1
|
Chen R, Wang M, Qi Q, Tang Y, Guo Z, Wu S, Li Q. Sequential anti-inflammatory and osteogenic effects of a dual drug delivery scaffold loaded with parthenolide and naringin in periodontitis. J Periodontal Implant Sci 2022; 53:20-37. [PMID: 36468470 PMCID: PMC9943701 DOI: 10.5051/jpis.2105700285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Our pilot study showed that a 3-dimensional dual drug delivery scaffold (DDDS) loaded with Chinese herbs significantly increased the regenerated bone volume fraction. This study aimed to confirm the synergistic anti-inflammatory and osteogenic preclinical effects of this system. METHODS The targets and pathways of parthenolide and naringin were predicted. Three cell models were used to assess the anti-inflammatory effects of parthenolide and the osteogenic effects of naringin. First, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) and the bone mineral density (BMD) of surgical defects were measured in a rat model of periodontitis with periodontal fenestration defects. Additionally, the mRNA expression levels of matrix metallopeptidase 9 (MMP9) and alkaline phosphatase (ALP) were measured. Furthermore, the number of inflammatory cells and osteoclasts, as well as the protein expression levels of tumor necrosis factor-alpha (TNF-α) and levels of ALP were determined. RESULTS Target prediction suggested prostaglandin peroxidase synthase (PTGS2) as a potential target of parthenolide, while cytochrome P450 family 19 subfamily A1 (CYP19A1) and taste 2 receptor member 31 (TAS2R31) were potential targets of naringin. Parthenolide mainly targeted inflammation-related pathways, while naringin participated in steroid hormone synthesis and taste transduction. In vitro experiments revealed significant anti-inflammatory effects of parthenolide on RAW264.7 cells, and significant osteogenic effects of naringin on bone marrow mesenchymal stem cells and MC3T3-E1 cells. DDDS loaded with parthenolide and naringin decreased the CEJ-ABC distance and increased BMD and ALP levels in a time-dependent manner. Inflammation was significantly alleviated after 14 days of DDDS treatment. Additionally, after 56 days, the DDDS group exhibited the highest BMD and ALP levels. CONCLUSIONS DDDS loaded with parthenolide and naringin in a rat model achieved significant synergistic anti-inflammatory and osteogenic effects, providing powerful preclinical evidence.
Collapse
Affiliation(s)
- Rui Chen
- Department of Stomatology, The First People’s Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Mengting Wang
- Department of Stomatology, The First People’s Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Qiaoling Qi
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Yanli Tang
- Department of Stomatology, The First People’s Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | | | - Shuai Wu
- Jinan University, Guangzhou, China
| | - Qiyan Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
2
|
Shashanka Indeevara Rajapakse RM, Rajapakse S. Single-Walled Carbon Nanotube-Based Biosensors for Detection of Bronchial Inflammation. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Inflammation is a protective mechanism against invading pathogens and tissue damage. However, the inflammatory process is implicated in a wide range of diseases affecting all organs and body systems. Nitric oxide — a multifunctional signaling molecule that plays a critical role in systemic blood pressure homeostasis, prevention of platelet aggregation, antimicrobial resistance, immunoregulation, tumor suppression and as a neurotransmitter — is used as a surrogate marker for inflammation. However, the most commonly used Griess assay is an indirect and expensive method for the determination of nitric oxide concentration. Hence, single-walled carbon nanotube-based biosensors have been explored as real-time, sensitive, selective and safe methods to determine nitric oxide released during the inflammatory process. In this review, we explore current developments in single-walled carbon nanotube-based biosensors for the detection of nitric oxide in exhaled breath as a direct and noninvasive test for detection of bronchial inflammation.
