo cell death by anoikis and the clearance of these cells by living hRPE/ARPE-19 or human monocyte-derived macrophages (HMDMs) in the presence or absence of TC was quantified by flow cytometry. TaqMan low-density gene expression array determining known markers of phagocytosis and loss-of-function studies on selected apopto-phagocytic genes was carried out in HMDM engulfing anoikic cells. RESULTS The glucocorticoid TC had a profound phagocytosis-enhancing effect on HMDM engulfing anoikic ARPE-19 or hRPE cells, causing a selective upregulation of the Mer tyrosine kinase (MERTK) receptor, while decreasing the expression of the AXL receptor tyrosine kinase and thrombospondin-1 (THSB-1). The key role of the MERTK could be demonstrated in HMDM engulfing dying cells using gene silencing as well as blocking antibodies. Similar pathways were found upregulated in living ARPE-19 engulfing anoikic ARPE-19 cells. Gas6 treatment enhanced phagocytosis in TC-treated HMDMs. CONCLUSIONS Specific agonists of the Mertk receptor may have a potential role as phagocytosis enhancers in the retina and serve as future targets for AMD therapy. GENERAL SIGNIFICANCE The use of Gas6 as enhancer of retinal phagocytosis via the MerTK receptor, alone or in combination with other specific ligands of the tyrosine kinase receptors' family may have a potential role in AMD therapy.
Collapse
Affiliation(s)
- Réka Albert
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | | | - Mária Szatmári-Tóth
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Zoltán Veréb
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Brigitta Oláh
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Morten C Moe
- Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Andrea Facskó
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Fésüs
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary
| | - Goran Petrovski
- Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, and MTA-DE Stem cell, Apoptosis and Genomics Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
45
|
Szondy Z, Garabuczi E, Joós G, Tsay GJ, Sarang Z. Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications. Front Immunol 2014; 5:354. [PMID: 25136342 PMCID: PMC4117929 DOI: 10.3389/fimmu.2014.00354] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 12/14/2022] Open
Abstract
In healthy individuals, billions of cells die by apoptosis every day. Removal of the dead cells by phagocytosis (a process called efferocytosis) must be efficient to prevent secondary necrosis and the consequent release of pro-inflammatory cell contents that damages the tissue environment and provokes autoimmunity. In addition, detection and removal of apoptotic cells generally induces an anti-inflammatory response. As a consequence improper clearance of apoptotic cells, being the result of either genetic anomalies and/or a persistent disease state, contributes to the establishment and progression of a number of human chronic inflammatory diseases such as autoimmune and neurological disorders, inflammatory lung diseases, obesity, type 2 diabetes, or atherosclerosis. During the past decade, our knowledge about the mechanism of efferocytosis has significantly increased, providing therapeutic targets through which impaired phagocytosis of apoptotic cells and the consequent inflammation could be influenced in these diseases.
Collapse
Affiliation(s)
- Zsuzsa Szondy
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen , Debrecen , Hungary
| | - Eva Garabuczi
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen , Debrecen , Hungary
| | - Gergely Joós
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen , Debrecen , Hungary
| | - Gregory J Tsay
- Department of Internal Medicine, Faculty of Medicine, Chung Shan Medical University Hospital , Taichung , Taiwan
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen , Debrecen , Hungary
| |
Collapse
|
46
|
Felton JM, Lucas CD, Rossi AG, Dransfield I. Eosinophils in the lung - modulating apoptosis and efferocytosis in airway inflammation. Front Immunol 2014; 5:302. [PMID: 25071763 PMCID: PMC4076794 DOI: 10.3389/fimmu.2014.00302] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/15/2014] [Indexed: 01/09/2023] Open
Abstract
Due to the key role of the lung in efficient transfer of oxygen in exchange for carbon dioxide, a controlled inflammatory response is essential for restoration of tissue homeostasis following airway exposure to bacterial pathogens or environmental toxins. Unregulated or prolonged inflammatory responses in the lungs can lead to tissue damage, disrupting normal tissue architecture, and consequently compromising efficient gaseous exchange. Failure to resolve inflammation underlies the development and/or progression of a number of inflammatory lung diseases including asthma. Eosinophils, granulocytic cells of the innate immune system, are primarily involved in defense against parasitic infections. However, the propagation of the allergic inflammatory response in chronic asthma is thought to involve excessive recruitment and impaired apoptosis of eosinophils together with defective phagocytic clearance of apoptotic cells (efferocytosis). In terms of therapeutic approaches for the treatment of asthma, the widespread use of glucocorticoids is associated with a number of adverse health consequences after long-term use, while some patients suffer from steroid-resistant disease. A new approach for therapeutic intervention would be to promote the resolution of inflammation via modulation of eosinophil apoptosis and the phagocytic clearance of apoptotic cells. This review focuses on the mechanisms underpinning eosinophil-mediated lung damage, currently available treatments and therapeutic targets that might in future be harnessed to facilitate inflammation resolution by the manipulation of cell survival and clearance pathways.
