1
|
HIV UTR, LTR, and Epigenetic Immunity. Viruses 2022; 14:v14051084. [PMID: 35632825 PMCID: PMC9146425 DOI: 10.3390/v14051084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
The duel between humans and viruses is unending. In this review, we examine the HIV RNA in the form of un-translated terminal region (UTR), the viral DNA in the form of long terminal repeat (LTR), and the immunity of human DNA in a format of epigenetic regulation. We explore the ways in which the human immune responses to invading pathogenic viral nucleic acids can inhibit HIV infection, exemplified by a chromatin vaccine (cVaccine) to elicit the immunity of our genome—epigenetic immunity towards a cure.
Collapse
|
2
|
Nilchian A, Plant E, Parniewska MM, Santiago A, Rossignoli A, Skogsberg J, Hedin U, Matic L, Fuxe J. Induction of the Coxsackievirus and Adenovirus Receptor in Macrophages During the Formation of Atherosclerotic Plaques. J Infect Dis 2021; 222:2041-2051. [PMID: 32852032 PMCID: PMC7661765 DOI: 10.1093/infdis/jiaa418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 11/14/2022] Open
Abstract
Multiple viruses are implicated in atherosclerosis, but the mechanisms by which they infect cells and contribute to plaque formation in arterial walls are not well understood. Based on reports showing the presence of enterovirus in atherosclerotic plaques we hypothesized that the coxsackievirus and adenovirus receptor (CXADR/CAR), although absent in normal arteries, could be induced during plaque formation. Large-scale microarray and mass spectrometric analyses revealed significant up-regulation of CXADR messenger RNA and protein levels in plaque-invested carotid arteries compared with control arteries. Macrophages were identified as a previously unknown cellular source of CXADR in human plaques and plaques from Ldr-/-Apob100/100 mice. CXADR was specifically associated with M1-polarized macrophages and foam cells and was experimentally induced during macrophage differentiation. Furthermore, it was significantly correlated with receptors for other viruses linked to atherosclerosis. The results show that CXADR is induced in macrophages during plaque formation, suggesting a mechanism by which enterovirus infect cells in atherosclerotic plaques.
Collapse
Affiliation(s)
- Azadeh Nilchian
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Estelle Plant
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Malgorzata M Parniewska
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ana Santiago
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aránzazu Rossignoli
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Josefin Skogsberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jonas Fuxe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Leite Pereira A, Jouhault Q, Marcos Lopez E, Cosma A, Lambotte O, Le Grand R, Lehmann MH, Tchitchek N. Modulation of Cell Surface Receptor Expression by Modified Vaccinia Virus Ankara in Leukocytes of Healthy and HIV-Infected Individuals. Front Immunol 2020; 11:2096. [PMID: 33013882 PMCID: PMC7506042 DOI: 10.3389/fimmu.2020.02096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022] Open
Abstract
Viral vectors are increasingly used as delivery means to induce a specific immunity in humans and animals. However, they also impact the immune system, and it depends on the given context whether this is beneficial or not. The attenuated vaccinia virus strain modified vaccinia virus Ankara (MVA) has been used as a viral vector in clinical studies intended to treat and prevent cancer and infectious diseases. The adjuvant property of MVA is thought to be due to its capability to stimulate innate immunity. Here, we confirmed that MVA induces interleukin-8 (IL-8), and this chemokine was upregulated significantly more in monocytes and HLA-DRbright dendritic cells (DCs) of HIV-infected patients on combined antiretroviral therapy (ART) than in cells of healthy persons. The effect of MVA on cell surface receptors is mostly unknown. Using mass cytometry profiling, we investigated the expression of 17 cell surface receptors in leukocytes after ex vivo infection of human whole-blood samples with MVA. We found that MVA downregulates most of the characteristic cell surface markers in particular types of leukocytes. In contrast, C-X-C motif chemokine receptor 4 (CXCR4) was significantly upregulated in each leukocyte type of healthy persons. Additionally, we detected a relative higher cell surface expression of the HIV-1 co-receptors C-C motif chemokine receptor 5 (CCR5) and CXCR4 in leukocytes of HIV-ART patients than in healthy persons. Importantly, we showed that MVA infection significantly downregulated CCR5 in CD4+ T cells, CD8+ T cells, B cells, and three different DC populations. CD86, a costimulatory molecule for T cells, was significantly upregulated in HLA-DRbright DCs after MVA infection of whole blood from HIV-ART patients. However, MVA was unable to downregulate cell surface expression of CD11b and CD32 in monocytes and neutrophils of HIV-ART patients to the same extent as in monocytes and neutrophils of healthy persons. In summary, MVA modulates the expression of many different kinds of cell surface receptors in leukocytes, which can vary in cells originating from persons previously infected with other pathogens.
