1
|
Bohländer F. A new hope? Possibilities of therapeutic IgA antibodies in the treatment of inflammatory lung diseases. Front Immunol 2023; 14:1127339. [PMID: 37051237 PMCID: PMC10083398 DOI: 10.3389/fimmu.2023.1127339] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammatory lung diseases represent a persistent burden for patients and the global healthcare system. The combination of high morbidity, (partially) high mortality and limited innovations in the last decades, have resulted in a great demand for new therapeutics. Are therapeutic IgA antibodies possibly a new hope in the treatment of inflammatory lung diseases? Current research increasingly unravels the elementary functions of IgA as protector against infections and as modulator of overwhelming inflammation. With a focus on IgA, this review describes the pathological alterations in mucosal immunity and how they contribute to chronic inflammation in the most common inflammatory lung diseases. The current knowledge of IgA functions in the circulation, and particularly in the respiratory mucosa, are summarized. The interplay between neutrophils and IgA seems to be key in control of inflammation. In addition, the hurdles and benefits of therapeutic IgA antibodies, as well as the currently known clinically used IgA preparations are described. The data highlighted here, together with upcoming research strategies aiming at circumventing the current pitfalls in IgA research may pave the way for this promising antibody class in the application of inflammatory lung diseases.
Collapse
Affiliation(s)
- Fabian Bohländer
- Department of Translational Research, Biotest AG, Dreieich, Germany
| |
Collapse
|
2
|
Neves F, de Sousa-Pereira P, Melo-Ferreira J, Esteves PJ, Pinheiro A. Evolutionary analyses of polymeric immunoglobulin receptor (pIgR) in the mammals reveals an outstanding mutation rate in the lagomorphs. Front Immunol 2022; 13:1009387. [PMID: 36466819 PMCID: PMC9716071 DOI: 10.3389/fimmu.2022.1009387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/03/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND The transcytosis of polymeric immunoglobulins, IgA and IgM, across the epithelial barrier to the luminal side of mucosal tissues is mediated by the polymeric immunoglobulin receptor (pIgR). At the luminal side the extracellular ligand binding region of pIgR, the secretory component (SC), is cleaved and released bound to dimeric IgA (dIgA), protecting it from proteolytic degradation, or in free form, protecting the mucosa form pathogens attacks. The pIgR was first cloned for rabbit in early 1980's and since then has been described for all vertebrates, from fish to mammals. The existence of more than one functional pIgR alternative-spliced variant in the European rabbit, the complete pIgR as other mammals and a shorter pIgR lacking two SC exons, raised the question whether other lagomorphs share the same characteristics and how has the PIGR gene evolved in these mammals. RESULTS To investigate these questions, we sequenced expressed pIgR genes for other leporid genus, Lepus spp., and obtained and aligned pIgR sequences from representative species of all mammalian orders. The obtained mammalian phylogeny, as well as the Bayesian inference of evolutionary rates and genetic distances, show that Lagomorpha pIgR is evolving at a higher substitution rate. Codon-based analyses of positive selection show that mammalian pIgR is evolving under strong positive selection, with strong incidence in the domains excised from the rabbit short pIgR isoform. We further confirmed that the hares also express the two rabbit pIgR isoforms. CONCLUSIONS The Lagomorpha pIgR unique evolutionary pattern may reflect a group specific adaptation. The pIgR evolution may be linked to the unusual expansion of IgA genes observed in lagomorphs, or to neofunctionalization in this group. Further studies are necessary to clarify the driving forces behind the unique lagomorph pIgR evolution.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Patrícia de Sousa-Pereira
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - José Melo-Ferreira
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro J. Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| | - Ana Pinheiro
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
3
|
Sheng X, Guo Y, Zhu H, Chai B, Tang X, Xing J, Chi H, Zhan W. Transepithelial Secretion of Mucosal IgM Mediated by Polymeric Immunoglobulin Receptor of Flounder ( Paralichthys olivaceus): In-Vivo and In-Vitro Evidence. Front Immunol 2022; 13:868753. [PMID: 35464454 PMCID: PMC9019723 DOI: 10.3389/fimmu.2022.868753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Secretory immunoglobulin (SIg) is crucial for mucosal surface defenses, but the transepithelial secretion of SIg mediated by polymeric immunoglobulin receptor (pIgR) is not clarified in fish. We previously found that flounder (Paralichthys olivaceus) pIgR (fpIgR) and secretory IgM (SIgM) increased in gut mucus post-vaccination. Here, the fpIgR-positive signal was mainly observed in the intestinal epithelium, whereas the IgM-positive signal was mainly distributed in the lamina propria, before immunization. IgM signals increased in the lamina propria and then in the epithelium after immunization with inactivated Vibrio anguillarum, and co-localization between IgM and fpIgR in the epithelium was determined, while the presence of EdU+IgM+ cells in the lamina propria identified the proliferative B cells, revealing that the secretion and transepithelial transport of SIgM locally occurred in the gut of flounder. Subsequently, we established an in-vitro model of transfected MDCK cells that stably expressed the fpIgR. After a recombinant eukaryotic expression plasmid (pCIneoEGFP-fpIgR) was constructed and transfected into MDCK cells, stable expression of the fpIgR in transfected MDCK-fpIgR cells was confirmed, and the tightness and integrity of the polarized cell monolayers grown on Transwells were evaluated. Afterward, the serum IgM of flounder was purified as a binding ligand and placed in the lower compartment of Transwells. An ~800-kDa protein band in the upper compartment was shown to be IgM- and fpIgR-positive, and IgM-positive fluorescence was seen in MDCK-fpIgR cells but not in MDCK-mock cells. Hence, the fpIgR helped polymeric IgM to pass across MDCK-fpIgR cells via transcytosis in a basolateral-to-apical fashion. These new findings provide a better understanding of the pathways shaping mucosal IgM responses and the local mucosal immune mechanisms in teleosts.
Collapse
Affiliation(s)
- Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuan Guo
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Hui Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Baihui Chai
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture of Ministry of Education (KLMME), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
Immunoglobulin A Mucosal Immunity and Altered Respiratory Epithelium in Cystic Fibrosis. Cells 2021; 10:cells10123603. [PMID: 34944110 PMCID: PMC8700636 DOI: 10.3390/cells10123603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
The respiratory epithelium represents the first chemical, immune, and physical barrier against inhaled noxious materials, particularly pathogens in cystic fibrosis. Local mucus thickening, altered mucociliary clearance, and reduced pH due to CFTR protein dysfunction favor bacterial overgrowth and excessive inflammation. We aimed in this review to summarize respiratory mucosal alterations within the epithelium and current knowledge on local immunity linked to immunoglobulin A in patients with cystic fibrosis.
Collapse
|
5
|
McLean SA, Cullen L, Gardam DJ, Schofield CJ, Laucirica DR, Sutanto EN, Ling KM, Stick SM, Peacock CS, Kicic A, Garratt LW. Cystic Fibrosis Clinical Isolates of Aspergillus fumigatus Induce Similar Muco-inflammatory Responses in Primary Airway Epithelial Cells. Pathogens 2021; 10:pathogens10081020. [PMID: 34451484 PMCID: PMC8399118 DOI: 10.3390/pathogens10081020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus is increasingly associated with lung inflammation and mucus plugging in early cystic fibrosis (CF) disease during which conidia burden is low and strains appear to be highly diverse. It is unknown whether clinical Aspergillus strains vary in their capacity to induce epithelial inflammation and mucus production. We tested the hypothesis that individual colonising strains of Aspergillus fumigatus would induce different responses. Ten paediatric CF Aspergillus isolates were compared along with two systemically invasive clinical isolates and an ATCC reference strain. Isolates were first characterised by ITS gene sequencing and screened for antifungal susceptibility. Three clusters (A-C) of Aspergillus isolates were identified by ITS. Antifungal susceptibility was variable, particularly for itraconazole. Submerged CF and non-CF monolayers as well as differentiated primary airway epithelial cell cultures were incubated with conidia for 24 h to allow germination. None of the clinical isolates were found to significantly differ from one another in either IL-6 or IL-8 release or gene expression of secretory mucins. Clinical Aspergillus isolates appear to be largely homogenous in their mucostimulatory and immunostimulatory capacities and, therefore, only the antifungal resistance characteristics are likely to be clinically important.