Collapse
Affiliation(s)
| | - Sanath Rajapakse
- Department of Molecular Biology and Biotechnology, Faculty of Science, University of Peradeniya, Sri Lanka
| |
Collapse
|
3
|
Molgora M, Esaulova E, Vermi W, Hou J, Chen Y, Luo J, Brioschi S, Bugatti M, Omodei AS, Ricci B, Fronick C, Panda SK, Takeuchi Y, Gubin MM, Faccio R, Cella M, Gilfillan S, Unanue ER, Artyomov MN, Schreiber RD, Colonna M. TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy. Cell 2020; 182:886-900.e17. [PMID: 32783918 DOI: 10.1016/j.cell.2020.07.013] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022]
Abstract
Checkpoint immunotherapy unleashes T cell control of tumors, but is undermined by immunosuppressive myeloid cells. TREM2 is a myeloid receptor that transmits intracellular signals that sustain microglial responses during Alzheimer's disease. TREM2 is also expressed by tumor-infiltrating macrophages. Here, we found that Trem2-/- mice are more resistant to growth of various cancers than wild-type mice and are more responsive to anti-PD-1 immunotherapy. Furthermore, treatment with anti-TREM2 mAb curbed tumor growth and fostered regression when combined with anti-PD-1. scRNA-seq revealed that both TREM2 deletion and anti-TREM2 are associated with scant MRC1+ and CX3CR1+ macrophages in the tumor infiltrate, paralleled by expansion of myeloid subsets expressing immunostimulatory molecules that promote improved T cell responses. TREM2 was expressed in tumor macrophages in over 200 human cancer cases and inversely correlated with prolonged survival for two types of cancer. Thus, TREM2 might be targeted to modify tumor myeloid infiltrates and augment checkpoint immunotherapy.
Collapse
Affiliation(s)
- Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology, University of Brescia, Brescia 25123, Italy
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mattia Bugatti
- Department of Pathology, University of Brescia, Brescia 25123, Italy
| | | | - Biancamaria Ricci
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catrina Fronick
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Santosh K Panda
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoshiko Takeuchi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew M Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Children's Hospital in St. Louis, St. Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emil R Unanue
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Regulation of B-cell function by NF-kappaB c-Rel in health and disease. Cell Mol Life Sci 2020; 77:3325-3340. [PMID: 32130429 DOI: 10.1007/s00018-020-03488-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
B cells mediate humoral immune response and contribute to the regulation of cellular immune response. Members of the Nuclear Factor kappaB (NF-κB) family of transcription factors play a major role in regulating B-cell functions. NF-κB subunit c-Rel is predominantly expressed in lymphocytes, and in B cells, it is required for survival, proliferation, and antibody production. Dysregulation of c-Rel expression and activation alters B-cell homeostasis and is associated with B-cell lymphomas and autoimmune pathologies. Based on its essential roles, c-Rel may serve as a potential prognostic and therapeutic target. This review summarizes the current understanding of the multifaceted role of c-Rel in B cells and B-cell diseases.
Collapse
|
5
|
Zamani Taghizadeh Rabe S, Iranshahi M, Mahmoudi M. In vitro anti-inflammatory and immunomodulatory properties of umbelliprenin and methyl galbanate. J Immunotoxicol 2015; 13:209-16. [DOI: 10.3109/1547691x.2015.1043606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | | |
Collapse
|
6
|
Giordano D, Draves KE, Li C, Hohl TM, Clark EA. Nitric oxide regulates BAFF expression and T cell-independent antibody responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:1110-20. [PMID: 24951820 DOI: 10.4049/jimmunol.1303158] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Whereas NO is known to regulate T cell responses, its role in regulating B cell responses remains unclear. Previous studies suggested that inducible NO synthase 2 (NOS2/iNOS) is required for normal IgA Ab responses but inhibits antiviral IgG2a Ab responses. In this study we used NOS2(-/-) mice to determine the role of NO in T cell-dependent and T cell-independent (TI)-2 Ab responses. Whereas T cell-dependent Ab responses were only modestly increased in NOS2(-/-) mice, IgM and IgG3 Ab responses as well as marginal zone B cell plasma cell numbers and peritoneal B1b B cells were significantly elevated after immunization with the TI-2 Ag 4-hydroxy-3-nitrophenyl acetyl (NP)-Ficoll. The elevated TI-2 responses in NOS2(-/-) mice were accompanied by significant