Collapse
Affiliation(s)
- Adrien Leite Pereira
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Quentin Jouhault
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Ernesto Marcos Lopez
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Antonio Cosma
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France.,INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France.,APHP, Service de Médecine Interne et Immunologie Clinique, Hôpitaux Universitaires Paris Saclay, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolas Tchitchek
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Epigenetic mechanisms, T-cell activation, and CCR5 genetics interact to regulate T-cell expression of CCR5, the major HIV-1 coreceptor. Proc Natl Acad Sci U S A 2015; 112:E4762-71. [PMID: 26307764 DOI: 10.1073/pnas.1423228112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
T-cell expression levels of CC chemokine receptor 5 (CCR5) are a critical determinant of HIV/AIDS susceptibility, and manifest wide variations (i) between T-cell subsets and among individuals and (ii) in T-cell activation-induced increases in expression levels. We demonstrate that a unifying mechanism for this variation is differences in constitutive and T-cell activation-induced DNA methylation status of CCR5 cis-regulatory regions (cis-regions). Commencing at an evolutionarily conserved CpG (CpG -41), CCR5 cis-regions manifest lower vs. higher methylation in T cells with higher vs. lower CCR5 levels (memory vs. naïve T cells) and in memory T cells with higher vs. lower CCR5 levels. HIV-related and in vitro induced T-cell activation is associated with demethylation of these cis-regions. CCR5 haplotypes associated with increased vs. decreased gene/surface expression levels and HIV/AIDS susceptibility magnify vs. dampen T-cell activation-associated demethylation. Methylation status of CCR5 intron 2 explains a larger proportion of the variation in CCR5 levels than genotype or T-cell activation. The ancestral, protective CCR5-HHA haplotype bears a polymorphism at CpG -41 that is (i) specific to southern Africa, (ii) abrogates binding of the transcription factor CREB1 to this cis-region, and (iii) exhibits a trend for overrepresentation in persons with reduced susceptibility to HIV and disease progression. Genotypes lacking the CCR5-Δ32 mutation but with hypermethylated cis-regions have CCR5 levels similar to genotypes heterozygous for CCR5-Δ32. In HIV-infected individuals, CCR5 cis-regions remain demethylated, despite restoration of CD4+ counts (≥800 cells per mm(3)) with antiretroviral therapy. Thus, methylation content of CCR5 cis-regions is a central epigenetic determinant of T-cell CCR5 levels, and possibly HIV-related outcomes.
Collapse
|
5
|
Das S, Banerjee S, Majumder S, Paul Chowdhury B, Goswami A, Halder K, Chakraborty U, Pal NK, Majumdar S. Immune subversion by Mycobacterium tuberculosis through CCR5 mediated signaling: involvement of IL-10. PLoS One 2014; 9:e92477. [PMID: 24695099 PMCID: PMC3973661 DOI: 10.1371/journal.pone.0092477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/22/2014] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis is characterized by severe immunosuppression of the host macrophages, resulting in the loss of the host protective immune responses. During Mycobacterium tuberculosis infection, the pathogen modulates C-C Chemokine Receptor 5 (CCR5) to enhance IL-10 production, indicating the possible involvement of CCR5 in regulation of the host immune response. Here, we found that Mycobacterium infection significantly increased CCR5 expression in macrophages there by facilitating the activation of its downstream signaling. These events culminated in up-regulation of the immunosuppressive cytokine IL-10 production, which was further associated with the down-regulation of macrophage MHC-II expression along with the up-regulation of CCR5 expression via engagement of STAT-3 in a positive feedback loop. Treatment of macrophages with CCR5 specific siRNA abrogated the IL-10 production and restored MHCII expression. While, in vivo CCR5 silencing was also effective for the restoration of host immune responses against tuberculosis. This study demonstrated that CCR5 played a very critical role for the immune subversion mechanism employed by the pathogen.
Collapse
Affiliation(s)
- Shibali Das
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Saikat Majumder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Avranil Goswami
- Department of Microbiology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Kuntal Halder
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | - Urmita Chakraborty
- Department of Microbiology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Nishith K. Pal
- Department of Microbiology, Institute of Post Graduate Medical Education and Research, Kolkata, India
- Department of Microbiology, Malda Medical College, Malda, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, Kolkata, India
- * E-mail: .
| |
Collapse
|
6
|
Abstract
Adipose tissue historically was believed to be an inert tissue, functioning primarily in the storage of energy and thermal homeostasis. However, recent discoveries point toward a critical role for adipocytes in endocrine function as well as immune regulation. Excess body fat, accumulated through aging and/or a calorie-rich diet, is associated with many chronic metabolic and inflammatory diseases. Within the stromal vascular fraction of adipose tissue, macrophages and T cells accumulate with increasing tissue mass, secreting pro- or anti-inflammatory cytokines. In this review we discuss the current understanding of immune cell function in both diet-induced and age-related obesity. In both models of obesity, the classically activated, pro-inflammatory (M1) subtype takes precedence over the alternatively activated, anti-inflammatory (M2) macrophages, causing tissue necrosis and releasing pro-inflammatory cytokines like interleukin-6. Other distinct adipose tissue macrophage subtypes have been identified by surface marker expression and their functions characterized. Adipose tissue T cell recruitment to adipose tissue is also different between aging- and diet-induced obesity. Under both conditions, T cells exhibit restricted T-cell receptor diversity and produce higher levels of pro-inflammatory signals like interferon-γ and granzyme B relative to young or healthy mice. However, numbers of regulatory T cells are dramatically different between the 2 models of obesity. Taken together, these findings suggest models of age- and diet-induced obesity may be more distinct than previously thought, with many questions yet to be resolved in this multidimensional disease.