Collapse
Affiliation(s)
- Samantha A. McLean
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
| | - Leilani Cullen
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Dianne J. Gardam
- PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch 6150, Australia;
| | - Craig J. Schofield
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
| | - Daniel R. Laucirica
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Erika N. Sutanto
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
| | - Kak-Ming Ling
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Stephen M. Stick
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands 6009, Australia
| | - Christopher S. Peacock
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Faculty of Health and Medical Sciences, University of Western Australia, Crawley 6009, Australia; (L.C.); (C.S.P.)
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands 6009, Australia
- Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Australia
| | - Luke W. Garratt
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Crawley 6009, Australia; (S.A.M.); (C.J.S.); (D.R.L.); (E.N.S.); (K.-M.L.); (S.M.S.); (A.K.)
- Correspondence:
| | | | | |
Collapse
|
6
|
Yang S, Yuan X, Kang T, Xia Y, Xu S, Zhang X, Chen W, Jin Z, Ma Y, Ye Z, Qian S, Huang M, Lv Z, Fei H. Molecular cloning and binding analysis of polymeric immunoglobulin receptor in largemouth bass (Micropterus salmoides). Mol Immunol 2021; 133:14-22. [PMID: 33610122 DOI: 10.1016/j.molimm.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
The polymeric immunoglobulin receptor (pIgR) is an important molecule in the mucosal immunity of teleosts. Previous studies have shown that pIgR can bind and transport polymeric immunoglobulins (pIgs), but few studies have focused on the binding of teleost pIgR to bacteria. In this study, we identified a gene encoding pIgR in largemouth bass (Micropterus salmoides). The pIgR gene contained two Ig-like domains (ILDs), which were homologous to ILD1 and ILD5 of mammalian pIgR. Our results showed that largemouth bass pIgR-ILD could combine with IgM. Moreover, we also found that largemouth bass pIgR-ILD could bind to Aeromonas hydrophila and Micrococcus luteus. Further analysis showed that largemouth bass pIgR-ILD could also combine with lipopolysaccharide (LPS), peptidoglycan (PGN) and various saccharides, and reduced binding to bacteria was observed with LPS and PGN treatment, indicating that largemouth bass pIgR could bind to bacteria to prevent infection and that saccharide binding is an important interaction mechanism between pIgR and bacteria. These results collectively demonstrated that largemouth bass pIgR not only combines with IgM but also binds to bacteria by various saccharides.
Collapse
Affiliation(s)
- Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Xiangyu Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Ting Kang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Yanting Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Shuqi Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Xintang Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Wenqi Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Zhihong Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Yuanxin Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Zifeng Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Shichao Qian
- Huzhou Baijiayu Biotech Co., Ltd., 313000 Huzhou, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lv
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Chatterton DEW, Aagaard S, Hesselballe Hansen T, Nguyen DN, De Gobba C, Lametsch R, Sangild PT. Bioactive proteins in bovine colostrum and effects of heating, drying and irradiation. Food Funct 2021; 11:2309-2327. [PMID: 32108849 DOI: 10.1039/c9fo02998b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bovine colostrum (BC) contains bioactive proteins, such as immunoglobulin G (IgG), lactoferrin (LF) and lactoperoxidase (LP). BC was subjected to low-temperature, long-time pasteurization (LTLT, 63 °C, 30 min) or high-temperature, short-time pasteurization (HTST, 72 °C, 15 s) and spray-drying (SD), with or without γ-irradiation (GI, ∼14 kGy) to remove microbial contamination. Relative to unpasteurized liquid BC, SD plus GI increased protein denaturation by 6 and 11%, respectively, increasing to 19 and 27% after LTLT and to 48% after HTST, with no further effects after GI (all P < 0.05). LTLT, without or with GI, resulted in 15 or 29% denaturation of IgG, compared with non-pasteurized BC, and 34 or 58% for HTST treatment (all P < 0.05, except LTLT without GI). For IgG, only GI, not SD or LTLT, increased denaturation (30-38%, P < 0.05) but HTST increased denaturation to 40%, with further increases after GI (60%, P < 0.05). LTLT and HTST reduced LP levels (56 and 81% respectively) and LTLT reduced LF levels (21%), especially together with GI (47%, P < 0.05). Denaturation of BSA, β-LgA, β-LgB and α-La were similar to IgG. Methionine, a protective amino acid against free oxygen radicals, was oxidised by LTLT + GI (P < 0.05) while LTLT and HTST had no effect. Many anti-inflammatory proteins, including serpin anti-proteinases were highly sensitive to HTST and GI but preserved after LTLT pasteurization. LTLT, followed by SD is an optimal processing technique preserving bioactive proteins when powdered BC is used as a diet supplement for sensitive patients.
Collapse
Affiliation(s)
| | - Sasha Aagaard
- Department of Food Science, University of Copenhagen, DK-1958, Denmark. and Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| | | | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| | - Cristian De Gobba
- Department of Food Science, University of Copenhagen, DK-1958, Denmark.
| | - René Lametsch
- Department of Food Science, University of Copenhagen, DK-1958, Denmark.
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| |
Collapse
|
8
|
UPR modulation of host immunity by Pseudomonas aeruginosa in cystic fibrosis. Clin Sci (Lond) 2020; 134:1911-1934. [PMID: 32537652 DOI: 10.1042/cs20200066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.
Collapse
|
9
|
Travis CR. As Plain as the Nose on Your Face: The Case for A Nasal (Mucosal) Route of Vaccine Administration for Covid-19 Disease Prevention. Front Immunol 2020; 11:591897. [PMID: 33117404 PMCID: PMC7561361 DOI: 10.3389/fimmu.2020.591897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
|
10
|
Lung immunoglobulin A immunity dysregulation in cystic fibrosis. EBioMedicine 2020; 60:102974. [PMID: 32927272 PMCID: PMC7495088 DOI: 10.1016/j.ebiom.2020.102974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In cystic fibrosis (CF), recurrent infections suggest impaired mucosal immunity but whether production of secretory immunoglobulin A (S-IgA) is impaired remains elusive. S-IgA is generated following polymeric immunoglobulin receptor (pIgR)-mediated transepithelial transport of dimeric (d-)IgA and represents a major defence through neutralisation of inhaled pathogens like Pseudomonas aeruginosa (Pa). METHODS Human lung tissue (n = 74), human sputum (n = 118), primary human bronchial epithelial cells (HBEC) (cultured in air-liquid interface) (n = 19) and mouse lung tissue and bronchoalveolar lavage were studied for pIgR expression, IgA secretion and regulation. FINDINGS Increased epithelial pIgR immunostaining was observed in CF lung explants, associated with more IgA-producing plasma cells, sputum and serum IgA, especially Pa-specific IgA. In contrast, pIgR and IgA transport were downregulated in F508del mice, CFTR-inhibited HBEC, and CF HBEC. Moreover, the unfolded protein response (UPR) due to F508del mutation, inhibited IgA transport in Calu-3 cells. Conversely, pIgR expression and IgA secretion were strongly upregulated following Pa lung infection in control and F508del mice, through an inflammatory host response involving interleukin-17. INTERPRETATION A complex regulation of IgA secretion occurs in the CF lung, UPR induced by CFTR mutation/dysfunction inhibiting d-IgA transcytosis, and Pa infection unexpectedly unleashing this secretory defence mechanism. FUNDING This work was supported by the Forton's grant of the King Baudouin's Foundation, Belgium, the Fondazione Ricerca Fibrosi Cistica, Italy, and the Fonds National de la Recherche Scientifique, Belgium.
