1
|
Chen H, Lin Y, Chen J, Luo X, Kan Y, He Y, Zhu R, Jin J, Li D, Wang Y, Han Z. Targeting caspase-8: a new strategy for combating hepatocellular carcinoma. Front Immunol 2024; 15:1501659. [PMID: 39726605 PMCID: PMC11669555 DOI: 10.3389/fimmu.2024.1501659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC. In this manuscript, we provide a comprehensive review of the regulatory roles of caspase-8 in apoptosis, necroptosis, pyroptosis, and PANoptosis, as well as its impact on inflammatory reactions and the intricate interplay with critical immune cells within the tumor microenvironment, such as tumor-associated macrophages, T cells, natural killer cells, and dendritic cells. Furthermore, we emphasize how caspase-8 plays pivotal roles in the development, progression, and drug resistance observed in HCC, and explore the potential of targeting caspase-8 as a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Haoran Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Chen
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xuemei Luo
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yubo Kan
- Sichuan Provincial Woman’s and Children’s Hospital/The Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, the Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Jiahui Jin
- Department of gastroenterology, Baoji Central Hospital, Baoji, China
| | - Dongxuan Li
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Yi Wang
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Zhongyu Han
- Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
2
|
Mixed cultures of allogeneic dendritic cells are phenotypically and functionally stable - a potential for primary cell-based "off the shelf" product generation. Cent Eur J Immunol 2021; 46:152-161. [PMID: 34764784 PMCID: PMC8568021 DOI: 10.5114/ceji.2021.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
Vaccination against tumors using antigen-pulsed dendritic cell (DC) vaccines has greatly evolved over the last decade, with hundreds of active human clinical trials well on the way. The use of an autologous source for DC-based vaccine therapeutics remains the obvious choice in the majority of clinical studies; however, novel evidence suggests that an allogeneic source of DCs can yield success if administered in the right context. One of the challenges facing successful DC vaccination protocols is the generation of large enough numbers of DCs intended for vaccination and standardization of these procedures. In addition, variations in the quality of DC vaccines due to donor-to-donor variation represent an important therapeutic factor. To this day it has not been shown whether DCs from different donors can readily co-exist within the same co-culture for the extended periods required for vaccine manufacture. We demonstrate that generation of allogeneic DC co-cultures, generated from multiple unrelated donors, allows the preservation of their phenotypical and functional properties in vitro for up to 72 hours. Therefore, in the case of an allogeneic vaccination approach, one could ensure large numbers of DCs generated from a primary cell source intended for multiple vaccinations. By generating large amounts of ex vivo manufactured DCs from multiple donors, this would represent the possibility to ensure sufficient amounts of equipotent “off the shelf” product that could e.g. be used for an entire cohort of patients within a study.
Collapse
|
3
|
Domagala M, Laplagne C, Leveque E, Laurent C, Fournié JJ, Espinosa E, Poupot M. Cancer Cells Resistance Shaping by Tumor Infiltrating Myeloid Cells. Cancers (Basel) 2021; 13:E165. [PMID: 33418996 PMCID: PMC7825276 DOI: 10.3390/cancers13020165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Interactions between malignant cells and neighboring stromal and immune cells profoundly shape cancer progression. New forms of therapies targeting these cells have revolutionized the treatment of cancer. However, in order to specifically address each population, it was essential to identify and understand their individual roles in interaction between malignant cells, and the formation of the tumor microenvironment (TME). In this review, we focus on the myeloid cell compartment, a prominent, and heterogeneous group populating TME, which can initially exert an anti-tumoral effect, but with time actively participate in disease progression. Macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, mast cells, eosinophils, and basophils act alone or in concert to shape tumor cells resistance through cellular interaction and/or release of soluble factors favoring survival, proliferation, and migration of tumor cells, but also immune-escape and therapy resistance.
Collapse
Affiliation(s)
- Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Chloé Laplagne
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Edouard Leveque
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
- IUCT-O, 31000 Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Eric Espinosa
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| |
Collapse
|
4
|
Models for Monocytic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32036607 DOI: 10.1007/978-3-030-35723-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Collapse
|
5
|
Tyrinova T, Leplina O, Mishinov S, Tikhonova M, Kalinovskiy A, Chernov S, Dolgova E, Stupak V, Voronina E, Bogachev S, Shevela E, Ostanin A, Chernykh E. Defective Dendritic Cell Cytotoxic Activity of High-Grade Glioma Patients' Results from the Low Expression of Membrane TNFα and Can Be Corrected In Vitro by Treatment with Recombinant IL-2 or Exogenic Double-Stranded DNA. J Interferon Cytokine Res 2018; 38:298-310. [PMID: 29932796 DOI: 10.1089/jir.2017.0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Besides initiation of tumor-specific T cell immunity, dendritic cells (DCs) are endowed with tumoricidal activity. Previously, we showed that monocyte-derived DCs of high-grade glioma patients generated in the presence of interferon alpha (IFNα) (IFN-DCs) have impaired cytotoxic activity against tumor necrosis factor alpha (TNFα)-sensitive HEp-2 tumor cells. Herein, we demonstrate that decreased transmembrane TNFα (tmTNFα) expression, but not soluble TNFα (sTNFα) production by high-grade glioma patient IFN-DCs, determines the defective tumoricidal activity against TNFα-sensitive HEp-2 cells. Blocking TNFα-converting enzyme or stimulation of patient IFN-DCs with rIL-2 or dsDNA enhances tmTNFα expression on IFN-DCs and significantly increases their cytotoxicity. Decreased tmTNFα expression on patient IFN-DCs is not caused by downregulation of pNFκB. Neither rIL-2 nor dsDNA upregulates tmTNFα expression on patient IFN-DCs via an increase of pNFκB. The current study shows an important role of tmTNFα as mediator of IFN-DC tumoricidal activity and as molecular target for the restoration of defective DC killer activity in high-grade glioma patients.