increases in serum levels of BAFF/BLyS and by increases in BAFF-producing Ly6C(hi) inflammatory monocytes and monocyte-derived dendritic cells (DCs), suggesting that NO normally inhibits BAFF expression. Indeed, we found that NOS2(-/-) DCs produced more BAFF than did wild-type DCs, and addition of a NO donor to NOS2(-/-) DCs reduced BAFF production. Bone marrow chimeric mice that lack NOS2 in either nonhematopoietic or hematopoietic cells had intermediate IgM and IgG3 Ab responses after NP-Ficoll immunization, suggesting that NOS2 from both hematopoietic and nonhematopoietic sources regulates TI-2 Ab responses. Similar to NOS2(-/-) mice, depletion of Ly6C(hi) inflammatory monocytes and monocyte-derived DCs enhanced NP-specific IgM and IgG3 responses to NP-Ficoll. Thus, NO produced by inflammatory monocytes and their derivative DC subsets plays an important role in regulating BAFF production and TI-2 Ab responses.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Kevin E Draves
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Chang Li
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Tobias M Hohl
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| |
Collapse
|
7
|
Siegert S, Luther SA. Positive and negative regulation of T cell responses by fibroblastic reticular cells within paracortical regions of lymph nodes. Front Immunol 2012; 3:285. [PMID: 22973278 PMCID: PMC3438460 DOI: 10.3389/fimmu.2012.00285] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/25/2012] [Indexed: 12/21/2022] Open
Abstract
Fibroblastic reticular cells (FRC) form the structural backbone of the T cell rich zones in secondary lymphoid organs (SLO), but also actively influence the adaptive immune response. They provide a guidance path for immigrating T lymphocytes and dendritic cells (DC) and are the main local source of the cytokines CCL19, CCL21, and IL-7, all of which are thought to positively regulate T cell homeostasis and T cell interactions with DC. Recently, FRC in lymph nodes (LN) were also described to negatively regulate T cell responses in two distinct ways. During homeostasis they express and present a range of peripheral tissue antigens, thereby participating in peripheral tolerance induction of self-reactive CD8+ T cells. During acute inflammation T cells responding to foreign antigens presented on DC very quickly release pro-inflammatory cytokines such as interferon γ. These cytokines are sensed by FRC which transiently produce nitric oxide (NO) gas dampening the proliferation of neighboring T cells in a non-cognate fashion. In summary, we propose a model in which FRC engage in a bidirectional crosstalk with both DC and T cells to increase the efficiency of the T cell response. However, during an acute response, FRC limit excessive expansion and inflammatory activity of antigen-specific T cells. This negative feedback loop may help to maintain tissue integrity and function during rapid organ growth.
Collapse
Affiliation(s)
- Stefanie Siegert
- Department of Biochemistry, University of Lausanne Epalinges, Switzerland
| | | |
Collapse
|
8
|
D'Alessio FR, Tsushima K, Aggarwal NR, Mock JR, Eto Y, Garibaldi BT, Files DC, Avalos CR, Rodriguez JV, Waickman AT, Reddy SP, Pearse DB, Sidhaye VK, Hassoun PM, Crow MT, King LS. Resolution of experimental lung injury by monocyte-derived inducible nitric oxide synthase. THE JOURNAL OF IMMUNOLOGY 2012; 189:2234-45. [PMID: 22844117 DOI: 10.4049/jimmunol.1102606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about the mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal LPS and assessed the response at intervals to day 10, when injury had resolved. Inducible NO synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS-/- mice were exposed to intratracheal LPS, early lung injury was attenuated; however, recovery was markedly impaired compared with WT mice. iNOS-/- mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS-/- mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of cosignaling molecule CD86 in iNOS-/- mice compared with WT mice. Ab-mediated blockade of CD86 in iNOS-/- mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair.
Collapse
Affiliation(s)
- Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Siegert S, Huang HY, Yang CY, Scarpellino L, Carrie L, Essex S, Nelson PJ, Heikenwalder M, Acha-Orbea H, Buckley CD, Marsland BJ, Zehn D, Luther SA. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS One 2011; 6:e27618. [PMID: 22110693 PMCID: PMC3215737 DOI: 10.1371/journal.pone.0027618] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/20/2011] [Indexed: 12/21/2022] Open
Abstract
Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/-) mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.