Collapse
|
11
|
Martinsson K, Roos Ljungberg K, Ziegelasch M, Cedergren J, Eriksson P, Klimovich V, Reckner Å, Griazeva I, Sjöwall C, Samoylovich M, Skogh T, Wetterö J, Kastbom A. Elevated free secretory component in early rheumatoid arthritis and prior to arthritis development in patients at increased risk. Rheumatology (Oxford) 2020; 59:979-987. [PMID: 31504979 PMCID: PMC7850007 DOI: 10.1093/rheumatology/kez348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives Considering growing evidence of mucosal involvement in RA induction, this study investigated circulating free secretory component (SC) in patients with either recent-onset RA or with ACPA and musculoskeletal pain. Methods Two prospective cohorts were studied: TIRA-2 comprising 452 recent-onset RA patients with 3 years of clinical and radiological follow-up, and TIRx patients (n = 104) with ACPA IgG and musculoskeletal pain followed for 290 weeks (median). Blood donors and three different chronic inflammatory diseases served as controls. Free SC was analysed by sandwich ELISA. Results Serum levels of free SC were significantly higher in TIRA-2 patients compared with TIRx and all control groups (P < 0.01). Among TIRx patients who subsequently developed arthritis, free SC levels were higher compared with all control groups (P < 0.05) except ankylosing spondylitis (P = 0.74). In TIRA-2, patients with ACPA had higher baseline levels of free SC compared with ACPA negative patients (P < 0.001). Free SC status at baseline did not predict radiographic joint damage or disease activity over time. In TIRx, elevated free SC at baseline trendwise associated with arthritis development during follow-up (P = 0.066) but this disappeared when adjusting for confounders (P = 0.72). Cigarette smoking was associated with higher levels of free SC in both cohorts. Conclusion Serum free SC levels are increased in recent-onset RA compared with other inflammatory diseases, and associate with ACPA and smoking. Free SC is elevated before arthritis development among ACPA positive patients with musculoskeletal pain, but does not predict arthritis development. These findings support mucosal engagement in RA development.
Collapse
Affiliation(s)
- Klara Martinsson
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Roos Ljungberg
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Michael Ziegelasch
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jan Cedergren
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Per Eriksson
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Vladimir Klimovich
- Russian Research Center for Radiology and Surgical Technologies, St Petersburg, Russia
| | - Åsa Reckner
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Irina Griazeva
- Russian Research Center for Radiology and Surgical Technologies, St Petersburg, Russia
| | - Christopher Sjöwall
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Marina Samoylovich
- Russian Research Center for Radiology and Surgical Technologies, St Petersburg, Russia
| | - Thomas Skogh
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jonas Wetterö
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Alf Kastbom
- Department of Rheumatology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol 2020; 11:761. [PMID: 32411147 PMCID: PMC7198799 DOI: 10.3389/fimmu.2020.00761] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchial asthma is a chronic disease of the airways that is characterized by symptoms like respiratory distress, chest tightness, wheezing, productive cough, and acute episodes of broncho-obstruction. This symptom-complex arises on the basis of chronic allergic inflammation of the airway wall. Consequently, the airway epithelium is central to the pathogenesis of this disease, because its multiple abilities directly have an impact on the inflammatory response and thus the formation of the disease. In turn, its structure and functions are markedly impaired by the inflammation. Hence, the airway epithelium represents a sealed, self-cleaning barrier, that prohibits penetration of inhaled allergens, pathogens, and other noxious agents into the body. This barrier is covered with mucus that further contains antimicrobial peptides and antibodies that are either produced or specifically transported by the airway epithelium in order to trap these particles and to remove them from the body by a process called mucociliary clearance. Once this first line of defense of the lung is overcome, airway epithelial cells are the first cells to get in contact with pathogens, to be damaged or infected. Therefore, these cells release a plethora of chemokines and cytokines that not only induce an acute inflammatory reaction but also have an impact on the alignment of the following immune reaction. In case of asthma, all these functions are impaired by the already existing allergic immune response that per se weakens the barrier integrity and self-cleaning abilities of the airway epithelium making it more vulnerable to penetration of allergens as well as of infection by bacteria and viruses. Recent studies indicate that the history of allergy- and pathogen-derived insults can leave some kind of memory in these cells that can be described as imprinting or trained immunity. Thus, the airway epithelium is in the center of processes that lead to formation, progression and acute exacerbation of asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Lars P Lunding
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| | - Johanna C Ehlers
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Experimental Pneumology, Research Center Borstel, Borstel, Germany
| | - Markus Weckmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Department of Pediatric Pulmonology and Allergology, University Children's Hospital, Lübeck, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Michael Wegmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
13
|
Gupta S, Basu S, Bal V, Rath S, George A. Gut IgA abundance in adult life is a major determinant of resistance to dextran sodium sulfate-colitis and can compensate for the effects of inadequate maternal IgA received by neonates. Immunology 2019; 158:19-34. [PMID: 31215020 DOI: 10.1111/imm.13091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/11/2022] Open
Abstract
Studies with gene-deficient and gnotobiotic mice have identified many host and microbial factors that contribute to induced colitis, but information on whether specific factors determine susceptibility under more physiological conditions is lacking. Using wild-type strains that differ in their IgA response but harbor a diverse gut microbiome, we found that the IgA-high strain CBA/CaJ (CBA) is resistant to acute colitis induced with dextran sodium sulfate (DSS), unlike the IgA-low strain C57BL/6 (B6). Resistance was associated with extensive IgA-coating of fecal bacteria, lower fecal bacterial loads and greater abundance of barrier-protective transcripts in colonic tissues under homeostatic conditions. Fecal microbial transplant (FT) experiments revealed that disease induction in B6 mice was associated with a cohort of bacteria that are not targeted by IgA. However, CBA mice continued to be resistant to colitis induction following FTs from B6 mice, indicating that they are able to contain such colitogenic members. In support of a role for bacterial exclusion in resistance, oral administration of immunoglobulins decreased DSS-induced disease in B6 mice. In F1 mice derived separately with CBA and B6 dams and in F1 mice backcrossed to the two parental strains, resistance segregated with the IgA response of the pups and not with barrier-associated transcripts or bacterial loads. Interestingly, B6 pups foster-nursed on CBA dams continued to be susceptible in later life, whereas CBA pups foster-nursed on B6 dams continued to be resistant. Together, the data indicate that a high-IgA response in adult life can protect against colitis and compensate for IgA deficiency in early life.
Collapse
Affiliation(s)
- Suman Gupta
- National Institute of Immunology, New Delhi, India
| | - Srijani Basu
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
14
|
Bright LA, Dittmar W, Nanduri B, McCarthy FM, Mujahid N, Costa LR, Burgess SC, Swiderski CE. Modeling the pasture-associated severe equine asthma bronchoalveolar lavage fluid proteome identifies molecular events mediating neutrophilic airway inflammation. VETERINARY MEDICINE-RESEARCH AND REPORTS 2019; 10:43-63. [PMID: 31119093 PMCID: PMC6504673 DOI: 10.2147/vmrr.s194427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
Abstract
Background: Pasture-associated severe equine asthma is a warm season, environmentally-induced respiratory disease characterized by reversible airway obstruction, persistent and non-specific airway hyper-responsiveness, and chronic neutrophilic airway inflammation. During seasonal exacerbation, signs vary from mild to life-threatening episodes of wheezing, coughing, and chronic debilitating labored breathing. Purpose: In human asthma, neutrophilic airway inflammation is associated with more severe and steroid-refractory asthma phenotypes, highlighting a need to decipher the mechanistic basis of this disease characteristic. We hypothesize that the collective biological activities of proteins in bronchoalveolar lavage fluid (BALF) of horses with pasture-associated severe asthma predict changes in neutrophil functions that contribute to airway neutrophilic inflammation. Methods: Using shotgun proteomics, we identified 1,003 unique proteins in cell-free BALF from six horses experiencing asthma exacerbation and six control herdmates. Contributions of each protein to ten neutrophil functions were modeled using manual biocuration to determine each protein’s net effect on the respective neutrophil functions. Results: A total of 417 proteins were unique to asthmatic horses, 472 proteins were unique to control horses (p<0.05), and 114 proteins were common in both groups. Proteins whose biological activities are responsible for increasing neutrophil migration, chemotaxis, cell spreading, transmigration, and infiltration, which would collectively bring neutrophils to airways, were over-represented in the BALF of asthmatic relative to control horses. By contrast, proteins whose biological activities support neutrophil activation, adhesion, phagocytosis, respiratory burst, and apoptosis, which would collectively shorten neutrophil lifespan, were under-represented in BALF of asthmatic relative to control horses. Interaction networks generated using Ingenuity® Pathways Analysis further support the results of our biocuration. Conclusion: Congruent with our hypothesis, the collective biological functions represented in differentially expressed proteins of BALF from horses with pasture-associated severe asthma support neutrophilic airway inflammation. This illustrates the utility of systems modeling to organize functional genomics data in a manner that characterizes complex molecular events associated with clinically relevant disease.