Collapse
Affiliation(s)
- Tamara Tyrinova
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Olga Leplina
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Sergey Mishinov
- 2 Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Zivian , Novosibirsk, Russia
| | - Marina Tikhonova
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Anton Kalinovskiy
- 3 Department of Neurosurgery, Federal Neurosurgical Center , Novosibirsk, Russia
| | - Sergey Chernov
- 3 Department of Neurosurgery, Federal Neurosurgical Center , Novosibirsk, Russia
| | - Evgeniya Dolgova
- 4 Laboratory of Induced Cellular Processes, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
| | - Vyacheslav Stupak
- 2 Department of Neurosurgery, Novosibirsk Research Institute of Traumatology and Orthopedics named after Ya.L. Zivian , Novosibirsk, Russia
| | - Evgeniya Voronina
- 5 Laboratory of Morphological and Molecular Biology Techniques, Regional Center of High Medical Technologies , Novosibirsk, Russia
| | - Sergey Bogachev
- 4 Laboratory of Induced Cellular Processes, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences , Novosibirsk, Russia
| | - Ekaterina Shevela
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Alexander Ostanin
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| | - Elena Chernykh
- 1 Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology , Novosibirsk, Russia
| |
Collapse
|
6
|
Zhang H, Diao H, Jia L, Yuan Y, Thamm DH, Wang H, Jin Y, Pei S, Zhou B, Yu F, Zhao L, Cheng N, Du H, Huang Y, Zhang D, Lin D. Proteus mirabilis inhibits cancer growth and pulmonary metastasis in a mouse breast cancer model. PLoS One 2017; 12:e0188960. [PMID: 29206859 PMCID: PMC5716547 DOI: 10.1371/journal.pone.0188960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
A variety of bacteria have been used as agents and vectors for antineoplastic therapy. A series of mechanisms, including native bacterial toxicity, sensitization of the immune system and competition for nutrients, may contribute to antitumor effects. However, the antitumor effects of Proteus species have been minimally studied, and it is not clear if bacteria can alter tumor hypoxia as a component of their antineoplastic effect. In the present study, Proteus mirabilis bacteria were evaluated for the ability to proliferate and accumulate in murine tumors after intravenous injection. To further investigate the efficacy and safety of bacterial injection, mice bearing 4T1 tumors were treated with an intravenous dose of 5×107 CFU Proteus mirabilis bacteria via the tail vein weekly for three treatments. Histopathology, immunohistochemistry (IHC) and western analysis were then performed on excised tumors. The results suggested Proteus mirabilis localized preferentially to tumor tissues and remarkably suppressed the growth of primary breast cancer and pulmonary metastasis in murine 4T1 models. Results showed that the expression of NKp46 and CD11c was significantly increased after bacteria treatment. Furthermore, tumor expression of carbonic anhydrase IX (CA IX) and hypoxia inducible factor-1a (HIF-1a), surrogates for hypoxia, was significantly lower in the treated group than the control group mice as assessed by IHC and western analysis. These findings demonstrated that Proteus mirabilis may a promising bacterial strain for used against primary tumor growth and pulmonary metastasis, and the immune system and reduction of tumor hypoxia may contribute to the antineoplastic and antimetastatic effects observed.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongxiu Diao
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lixin Jia
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yujing Yuan
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Douglas H. Thamm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Huanan Wang
- Department of Veterinary, College of Animal Sciences, Zhejiang University, Hangzhou City, Zhejiang, China
| | - Yipeng Jin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shimin Pei
- The Department of Veterinary Medicine, Hainan University, Haikou, Hainan, China
| | - Bin Zhou
- The College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Fang Yu
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Linna Zhao
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nan Cheng
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongchao Du
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ying Huang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Zhang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Degui Lin
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Pandey VK, Amin PJ, Shankar BS. G1-4A, a polysaccharide from Tinospora cordifolia induces peroxynitrite dependent killer dendritic cell (KDC) activity against tumor cells. Int Immunopharmacol 2014; 23:480-8. [DOI: 10.1016/j.intimp.2014.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/30/2022]
|
8
|
Downregulation of endogenous STAT3 augments tumoricidal activity of interleukin 15 activated dendritic cell against lymphoma and leukemia via TRAIL. Exp Cell Res 2014; 327:192-208. [DOI: 10.1016/j.yexcr.2014.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/04/2014] [Accepted: 08/08/2014] [Indexed: 12/22/2022]
|
9
|
Hanke NT, LaCasse CJ, Larmonier CB, Alizadeh D, Trad M, Janikashvili N, Bonnotte B, Katsanis E, Larmonier N. PIAS1 and STAT-3 impair the tumoricidal potential of IFN-γ-stimulated mouse dendritic cells generated with IL-15. Eur J Immunol 2014; 44:2489-2499. [PMID: 24777831 DOI: 10.1002/eji.201343803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 04/04/2014] [Accepted: 04/17/2014] [Indexed: 01/22/2023]
Abstract
Primarily defined by their antigen-presenting property, dendritic cells (DCs) are being implemented as cancer vaccines in immunotherapeutic interventions. DCs can also function as direct tumor cell killers. How DC cytotoxic activity can be efficiently harnessed and the mechanisms controlling this nonconventional property are not fully understood. We report here that the tumoricidal potential of mouse DCs generated from myeloid precursors with GM-CSF and IL-15 (IL-15 DCs) can be triggered with the Toll-like receptor (TLR) 4 ligand lipopolysaccharide to a similar extent compared with that of their counterparts, conventionally generated with IL-4 (IL-4 DCs). The mechanism of tumor cell killing depends on the induction of iNOS expression by DCs. In contrast, interferon (IFN)-γ induces the cytotoxic activity of IL-4 but not IL-15 DCs. Although the IFN-γ-STAT-1 signaling pathway is overall functional in IL-15 DCs, IFN-γ fails to induce iNOS expression in these cells. iNOS expression is negatively controlled in IFN-γ-stimulated IL-15 DCs by the cooperation between the E3 SUMO ligase PIAS1 and STAT-3, and can be partially restored with PIAS1 siRNA and STAT-3 inhibitors.
Collapse
Affiliation(s)
- Neale T Hanke
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States of America.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States of America
| | - Collin J LaCasse
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States of America.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States of America
| | - Claire B Larmonier
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States of America
| | - Darya Alizadeh
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States of America.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States of America
| | - Malika Trad
- INSERM UMR 1098, Faculty of Medicine, Dijon, France
| | | | | | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States of America.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States of America.,Department of Immunobiology, BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ, United States of America
| | - Nicolas Larmonier
- Department of Pediatrics, University of Arizona, Tucson, AZ, United States of America.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States of America.,Department of Immunobiology, BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
10
|
Abstract
Dendritic cells (DCs) are the most powerful professional antigen-presenting cells and are unique in their capability to initiate, maintain and regulate the intensity of primary immune responses, including specific antitumor responses. Development of practical procedures to prepare sufficient numbers of functional human DCs in culture from the peripheral blood precursors, paved the way for clinical trials to evaluate various DC-based strategies in patients with malignant diseases. However, no definite conclusions regarding the clinical and even immunological efficacy of DC vaccination can be stated, despite the fact that 12 years have passed since the first clinical trial utilizing DCs in cancer patients. Many unanswered questions hamper the development of DC-based vaccines, including the source of DC preparation and protocols for DC generation, activation and loading with tumor antigens, source of tumor antigens, route of vaccine administration and methods of immunomonitoring. Fortunately, in spite of the many obstacles, DC vaccines continue to hold promise for cancer therapy.
Collapse
Affiliation(s)
- Hua Zhong
- Shanghai Jiao Tong University, Shanghai Chest Hospital, 241 Huaihai Road (w), Shanghai 200030, China.
| | | | | |
Collapse
|
11
|
Tel J, Anguille S, Waterborg CEJ, Smits EL, Figdor CG, de Vries IJM. Tumoricidal activity of human dendritic cells. Trends Immunol 2013; 35:38-46. [PMID: 24262387 PMCID: PMC7106406 DOI: 10.1016/j.it.2013.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
Human DC subsets can exert tumoricidal activity. Killer DCs exploit several mechanisms for direct killing of target cells, including TRAIL and granzyme B. Antigen presentation and/or IFN production are important additional effector functions. Killer DCs are promising targets for immunotherapeutic strategies.