Collapse
Affiliation(s)
- Stefanie Siegert
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Hsin-Ying Huang
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Chen-Ying Yang
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Lucie Carrie
- Swiss Vaccine Research Institute, and Centre Hospitalier Universitaire Vaudois (CHUV), Service of Immunology and Allergy, Lausanne, Switzerland
| | - Sarah Essex
- School of Immunity and Infection, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Peter J. Nelson
- Medical Policlinic, Ludwig-Maximilians University/Helmholtz-Zentrum München, Munich, Germany
| | | | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Christopher D. Buckley
- School of Immunity and Infection, Institute for Biomedical Research, Medical Research Council Center for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Benjamin J. Marsland
- Service of Pneumology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, and Centre Hospitalier Universitaire Vaudois (CHUV), Service of Immunology and Allergy, Lausanne, Switzerland
| | - Sanjiv A. Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Dahiya Y, Pandey RK, Bhatt KH, Sodhi A. Role of prostaglandin E2 in peptidoglycan mediated iNOS expression in mouse peritoneal macrophages in vitro. FEBS Lett 2010; 584:4227-32. [DOI: 10.1016/j.febslet.2010.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/28/2010] [Accepted: 09/06/2010] [Indexed: 12/13/2022]
|
11
|
Nath N, Morinaga O, Singh I. S-nitrosoglutathione a physiologic nitric oxide carrier attenuates experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol 2010; 5:240-51. [PMID: 20091246 PMCID: PMC2965418 DOI: 10.1007/s11481-009-9187-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/04/2009] [Indexed: 12/28/2022]
Abstract
S-nitrosoglutathione (GSNO) is a physiological nitric oxide molecule which regulates biological activities of target proteins via s-nitrosylation leading to attenuation of chronic inflammation. In this study we evaluated the therapeutic efficacy of GSNO in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Oral administration of GSNO (0.5 or 1.0 mg/kg) reduced disease progression in chronic models (SJL and C57BL/6) of EAE induced with PLP((139-151)) or MOG((35-55)) peptides, respectively. GSNO attenuated EAE disease by reducing the production of IL17 (from Th(i) or Th17 cells) and the infiltration of CD4 T cells into the central nervous system without affecting the levels of Th1 (IFN gamma) and Th2 (IL4) immune responses. Inhibition of IL17 was observed in T cells under normal as well as Th17 skewed conditions. In vitro studies showed that the phosphorylation of STAT3 and expression of ROR gamma, key regulators of IL17 signaling, were reduced while phosphorylation of STAT4 or STAT6 and expression of T-bet or GATA3 remained unaffected, suggesting that GSNO preferentially targets Th17 cells. Collectively, GSNO attenuated EAE via modulation of Th17 cells and its effects are independent of Th1 or Th2 cells functions, indicating that it may have therapeutic potential for Th17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Narender Nath
- Darby Children’s Research Institute, Medical University of South Carolina, 173 Ashley Avenue CRI # 505, Charleston, SC 29425, USA
| | - Osamu Morinaga
- Department of Pharmacognosy, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Inderjit Singh
- Darby Children’s Research Institute, Medical University of South Carolina, 173 Ashley Avenue CRI # 505, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Dietlin TA, Cua DJ, Burke KA, Lund BT, van der Veen RC. Role of IL-23 in mobilization of immunoregulatory nitric oxide- or superoxide-producing Gr-1+ cells from bone marrow. Free Radic Biol Med 2009; 47:357-63. [PMID: 19409487 DOI: 10.1016/j.freeradbiomed.2009.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 12/24/2022]
Abstract
Spleens of mice injected with heat-killed Mycobacterium tuberculosis increase their Gr-1+ cell content and develop a system of interactive Ly-6G+ and Ly-6G-Gr-1+ populations or "Greg" subsets, which, upon stimulation by activated T cells, produce immunoregulatory superoxide (O2(-)) and nitric oxide (NO), respectively. The balance between immunosuppressive NO and its antagonist O2(-) regulates T cell expansion, similar to regulation of vasodilation. Reduction of NO levels by O2(-) is required for efficient T cell expansion and development of autoimmunity. We studied the source of Gr-1+ cells in bone marrow (BM), where their levels were higher than in spleen, with both Greg subsets expressing strong activity. In the spleens of primed IL-23-/- mice, Ly-6G+ cells remained at naïve levels and produced no O2(-). The complementary Ly-6G(-)Gr-1+ splenocytes and their suppressive activity were partially reduced. Surprisingly, Gr-1+ cell levels in BM of IL-23-/- mice were increased, as were their O2(-) and NO production. Transfer of primed BM cells partially restored regulatory function in the spleen of IL-23-/- recipients. The results suggest that IL-23 is involved in mobilization of O2(-)- and NO-producing Gr-1+ cells from BM, which may contribute to its widely studied role in (auto)immunity.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Bacterial/immunology
- Antigens, Ly
- Autoimmunity
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Proliferation
- Hematopoietic Stem Cell Mobilization
- Hot Temperature
- Immune Tolerance
- Immunization
- Interleukin-23/genetics
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mycobacterium tuberculosis/immunology
- Nitric Oxide/immunology
- Nitric Oxide/metabolism
- Ovalbumin/genetics
- Ovalbumin/immunology
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chemokine
- Spleen/pathology
- Superoxides/immunology
- Superoxides/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Therese A Dietlin
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
13
|
Bai Y, Liu R, Huang D, La Cava A, Tang YY, Iwakura Y, Campagnolo DI, Vollmer TL, Ransohoff RM, Shi FD. CCL2 recruitment of IL-6-producing CD11b+ monocytes to the draining lymph nodes during the initiation of Th17-dependent B cell-mediated autoimmunity. Eur J Immunol 2008; 38:1877-88. [PMID: 18581322 DOI: 10.1002/eji.200737973] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development and function of Th17 cells are influenced in part by the cytokines TGF-beta, IL-23 and IL-6, but the mechanisms that govern recruitment and activity of Th17 cells during initiation of autoimmunity remain poorly defined. We show here that the development of autoreactive Th17 cells in secondary lymphoid organs in experimental autoimmune myasthenia gravis--an animal model of human myasthenia gravis--is modulated by IL-6-producing CD11b(+) cells via the CC chemokine ligand 2 (CCL2). Notably, acetylcholine receptor (AChR)-reactive Th17 cells provide help for the B cells to produce anti-AChR antibodies, which are responsible for the impairment of the neuromuscular transmission that contributes to the clinical manifestations of autoimmunity, as indicated by a lack of disease induction in IL-17-deficient mice. Thus, Th17 cells can promote humoral autoimmunity via a novel mechanism that involves CCL2.