Collapse
Affiliation(s)
- Lauren A Bright
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Wellesley Dittmar
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Fiona M McCarthy
- School of Animal Comparative and Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Nisma Mujahid
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Lais Rr Costa
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Shane C Burgess
- School of Animal Comparative and Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Cyprianna E Swiderski
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
15
|
Turula H, Wobus CE. The Role of the Polymeric Immunoglobulin Receptor and Secretory Immunoglobulins during Mucosal Infection and Immunity. Viruses 2018; 10:E237. [PMID: 29751532 PMCID: PMC5977230 DOI: 10.3390/v10050237] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract houses millions of microbes, and thus has evolved several host defense mechanisms to keep them at bay, and prevent their entry into the host. One such mucosal surface defense is the secretion of secretory immunoglobulins (SIg). Secretion of SIg depends on the polymeric immunoglobulin receptor (pIgR), which transports polymeric Ig (IgA or IgM) from the basolateral surface of the epithelium to the apical side. Upon reaching the luminal side, a portion of pIgR, called secretory component (SC) is cleaved off to release Ig, forming SIg. Through antigen-specific and non-specific binding, SIg can modulate microbial communities and pathogenic microbes via several mechanisms: agglutination and exclusion from the epithelial surface, neutralization, or via host immunity and complement activation. Given the crucial role of SIg as a microbial scavenger, some pathogens also evolved ways to modulate and utilize pIgR and SIg to facilitate infection. This review will cover the regulation of the pIgR/SIg cycle, mechanisms of SIg-mediated mucosal protection as well as pathogen utilization of SIg.
Collapse
Affiliation(s)
- Holly Turula
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Cakebread JA, Humphrey R, Hodgkinson AJ. Immunoglobulin A in Bovine Milk: A Potential Functional Food? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7311-7316. [PMID: 26165692 DOI: 10.1021/acs.jafc.5b01836] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Immunoglobulin A (IgA) is an anti-inflammatory antibody that plays a critical role in mucosal immunity. It is found in large quantities in human milk, but there are lower amounts in bovine milk. In humans, IgA plays a significant role in providing protection from environmental pathogens at mucosal surfaces and is a key component for the establishment and maintenance of intestinal homeostasis via innate and adaptive immune mechanisms. To date, many of the dairy-based functional foods are derived from bovine colostrum, targeting the benefits of IgG. IgA has a higher pathogenic binding capacity and greater stability against proteolytic degradation when ingested compared with IgG. This provides IgA-based products greater potential in the functional food market that has yet to be realized.
Collapse
Affiliation(s)
| | - Rex Humphrey
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | | |
Collapse
|
17
|
|
18
|
|
19
|
Bauer M, Gräbsch C, Gminski R, Ollmann AIH, Borm P, Dietz A, Herbarth O, Wichmann G. Cement-related particles interact with proinflammatory IL-8 chemokine from human primary oropharyngeal mucosa cells and human epithelial lung cancer cell line A549. ENVIRONMENTAL TOXICOLOGY 2012; 27:297-306. [PMID: 20803486 DOI: 10.1002/tox.20643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 07/02/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
Epidemiological studies have shown that respirable exposure to emitted cement particulate matter is associated with adverse health risk for human. The underlying mechanisms, however, are poorly understood. To examine the effect of cement, nine blinded cement-related particulates (<10 μm) were assessed with regard to their induction of the proinflammatory cytokines IL-6 and IL-8 in human primary epithelial cells (pEC) from oropharyngeal mucosa as well as from nonsmall-cell lung carcinoma (non-SCLC) cells A549. It was demonstrated that the cement specimens did not act cytotoxic as assessed by the lactate dehydrogenase (LDH) assay. The basal and IL-1β-induced IL-8 expression was suppressed, in contrast to an unchanged IL-6. At the transcript level the basal and induced IL-6 and IL-8 gene expression was not influenced by cement dust. To discover the mechanism by which cement influenced the IL-8 expression the following experiments were performed. Submerse exposure experiments have shown that the release of IL-8 was suppressed by cement dust. Furthermore, the incubation of IL-8 with cement-related specimens under cell-free condition led to a loss of immunoreactive IL-8. An immunological masking of IL-8 by free soluble components of respiratory epithelial cells was excluded. Thus, the decrease of IL-8 protein content after cement exposure seems to be a result of the adsorption of IL-8 protein to cement particles and the inhibition of IL-8 release. In conclusion, due to absent cytotoxic and inflammatory effects of cement-related specimens in both human pEC and A549 cell models it remains open how cement exposure may lead to the respiratory adverse effects in humans.
Collapse
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ohlmeier S, Mazur W, Linja-Aho A, Louhelainen N, Rönty M, Toljamo T, Bergmann U, Kinnula VL. Sputum proteomics identifies elevated PIGR levels in smokers and mild-to-moderate COPD. J Proteome Res 2011; 11:599-608. [PMID: 22053820 DOI: 10.1021/pr2006395] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality around the world. However, the exact mechanisms leading to COPD and its progression are still poorly understood. In this study, induced sputum was analyzed by cysteine-specific two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry to identify proteins involved in COPD pathogenesis. The comparison of nonsmokers, smokers, and smokers with moderate COPD revealed 15 changed proteins with the majority, including polymeric immunoglobulin receptor (PIGR), being elevated in smokers and subjects with COPD. PIGR, which is involved in specific immune defense and inflammation, was further studied in sputum, lung tissue, and plasma by Western blot, immunohistochemistry/image analysis, and/or ELISA. Sputum PIGR was characterized as glycosylated secretory component (SC). Lung PIGR was significantly elevated in the bronchial and alveolar epithelium of smokers and further increased in the alveolar area in mild to moderate COPD. Plasma PIGR was elevated in smokers and smokers with COPD compared to nonsmokers with significant correlation to obstruction. In conclusion, new proteins in smoking-related chronic inflammation and COPD could be identified, with SC/PIGR being one of the most prominent not only in the lung but also in circulating blood.