Collapse
Affiliation(s)
- Sanjay K Garg
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Colin Delaney
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Hang Shi
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Raymond Yung
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| |
Collapse
|
7
|
Barmania F, Pepper MS. C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection. Appl Transl Genom 2013; 2:3-16. [PMID: 27942440 PMCID: PMC5133339 DOI: 10.1016/j.atg.2013.05.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 12/25/2022]
Abstract
When HIV was initially discovered as the causative agent of AIDS, many expected to find a vaccine within a few years. This has however proven to be elusive; it has been approximately 30 years since HIV was first discovered, and a suitable vaccine is still not in effect. In 2009, a paper published by Hutter et al. reported on a bone marrow transplant performed on an HIV positive individual using stem cells that were derived from a donor who was homozygous for a mutation in the CCR5 gene known as CCR5 delta-32 (Δ32) (Hütter et al., 2009). The HIV positive individual became HIV negative and remained free of viral detection after transplantation despite having halted anti-retroviral (ARV) treatment. This review will focus on CCR5 as a key component in HIV immunity and will discuss the role of CCR5 in the control of HIV infection.
Collapse
Affiliation(s)
| | - Michael S. Pepper
- Corresponding author at: Dept. of Immunology, Faculty of Health Sciences, University of Pretoria, P.O. Box 2034, Pretoria 0001, South Africa. Tel.: + 27 12 319 2190; fax: + 27 12 319 2946.
| |
Collapse
|
8
|
C/EBPbeta regulates transcription factors critical for proliferation and survival of multiple myeloma cells. Blood 2009; 114:3890-8. [PMID: 19717648 DOI: 10.1182/blood-2009-01-201111] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CCAAT/enhancer-binding protein beta (C/EBPbeta), also known as nuclear factor-interleukin-6 (NF-IL6), is a transcription factor that plays an important role in the regulation of growth and differentiation of myeloid and lymphoid cells. Mice deficient in C/EBPbeta show impaired generation of B lymphocytes. We show that C/EBPbeta regulates transcription factors critical for proliferation and survival in multiple myeloma. Multiple myeloma cell lines and primary multiple myeloma cells strongly expressed C/EBPbeta, whereas normal B cells and plasma cells had little or no detectable levels of C/EBPbeta. Silencing of C/EBPbeta led to down-regulation of transcription factors such as IRF4, XBP1, and BLIMP1 accompanied by a strong inhibition of proliferation. Further, silencing of C/EBPbeta led to a complete down-regulation of antiapoptotic B-cell lymphoma 2 (BCL2) expression. In chromatin immunoprecipitation assays, C/EBPbeta directly bound to the promoter region of IRF4, BLIMP1, and BCL2. Our data indicate that C/EBPbeta is involved in the regulatory network of transcription factors that are critical for plasma cell differentiation and survival. Targeting C/EBPbeta may provide a novel therapeutic strategy in the treatment of multiple myeloma.
Collapse
|
9
|
Liu Y, Nonnemacher MR, Wigdahl B. CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection. Future Microbiol 2009; 4:299-321. [PMID: 19327116 DOI: 10.2217/fmb.09.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies indicate that two upstream CCAAT/enhancer-binding protein (C/EBP) sites and C/EBPbeta are required for subtype B HIV-1 gene expression in cells of the monocyte-macrophage lineage. The mechanisms of C/EBP regulation of HIV-1 transcription and replication remain unclear. This review focuses on studies concerning the role of C/EBP factors in HIV-1, human T-cell leukemia virus type 1, and SIV transcription in various cell types and tissues cultured in vitro, animal models and during human infection. The structure and function of the C/EBPbeta gene and the related protein isoforms are discussed along with the transcription factors, coactivators, viral proteins, cytokines and chemokines that affect C/EBP function.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Microbiology & Immunology, Center for Molecular Virology & Neuroimmunology, Center for Cancer Biology, Philadelphia, PA 19129, USA
| | | | | |
Collapse
|
10
|
Martinez LB, Walsh SM, Jacobsen MT, Sato S, Wiederin J, Ciborowski P, Ikezu T. Calpain and proteasomal regulation of antiretroviral zinc finger protein OTK18 in human macrophages: visualization in live cells by intramolecular FRET. J Neuroimmune Pharmacol 2008; 4:116-28. [PMID: 19034669 DOI: 10.1007/s11481-008-9140-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/07/2008] [Indexed: 12/17/2022]
Abstract
As part of the innate immune defense against HIV infection, OTK18, a zinc finger protein, is upregulated in human macrophages and reduces viral replication through suppression of viral long-terminal repeat promoter activity. Although we know that the processing products of OTK18 accumulate in the cytoplasm of brain perivascular macrophages in advanced HIV encephalitis cases, the molecular mechanisms behind its post-translational processing are still poorly understood. To characterize OTK18 processing, we assessed a panel of protease inhibitors to identify the candidates involved in the OTK18 processing using human monocyte-derived macrophages (MDM) overexpressing OTK18 by recombinant adenoviral gene transfer. Viral infection of MDM strongly increased the processing of OTK18 into its N-terminal fragment. Treatment of OTK18-expressing MDM with calpain and proteasome inhibitors significantly accumulated either full-length or processed OTK18 fragments in time- and dose-dependent manners. A series of OTK18 truncation mutants and synthetic peptides were tested to locate the calpain cleavage sites after arginine 359. Finally, we developed an enhanced cyan and yellow fluorescent protein (ECFP and EYFP)-based intramolecular fluorescent resonance energy transfer (intramolecular FRET) system to monitor the OTK18 endoproteolysis in human microglia cell line. Inhibition of proteasome activity significantly increased the intramolecular FRET signal in the nucleus. These data suggest that calpain and proteasome are involved in OTK18 endoproteolysis and degradation. Additionally, intramolecular FRET has proven to be a useful tool for monitoring the processing in live cells.