Collapse
Affiliation(s)
- Ying Bai
- Institute of Neuroinformatics and Laboratory for Brain and Mind, Dalian University of Technology, Dalian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dietlin TA, Hofman FM, Lund BT, Gilmore W, Stohlman SA, van der Veen RC. Mycobacteria-induced Gr-1+ subsets from distinct myeloid lineages have opposite effects on T cell expansion. J Leukoc Biol 2007; 81:1205-12. [PMID: 17307863 DOI: 10.1189/jlb.1006640] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Similar to the regulation of vasodilation, the balance between NO and superoxide (O2-) regulates expansion of activated T cells in mice. Reduction of suppressive NO levels by O2- is essential for T cell expansion and development of autoimmunity. In mice primed with heat-killed Mycobacterium, a splenocyte population positive for Gr-1 (Ly-6G/C) is the exclusive source of both immunoregulatory free radicals. Distinct Gr-1+ cell subpopulations were separated according to Ly-6G expression. In culture with activated T cells, predominantly monocytic Ly-6G- Gr-1+ cells produced T cell-inhibitory NO but no O2-. However, mostly granulocytic Ly-6G+ cells produced O2- simultaneously but had no measurable effect on proliferation. Recombination of the two purified Gr-1+ subpopulations restored controlled regulation of T cell proliferation through NO and O2- interaction. Coculture of p47phox-/- and inducible NO synthase-/- Gr-1+ cells confirmed this intercellular interaction. These data suggest that bacterial products induce development of distinct Gr-1+ myeloid lineages, which upon stimulation by activated T cells, interact via their respective free radical products to modulate T cell expansion.
Collapse
Affiliation(s)
- Therese A Dietlin
- Department of Neurology, University of Southern California Keck School of Medicine, MCA 245, 1333 San Pablo Street, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
15
|
Krolick KA. Muscle-derived nitric oxide synthase expression, differences associated with muscle fiber-type, and disease susceptibility in a rat model of myasthenia gravis. Clin Immunol 2006; 121:286-93. [PMID: 16938490 DOI: 10.1016/j.clim.2006.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/07/2006] [Accepted: 07/14/2006] [Indexed: 10/24/2022]
Abstract
Reports from this laboratory suggested that expression of skeletal muscle-derived, inducible nitric oxide synthase (iNOS), is associated with resistance of a particular rat strain to the autoimmune model of myasthenia gravis (MG). The study reported below demonstrates a similar association between iNOS induction in skeletal muscle and disease-resistance when comparing different skeletal muscles originating from the same rat strain. Thus, soleus muscles, shown previously to be relatively resistant to disease even when obtained from disease-susceptible Lewis rats, were observed to express high levels of iNOS following exposure to antibody reactive with the nicotinic acetylcholine receptor (AChR). Increased iNOS expression appears to be associated with slow-twitch, type 1 fibers and would explain the relatively high iNOS expression in soleus muscles since they are dominated by this fiber type, compared to disease-susceptible EDL muscles which are dominated by fast-twitch, type 2 fibers.