Collapse
Affiliation(s)
- Steffen Ohlmeier
- Proteomics Core Facility, Biocenter Oulu, Department of Biochemistry, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dong-Yan L, Weiguo J, Pei L. Reduction of the amount of intestinal secretory IgA in fulminant hepatic failure. Braz J Med Biol Res 2011; 44:477-82. [PMID: 21519636 DOI: 10.1590/s0100-879x2011007500051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/31/2011] [Indexed: 01/10/2023] Open
Abstract
Intestinal barrier dysfunction plays an important role in spontaneous bacterial peritonitis. In the present study, changes in the intestinal barrier with regard to levels of secretory immunoglobulin A (SIgA) and its components were studied in fulminant hepatic failure (FHF). Immunohistochemistry and double immunofluorescent staining were used to detect intestinal IgA, the secretory component (SC) and SIgA in patients with FHF (20 patients) and in an animal model with FHF (120 mice). Real-time PCR was used to detect intestinal SC mRNA in the animal model with FHF. Intestinal SIgA, IgA, and SC staining in patients with FHF was significantly weaker than in the normal control group (30 patients). Intestinal IgA and SC staining was significantly weaker in the animal model with FHF than in the control groups (normal saline: 30 mice; lipopolysaccharide: 50 mice; D-galactosamine: 50 mice; FHF: 120 mice). SC mRNA of the animal model with FHF at 2, 6, and 9 h after injection was 0.4 ± 0.02, 0.3 ± 0.01, 0.09 ± 0.01, respectively. SC mRNA of the animal model with FHF was significantly decreased compared to the normal saline group (1.0 ± 0.02) and lipopolysaccharide group (0.89 ± 0.01). The decrease in intestinal SIgA and SC induced failure of the intestinal immunologic barrier and the attenuation of gut immunity in the presence of FHF.
Collapse
Affiliation(s)
- Liu Dong-Yan
- Research Center, China Medical University Affiliated Shengjing Hospital and Key Laboratory of Congenital Malformation Research, Ministry of Health, Shenyang, China
| | | | | |
Collapse
|
22
|
Lewis MJ, Wagner B, Irvine RM, Woof JM. IgA in the horse: cloning of equine polymeric Ig receptor and J chain and characterization of recombinant forms of equine IgA. Mucosal Immunol 2010; 3:610-21. [PMID: 20631692 PMCID: PMC3125105 DOI: 10.1038/mi.2010.38] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/11/2010] [Indexed: 02/04/2023]
Abstract
As in other mammals, immunoglobulin A (IgA) in the horse has a key role in immune defense. To better dissect equine IgA function, we isolated complementary DNA (cDNA) clones for equine J chain and polymeric Ig receptor (pIgR). When coexpressed with equine IgA, equine J chain promoted efficient IgA polymerization. A truncated version of equine pIgR, equivalent to secretory component, bound with nanomolar affinity to recombinant equine and human dimeric IgA but not with monomeric IgA from either species. Searches of the equine genome localized equine J chain and pIgR to chromosomes 3 and 5, respectively, with J chain and pIgR coding sequence distributed across 4 and 11 exons, respectively. Comparisons of transcriptional regulatory sequences suggest that horse and human pIgR expression is controlled through common regulatory mechanisms that are less conserved in rodents. These studies pave the way for full dissection of equine IgA function and open up possibilities for immune-based treatment of equine diseases.
Collapse
Affiliation(s)
- M J Lewis
- Division of Medical Sciences, University of Dundee Medical School, Ninewells Hospital, Dundee, UK
| | - B Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - R M Irvine
- Veterinary Pathological Sciences, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - J M Woof
- Division of Medical Sciences, University of Dundee Medical School, Ninewells Hospital, Dundee, UK
| |
Collapse
|
23
|
Malizia BA, Wook YS, Penzias AS, Usheva A. The human ovarian follicular fluid level of interleukin-8 is associated with follicular size and patient age. Fertil Steril 2010; 93:537-43. [DOI: 10.1016/j.fertnstert.2008.11.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/08/2008] [Accepted: 11/25/2008] [Indexed: 11/26/2022]
|
24
|
Arsenescu R, Bruno MEC, Rogier EW, Stefka AT, McMahan AE, Wright TB, Nasser MS, de Villiers WJS, Kaetzel CS. Signature biomarkers in Crohn's disease: toward a molecular classification. Mucosal Immunol 2008; 1:399-411. [PMID: 19079204 DOI: 10.1038/mi.2008.32] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an effort to develop a molecular classification scheme for Crohn's disease (CD), mucosal biopsies from 69 CD patients and 28 normal controls were analyzed for expression of the RelA subunit of nuclear factor (NF)-kappaB, A20 (a negative regulator of NF-kappaB), polymeric immunoglobulin receptor (pIgR), tumor necrosis factor (TNF), and interleukin (IL)-8. Principal component analysis was used to classify individuals into three subsets based on patterns of biomarker expression. Set 1 included normal subjects and CD patients with mild disease and good responses to therapy, thus defining "normal" biomarker expression. CD patients in set 2, characterized by low expression of all five biomarkers, had moderate to severe disease and poor responses to immunosuppressive and anti-TNF therapy. Patients in set 3, characterized by low expression of RelA, A20, and pIgR, normal TNF and elevated IL-8, had acute inflammation that responded well to therapy. Classification of CD patients by these biomarkers may predict disease behavior and responses to therapy.
Collapse
Affiliation(s)
- R Arsenescu
- Division of Digestive Diseases & Nutrition, Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Evans E, Zhang W, Jerdeva G, Chen CY, Chen X, Hamm-Alvarez SF, Okamoto CT. Direct interaction between Rab3D and the polymeric immunoglobulin receptor and trafficking through regulated secretory vesicles in lacrimal gland acinar cells. Am J Physiol Cell Physiol 2008; 294:C662-74. [PMID: 18171724 DOI: 10.1152/ajpcell.00623.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lacrimal gland is responsible for tear production, and a major protein found in tears is secretory component (SC), the proteolytically cleaved fragment of the extracellular domain of the polymeric Ig receptor (pIgR), which is the receptor mediating the basal-to-apical transcytosis of polymeric immunoglobulins across epithelial cells. Immunofluorescent labeling of rabbit lacrimal gland acinar cells (LGACs) revealed that the small GTPase Rab3D, a regulated secretory vesicle marker, and the pIgR are colocalized in subapical membrane vesicles. In addition, the secretion of SC from primary cultures of LGACs was stimulated by the cholinergic agonist carbachol (CCH), and its release rate was very similar to that of other regulated secretory proteins in LGACs. In pull-down assays from resting LGACs, recombinant wild-type Rab3D (Rab3DWT) or the GDP-locked mutant Rab3DT36N both pulled down pIgR, but the GTP-locked mutant Rab3DQ81L did not. When the pull-down assays were performed in the presence of guanosine-5'-(gamma-thio)-triphosphate, GTP, or guanosine-5'-O-(2-thiodiphosphate), binding of Rab3DWT to pIgR was inhibited. In blot overlays, recombinant Rab3DWT bound to immunoprecipitated pIgR, suggesting that Rab3D and pIgR may interact directly. Adenovirus-mediated overexpression of mutant Rab3DT36N in LGACs inhibited CCH-stimulated SC release, and, in CCH-stimulated LGACs, pull down of pIgR with Rab3DWT and colocalization of pIgR with endogenous Rab3D were decreased relative to resting cells, suggesting that the pIgR-Rab3D interaction may be modulated by secretagogues. These data suggest that the novel localization of pIgR to the regulated secretory pathway of LGACs and its secretion therefrom may be affected by its novel interaction with Rab3D.
Collapse
Affiliation(s)
- Eunbyul Evans
- Dept. of Pharmacology and Pharmaceutical Sciences, Univ. of Southern California, Los Angeles, CA 90089-9121, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Wheeler TT, Hodgkinson AJ, Prosser CG, Davis SR. Immune components of colostrum and milk--a historical perspective. J Mammary Gland Biol Neoplasia 2007; 12:237-47. [PMID: 17992474 DOI: 10.1007/s10911-007-9051-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022] Open
Abstract
Key developments in the understanding of the immune functions of milk and colostrum are reviewed, focusing on their proteinaceous components. The topics covered include the immunoglobulins, immune cells, immunomodulatory substances, and antimicrobial proteins. The contributions of new technologies and the introduction of fresh approaches from other fields are highlighted, as are the contributions that mammary biology research has made to the development of other fields. Finally, a summary of some current outstanding questions and likely future directions of the field are given.