Dendritic cells (DCs) are a family of professional antigen-presenting cells (APCs) that are able to initiate innate and adaptive immune responses against pathogens and tumor cells. The DC family is heterogeneous and is classically divided into two main subsets, each with its unique phenotypic and functional characteristics: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). Recent results have provided intriguing evidence that both DC subsets can also function as direct cytotoxic effector cells; in particular, against cancer cells. In this review, we delve into this understudied function of human DCs and discuss why these so-called killer DCs might become important tools in future cancer immunotherapies.
Collapse
Affiliation(s)
- Jurjen Tel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Claire E J Waterborg
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
LaCasse CJ, Janikashvili N, Larmonier CB, Alizadeh D, Hanke N, Kartchner J, Situ E, Centuori S, Har-Noy M, Bonnotte B, Katsanis E, Larmonier N. Th-1 lymphocytes induce dendritic cell tumor killing activity by an IFN-γ-dependent mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:6310-7. [PMID: 22075702 PMCID: PMC3297475 DOI: 10.4049/jimmunol.1101812] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) encompass a heterogeneous population of cells capable of orchestrating innate and adaptive immune responses. The ability of DCs to act as professional APCs has been the foundation for the development and use of these cells as vaccines in cancer immunotherapy. DCs are also endowed with the nonconventional property of directly killing tumor cells. The current study investigates the regulation of murine DC cytotoxic function by T lymphocytes. We provide evidence that CD4(+) Th-1, but not Th-2, Th-17 cells, or regulatory T cells, are capable of inducing DC cytotoxic function. IFN-γ was identified as the major factor responsible for Th-1-induced DC tumoricidal activity. Tumor cell killing mediated by Th-1-activated killer DCs was dependent on inducible NO synthase expression and NO production. Importantly, Th-1-activated killer DCs were capable of presenting the acquired Ags from the killed tumor cells to T lymphocytes in vitro or in vivo. These observations offer new possibilities for the application of killer DCs in cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Bone Marrow Cells/cytology
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Line, Tumor
- Coculture Techniques
- Cytotoxicity, Immunologic/genetics
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Interferon-gamma/metabolism
- Interferon-gamma/physiology
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, 129 Strain
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/physiology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Collin J. LaCasse
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724-5073
| | - Nona Janikashvili
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073
| | | | - Darya Alizadeh
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724-5073
| | - Neale Hanke
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724-5073
| | - Jessica Kartchner
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073
| | - Elaine Situ
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073
| | - Sara Centuori
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724-5073
| | - Michael Har-Noy
- Immunovative Therapies Ltd, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724-5073
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724-5073
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724-5073
| | - Nicolas Larmonier
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724-5073
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724-5073
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724-5073
| |
Collapse
|
13
|
Lakomy D, Janikashvili N, Fraszczak J, Trad M, Audia S, Samson M, Ciudad M, Vinit J, Vergely C, Caillot D, Foucher P, Lagrost L, Chouaib S, Katsanis E, Larmonier N, Bonnotte B. Cytotoxic dendritic cells generated from cancer patients. THE JOURNAL OF IMMUNOLOGY 2011; 187:2775-82. [PMID: 21804019 DOI: 10.4049/jimmunol.1004146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Known for years as professional APCs, dendritic cells (DCs) are also endowed with tumoricidal activity. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. However, the tumoricidal activity of DCs has mainly been investigated in animal models. Cancer cells inhibit antitumor immune responses using numerous mechanisms, including the induction of immunosuppressive/ tolerogenic DCs that have lost their ability to present Ags in an immunogenic manner. In this study, we evaluated the possibility of generating tumor killer DCs from patients with advanced-stage cancers. We demonstrate that human monocyte-derived DCs are endowed with significant cytotoxic activity against tumor cells following activation with LPS. The mechanism of DC-mediated tumor cell killing primarily involves peroxynitrites. This observed cytotoxic activity is restricted to immature DCs. Additionally, after killing, these cytotoxic DCs are able to activate tumor Ag-specific T cells. These observations may open important new perspectives for the use of autologous cytotoxic DCs in cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Daniela Lakomy
- INSERM Unité Mixte de Recherche 866, Institut de Recherche Fédératif 100, Faculté de Médecine, 21079 Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fraszczak J, Trad M, Janikashvili N, Cathelin D, Lakomy D, Granci V, Morizot A, Audia S, Micheau O, Lagrost L, Katsanis E, Solary E, Larmonier N, Bonnotte B. Peroxynitrite-dependent killing of cancer cells and presentation of released tumor antigens by activated dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:1876-84. [PMID: 20089706 DOI: 10.4049/jimmunol.0900831] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs), essential for the initiation and regulation of adaptive immune responses, have been used as anticancer vaccines. DCs may also directly trigger tumor cell death. In the current study, we have investigated the tumoricidal and immunostimulatory activities of mouse bone marrow-derived DCs. Our results indicate that these cells acquire killing capabilities toward tumor cells only when activated with LPS or Pam3Cys-SK4. Using different transgenic mouse models including inducible NO synthase or GP91 knockout mice, we have further established that LPS- or Pam3Cys-SK4-activated DC killing activity involves peroxynitrites. Importantly, after killing of cancer cells, DCs are capable of engulfing dead tumor cell fragments and of presenting tumor Ags to specific T lymphocytes. Thus, upon specific stimulation, mouse bone marrow-derived DCs can directly kill tumor cells through a novel peroxynitrite-dependent mechanism and participate at virtually all levels of antitumor immune responses, which reinforces their interest in immunotherapy.
Collapse
Affiliation(s)
- Jennifer Fraszczak
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 866, Institut de Recherche Fédératif 100, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Larmonier N, Fraszczak J, Lakomy D, Bonnotte B, Katsanis E. Killer dendritic cells and their potential for cancer immunotherapy. Cancer Immunol Immunother 2010; 59:1-11. [PMID: 19618185 PMCID: PMC11031008 DOI: 10.1007/s00262-009-0736-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 12/25/2022]
Abstract
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4(+) or CD8(+) effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.
Collapse
Affiliation(s)
- Nicolas Larmonier
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, 1501 N. Campbell Ave., PO Box 245073, Tucson, AZ 85724-5073 USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724 USA
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | | | - Daniela Lakomy
- Faculty of Medicine, INSERM UMR 866, IFR 100, Dijon, France
| | | | - Emmanuel Katsanis
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, 1501 N. Campbell Ave., PO Box 245073, Tucson, AZ 85724-5073 USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724 USA
- BIO5 Institute and Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
16
|
Himoudi N, Yan M, Bouma G, Morgenstern D, Wallace R, Seddon B, Buddle J, Eddaoudi A, Howe SJ, Cooper N, Anderson J. Migratory and Antigen Presentation Functions of IFN-Producing Killer Dendritic Cells. Cancer Res 2009; 69:6598-606. [DOI: 10.1158/0008-5472.can-09-0501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Kwon HK, Jeon WK, Hwang JS, Lee CG, So JS, Park JA, Ko BS, Im SH. Cinnamon extract suppresses tumor progression by modulating angiogenesis and the effector function of CD8+ T cells. Cancer Lett 2009; 278:174-182. [PMID: 19203831 DOI: 10.1016/j.canlet.2009.01.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/29/2008] [Accepted: 01/05/2009] [Indexed: 12/31/2022]
Abstract
Cinnamon is one of the most widely used herbal medicines with diverse bioactive effects. However, little evidence has been reported about the potential anti-tumor effects of cinnamon. In vitro and in vivo system, cinnamon treatment strongly inhibited the expression of pro-angiogenic factors and master regulators of tumor progression not only in melanoma cell lines but also in experimental melanoma model. In addition, cinnamon treatment increased the anti-tumor activities of CD8(+) T cells by increasing the levels of cytolytic molecules and their cytotoxic activity. In conclusion, cinnamon extract has the potential to be an alternative medicine for tumor treatment.