Collapse
Affiliation(s)
- Lindsey B Martinez
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Association of single nucleotide polymorphisms in interferon signaling pathway genes and interferon-stimulated genes with the response to interferon therapy for chronic hepatitis C. J Hepatol 2008; 49:184-91. [PMID: 18571276 PMCID: PMC2609954 DOI: 10.1016/j.jhep.2008.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/18/2008] [Accepted: 04/17/2008] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS Interferon signaling pathway genes (IPGs) and interferon-stimulated genes (ISGs) are associated with the host response to hepatitis C virus (HCV) infection. We studied single nucleotide polymorphisms (SNPs) in IPGs and ISGs for their associations with response to pegylated interferon alpha-2a (Peg-IFN-alpha) plus ribavirin therapy in HCV genotype-1 infected patients. METHODS A two-stage study design was used. First, out of 118 SNPs selected, 91 SNPs from 5 IPGs and 12 ISGs were genotyped in a cohort of 374 treatment-naïve HCV patients and assessed for association with sustained virologic response (SVR). Next, 14 potentially functional SNPs from the OASL gene were studied in this cohort. RESULTS Three OASL SNPs (rs3213545 and rs1169279 from stage I, and rs2859398 from stage II), were significantly associated with SVR [rs3213545: p=0.03, RR=1.27 (1.03-1.58); rs1169279: p=0.02, RR=1.32 (1.05-1.65) p=0.02; rs2859398: p=0.02, RR=1.29 (1.04-1.61)] after adjusting for other covariates. Further analysis showed that these three SNPs independently associated with SVR. Additionally, a similar trend towards the associations of these three SNPs with SVR was observed in a smaller, independent HCV cohort consisting of subjects from a number of clinical practice settings. CONCLUSIONS Our study suggests that OASL variants are involved in the host response to IFN-based therapy in HCV patients.
Collapse
|
12
|
Mohan M, Aye PP, Borda JT, Alvarez X, Lackner AA. CCAAT/enhancer binding protein beta is a major mediator of inflammation and viral replication in the gastrointestinal tract of simian immunodeficiency virus-infected rhesus macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:106-18. [PMID: 18535173 DOI: 10.2353/ajpath.2008.080108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The gastrointestinal tract (GIT) is a major target of infection with human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). Chronic GIT disease and inflammation are common sequelae to HIV/SIV infection. Nonetheless, the molecular mechanisms that cause and maintain GIT dysfunction remain unclear. We investigated the contribution of CCAAT/enhancer-binding protein beta (C/EBPbeta) to GIT disease and viral replication in jejunum and colon collected at necropsy from 12 SIV-infected (group 1), or 10 uninfected macaques with chronic diarrhea (group 2), and 9 uninfected control macaques (group 3). All group 1 and 2 macaques had chronic diarrhea, wasting, and colitis, but group 1 animals had more severe lesions in the jejunum. C/EBPbeta gene expression increased significantly in colon of groups 1 and 2 and in jejunum of only group 1 macaques compared with controls. In group 1 animals, CEBPbeta expression was localized predominantly to macrophages and occasionally lymphocytes. Chromatin immunoprecipitation assays confirmed the binding of C/EBPbeta and p65 to the SIV long terminal repeat region in colonic lamina propria cells, suggesting a mechanistic link between inflammation and activation of viral replication in vivo. This is the first in vivo study describing the transcriptional changes and immunophenotypic localization of C/EBPbeta in the GIT of SIV-infected macaques. More importantly, these data provide a molecular mechanism for persistent inflammation and immune activation leading to increased SIV burden and GIT pathology in SIV-infected macaques and perhaps HIV-infected individuals.
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | | | | | | | | |
Collapse
|
13
|
Haine V, Fischer-Smith T, Rappaport J. Macrophage colony-stimulating factor in the pathogenesis of HIV infection: potential target for therapeutic intervention. J Neuroimmune Pharmacol 2007; 1:32-40. [PMID: 18040789 DOI: 10.1007/s11481-005-9003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Macrophage colony stimulating factor (M-CSF) appears to play a major role in promoting and maintaining reservoirs of human immunodeficiency virus type 1 (HIV-1) in infected individuals. HIV-1 infection induces production of M-CSF by macrophages, which in turn promotes further infection of macrophages via increases in CD4 and CCR5 receptors, as well as increases in virus gene expression. M-CSF promotes the ontogeny and survival of macrophages, contributing to both the number and longevity of these infected cells. M-CSF dysregulation promotes the differentiation of monocytes toward macrophages and osteoclasts and at the same time may inhibit differentiation toward dendritic cells, resulting in immune impairment. The potential role of M-CSF in HIV-associated end organ diseases including HIV-associated dementia, HIV-associated nephropathy, and osteoporosis is discussed. This review emphasizes the need for developing M-CSF antagonists for treatment of HIV-1-infected patients.