Collapse
Affiliation(s)
- Keith A Krolick
- Department of Microbiology and Immunology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA.
| |
Collapse
|
16
|
Eriksson U, Egermann U, Bihl MP, Gambazzi F, Tamm M, Holt PG, Bingisser RM. Human bronchial epithelium controls TH2 responses by TH1-induced, nitric oxide-mediated STAT5 dephosphorylation: implications for the pathogenesis of asthma. THE JOURNAL OF IMMUNOLOGY 2005; 175:2715-20. [PMID: 16081849 DOI: 10.4049/jimmunol.175.4.2715] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increased levels of NO in exhaled air in association with increased NO synthetase (NOS)2 expression in bronchial epithelial are hallmark features of asthma. It has been suggested that NO contributes to asthma pathogenesis by selective down-regulation of TH1 responses. We demonstrate, however, that NO can reversibly limit in vitro expansion of both human TH1 and TH2 CD4+ T cells. Mechanistically, NO induces cGMP-mediated reversible STAT5 dephosphorylation and therefore interferes with the IL-2R activation cascade. Human bronchial epithelial cells (HBEC) up-regulate NOS2 after stimulation with IFN-gamma secreted by TH1 CD4+ T cells and release NO, which inhibits both TH1 and TH2 cell proliferation. This reversible T cell growth arrest depends on NO because T cell proliferation is completely restored after in vitro blocking of NOS2 on HBEC. HBEC thus drive the effector end of a TH1-controlled feedback loop, which protects airway mucosal tissues at the potential lesional site in asthma from overwhelming CD4+ TH2 (and potentially TH1) responses following allergen exposure. Variations in the efficiency of this feedback loop provides a plausible mechanism to explain why only a subset of atopics sensitized to ubiquitous aeroallergens progress to expression of clinically relevant levels of airways inflammation.
Collapse
Affiliation(s)
- Urs Eriksson
- Experimental Critical Care Medicine, Department of Research, Basel University Hospital, Switzerland
| | | | | | | | | | | | | |
Collapse
|
17
|
Giordano D, Magaletti DM, Clark EA. Nitric oxide and cGMP protein kinase (cGK) regulate dendritic-cell migration toward the lymph-node-directing chemokine CCL19. Blood 2005; 107:1537-45. [PMID: 16249377 PMCID: PMC1895400 DOI: 10.1182/blood-2005-07-2901] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic-cell (DC) migration to secondary lymphoid organs is crucial for the initiation of adaptive immune responses. Although LPS up-regulates CCR7 on DCs, a second signal is required to enable them to migrate toward the chemokine CCL19 (MIP-3beta). We found that the nitric oxide (NO) donor NOR4 provides a signal allowing LPS-stimulated DCs to migrate toward CCL19. NO affects DC migration through both the initial activation of the cGMP/cGMP kinase (cGMP/cGK) pathway and a long-term effect that reduced cGK activity via negative feedback. Indeed, migration of DCs toward CCL19, unlike migration toward CXCL12 (SDF-1alpha), required inhibition of cGK. LPS increased both cGK expression and cGK activity as measured by phosphorylation of the key cGK target vasodilator-stimulated phosphoprotein (VASP). Because cGK phosphorylation of VASP can disrupt focal adhesions and inhibit cell migration, LPS-induced VASP phosphorylation may prevent DCs from migrating without a second signal. Long-term NOR4 treatment inhibited the increase in cGK-dependent VASP phosphorylation, releasing this brake so that DCs can migrate. NO has been implicated in the regulation of autoimmunity through its effect on T cells. Our results suggest that NO regulation of DC migration and cytokine production may contribute to the protective effects of NO in autoimmune disorders.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Immunology, University of Washington, Box 357330, 1959 NE Pacific St, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
18
|
Abstract
L-Arginine is an essential amino acid for birds and young mammals, and it is a conditionally essential amino acid for adult mammals, as it is important in situations in which requirements exceed production, such as pregnancy. Recent findings indicate that increased metabolism of L-arginine by myeloid cells can result in the impairment of lymphocyte responses to antigen during immune responses and tumour growth. Two enzymes that compete for L-arginine as a substrate - arginase and nitric-oxide synthase - are crucial components of this lymphocyte-suppression pathway, and the metabolic products of these enzymes are important moderators of T-cell function. This Review article focuses on the relevance of L-arginine metabolism by myeloid cells for immunity under physiological and pathological conditions.