Collapse
Affiliation(s)
- Ho-Keun Kwon
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea
| | - Won Kyung Jeon
- Department of Herbal Resources Research and Quality Control Team, Korea Institute of Oriental Medicine, 305-811 Daejeon, Republic of Korea
| | - Ji-Sun Hwang
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea
| | - Choong-Gu Lee
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea
| | - Jae-Seon So
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea
| | - Jin-A Park
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea
| | - Byoung Seob Ko
- Department of Herbal Resources Research and Quality Control Team, Korea Institute of Oriental Medicine, 305-811 Daejeon, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea; Center for Distributed Sensor Network Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Puk-ku, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
18
|
Chauvin C, Josien R. Dendritic cells as killers: mechanistic aspects and potential roles. THE JOURNAL OF IMMUNOLOGY 2008; 181:11-6. [PMID: 18566364 DOI: 10.4049/jimmunol.181.1.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dendritic cells (DC) are professional APC endowed with the unique capacity to activate naive T cells. DC also have important effector functions during the innate immune response, such as pathogen recognition and cytokine production. In fact, DC represent the crucial link between innate and adaptive immune responses. However, DC are quite heterogeneous and various subsets endowed with specific pathogen recognition mechanisms, locations, phenotypes, and functions have been described both in rodents and in humans. A series of studies indicated that rodent as well as human DC could also mediate another important innate function, i.e., cell-mediated cytotoxicity, mostly toward tumor cells. In this article, we will review the phenotypes of these so-called killer DC, their killing mechanism, and putative implication in the immune response.
Collapse
Affiliation(s)
- Camille Chauvin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 643, Nantes, France
| | | |
Collapse
|
19
|
Reschner A, Hubert P, Delvenne P, Boniver J, Jacobs N. Innate lymphocyte and dendritic cell cross-talk: a key factor in the regulation of the immune response. Clin Exp Immunol 2008; 152:219-26. [PMID: 18336590 DOI: 10.1111/j.1365-2249.2008.03624.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dendritic cells (DC) are specialized in the presentation of antigens and the initiation of specific immune responses. They have been involved recently in supporting innate immunity by interacting with various innate lymphocytes, such as natural killer (NK), NK T or T cell receptor (TCR)-gammadelta cells. The functional links between innate lymphocytes and DC have been investigated widely and different studies demonstrated that reciprocal activations follow on from NK/DC interactions. The cross-talk between innate cells and DC which leads to innate lymphocyte activation and DC maturation was found to be multi-directional, involving not only cell-cell contacts but also soluble factors. The final outcome of these cellular interactions may have a dramatic impact on the quality and strength of the down-stream immune responses, mainly in the context of early responses to tumour cells and infectious agents. Interestingly, DC, NK and TCR-gammadelta cells also share similar functions, such as antigen uptake and presentation, as well as cytotoxic and tumoricidal activity. In addition, NK and NK T cells have the ability to kill DC. This review will focus upon the different aspects of the cross-talk between DC and innate lymphocytes and its key role in all the steps of the immune response. These cellular interactions may be particularly critical in situations where immune surveillance requires efficient early innate responses.
Collapse
Affiliation(s)
- A Reschner
- Department of Pathology, GIGA-GAMCA/I3, B35, University of Liege, CHU of Liège, B4000 Liege, Belgium
| | | | | | | | | |
Collapse
|
20
|
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) specialized in the stimulation of naïve T lymphocytes, which are key components of antiviral and antitumor immunity. DCs are 'sentinels' of the immune system endowed with the mission to (1) sense invading pathogens as well as any form of tissue distress and (2) alert the effectors of the immune response. They represent a very heterogeneous population including subsets characterized by their anatomical locations and specific missions. Beyond their unique APC features, DCs exhibit a large array of effector functions that play critical roles in the induction and regulation of the cell-mediated as well as humoral immune responses. In the course of the antitumor immune response, DCs are unique in engulfing tumor cells killed by natural killer (NK) cells and cross-presenting tumor-associated antigens to cytotoxic T lymphocytes (CTLs). However, while DCs mediate antitumor immune responses by stimulating tumor-specific CTLs and NK cells, direct tumoricidal mechanisms have been recently evoked. This review addresses the other face of DCs to directly deliver apoptotic signals to stressed cells, their role in tumor cell death, and its implication in the design of DC-based cancer immunotherapies.
Collapse
|
21
|
Killer dendritic cells: mechanisms of action and therapeutic implications for cancer. Cell Death Differ 2007; 15:51-7. [DOI: 10.1038/sj.cdd.4402243] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
22
|
Schiltz PM, Lee GJ, Zhang JG, Hoa N, Wepsic HT, Dillman RO, Jadus MR. Human Allogeneic and Murine Xenogeneic Dendritic Cells Are Cytotoxic to Human Tumor Cells via Two Distinct Pathways. Cancer Biother Radiopharm 2007; 22:672-83. [DOI: 10.1089/cbr.2007.356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Patric M. Schiltz
- Hoag Hospital Memorial Presbyterian Hospital Comprehensive Cancer Center, Newport Beach, CA
| | - Gregory J. Lee
- Hoag Hospital Memorial Presbyterian Hospital Comprehensive Cancer Center, Newport Beach, CA
| | - Jian Gang Zhang
- Diagnostic and Molecular Medicine Health Care Group, Veterans Affairs Medical Center, Long Beach, CA
| | - Neil Hoa
- Diagnostic and Molecular Medicine Health Care Group, Veterans Affairs Medical Center, Long Beach, CA
| | - H. Terry Wepsic
- Diagnostic and Molecular Medicine Health Care Group, Veterans Affairs Medical Center, Long Beach, CA
| | - Robert O. Dillman
- Hoag Hospital Memorial Presbyterian Hospital Comprehensive Cancer Center, Newport Beach, CA
| | - Martin R. Jadus
- Diagnostic and Molecular Medicine Health Care Group, Veterans Affairs Medical Center, Long Beach, CA
| |
Collapse
|
23
|
Nicolas A, Cathelin D, Larmonier N, Fraszczak J, Puig PE, Bouchot A, Bateman A, Solary E, Bonnotte B. Dendritic cells trigger tumor cell death by a nitric oxide-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2007; 179:812-8. [PMID: 17617571 DOI: 10.4049/jimmunol.179.2.812] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are well known for their capacity to induce adaptive antitumor immune response through Ag presentation and tumor-specific T cell activation. Recent findings reveal that besides this role, DCs may display additional antitumor effects. In this study, we provide evidence that LPS- or IFN-gamma-activated rat bone marrow-derived dendritic cells (BMDCs) display killing properties against tumor cells. These cytotoxic BMDCs exhibit a mature DC phenotype, produce high amounts of IL-12, IL-6, and TNF-alpha, and retain their phagocytic properties. BMDC-mediated tumor cell killing requires cell-cell contact and depends on NO production, but not on perforin/granzyme or on death receptors. Furthermore, dead tumor cells do not exhibit characteristics of apoptosis. Thus, intratumoral LPS injections induce an increase of inducible NO synthase expression in tumor-infiltrating DCs associated with a significant arrest of tumor growth. Altogether, these results suggest that LPS-activated BMDCs represent powerful tumoricidal cells which enforce their potential as anticancer cellular vaccines.