Collapse
Affiliation(s)
- Thomas T Wheeler
- Dairy Science and Technologies Section, AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand.
| | | | | | | |
Collapse
|
27
|
Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 2007; 25:5467-84. [PMID: 17227687 DOI: 10.1016/j.vaccine.2006.12.001] [Citation(s) in RCA: 345] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/08/2006] [Accepted: 12/01/2006] [Indexed: 11/27/2022]
Abstract
Mucosal epithelia comprise an extensive vulnerable barrier which is reinforced by numerous innate defence mechanisms cooperating intimately with adaptive immunity. Local generation of secretory IgA (SIgA) constitutes the largest humoral immune system of the body. Secretory antibodies function both by performing antigen exclusion at mucosal surfaces and by virus and endotoxin neutralization within epithelial cells without causing tissue damage. SIgA is thus persistently containing commensal bacteria outside the epithelial barrier but can also target invasion of pathogens and penetration of harmful antigens. Resistance to toxin-producing bacteria such as Vibrio cholerae and enterotoxigenic Escherichia coli appears to depend largely on SIgA, and so does herd protection against horizontal faecal-oral spread of enteric pathogens under naïve or immunized conditions--with a substantial innate impact both on cross-reactivity and memory. Like natural infections, live mucosal vaccines or adequate combinations of non-replicating vaccines and mucosal adjuvants, give rise not only to SIgA antibodies but also to longstanding serum IgG and IgA responses. However, there is considerably disparity with regard to migration of memory/effector cells from mucosal inductive sites to secretory effector sites and systemic immune organs. Also, although immunological memory is generated after mucosal priming, this may be masked by a self-limiting response protecting the inductive lymphoid tissue in the gut. The intranasal route of vaccine application targeting nasopharynx-associated lymphoid tissue may be more advantageous for certain infections, but only if successful stimulation is achieved without the use of toxic adjuvants that might reach the central nervous system. The degree of protection obtained after mucosal vaccination ranges from reduction of symptoms to complete inhibition of re-infection. In this scenario, it is often difficult to determine the relative importance of SIgA versus serum antibodies, but infection models in knockout mice strongly support the notion that SIgA exerts a decisive role in protection and cross-protection against a variety of infectious agents. Nevertheless, relatively few mucosal vaccines have been approved for human use, and more basic work is needed in vaccine and adjuvant design, including particulate or live-vectored combinations.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology, Institute and Department of Pathology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway.
| |
Collapse
|
28
|
Lahouassa H, Moussay E, Rainard P, Riollet C. Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli. Cytokine 2007; 38:12-21. [PMID: 17532224 DOI: 10.1016/j.cyto.2007.04.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 03/27/2007] [Accepted: 04/11/2007] [Indexed: 02/07/2023]
Abstract
We studied the inflammatory and immune responses of bovine mammary epithelial cells (bMEC) infected by mastitis isolates of Staphylococcus aureus. Primary cultures of bMEC were co-incubated separately with three strains of S. aureus and one strain of Escherichia coli. Transcriptional levels and/or protein release of interleukin-8 (IL-8), growth related oncogene alpha (GRO-alpha), growth related oncogene beta (GRO-beta), tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), transforming growth factor beta1 (TGF-beta1) and interleukin-10 (IL-10) were measured at 3, 10 and 24h post-infection (PI). The results indicated that at earlier hours of co-culture, bMEC infected with S. aureus or E. coli expressed more IL-1beta, TNF-alpha, IL-8 and GRO-alpha mRNA than uninfected bMEC. Furthermore, infected bMEC released more TNF-alpha, IL-8, GRO-alpha and GRO-beta proteins than uninfected bMEC. However, differential transcription and release of some cytokines/chemokines from bMEC was observed according to the strain of S. aureus and bacteria Gram type. In conclusion, bMEC did not show an anti-inflammatory potential through IL-10 or TGF-beta1 release. Nevertheless, bMEC were able to release neutrophil-mobilizing chemokines and pro-inflammatory cytokines upon bacterial stimulation, strongly suggesting that bMEC are active contributors to immune and inflammatory responses of mammary gland. In addition, the clinical characteristics and resolution of mastitis may be partly determined by the responses of bMEC according to S. aureus strains and bacteria Gram type.
Collapse
Affiliation(s)
- Hichem Lahouassa
- INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly F-37380, France.
| | | | | | | |
Collapse
|
29
|
Yoshikawa T, Dent G, Ward J, Angco G, Nong G, Nomura N, Hirata K, Djukanovic R. Impaired neutrophil chemotaxis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 175:473-9. [PMID: 17110644 DOI: 10.1164/rccm.200507-1152oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Neutrophilic airway inflammation is considered to be a major factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), with sputum and bronchoalveolar lavage neutrophil counts broadly correlating with disease severity. The mechanisms responsible for neutrophil accumulation are poorly understood, but they could involve increased influx and/or survival of these cells. OBJECTIVES To investigate whether neutrophil chemotactic responsiveness and/or chemotactic activity in airway secretions are increased in subjects with COPD. METHODS Chemotaxis experiments were performed using induced sputum supernatants from subjects with and without COPD as a source of chemotactic activity, and neutrophils from healthy donors as responder cells. In addition, chemotactic responses to N-formyl-Met-Leu-Phe (fMLP) and interleukin-8 (IL-8/CXCL8) were studied using neutrophils from healthy subjects and subjects with COPD. MEASUREMENTS AND MAIN RESULTS As reported in the literature, sputum neutrophil counts were significantly increased in subjects with COPD compared with healthy subjects. However, this was associated with reduced chemotactic activity in sputum in COPD, as judged by reduced chemotaxis to the fluid phase of sputum from subjects with COPD compared with healthy subjects. Furthermore, whereas neutrophils from subjects with stage I COPD had normal responses to fMLP and IL-8, subjects with more severe stage II-IV COPD showed reduced levels of spontaneous migration and chemotaxis to fMLP and IL-8. CONCLUSIONS Neither increased chemotactic activity in the airways nor increased chemotactic responsiveness of neutrophils explains the increased number of these cells in subjects with stable COPD. The implications of the observed reduction in neutrophil chemotactic activity remain to be established.
Collapse
Affiliation(s)
- Takahiro Yoshikawa
- Allergy & Inflammation Research, Division of Infection, Inflammation, and Repair, Mailpoint 810, Level F, South Block, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rusnati M, Presta M. Extracellular angiogenic growth factor interactions: an angiogenesis interactome survey. ACTA ACUST UNITED AC 2006; 13:93-111. [PMID: 16728328 DOI: 10.1080/10623320600698011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Angiogenesis plays a key role in various physiological and pathological processes, including inflammation and tumor growth. Numerous angiogenic growth factors (AGFs) have been identified. Usually, the angiogenic process is assumed to represent the outcome of a straightforward interaction of AGFs with specific signalling receptors of the endothelial cell (EC) surface. Actually, the mechanisms by which AGFs induce neovascularization are much more complex. Indeed, angiogenesis is the result of the simultaneous actions of various AGFs and angiogenesis modulators; multiple EC surface receptors with different structure and biological properties are engaged by AGFs to exert a full angiogenic response; AGFs bind a variety of free and immobilized proteins, polysaccharides, and complex lipids of the extracellular milieu that affect AGF integrity, stability, and bioavailability; some of the AGF-binding molecules interact also with AGF receptors. In this review the authors summarize literature data and discuss the current knowledge about the extracellular molecules able to interact with AGFs, thus representing possible key regulators of the angiogenesis process and targets/templates for the development of novel antiangiogenic drugs. This work represents an attempt to highlight common theme in the AGF interactome that occurs at the extracellular level during neovascularization.