Collapse
Affiliation(s)
- Valerie Haine
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
14
|
Weinberg MS, Barichievy S, Schaffer L, Han J, Morris KV. An RNA targeted to the HIV-1 LTR promoter modulates indiscriminate off-target gene activation. Nucleic Acids Res 2007; 35:7303-12. [PMID: 17959645 PMCID: PMC2175361 DOI: 10.1093/nar/gkm847] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcriptional gene silencing (TGS) can be achieved by small RNAs targeted to upstream promoter regions. Previously we characterized siRNAs targeted to the HIV-1 long terminal repeat (LTR) promoter at site 247, and found that a 21-base antisense strand of siRNA-247 (LTR-247as) suppressed LTR-mediated expression. To characterize the specificity of LTR-247as, vectors expressing antisense RNAs targeted to a region spanning 50 bases up- and downstream of the 247 target site were generated. LTR-247as+7, a approximately 22 base antisense RNA that is shifted by only seven bases upstream of LTR-247as, showed a significant increase in LTR-driven reporter gene expression that was independent of cell type and active chromatin methyl-marks. Promoter-targeting siRNAs have been recently shown to induce gene activation. However, here we demonstrate gene activation via a sequence-specific off-target effect. Microarray analysis of LTR-247as+7-treated cultures resulted in the deregulation of approximately 185 genes. A gene of unknown function, C10orf76, was responsive to inhibition by LTR-247as+7 and the loss of C10orf76 resulted in the upregulation of several genes that were activated by LTR-247as+7. These data suggest caution when using short antisense RNAs or siRNAs designed to target promoter sequences, since promoter-targeted RNAs may have unintended inhibitory effects against factors with suppressive gene activity.
Collapse
Affiliation(s)
- Marc S Weinberg
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, 7 York Rd Parktown 2193, South Africa
| | | | | | | | | |
Collapse
|
15
|
Matsuoka H, Unami A, Fujimura T, Noto T, Takata Y, Yoshizawa K, Mori H, Aramori I, Mutoh S. Mechanisms of HDAC inhibitor-induced thrombocytopenia. Eur J Pharmacol 2007; 571:88-96. [PMID: 17628529 DOI: 10.1016/j.ejphar.2007.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/25/2007] [Accepted: 06/07/2007] [Indexed: 01/31/2023]
Abstract
Histone deacetylase inhibitors (HDAC inhibitors) are an emerging class of anticancer agents. To elucidate the mechanism of HDAC inhibitor-induced thrombocytopenia, we focused on the effects of HDAC inhibitors on megakaryocyte differentiation and performed Affymetrix GeneChip analysis of human megakaryocytic HEL cells treated with or without HDAC inhibitors. Here, we report that GATA-1 and 10 haematopoietic factors (SCL, NF-E2, EKLF, Pleckstrin, Thrombin-R, LMO2, PU.1, Fli-1, AML1, and TCF11) are transcriptionally repressed by HDAC inhibitors in a similar pattern (R>0.98), and putative GATA-1-binding sites are found in almost all promoters of these genes. In addition, luciferase reporter assays reveal that mutations of GATA-1-binding sites in the GATA-1 promoter abolish its sensitivity to HDAC inhibitor-mediated down-regulation in HEL cells. Further, this report also asserts that HDAC inhibitor increases megakaryocyte counts and inhibits GATA-1 gene expression in rat spleen. Together, these results suggest that HDAC inhibitors inhibit GATA-1 gene expression by decreasing the transactivation function of GATA-1 itself, and that this may in turn lead to a delay in megakaryocyte maturation and finally cause thrombocytopenia. Our findings may help our understanding of the molecular mechanism of HDAC inhibitor-mediated GATA-1 transcriptional repression and to reduce the risk of HDAC inhibitor-induced thrombocytopenia.
Collapse
Affiliation(s)
- Hideaki Matsuoka
- Pharmacology Research Laboratories, Astellas Pharma Inc., 2 1-6 Kashima, Yodogawa-ku, Osaka 532-8514, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mummidi S, Adams LM, VanCompernolle SE, Kalkonde M, Camargo JF, Kulkarni H, Bellinger AS, Bonello G, Tagoh H, Ahuja SS, Unutmaz D, Ahuja SK. Production of specific mRNA transcripts, usage of an alternate promoter, and octamer-binding transcription factors influence the surface expression levels of the HIV coreceptor CCR5 on primary T cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:5668-81. [PMID: 17442950 DOI: 10.4049/jimmunol.178.9.5668] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Surface levels of CCR5 on memory CD4(+) T cells influence HIV-1/AIDS susceptibility. Alternative promoter usage results in the generation of CCR5 mRNA isoforms that differ based on whether they contain or lack the untranslated exon 1. The impact of exon 1-containing transcripts on CCR5 surface expression is unknown. In this study, we show that the increased cell surface expression of CCR5 on primary T cells is associated with selective enrichment of exon 1-containing transcripts. The promoter that drives exon 1-containing transcripts is highly active in primary human T cells but not in transformed T cell lines. The transcription factors Oct-1 and -2 inhibit and enhance, respectively, the expression of exon 1-containing transcripts and CCR5 surface levels. However, polymorphisms at homologous octamer-binding sites in the CCR5 promoter of nonhuman primates abrogate the binding of these transcription factors. These results identify exon 1-containing transcripts, and the cis-trans factors that regulate the expression levels of these mRNA isoforms as key parameters that affect CCR5 surface expression levels, and by extension, susceptibility to HIV/AIDS among humans, and possibly, the observed interspecies differences in susceptibility to lentiviral infection.