Collapse
Affiliation(s)
- Alexandra Nicolas
- Institut National de la Santé et de la Recherche Médicale Unit Mixte de Recherche 866, Institut Fédératif de Recherche 100, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stary G, Bangert C, Tauber M, Strohal R, Kopp T, Stingl G. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. ACTA ACUST UNITED AC 2007; 204:1441-51. [PMID: 17535975 PMCID: PMC2118597 DOI: 10.1084/jem.20070021] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imiquimod (IMQ), a synthetic agonist to Toll-like receptor (TLR) 7, is being successfully used for the treatment of certain skin neoplasms, but the exact mechanisms by which this compound induces tumor regression are not yet understood. While treating basal cell carcinoma (BCC) patients with topical IMQ, we detected, by immunohistochemistry, sizable numbers of both myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) within the inflammatory infiltrate. Surprisingly, peritumoral mDCs stained positive for perforin and granzyme B, whereas infiltrating pDCs expressed tumor necrosis factor–related apoptosis-inducing ligand (TRAIL). The biological relevance of this observation can be deduced from our further findings that peripheral blood–derived CD11c+ mDCs acquired antiperforin and anti–granzyme B reactivity upon TLR7/8 stimulation and could use these molecules to effectively lyse major histocompatibility complex (MHC) class Ilo cancer cell lines. The same activation protocol led pDCs to kill MHC class I–bearing Jurkat cells in a TRAIL-dependent fashion. While suggesting that mDCs and pDCs are directly involved in the IMQ-induced destruction of BCC lesions, our data also add a new facet to the functional spectrum of DCs, ascribing to them a major role not only in the initiation but also in the effector phase of the immune response.
Collapse
Affiliation(s)
- Georg Stary
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Shurin MR, Shurin GV, Lokshin A, Yurkovetsky ZR, Gutkin DW, Chatta G, Zhong H, Han B, Ferris RL. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev 2007; 25:333-56. [PMID: 17029028 DOI: 10.1007/s10555-006-9010-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumor microenvironment consists of a variable combination of tumor cells, stromal fibroblasts, endothelial cells and infiltrating leukocytes, such as macrophages, T lymphocytes, and dendritic cells. A variety of cytokines, chemokines and growth factors are produced in the local tumor environment by different cells accounting for a complex cell interaction and regulation of differentiation, activation, function and survival of multiple cell types. The interaction between cytokines, chemokines, growth factors and their receptors forms a comprehensive network at the tumor site, which is primary responsible for overall tumor progression and spreading or induction of antitumor immune responses and tumor rejection. Although the general thought is that dendritic cells are among the first cells migrating to the tumor site and recognizing tumor cells for the induction of specific antitumor immunity, the clinical relevance of dendritic cells at the site of the tumor remains a matter of debate regarding their role in the generation of successful antitumor immune responses in human cancers. While several lines of evidence suggest that intratumoral dendritic cells play an important role in antitumor immune responses, understanding the mechanisms of dendritic cell/tumor cell interaction and modulation of activity and function of different dendritic cell subtypes at the tumor site is incomplete. This review is limited to discussing the role of intratumoral cytokine network in the understanding immunobiology of tumor-associated dendritic cells, which seems to possess different regulatory functions at the tumor site.
Collapse
Affiliation(s)
- Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center and Cancer Institute, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen L, Calomeni E, Wen J, Ozato K, Shen R, Gao JX. Natural killer dendritic cells are an intermediate of developing dendritic cells. J Leukoc Biol 2007; 81:1422-33. [PMID: 17332372 DOI: 10.1189/jlb.1106674] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
NK dendritic cells (DCs; NKDCs) appear to emerge as a distinct DC subset in humans and rodents, which have the functions of NK cells and DCs. However, the developmental relationship of NKDCs (CD11c(+)NK1.1(+)) to CD11c(+)NK1.1(-) DCs has not been addressed. Herein, we show that NKDCs exist exclusively in the compartment of CD11c(+)MHC II(-) cells in the steady state and express variable levels of DC subset markers, such as the IFN-producing killer DC marker B220, in a tissue-dependent manner. They can differentiate into NK1.1(-) DCs, which is accompanied by the up-regulation of MHC Class II molecules and down-regulation of NK1.1 upon adoptive transfer. However, NK cells (NK(+)CD11c(-)) did not differentiate into NK1.1(+)CD11c(+) cells upon adoptive transfer. Bone marrow-derived Ly6C(+) monocytes can be a potential progenitor of NKDCs, as some of them can differentiate into CD11c(+)NK1.1(+) as well as CD11c(+)NK1.1(-) cells in vivo. The steady-state NKDCs have a great capacity to lyse tumor cells but little capability to present antigens. Our studies suggest that NKDCs are an intermediate of developing DCs. These cells appear to bear the unique surface phenotype of CD11c(+)NK1.1(+)MHC II(-) and possess strong cytotoxic function yet show a poor ability to present antigen in the steady state. These findings suggest that NKDCs may play a critical role in linking innate and adaptive immunity.
Collapse
Affiliation(s)
- Li Chen
- Department of Pathology, Ohio State University Medical Center, 129 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
27
|
Trinité B, Chauvin C, Pêche H, Voisine C, Heslan M, Josien R. Immature CD4−CD103+Rat Dendritic Cells Induce Rapid Caspase-Independent Apoptosis-Like Cell Death in Various Tumor and Nontumor Cells and Phagocytose Their Victims. THE JOURNAL OF IMMUNOLOGY 2005; 175:2408-17. [PMID: 16081812 DOI: 10.4049/jimmunol.175.4.2408] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We previously reported the characterization of a MHC class II(low) CD4- CD103+ (CD4-) subset of dendritic cells (DC) in rat spleen that exhibit a Ca2+-, Fas ligand-, TRAIL- and TNF-alpha-independent cytotoxic activity against specific targets in vitro. In this study, we demonstrate that this DC subset was also found in lymph nodes. Freshly extracted and, therefore, immature CD4- DC exhibited a potent cytotoxic activity against a large panel of tumor cell lines as well as primary endothelial cells. The cytotoxic activity of immature CD4- DC required cell-to-cell contact and de novo protein expression. CD4- DC-mediated cell death resembled apoptosis, as evidenced by outer membrane phosphatidylserine exposure and nuclear fragmentation in target cells, but was caspase as well as Fas-associated death domain and receptor-interacting protein independent. Bcl-2 overexpression in target cells did not protect them against DC-mediated cell death. Immature CD4- DC phagocytosed efficiently apoptotic cells in vitro and, therefore, rapidly and specifically engulfed their victims following death induction. Maturation induced a dramatic down-regulation of the killing and phagocytic activities of CD4- DC. In contrast, CD4+ DC were both unable to kill target cells and to phagocytose apoptotic cells in vitro. Taken together, these data indicate that rat immature CD4- CD103+ DC mediate an unusual cytotoxic activity and can use this function to efficiently acquire Ag from live cells.