Collapse
Affiliation(s)
- Marco Rusnati
- Department of Biomedical Sciences and Biotechnology, Unit of General Pathology and Immunology, School of Medicine, University of Brescia, Italy
| | | |
Collapse
|
31
|
Tjärnlund A, Rodríguez A, Cardona PJ, Guirado E, Ivanyi J, Singh M, Troye-Blomberg M, Fernández C. Polymeric IgR knockout mice are more susceptible to mycobacterial infections in the respiratory tract than wild-type mice. Int Immunol 2006; 18:807-16. [PMID: 16569672 DOI: 10.1093/intimm/dxl017] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
It is generally accepted that cellular, and not humoral immunity, plays the crucial role in defense against intracellular bacteria. However, accumulating data indicate the importance of humoral immunity for the defense against a number of intracellular bacteria, including mycobacteria. We have investigated the role of secretory IgA, the main isotype found in mucosal tissues, in protection against mycobacterial infection, using polymeric IgR (pIgR)-deficient mice. Characterization of the humoral response induced after intra-nasal immunizations with the mycobacterial antigen PstS-1 revealed a loss of antigen-specific IgA response in saliva from the knockout mice. IgA level in the bronchoalveolar lavage of knockout mice was similar to wild-type level, although the IgA antibodies must have reached the lumen by other means than pIgR-mediated transport. Infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG) demonstrated that the immunized pIgR-/- mice were more susceptible to BCG infection than immunized wild-type mice, based on higher bacterial loads in the lungs. This was accompanied by a reduced production of both IFN-gamma and tumor necrosis factor-alpha (TNF-alpha) in the lungs. Additionally, the pIgR-/- mice displayed reduced natural resistance to mycobacterial infection proved by significantly higher bacterial growth in their lungs compared with wild-type mice after infection with virulent Mycobacterium tuberculosis. The knockout mice appeared to have a delayed mycobacteria-induced immune response with reduced expression of protective mediators, such as IFN-gamma, TNF-alpha, inducible nitric oxide synthase and regulated upon activation normal T cell sequence, during early infection. Collectively, our results show that actively secreted IgA plays a role in protection against mycobacterial infections in the respiratory tract, by blocking entrance of bacilli into the lungs, in addition to modulation of the mycobacteria-induced pro-inflammatory response.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- Chemokine CCL5/biosynthesis
- Chemokine CCL5/genetics
- Chemokine CCL5/immunology
- Disease Susceptibility/immunology
- Genetic Predisposition to Disease
- Immunoglobulin A, Secretory/immunology
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/immunology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Polymeric Immunoglobulin/deficiency
- Receptors, Polymeric Immunoglobulin/genetics
- Receptors, Polymeric Immunoglobulin/immunology
- Respiratory Tract Infections/genetics
- Respiratory Tract Infections/immunology
- Respiratory Tract Infections/microbiology
- Secretory Component/immunology
- Tuberculosis/genetics
- Tuberculosis/immunology
- Tuberculosis/microbiology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Anna Tjärnlund
- Department of Immunology, Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 16, 10691 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kaetzel CS. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol Rev 2005; 206:83-99. [PMID: 16048543 DOI: 10.1111/j.0105-2896.2005.00278.x] [Citation(s) in RCA: 422] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Secretory antibodies of the immunoglobulin A (IgA) class form the first line of antigen-specific immune protection against inhaled, ingested, and sexually transmitted pathogens and antigens at mucosal surfaces. Epithelial transcytosis of polymeric IgA (pIgA) is mediated by the polymeric immunoglobulin receptor (pIgR). At the apical surface, the extracellular ligand-binding region of pIgR, known as secretory component (SC), is cleaved and released in free form or as a component of secretory IgA (SIgA). SC has innate anti-microbial properties, and it protects SIgA from proteolytic degradation. Expression of pIgR is regulated by microbial products through Toll-like receptor signaling and by host factors such as cytokines and hormones. Recent studies of the structure of the extracellular ligand-binding domain of pIgR have revealed mechanisms by which it binds pIgA and other ligands. During transcytosis, pIgA has been shown to neutralize pathogens and antigens within intracellular vesicular compartments. The recent identification of disease-associated polymorphisms in human pIgR near the cleavage site may help to unravel the mystery of how pIgR is cleaved to SC. The identification of novel functions for SC and SIgA has expanded our view of the immunobiology of pIgR, a key component of the mucosal immune system that bridges innate and adaptive immune defense.
Collapse
Affiliation(s)
- Charlotte S Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
33
|
|
34
|
Goodman RB, Pugin J, Lee JS, Matthay MA. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev 2004; 14:523-35. [PMID: 14563354 DOI: 10.1016/s1359-6101(03)00059-5] [Citation(s) in RCA: 549] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clinical acute lung injury (ALI) is a major cause of acute respiratory failure in critically ill patients. There is considerable experimental and clinical evidence that pro- and anti-inflammatory cytokines play a major role in the pathogenesis of inflammatory-induced lung injury from sepsis, pneumonia, aspiration, and shock. A recent multi-center clinical trial found that a lung-protective ventilatory strategy reduces mortality by 22% in patients with ALI. Interestingly, this protective ventilatory strategy was associated with a marked reduction in the number of neutrophils and the concentration of pro-inflammatory cytokines released into the airspaces of the injured lung. Further research is needed to establish the contribution of cytokines to both the pathogenesis and resolution of ALI.
Collapse
Affiliation(s)
- Richard B Goodman
- Medical Research Service, Department of Veterans Affairs, VA Puget Sound Health Care System, VA Puget Sound Medical Center, Division of Pulmonary & Critical Care, University of Washington School of Medicine, Seattle, WA 98108, USA
| | | | | | | |
Collapse
|
35
|
Ackermann LW, Denning GM. Nuclear factor-kappaB contributes to interleukin-4- and interferon-dependent polymeric immunoglobulin receptor expression in human intestinal epithelial cells. Immunology 2004; 111:75-85. [PMID: 14678201 PMCID: PMC1782392 DOI: 10.1111/j.1365-2567.2004.01773.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2002] [Revised: 09/29/2003] [Accepted: 09/30/2003] [Indexed: 12/18/2022] Open
Abstract
Polymeric immunoglobulins (pIgs) that are present at mucosal surfaces play key roles in both the innate and adaptive immune responses. These pIgs are delivered to the mucosal surface via transcytosis across the epithelium, a process mediated by the polymeric immunoglobulin receptor (pIgR). Previous studies demonstrate that expression of the pIgR is regulated by multiple immunomodulatory factors including interleukin-4 (IL-4) and interferon-gamma (IFN-gamma). In studies using human intestinal epithelial cells (HT29), multiple inhibitors of the transcription factor nuclear factor-kappaB (NF-kappaB), including a dominant negative IkappaBalpha-serine mutant, inhibited both IL-4- and IFN-dependent increases in pIgR expression. Under identical conditions, NF-kappaB inhibitors had no effect on cytokine-dependent increases in expression of the transcription factor interferon regulatory factor-1. Over-expression of the IkappaBalpha-serine mutant also inhibited reporter gene expression in response to IL-4, TNF-alpha, IL-1beta, and in some cases IFN-gamma using constructs with sequences from the pIgR promoter. Reduced levels of pIgR were observed even when inhibitors were added >/=24 hr after cytokines suggesting that prolonged activation of NF-kappaB is required. Finally, reporter gene studies with NF-kappaB enhancer elements indicated that IFN-gamma alone and IL-4 in combination with other cytokines activated NF-kappaB in HT29 cells. Together, these studies provide additional insight into the signalling pathways that contribute to expression of the pIgR, a critical player in mucosal immunity.