Collapse
Affiliation(s)
- Srinivas Mummidi
- Veterans Administration Center for AIDS and HIV Infection, South Texas Veterans Healthcare System and Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Giri RK, Rajagopal V, Shahi S, Zlokovic BV, Kalra VK. Mechanism of amyloid peptide induced CCR5 expression in monocytes and its inhibition by siRNA for Egr-1. Am J Physiol Cell Physiol 2005; 289:C264-76. [PMID: 15743889 DOI: 10.1152/ajpcell.00461.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Alzheimer's disease (AD), one finds increased presence of monocytes/macrophages and activated microglial cells in the brain. Immunohistochemical studies show increased expression of chemokine receptor 5 (CCR5) on reactive microglia associated with amyloid deposits in AD, suggesting that CCR5 may play a role in the regulation of the immune response in AD. In this study, we used peripheral blood monocytes and human monocytic THP-1 cell line as a model of microglia to delineate the cellular signaling mechanism of Aβ-induced CCR5 expression and the latter's role in the chemotaxis of monocytes. We observed that Aβ peptides at pathophysiological concentrations (125 nM) increased CCR5 mRNA and cell surface protein expression. The cellular signaling involved activation of c-Raf, ERK-1/ERK-2, and c-Jun NH2-terminal kinase. Analysis of some transcription factors associated with CCR5 promoter revealed that Aβ increased DNA binding activity of Egr-1 and AP-1. In addition, we show that CCR5 promoter contains an Egr-1 like consensus sequence GCGGGGGTG as demonstrated by 1) electrophoretic mobility shift assay, 2) transfection studies with truncated CCR5 gene promoter construct, and 3) chromatin immunoprecipitation analysis. Moreover, transfection of Egr-1 siRNA, but not of scrambled Egr-1 siRNA, in THP-1 cells resulted in >75% reduction in both Aβ-mediated CCR5 expression and concomitant chemotaxis to its ligands. We suggest that inhibition of Egr-1 by either Egr-1 siRNA or pharmacological agents may reduce activation of monocytes/microglia and possibly ameliorate the inflammation and progression of AD.
Collapse
Affiliation(s)
- Ranjit K Giri
- Department of Biochemistry & Molecular Biology, USC Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
18
|
Li JCB, Lee DCW, Cheung BKW, Lau ASY. Mechanisms for HIV Tat upregulation of IL-10 and other cytokine expression: kinase signaling and PKR-mediated immune response. FEBS Lett 2005; 579:3055-62. [PMID: 15907845 DOI: 10.1016/j.febslet.2005.04.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/19/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
HIV Tat has been known to have multiple regulatory roles including replication of HIV and modulation of cellular kinases. We investigated whether signaling kinase PKR plays a critical role in mediating Tat-induced cytokine dysregulation. We showed Tat induction of IL-10 dysregulation is associated with PKR activation. To examine the mechanism involved, inhibition of PKR activity abrogated the Tat-induced cytokine induction. We next identified that the MAP kinases including ERK-1/2 and p38 are downstream of PKR in these Tat-induced pathways. Thus, PKR may play a critical role in mediating the subversive effects of HIV Tat resulting in IL-10 induction.
Collapse
Affiliation(s)
- James C B Li
- Immunology Research Laboratory, Department of Paediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
19
|
Lei J, Wu C, Wang X, Wang H. p38 MAPK-dependent and YY1-mediated chemokine receptors CCR5 and CXCR4 up-regulation in U937 cell line infected by Mycobacterium tuberculosis or Actinobacillus actinomycetemcomitans. Biochem Biophys Res Commun 2005; 329:610-5. [PMID: 15737629 DOI: 10.1016/j.bbrc.2005.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Indexed: 10/25/2022]
Abstract
We have found previously that the chemokine receptors CCR5 and CXCR4, which are the coreceptors of HIV, are up-regulated in human macrophage cell line U937 infected by Mycobacterium tuberculosis (MTB). This suggests another possibility to explain the co-infection of MTB and HIV. In order to detect the up-regulation of CCR5 and CXCR4 as a unique phenomenon of MTB infection or a ubiquitous phenomenon of pathogenic bacteria, we investigated the expression changes of these two chemokine receptors in macrophages attacked by another bacterium Actinobacillus actinomycetemcomitans (AA) (from mRNA level and protein level). To reveal the molecular mechanism of these expression changes, p38 MAPK special inhibitor SB203580 was used and the expression of CCR5 and CXCR4 negative regulator YY1 transfactor was analyzed. Finally, we conclude that the up-regulation of CCR5 and CXCR4 can at least partially contribute to the down-regulation of transfactor YY1 which is p38 MAPK pathway-dependent and this up-regulation has little relationship with MTB and HIV co-infection.