Collapse
Affiliation(s)
- Benjamin Trinité
- Institut National de la Santé et de la Recherche Médicale Unité 643, Institut de Transplantation et de Recherche en Transplantation, Nantes University Hospital, Nantes, France
| | | | | | | | | | | |
Collapse
|
28
|
Singh N, Singh SM, Shrivastava P. Effect of Tinospora cordifolia on the antitumor activity of tumor-associated macrophages-derived dendritic cells. Immunopharmacol Immunotoxicol 2005; 27:1-14. [PMID: 15803856 DOI: 10.1081/iph-51287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We and others previously have reported that extract prepared from medicinal plant Tinospora cordifolia shows a wide spectrum of immunoaugmentary effects. Tinospora cordifolia was shown to upregulate antitumor activity of tumor-associated macrophages (TAM). In this article we present evidence to show that an alcoholic extract of Tinospora cordifolia (ALTC) enhances the differentiation of TAM to dendritic cells (DC) in response to granulocyte/macrophage-colony-stimulating factor, interleukin-4, and tumor necrosis factor. DC differentiated in vitro from TAM that were harvested from tumor-bearing mice after i.p. administration of ALTC (200 mg/kg body weight) 2 days posttumor transplantation shows an enhanced tumor cytotoxicity and production of tumoricidal soluble molecules like TNF, IL-1, and NO. Adoptive transfer of these TAM-derived DC to Dalton's lymphoma-bearing mice resulted in prolongation of survival of tumor-bearing mice. This is the first report regarding the differentiation and antitumor functions of TAM-derived DC obtained from tumor-bearing host administered with ALTC. The possible mechanisms involved also are discussed.
Collapse
Affiliation(s)
- Nisha Singh
- School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | | |
Collapse
|
29
|
Tumoricidal potential of native blood dendritic cells: direct tumor cell killing and activation of NK cell-mediated cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2005; 174:4127-34. [PMID: 15778372 DOI: 10.4049/jimmunol.174.7.4127] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are characterized by their unique capacity for primary T cell activation, providing the opportunity for DC-based cancer vaccination protocols. Novel findings reveal that besides their role as potent inducers of tumor-specific T cells, human DCs display additional antitumor effects. Most of these data were obtained with monocyte-derived DCs, whereas studies investigating native blood DCs are limited. In the present study, we analyze the tumoricidal capacity of M-DC8(+) DCs, which represent a major subpopulation of human blood DCs. We demonstrate that IFN-gamma-stimulated M-DC8(+) DCs lyse different tumor cell lines but not normal cells. In addition, we show that tumor cells markedly enhance the production of TNF-alpha by M-DC8(+) DCs via cell-to-cell contact and that this molecule essentially contributes to the killing activity of M-DC8(+) DCs. Furthermore, we illustrate the ability of M-DC8(+) DCs to promote proliferation, IFN-gamma production, and tumor-directed cytotoxicity of NK cells. The M-DC8(+) DC-mediated enhancement of the tumoricidal potential of NK cells is mainly dependent on cell-to-cell contact. These results reveal that, in addition to their crucial role in activating tumor-specific T cells, blood DCs exhibit direct tumor cell killing and enhance the tumoricidal activity of NK cells. These findings point to the pivotal role of DCs in triggering innate and adaptive immune responses against tumors.
Collapse
|
30
|
Walzer T, Dalod M, Robbins SH, Zitvogel L, Vivier E. Natural-killer cells and dendritic cells: "l'union fait la force". Blood 2005; 106:2252-8. [PMID: 15933055 DOI: 10.1182/blood-2005-03-1154] [Citation(s) in RCA: 432] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-alpha/beta production by activated DCs enhance, in turn, NK-cell IFN-gamma production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Thierry Walzer
- Centre d'Immunologie de Marseille-Luminy, INSERM-CNRS-Univ. Méditerranée, Campus de Luminy, Marseille, France.
| | | | | | | | | |
Collapse
|
31
|
Shi J, Ikeda K, Fujii N, Kondo E, Shinagawa K, Ishimaru F, Kaneda K, Tanimoto M, Li X, Pu Q. Activated human umbilical cord blood dendritic cells kill tumor cells without damaging normal hematological progenitor cells. Cancer Sci 2005; 96:127-33. [PMID: 15723658 PMCID: PMC11160073 DOI: 10.1111/j.1349-7006.2005.00017.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Apart from their role as antigen presenting cells, human peripheral blood monocyte and CD34+ cell-derived dendritic cells (DC), have been demonstrated to exert cytotoxicity against some tumor cells, and their tumoricidal activity can be enhanced by some stimili. However, there have been no reports concerning the tumoricidal activity of human cord blood dendritic cells (CBDC). In this article, we report that human cord blood monocyte-derived DC acquire the ability to kill hematological tumor cells, after activation with lipopolysaccharide (LPS) or gamma-interferon (IFN-gamma), associated with the enhanced TNF-alpha-related apoptosis-inducing ligand (TRAIL) expression in CBDC cytoplasm. The CD14-positive cells collected from cord blood were induced to CBDC in vitro. After activation with IFN-gamma for 12 h, CBDC exhibited cytotoxicity against HL60 and Jurkat cells, while activation with LPS induced cytotoxicity against Daudi and Jurkat cells. However, both LPS- and IFN-gamma-stimulated CBDC showed no cytotoxic activity against normal CD14-negative cord blood mononuclear cells. The formation of umbilical cord hematopoietic progenitor colonies, identified as burst-forming unit-erythroid and colony-forming unit granulocyte-macrophage, was not inhibited by stimulated or unstimulated CBDC. IFN-gamma or LPS stimulation enhanced intracellular but not cellular surface TRAIL, and neither intracellular nor cellular surface tumor necrosing factor-alpha and Fas Ligand as analyzed by flow cytometry. Our results show that activated CBDC can serve as cytotoxic cells against hematological tumor cells without damaging the normal hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Jun Shi
- Hematology Department, Sixth Hospital of Shanghai Jiaotong University, Shanghai 200233, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vakkila J, Lotze MT, Riga C, Jaffe R. A basis for distinguishing cultured dendritic cells and macrophages in cytospins and fixed sections. Pediatr Dev Pathol 2005; 8:43-51. [PMID: 15717117 DOI: 10.1007/s10024-004-5045-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 10/06/2004] [Indexed: 11/27/2022]
Abstract
There is a burgeoning literature on the contrasting role of intratumoral dendritic cells (DCs) and tumor-associated macrophages, making reliable identification of both cell types in clinical and experimental tissue sections important. However, because these cell types are closely related and share several differentiation antigens, their absolute distinction in tissue sections is difficult. We differentiated DCs and macrophages from monocytes in vitro, prepared cytospins and paraffin-embedded sections of the various cell populations, and tested a variety of antibodies that purportedly recognize monocytes and DCs for their capacity to react and distinguish cells after conventional formalin fixation. Cultured DCs but not macrophages were detected by fascin, DC-LAMP, and CD83 with a predictable increase in staining that paralleled their maturation. Staining by CD1a was found on immature DCs but was weak and absent on mature DCs and macrophages, respectively. CD14 and CD163 were characteristic for macrophages and absent on DCs. CD68, HLA-DR, and S100 did not discriminate between DCs and macrophages. We conclude that antigens such as HLA-DR and S100 are not in themselves sufficient for identification of DCs in formalin-fixed tissue sections, but that additional macrophage-specific (CD14, CD163) and DC-specific (CD1a, CD83, fascin, DC-LAMP) antigens should be used to distinguish cell types from each other and to provide information on their state of maturation.