Collapse
Affiliation(s)
- Laynez W Ackermann
- Infectious Diseases Research Laboratory, Department of Internal Medicine, The Veterans Affairs Medical Center and The University of Iowa, Iowa City, IA 52246, USA
| | | |
Collapse
|
36
|
Lev DC, Kiriakova G, Price JE. Selection of more aggressive variants of the gI101A human breast cancer cell line: a model for analyzing the metastatic phenotype of breast cancer. Clin Exp Metastasis 2003; 20:515-23. [PMID: 14598885 DOI: 10.1023/a:1025837631179] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In vivo models utilizing orthotopic injection of tumor cells into nude mice have proven valuable for the study of metastasis. However, breast cancers are among the more difficult of human tumors to grow in immunodeficient mice, with a relatively low tumor take. Fewer still develop spontaneous metastases. The injection of GI101A breast cancer cells into the mammary fatpad (mfp) produced lung metastases in 25% of tumor-bearing mice. Selecting cells from the lung metastases and recycling in vivo resulted in the isolation of a series of variant cell lines. These cell lines were tested for tumorigenicity and metastasis in nude mice following mfp injection compared with the original cell line, and in vitro expression of factors associated with the metastatic phenotype measured. The in vivo selected cell lines were more aggressive, with higher tumor take, faster local growth rate and increased incidence (> or = 85%) and extent of lung metastasis. However, the metastasis-selected variants showed no increases in expression of the growth factor receptors EGFR or HER-2, and the pro-angiogenic factors VEGF-A and IL-8. Immunohistochemistry of mfp tumors revealed no differences in microvessel density (counting CD-31 positive structures) and cell proliferation (PCNA-positive cells) comparing the GI101A line with selected variants. No TUNEL-positive cells were detected in the tumors of the metastasis-derived variant, with a small number of cells undergoing apoptosis detected in sections of GI101A tumors. In vitro, the metastasis-derived variants were found to have a more robust expression of phosphorylated PKB/Akt, with or without EGF or serum stimulation, suggesting an association between Akt activation and metastatic ability. This new series of isogenic cell lines may be valuable for identifying molecular mechanisms involved in the metastatic progression of breast cancer.
Collapse
Affiliation(s)
- Dina Chelouche Lev
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
37
|
Marshall LJ, Perks B, Bodey K, Suri R, Bush A, Shute JK. Free secretory component from cystic fibrosis sputa displays the cystic fibrosis glycosylation phenotype. Am J Respir Crit Care Med 2003; 169:399-406. [PMID: 14597481 DOI: 10.1164/rccm.200305-619oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Secretory IgA contributes to humoral defense mechanisms against pathogens targeting mucosal surfaces, and secretory component (SC) fulfills multiple roles in this defense. The aims of this study were to quantify total SC and to analyze the form of free SC in sputa from normal subjects, subjects with asthma, and subjects with cystic fibrosis (CF). Significantly higher levels of SC were detected in CF compared with both other groups. Gel filtration chromatography revealed that SC in CF was relatively degraded. Free SC normally binds interleukin (IL)-8 and inhibits its function. However, in CF sputa, IL-8 binding to intact SC was reduced. Analysis of the total carbohydrate content of free SC signified overglycosylation in CF compared with normal subjects and subjects with asthma. Monosaccharide composition analysis of free SC from CF subjects revealed overfucosylation and undersialylation, in agreement with the reported CF glycosylation phenotype. SC binding to IL-8 did not interfere with the binding of IL-8 to heparin, indicating distinct binding sites on IL-8 for negative regulation of function by SC and heparin. We suggest that defective structure and function of SC contribute to the characteristic sustained inflammatory response in the CF airways.
Collapse
Affiliation(s)
- Lindsay J Marshall
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Adaptive immunity mediated by secretory antibodies is important in the defence against mucosal infections. Specific secretory immunoglobulin A (SIgA) can inhibit initial pathogen colonization by performing immune exclusion both on the mucosal surface and within virus-infected secretory epithelial cells without causing tissue damage. Resistance against toxin-producing bacteria such as Vibrio cholerae appears to be particularly dependent on SIgA antibodies. Like natural infections, live topical vaccines or adequate combinations of inactivated vaccines and mucosal adjuvants give rise not only to SIgA antibodies, but also to long-standing serum IgG and IgA responses. The intranasal route of vaccine application could be particularly attractive to achieve this result, but only if successful stimulation is obtained without the use of toxic adjuvants. The degree of protection after vaccination may range from complete inhibition of reinfection to reduction of symptoms. In this scenario it is generally difficult to determine unequivocally the relative importance of SIgA versus serum antibodies. However, infection models in knockout mice strongly support the notion that SIgA exerts a decisive role in protection and cross-protection against a variety of infectious agents.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology LIIPAT, Institute of Pathology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway.
| |
Collapse
|
39
|
Pilette C, Ouadrhiri Y, Dimanche F, Vaerman JP, Sibille Y. Secretory component is cleaved by neutrophil serine proteinases but its epithelial production is increased by neutrophils through NF-kappa B- and p38 mitogen-activated protein kinase-dependent mechanisms. Am J Respir Cell Mol Biol 2003; 28:485-98. [PMID: 12654638 DOI: 10.1165/rcmb.4913] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously showed that expression of polymeric immunoglobulin receptor (pIgR)/secretory component (SC), the epithelial receptor assuming transport of polymeric IgA in mucosal secretions, is strongly decreased in severe chronic obstructive pulmonary disease. Here, we evaluated in vitro the effects of polymorphonuclear neutrophil (PMN) mediators on pIgR/SC. On polyacrylamide gel electrophoresis analysis, soluble SC was rapidly cleaved by supernatants from phorbol-myristate-acetate-activated PMN, through a serine proteinase activity. Moreover, purified PMN serine proteinases also cleaved SC. Similarly, polymeric IgA was rapidly cleaved in monomers by neutrophil elastase, whereas secretory immunoglobulin A was relatively resistant to neutrophil elastase. Surface pIgR on human bronchial epithelial cells was also cleaved by serine proteinases, as shown by immunofluorescence. In contrast, pIgR/SC production by cultured epithelial cells (quantified by enzyme-linked immunosorbent assay) was significantly increased by supernatants from interleukin-8/formylmethionylleucylphenylalanine-activated PMN (122.6 +/- 17.3 versus 70.9 +/- 9 ng/mg protein, P < 0.01). Upregulation of pIgR/SC production by bronchial epithelial cells was abolished by nuclear factor kappa B- and p38 mitogen-activated protein kinase (MAPK) inhibitors. Moreover, supernatants from interleukin-8/formylmethionylleucylphenylalanine-activated PMN induced the phosphorylation of I kappa B-alpha and p38 MAPK in epithelial cells, independently of serine proteinases. Thus, PMN serine proteinases cleave pIgR/SC, whereas activated PMN induce an increased pIgR/SC expression through epithelial activation of nuclear factor kappa B and p38 MAPK pathways.
Collapse
Affiliation(s)
- Charles Pilette
- Experimental Medicine Unit, Christian de Duve Institute of Cellular Pathology, University of Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Phalipon A, Corthésy B. Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins. Trends Immunol 2003; 24:55-8. [PMID: 12547499 DOI: 10.1016/s1471-4906(02)00031-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polymeric Ig receptor (pIgR) ensures efficient secretion of polymeric IgA (pIgA) at mucosal surfaces. On basal to apical transport across epithelial cells, the pIgR extracellular domain is cleaved, releasing secretory component (SC) in association with pIgA. This finds its raison d'être in the recent observation that SC is directly involved in the protective function of secretory IgA. In addition, free SC exhibits scavenger properties with respect to enteric pathogens. However, although pIgR dedicates its life to mucosal protection, it also seems to permit pathogen entrance through the epithelial barrier. The multiple mechanisms that they are involved in make pIgR and SC instrumental to mucosal immunity.
Collapse
Affiliation(s)
- Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, INSERM U 389, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | | |
Collapse
|
42
|
Jefcoat AM, Wagner JG, Robinson NE. The neutrophil: understanding ancient and powerful responses in the inflammatory balance. Equine Vet J 2003; 35:5-6. [PMID: 12553455 DOI: 10.2746/042516403775467559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|