Collapse
Affiliation(s)
- Vincenzo Bronte
- Cancer Center of Veneto Region, Department of Oncological and Surgical Sciences, Padua University, Via Gattamelata 64, Padua, Italy.
| | | |
Collapse
|
19
|
Dietlin TA, Hofman FM, Gilmore W, Stohlman SA, van der Veen RC. T cell expansion is regulated by activated Gr-1+ splenocytes. Cell Immunol 2005; 235:39-45. [PMID: 16083869 DOI: 10.1016/j.cellimm.2005.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 06/18/2005] [Accepted: 06/21/2005] [Indexed: 01/05/2023]
Abstract
CD4+ T cell proliferation depends on the balance between NO and extra-cellular superoxide (O2-). By reducing NO bio-availability, O2- promotes splenic T cell proliferation and immune response intensity. Here, we show that spleen cells from naïve mice produced neither NO nor O2- during T cell activation, but Gr-1+ splenocytes from primed mice regulated Ag-specific T cell expansion via production of both molecules. Purified splenic Gr-1+ cells included mostly granulocytes at various stages of maturation, as well as monocytes. Activation or recruitment of regulatory Gr-1+ cells was dependent on immunization with CFA. Importantly, these regulatory cells were not detected in draining lymph nodes. These data suggest that innate Gr-1+ splenic cells regulate adaptive immunity.
Collapse
Affiliation(s)
- T A Dietlin
- Department of Neurology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
20
|
van der Veen RC, Dietlin TA, Karapetian A, Holland SM, Hofman FM. Extra-cellular superoxide promotes T cell expansion through inactivation of nitric oxide. J Neuroimmunol 2004; 153:183-9. [PMID: 15265676 DOI: 10.1016/j.jneuroim.2004.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 05/19/2004] [Accepted: 05/27/2004] [Indexed: 10/26/2022]
Abstract
The mechanism and regulation of immunosuppression by nitric oxide (NO) is unclear. Extra-cellular superoxide (EC-O2-) production by NADPH-oxidase (phox) may prevent NO-mediated suppression of T cell proliferation. p47(phox-/-) mice are resistant to experimental allergic encephalomyelitis (EAE), coinciding with enhanced splenic NO activity, but no causal link was established. Here, we demonstrate such link, since p47(phox-/-) mice developed severe EAE by adoptive transfer, but only if NO production during ex vivo donor cell reactivation was inhibited. EC-O2- production increased during cognate T cell reactivation, while inhibition of EC-O2- by exogenous superoxide dismutase enhanced NO activity. By inhibiting NO, EC-O2- production promotes T cell expansion during peripheral immune-response activation, not during tissue inflammation.
Collapse
Affiliation(s)
- Roel C van der Veen
- Department of Neurology, University of Southern California Keck School of Medicine, MCH 142, 1333 San Pablo Street, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
21
|
Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD. Theiler's virus infection: a model for multiple sclerosis. Clin Microbiol Rev 2004; 17:174-207. [PMID: 14726460 PMCID: PMC321460 DOI: 10.1128/cmr.17.1.174-207.2004] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Both genetic background and environmental factors, very probably viruses, appear to play a role in the etiology of multiple sclerosis (MS). Lessons from viral experimental models suggest that many different viruses may trigger inflammatory demyelinating diseases resembling MS. Theiler's virus, a picornavirus, induces in susceptible strains of mice early acute disease resembling encephalomyelitis followed by late chronic demyelinating disease, which is one of the best, if not the best, animal model for MS. During early acute disease the virus replicates in gray matter of the central nervous system but is eliminated to very low titers 2 weeks postinfection. Late chronic demyelinating disease becomes clinically apparent approximately 2 weeks later and is characterized by extensive demyelinating lesions and mononuclear cell infiltrates, progressive spinal cord atrophy, and axonal loss. Myelin damage is immunologically mediated, but it is not clear whether it is due to molecular mimicry or epitope spreading. Cytokines, nitric oxide/reactive nitrogen species, and costimulatory molecules are involved in the pathogenesis of both diseases. Close similarities between Theiler's virus-induced demyelinating disease in mice and MS in humans, include the following: major histocompatibility complex-dependent susceptibility; substantial similarities in neuropathology, including axonal damage and remyelination; and paucity of T-cell apoptosis in demyelinating disease. Both diseases are immunologically mediated. These common features emphasize the close similarities of Theiler's virus-induced demyelinating disease in mice and MS in humans.
Collapse
Affiliation(s)
- Emilia L Oleszak
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19106, USA.