Collapse
Affiliation(s)
- Jukka Vakkila
- Hospital for Children and Adolescents, University of Helsinki, Biomedicum, 4th Floor, Suite B431b, P.O. Box 700, FIN-00029, Hus, Finland
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Jukka Vakkila
- Hospital for Children and Adolescents, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
34
|
Perrotta C, Falcone S, Capobianco A, Camporeale A, Sciorati C, De Palma C, Pisconti A, Rovere-Querini P, Bellone M, Manfredi AA, Clementi E. Nitric oxide confers therapeutic activity to dendritic cells in a mouse model of melanoma. Cancer Res 2004; 64:3767-71. [PMID: 15172982 DOI: 10.1158/0008-5472.can-04-0668] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Susceptibility of dendritic cells (DCs) to tumor-induced apoptosis reduces their efficacy in cancer therapy. Here we show that delivery within exponentially growing B16 melanomas of DCs treated ex vivo with nitric oxide (NO), released by the NO donor (z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO), significantly reduced tumor growth, with cure of 37% of animals. DETA-NO-treated DCs became resistant to tumor-induced apoptosis because DETA-NO prevented tumor-induced changes in the expression of Bcl-2, Bax, and Bcl-xL; activation of caspase-9; and a reduction in the mitochondrial membrane potential. DETA-NO also increased DC cytotoxic activity against tumor cells and DC ability to trigger T-lymphocyte proliferation. All of the effects of DETA-NO were mediated through cGMP generation. NO and NO-generating drugs may therefore be used to increase the anticancer efficacy of DCs.
Collapse
|
35
|
Funk PE, Pifer J, Kharas M, Crisafi G, Johnson A. The avian chB6 alloantigen induces apoptosis in DT40 B cells. Cell Immunol 2004; 226:95-104. [PMID: 14962497 DOI: 10.1016/j.cellimm.2003.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 11/25/2003] [Indexed: 02/06/2023]
Abstract
In avian species, B-lymphocytes develop in the bursa of Fabricius. Cells developing in the bursa are subject to signals regulating their survival, with the majority of cells dying by apoptosis within the bursa. However, the molecules delivering the signals influencing this life and death decision remain enigmatic. We have previously shown that antibodies against the chB6 alloantigen present on avian B-lymphocytes can induce a rapid form of cell death. Here we extend this finding by showing that anti-chB6 antibodies induce true apoptosis in DT40 cells without visible membrane damage. This apoptosis results in DNA degradation and morphologic changes characteristic of apoptosis. Furthermore, this apoptosis is coincident with a loss of mitochondrial membrane potential and is inhibited by either overexpression of bcl-x(L) or the presence of inhibitors of caspase 8, 9, or 3 activity. Collectively these data argue that chB6 may function as a novel death receptor on avian B-lymphocytes and support the use of DT40 as an amenable model to study the signaling involved in chB6-induced apoptosis.
Collapse
Affiliation(s)
- Phillip E Funk
- Department of Biological Sciences, DePaul University, 2325 N. Clifton, Chicago, IL 60614, USA.
| | | | | | | | | |
Collapse
|
36
|
Setterblad N, Blancheteau V, Delaguillaumie A, Michel F, Bécart S, Lombardi G, Acuto O, Charron D, Mooney N. Cognate MHC-TCR interaction leads to apoptosis of antigen-presenting cells. J Leukoc Biol 2004; 75:1036-44. [PMID: 14982950 DOI: 10.1189/jlb.0703356] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antigen presentation to T lymphocytes has been characterized extensively in terms of T lymphocyte activation and eventual cell death. In contrast, little is known about the consequences of antigen presentation for the antigen-presenting cell (APC). We have determined the outcome of major histocompatibility complex class II-restricted peptide presentation to a specific T cell. We demonstrate that specific T lymphocyte interaction with peptide-presenting APCs led to apoptosis in the APC population. In contrast, T lymphocyte interaction with nonpeptide-loaded APCs or APCs loaded with monosubstituted peptide failed to induce T lymphocyte secretion of interleukin-2 and APC apoptosis. Phosphatidylserine externalization and mitochondrial depolarization were used to evaluate APC apoptosis. Fas/Fas ligand interactions were not required, but cytoskeletal integrity and caspase activation were essential for APC apoptosis. Antigen presentation leading to T lymphocyte activation is therefore coordinated with apoptosis in the APC population and could provide a mechanism of immune response regulation by eliminating APCs, which have fulfilled their role as specific ligands for T lymphocyte activation. This pathway may have particular importance for APCs, which are not sensitive to death receptor-induced apoptosis.
Collapse
|
37
|
Vanderheyde N, Vandenabeele P, Goldman M, Willems F. Distinct mechanisms are involved in tumoristatic and tumoricidal activities of monocyte-derived dendritic cells. Immunol Lett 2004; 91:99-101. [PMID: 15019276 DOI: 10.1016/j.imlet.2003.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 11/26/2003] [Accepted: 11/26/2003] [Indexed: 11/18/2022]
Abstract
Monocyte-derived dendritic cells (DC) were found to inhibit proliferation of different tumor cell lines. LPS-induced maturation of DC strongly increased their capacity to inhibit tumor cell growth. We observed that tumoristatic activity of LPS-activated DC was independent of their cytotoxic potential. Indeed, LPS-activated DC were able to inhibit growth of caspase-8-deficient or Bcl-2-overexpressing Jurkat cells whereas they were not cytotoxic towards the same targets. On the other hand, we found that supernatant derived from LPS-activated DC exerted a significant anti-proliferative activity against Jurkat cells while it did not induce any cytotoxic effect. Tumor necrosis factor (TNF) was shown to critically contribute to tumor growth inhibition in this system.