Collapse
Affiliation(s)
- JianQiang Lei
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | |
Collapse
|
20
|
Hu B, Wu Z, Jin H, Hashimoto N, Liu T, Phan SH. CCAAT/enhancer-binding protein beta isoforms and the regulation of alpha-smooth muscle actin gene expression by IL-1 beta. THE JOURNAL OF IMMUNOLOGY 2004; 173:4661-8. [PMID: 15383601 DOI: 10.4049/jimmunol.173.7.4661] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of IL-1beta in inflammation is amply documented, but its ability to inhibit myofibroblast differentiation and, in particular, the suppression of alpha-smooth muscle actin (alpha-SMA) gene expression is less well understood. Because IL-1beta can induce C/EBPbeta expression, the role of C/EBPbeta isoforms in IL-1beta regulation of alpha-SMA gene expression was investigated in rat lung myofibroblasts. The results showed that IL-1beta inhibited alpha-SMA expression in a dose-dependent manner, which was associated with stimulation of the expression of both C/EBPbeta isoforms, liver-enriched activating protein (LAP) and liver-enriched inhibitory protein (LIP). However, a greater increase in LIP relative to LAP expression resulted in a reduced LAP/LIP ratio after IL-1beta treatment. Transfection with an LAP-expressing plasmid stimulated, whereas an LIP-expressing plasmid inhibited, alpha-SMA expression. Cells from C/EBPbeta-deficient mice had reduced levels of alpha-SMA expression and promoter activity, which failed to respond to IL-1beta treatment. Sequence analysis identified the presence of a C/EBPbeta consensus binding sequence in the alpha-SMA promoter, which, when mutated, resulted in diminished promoter activity and abolished its responsiveness to IL-1beta treatment. EMSA revealed binding of C/EBPbeta to this C/EBPbeta consensus binding sequence from the alpha-SMA promoter. Finally, IL-1beta enhanced the expression of eukaryotic initiation factor 4E, a stimulator of LIP expression, which may account for a mechanism by which IL-1beta could alter the LAP/LIP ratio. These data taken together suggest that C/EBPbeta isoforms regulate alpha-SMA gene expression, and that its inhibition by IL-1beta was due to preferential stimulation of LIP expression.
Collapse
Affiliation(s)
- Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
21
|
Georgantas RW, Tanadve V, Malehorn M, Heimfeld S, Chen C, Carr L, Martinez-Murillo F, Riggins G, Kowalski J, Civin CI. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res 2004; 64:4434-41. [PMID: 15231652 DOI: 10.1158/0008-5472.can-03-3247] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human CD34(+)/CD38(-)/Lin(-) cell subset, comprising approximately 1-10% of the CD34(+) cell population, contains few of the less primitive hematopoietic (lineage-committed) progenitor cells (HPCs) but most of the primitive in vivo engrafting (lympho-)hematopoietic stem cells (HSCs). We analyzed gene expression in CD34(+)/CD38(-)/Lin(-) cell populations isolated from normal human adult donor bone marrow, neonatal placental/umbilical cord blood, and mobilized adult donor peripheral blood stem-progenitor cells. As measured by Affymetrix microarrays, 4746 genes were expressed in CD34(+)/CD38(-)/Lin(-) cells from all three tissues. We also determined the transcriptomes of the stem cell-depleted, HPC-enriched CD34(+)/[CD38/Lin](++) cell population from each tissue. Comparison of CD34(+)/CD38(-)/Lin(-) (HSC-enriched) versus CD34(+)/[CD38/Lin](++) (HPC-enriched, HSC-depleted) cells from each tissue yielded 81 genes overrepresented and 90 genes underrepresented, common to all three of the CD34(+)/CD38(-)/Lin(-) cell populations. These transcripts, which are selectively expressed in HSCs from all three tissues, include a number of known genes (e.g., transcription factors, receptors, and signaling molecules) that might play roles in key functions (e.g., survival, self-renewal, differentiation, and/or migration/adhesion) of human HSCs. Many genes/transcripts of unknown function were also detected by microarray analysis. Serial analysis of gene expression of the bone marrow HSC and HPC populations confirmed expression of most of the overrepresented transcripts for which reliable serial analysis of gene expression tags were detected and additionally suggested that current microarrays do not detect as many as 30% of the transcripts expressed in HSCs, including a number of previously unknown transcripts. This work is a step toward full definition of the transcriptome of normal human HSCs and may identify new genes involved in leukemogenesis and cancer stem cells.
Collapse
Affiliation(s)
- Robert W Georgantas
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hivin P, Gaudray G, Devaux C, Mesnard JM. Interaction between C/EBPbeta and Tax down-regulates human T-cell leukemia virus type I transcription. Virology 2004; 318:556-65. [PMID: 14972524 DOI: 10.1016/j.virol.2003.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Revised: 10/09/2003] [Accepted: 10/20/2003] [Indexed: 11/24/2022]
Abstract
The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein beta (C/EBPbeta) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPbeta has also been found to interact with Tax, we analyzed the effects of C/EBPbeta on viral Tax-dependent transcription. We show here that C/EBPbeta represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPbeta. We also analyzed the physical interactions between Tax and C/EBPbeta and found that the central region of C/EBPbeta, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPbeta would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPbeta was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPbeta may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response.
Collapse
Affiliation(s)
- P Hivin
- Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS/UM I UMR 5121/IFR 122, Institut de Biologie, 34960 Montpellier, cedex 2, France
| | | | | | | |
Collapse
|
23
|
Moriuchi M, Moriuchi H. YY1 transcription factor down-regulates expression of CCR5, a major coreceptor for HIV-1. J Biol Chem 2003; 278:13003-7. [PMID: 12571248 DOI: 10.1074/jbc.m204980200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of CCR5, a major coreceptor for human immunodeficiency virus type 1 (HIV-1), is regulated by a number of transcription factors. Here we report that the YY1 transcription factor down-regulates CCR5 promoter activity and that overexpression of YY1 reduces cell surface CCR5 expression and infectibility by R5-HIV-1. Because YY1 also down-regulates promoter activities of CXCR4, another major coreceptor for HIV-1 and HIV-1 long terminal repeat, this transcription factor may play a critical role in the pathogenesis of HIV-1 disease.