| | | | | | | | | |
Collapse
|
22
|
Garcia YR, Pothitakis JC, Krolick KA. Myocyte production of nitric oxide in response to AChR-reactive antibodies in two inbred rat strains may influence disease outcome in experimental myasthenia gravis. Clin Immunol 2003; 106:116-26. [PMID: 12672402 DOI: 10.1016/s1521-6616(02)00023-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In an attempt to identify mechanisms that explain the difference in susceptibility of two rat strains to the induction of experimental autoimmune myasthenia gravis (EAMG), acetylcholine receptor (AChR)-reactive antibodies were tested for their ability to up-regulate levels of inducible nitric oxide synthase (iNOS) in skeletal muscles of disease-sensitive Lewis rats and disease-resistant Wistar Furth (WF) rats. Initially, the WF muscle cell line, WE1, appeared to be more sensitive to antibody-stimulated iNOS induction and NO production than did the Lewis muscle cell line, LE1. Next, AChR-reactive antibody induced widespread iNOS production in skeletal muscles of WF rats, while iNOS production in muscles of Lewis rats was much less pronounced. Finally, inhibition of iNOS activity by administration of a specific iNOS inhibitor resulted in increased susceptibility to the induction of impaired muscle function in EAMG-resistant WF rats. It is speculated that nitric oxide production plays a protective immunomodulating role in WF rats.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Autoantibodies/immunology
- Autoantibodies/pharmacology
- Cells, Cultured/metabolism
- Clone Cells/metabolism
- Enzyme Induction/drug effects
- Enzyme Inhibitors/pharmacology
- Female
- Genetic Predisposition to Disease
- Immunization, Passive
- Lysine/analogs & derivatives
- Lysine/pharmacology
- Muscle Proteins/antagonists & inhibitors
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred Lew
- Rats, Inbred WF
- Receptors, Cholinergic/immunology
- Torpedo
Collapse
Affiliation(s)
- Yvonne R Garcia
- Department of Microbiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
23
|
Yang S, Panoskaltsis-Mortari A, Shukla M, Blazar BR, Haddad IY. Exuberant inflammation in nicotinamide adenine dinucleotide phosphate-oxidase-deficient mice after allogeneic marrow transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5840-7. [PMID: 12023388 DOI: 10.4049/jimmunol.168.11.5840] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown that NO and superoxide (O-*2)contribute to donor T cell-dependent lung dysfunction after bone marrow transplantation (BMT) in mice. We hypothesized that inhibiting superoxide production during inducible NO synthase induction would suppress oxidative/nitrative stress and result in less severe lung injury. Irradiated mice lacking the phagocytic NADPH-oxidase (phox(-/-)), a contributor to superoxide generation, were conditioned with cyclophosphamide and given donor bone marrow in the presence or absence of inflammation-inducing allogeneic spleen T cells. On day 7 after allogeneic BMT, survival, weight loss, and indices of lung injury between phox(-/-) and wild-type mice were not different. However, the majority of macrophages/monocytes from phox(-/-) mice given donor T cells produced fewer oxidants and contained less nitrotyrosine than cells obtained from T cell-recipient wild-type mice. Importantly, suppressed oxidative stress was associated with marked infiltration of the lungs with inflammatory cells and was accompanied by increased bronchoalveolar lavage fluid levels of the chemoattractants monocyte chemoattractant protein-1 and macrophage-inflammatory protein-1alpha and impaired clearance of recombinant mouse macrophage-inflammatory protein-1beta from the circulation. Furthermore, cultured macrophages/monocytes from NADPH-deficient mice produced 3-fold more TNF-alpha compared with equal number of cells from NADPH-sufficient mice. The high NO production was not modified during NADPH-oxidase deficiency. We conclude that phox(-/-) mice exhibit enhanced pulmonary influx of inflammatory cells after BMT. Although NO may contribute to increased production of TNF-alpha in phox(-/-) mice, the data suggest that NADPH-oxidase-derived oxidants have a role in limiting inflammation and preventing lung cellular infiltration after allogeneic transplantation.
Collapse
Affiliation(s)
- Shuxia Yang
- Department of Pediatrics, Divisions of Pulmonary and Critical Care and Bone Marrow Transplantation and Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
During the past two decades, nitric oxide (NO) has been recognized as one of the most versatile players in the immune system. It is involved in the pathogenesis and control of infectious diseases, tumors, autoimmune processes and chronic degenerative diseases. Because of its variety of reaction partners (DNA, proteins, low-molecular weight thiols, prosthetic groups, reactive oxygen intermediates), its widespread production (by three different NO synthases (NOS) and the fact that its activity is strongly influenced by its concentration, NO continues to surprise and perplex immunologists. Today, there is no simple, uniform picture of the function of NO in the immune system. Protective and toxic effects of NO are frequently seen in parallel. Its striking inter- and intracellular signaling capacity makes it extremely difficult to predict the effect of NOS inhibitors and NO donors, which still hampers therapeutic applications.
Collapse
Affiliation(s)
- C Bogdan
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University of Erlangen-Nuremberg, Wasserturmstrasse 3-5, D-91054 Erlangen, Germany.
| |
Collapse
|