Collapse
Affiliation(s)
- Jennifer M. Felton
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Christopher D. Lucas
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Adriano G. Rossi
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ian Dransfield
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
47
|
Forbes B, O'Lone R, Allen PP, Cahn A, Clarke C, Collinge M, Dailey LA, Donnelly LE, Dybowski J, Hassall D, Hildebrand D, Jones R, Kilgour J, Klapwijk J, Maier CC, McGovern T, Nikula K, Parry JD, Reed MD, Robinson I, Tomlinson L, Wolfreys A. Challenges for inhaled drug discovery and development: Induced alveolar macrophage responses. Adv Drug Deliv Rev 2014; 71:15-33. [PMID: 24530633 DOI: 10.1016/j.addr.2014.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 12/27/2022]
Abstract
Alveolar macrophage (AM) responses are commonly induced in inhalation toxicology studies, typically being observed as an increase in number or a vacuolated 'foamy' morphology. Discriminating between adaptive AM responses and adverse events during nonclinical and clinical development is a major scientific challenge. When measuring and interpreting induced AM responses, an understanding of macrophage biology is essential; this includes 'sub-types' of AMs with different roles in health and disease and mechanisms of induction/resolution of AM responses to inhalation of pharmaceutical aerosols. In this context, emerging assay techniques, the utility of toxicokinetics and the requirement for new biomarkers are considered. Risk assessment for nonclinical toxicology findings and their translation to effects in humans is discussed from a scientific and regulatory perspective. At present, when apparently adaptive macrophage-only responses to inhaled investigational products are observed in nonclinical studies, this poses a challenge for risk assessment and an improved understanding of induced AM responses to inhaled pharmaceuticals is required.
Collapse
|
48
|
Das S, Sarkar A, Ryan KA, Fox S, Berger AH, Juncadella IJ, Bimczok D, Smythies LE, Harris PR, Ravichandran KS, Crowe SE, Smith PD, Ernst PB. Brain angiogenesis inhibitor 1 is expressed by gastric phagocytes during infection with Helicobacter pylori and mediates the recognition and engulfment of human apoptotic gastric epithelial cells. FASEB J 2014; 28:2214-24. [PMID: 24509909 DOI: 10.1096/fj.13-243238] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
After Helicobacter pylori infection in humans, gastric epithelial cells (GECs) undergo apoptosis due to stimulation by the bacteria or inflammatory cytokines. In this study, we assessed the expression and function of brain angiogenesis inhibitor 1 (BAI1) in the engulfment of apoptotic GECs using human tissue and cells. After induction of apoptosis by H. pylori or camptothecin, there was a 5-fold increase in the binding of apoptotic GECs to THP-1 cells or peripheral blood monocyte-derived macrophages as assayed by confocal microscopy or conventional and imaging flow cytometry. Binding was impaired 95% by pretreating apoptotic cells with annexin V, underscoring the requirement for phosphatidylserine recognition. The phosphatidylserine receptor BAI1 was expressed in human gastric biopsy specimens and gastric phagocytes. To confirm the role of BAI1 in apoptotic cell clearance, the functional domain of BAI1 was used as a competitive inhibitor or BAI1 expression was inhibited by small interfering RNA. Both approaches decreased binding and engulfment >40%. Exposing THP-1 cells to apoptotic cells inhibited IL-6 production from 1340 to <364 pg/ml; however, this decrease was independent of phagocytosis. We conclude that recognition of apoptotic cells by BAI1 contributes to their clearance in the human gastric mucosa and this is associated with anti-inflammatory effects.
Collapse
Affiliation(s)
- Soumita Das
- 2Division of Comparative Pathology and Medicine, Department of Pathology, MC 0063, University of California, San Diego, San Diego, CA 92093-0063, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 2013; 93:1139-206. [PMID: 23899562 DOI: 10.1152/physrev.00020.2012] [Citation(s) in RCA: 568] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid action on target tissues is determined by the density of "nuclear" receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental "programming." The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues.
Collapse
Affiliation(s)
- Karen Chapman
- Endocrinology Unit, Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | | |
Collapse
|
50
|
Chapman KE, Coutinho AE, Zhang Z, Kipari T, Savill JS, Seckl JR. Changing glucocorticoid action: 11β-hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation. J Steroid Biochem Mol Biol 2013; 137:82-92. [PMID: 23435016 PMCID: PMC3925798 DOI: 10.1016/j.jsbmb.2013.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/22/2013] [Accepted: 02/04/2013] [Indexed: 12/18/2022]
Abstract
Since the discovery of cortisone in the 1940s and its early success in treatment of rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory therapies. However, cortisone itself is intrinsically inert. To be effective, it requires conversion to cortisol, the active glucocorticoid, by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Despite the identification of 11β-HSD in liver in 1953 (which we now know to be 11β-HSD1), its physiological role has been little explored until recently. Over the past decade, however, it has become apparent that 11β-HSD1 plays an important role in shaping endogenous glucocorticoid action. Acute inflammation is more severe with 11β-HSD1-deficiency or inhibition, yet in some inflammatory settings such as obesity or diabetes, 11β-HSD1-deficiency/inhibition is beneficial, reducing inflammation. Current evidence suggests both beneficial and detrimental effects may result from 11β-HSD1 inhibition in chronic inflammatory disease. Here we review recent evidence pertaining to the role of 11β-HSD1 in inflammation. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Karen E Chapman
- University/BHF Centre for Cardiovascular Sciences, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | | | | | |
Collapse
|