Collapse
Affiliation(s)
- Masako Moriuchi
- Division of Medical Virology, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | | |
Collapse
|
24
|
Mo R, Chen J, Han Y, Bueno-Cannizares C, Misek DE, Lescure PA, Hanash S, Yung RL. T cell chemokine receptor expression in aging. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:895-904. [PMID: 12517955 DOI: 10.4049/jimmunol.170.2.895] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Changes in chemokine receptor expression are important in determining T cell migration and the subsequent immune response. To better understand the contribution of the chemokine system in immune senescence we determined the effect of aging on CD4(+) T cell chemokine receptor function using microarray, RNase protection assays, Western blot, and in vitro chemokine transmigration assays. Freshly isolated CD4(+) cells from aged (20-22 mo) mice were found to express a higher level of CCR1, 2, 4, 5, 6, and 8 and CXCR2-5, and a lower level of CCR7 and 9 than those from young (3-4 mo) animals. Caloric restriction partially or completely restored the aging effects on CCR1, 7, and 8 and CXCR2, 4, and 5. The aging-associated differences in chemokine receptor expression cannot be adequately explained by the age-associated shift in the naive/memory or Th1/Th2 profile. CD4(+) cells from aged animals have increased chemotactic response to stromal cell-derived factor-1 and macrophage-inflammatory protein-1alpha, suggesting that the observed chemokine receptor changes have important functional consequences. We propose that the aging-associated changes in T cell chemokine receptor expression may contribute to the different clinical outcome in T cell chemokine receptor-dependent diseases in the elderly.
Collapse
Affiliation(s)
- Ruran Mo
- Division of Geriatric Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Giacopelli F, Rosatto N, Divizia MT, Cusano R, Caridi G, Ravazzolo R. The first intron of the human osteopontin gene contains a C/EBP-beta-responsive enhancer. Gene Expr 2003; 11:95-104. [PMID: 12837040 PMCID: PMC5991144 DOI: 10.3727/000000003108748991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2003] [Indexed: 11/24/2022]
Abstract
The osteopontin (OPN) protein is found expressed at high level in several processes including fibrotic evolution of organ injuries, tumorigenesis, and immune response. The molecular mechanisms that underly overexpression, especially at the transcriptional level, have been only partially clarified. Therefore, this study was undertaken in search for additional DNA elements in the regulatory regions of the OPN gene and cognate transcription factors. Our results on the region upstream of the transcription start site confirmed that essential elements are located within the first 100 bp. Analysis of the sequence that includes the first untranslated exon and first intron revealed that it could enhance the promoter activity. Experiments of transfection of constructs containing different fragments of this sequence showed that most of the enhancer activity was confined in the terminal 30-bp tract of the first intron, although it was not functioning in a myofibroblast cell line. DNA/protein binding assays and cotransfection experiments showed that the C/EBP-beta transcription factor was able to bind a recognition sequence in this 30-bp segment. We found a bi-allelic sequence polymorphism at +245 in the first intron, which did not show a significant functional effect, but is a useful tool for future association studies.
Collapse
Affiliation(s)
- Francesca Giacopelli
- *Laboratory of Molecular Genetics, G. Gaslini Institute, Largo G Gaslini 5, 16148 Genova, Italy
| | - Nadia Rosatto
- *Laboratory of Molecular Genetics, G. Gaslini Institute, Largo G Gaslini 5, 16148 Genova, Italy
| | - Maria Teresa Divizia
- *Laboratory of Molecular Genetics, G. Gaslini Institute, Largo G Gaslini 5, 16148 Genova, Italy
| | - Roberto Cusano
- *Laboratory of Molecular Genetics, G. Gaslini Institute, Largo G Gaslini 5, 16148 Genova, Italy
| | - Gianluca Caridi
- ‡Laboratory of Nephrology, G Gaslini Institute, Genova, Italy
| | - Roberto Ravazzolo
- *Laboratory of Molecular Genetics, G. Gaslini Institute, Largo G Gaslini 5, 16148 Genova, Italy
- †Department of Pediatrics and CEBR, University of Genova, Italy
| |
Collapse
|
26
|
Lee ES, Sarma D, Zhou H, Henderson AJ. CCAAT/enhancer binding proteins are not required for HIV-1 entry but regulate proviral transcription by recruiting coactivators to the long-terminal repeat in monocytic cells. Virology 2002; 299:20-31. [PMID: 12167337 DOI: 10.1006/viro.2002.1500] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CCAAT/enhancer binding proteins (C/EBP) have been shown to be required for HIV-1 transcription and replication in macrophages. However, whether these transcription factors influence the ability of virus to establish infection by altering cytokine or receptor expression or primarily regulate HIV-1 transcription has not been determined. By inhibiting endogenous C/EBP activity with a dominant-negative protein, we demonstrate that functional C/EBPs are not required for HIV-1 infection and that these factors influence replication by a transcriptional mechanism. C/EBPbeta recruits coactivators to the HIV-1 long-terminal repeat (LTR) and physically interacts with histone acetyltransferase (HAT) complexes, suggesting that C/EBPs participate in remodeling the chromatin organization of the HIV-1 provirus. Furthermore, overexpression of a C/EBP dominant-negative inhibits displacement of nucleosomes located at the HIV-1 transcriptional start site. These results provide insight into the general mechanisms by which C/EBPs regulate macrophage-restricted HIV-1 transcription.
Collapse
Affiliation(s)
- Eileen S Lee
- Graduate Program in Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|