Collapse
Affiliation(s)
- Nathalie Vanderheyde
- Laboratory of Experimental Immunology, Université Libre de Bruxelles ULB, Immunology, 808 route de Lennik, B-1070, Belgium
| | | | | | | |
Collapse
|
38
|
Dho SH, Kwon KS. The Ret finger protein induces apoptosis via its RING finger-B box-coiled-coil motif. J Biol Chem 2003; 278:31902-8. [PMID: 12807881 DOI: 10.1074/jbc.m304062200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Ret finger protein (RFP) is a member of the tripartite motif family, which is characterized by a conserved RING finger, a B-box, and a coiled-coil domain (together called RBCC). Although RFP is known to become oncogenic when its RBCC moiety is connected to a tyrosine kinase domain by DNA rearrangement, its biological function is not well defined. Here we show that ectopic expression of RFP in human embryonic kidney 293 cells causes extensive apoptosis, as assessed by multiple criteria. RFP expression activates Jun N-terminal kinase and p38 kinase and also increases caspase-3-like activity. However, RFP failed to release cytochrome c and, therefore, to increase caspase-9-like activity. RFP-induced apoptosis could be blocked by the caspase-8 inhibitor crmA and dominant negative ASK1 but not by Bcl-2. These results reveal a novel RFP death pathway that recruits mitogen-activated protein kinase and caspases independently of mitochondrial events. Domain mapping showed that the intact RBCC moiety is necessary for the pro-apoptotic function of RFP. Moreover, expression of the RBCC moiety further potentiated the pro-apoptotic activity and resulted in a 7-fold increase of caspase activation compared with that induced by full-length RFP. This suggests that a large number of tripartite motif family members sharing the RBCC moiety may participate in the control of cell survival.
Collapse
Affiliation(s)
- So Hee Dho
- Laboratory of Functional Proteomics, Korea Research Institute of Bioscience and Biotechnology, Taejon 305-333, Korea
| | | |
Collapse
|
39
|
Ayres FM, Narita M, Takahashi M, Alldawi L, Liu A, Osman Y, Abe T, Yano T, Sakaue M, Toba K, Furukawa T, Aizawa Y. A Comparative Study of the JAM Test and51Cr‐Release Assay to Assess the Cytotoxicity of Dendritic Cells on Hematopoietic Tumor Cells. Immunol Invest 2003; 32:219-27. [PMID: 14603991 DOI: 10.1081/imm-120025102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dendritic cells (DCs) are potent antigen presenting cells and possess a direct anti-tumor cytotoxic ability. Nevertheless, the mechanism of anti-tumor cytotoxicity by DCs and the methods for its evaluation are not fully elucidated. In order to clarify this mechanism of cytotoxicity, we examined the ability of DCs 1) to suppress [3H] thymidine (3H-TdR) uptake by tumor cells; 2) to induce cytolysis on 51Cr-labeled tumor cells; 3) and to induce DNA fragmentation on 3H-TdR labeled tumor cells (JAM test). Cytolysis and DNA fragmentation are markers of necrotic and apoptotic mechanisms of cytotoxicity in vitro, respectively. DCs inhibited approximately 38.6% to 54.8% of the growth of B4D6, NB4, U937, and Daudi cells as evaluated by the uptake of 3H-TdR. However no cytolysis was verified by 51Cr-release assay. On the other hand, cytotoxicity rates found using the JAM test ranged from 3 to 81% depending on the cell line and the effector to target cell ratio. The discrepancy of cytotoxicity between 51Cr-release assay and the JAM test may be due to the phagocytosis of apoptotic tumor cells or the absorption of released 51Cr by DCs surrounding the target cells. In conclusion, the JAM test was more sensitive than the 4-h and the 10-h 51Cr-release assay to investigate cytotoxicity mediated by DCs toward hematopoietic tumor cell lines in vitro.
Collapse
Affiliation(s)
- Flávio M Ayres
- First Department of Internal Medicine, School of Medicine, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The outcome of a viral infection is the result of an endless fight between the organism whose task is to mount an antiviral response and the virus that adapts strategies to circumvent the host response. Human cytomegalovirus (HCMV), a latent herpesvirus, can be considered as a spearhead in exploiting co-existence with the host to develop numerous immuno-evasion mechanisms. The ability of the organism to initiate a primary immune response against viruses such as HCMV is highly dependent on the capacity of professional antigen-presenting cells (APCs), namely dendritic cells (DCs), to prime and activate specific effector T cells. Recent findings emerging from the murine cytomegalovirus (MCMV) animal model demonstrated that infection of murine DCs with MCMV impaired their capacity to prime an effective T cell response. Even though data on interference of HCMV with DC functions are still limited, immunosuppressive effects identical to those reported for MCMV can be suspected and we may then ask how a cytotoxic T lymphocyte (CTL) response is generated in these unfavourable conditions. In response to this question, cross-presentation of HCMV antigens by uninfected DCs to CD8+ T cells could be considered a key process in initiating an immune response. In this chapter we discuss the mechanisms through which DCs could acquire HCMV antigens and how cross-presentation could be modulated throughout infection. Moreover, further knowledge of DC functions is key for the development of DC-based immunotherapy against HCMV.
Collapse
Affiliation(s)
- G Arrode
- INSERM U 395, CHU Purpan, BP 3028, 31024 Toulouse Cédex, France
| | | |
Collapse
|
41
|
Wikström K, Juhas M, Sjölander A. The anti-apoptotic effect of leukotriene D4 involves the prevention of caspase 8 activation and Bid cleavage. Biochem J 2003; 371:115-24. [PMID: 12482325 PMCID: PMC1223256 DOI: 10.1042/bj20021669] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Revised: 12/09/2002] [Accepted: 12/16/2002] [Indexed: 01/07/2023]
Abstract
We have shown in a previous study that leukotriene D(4) (LTD(4)) signalling increases cell survival and proliferation in intestinal epithelial cells [Ohd, Wikström and Sjölander (2000) Gastroenterology 119, 1007-1018]. This is highly interesting since inflammatory conditions of the bowel are associated with an increased risk of developing colon cancer. The enzyme cyclo-oxygenase 2 (COX-2) is important in this context since it is up-regulated in colon cancer tissues and in tumour cell lines. Treatment with the COX-2-specific inhibitor N -(2-cyclohexyloxy-4-nitrophenyl)methane sulphonamide has been shown previously to cause apoptosis in intestinal epithelial cells. In the present study, we attempted to elucidate the underlying mechanisms and we can now show that a mitochondrial pathway is employed. Inhibition of COX-2 causes release of cytochrome c, as shown by both Western-blot and microscopy studies, and as with apoptosis, this is significantly decreased by LTD(4). Since previous studies showed increased Bcl-2 levels on LTD(4) stimulation, we further studied apoptotic regulation at the mitochondrial level. From this we could exclude the involvement of the anti-apoptotic protein Bcl-X(L) as well as its pro-apoptotic counterpart Bax, since they are not expressed. Furthermore, the activity of the pro-apoptotic protein Bad (Bcl-2/Bcl-X(L)-antagonist, causing cell death) was completely unaffected. However, inhibition of COX-2 caused cleavage of caspase 8 into a 41 kDa fragment associated with activation and caused the appearance of an activated 15 kDa fragment of Bid. This indicates that N -(2-cyclohexyloxy-4-nitrophenyl)methane sulphonamide-induced apoptosis is mediated by the activation of caspase 8, via generation of truncated Bid, and thereafter release of cytochrome c. Interestingly, LTD(4) not only reverses the effects induced by inhibition of COX-2 but also reduces the apoptotic potential by lowering the basal level of caspase 8 activation and truncated Bid generation.
Collapse
Affiliation(s)
- Katarina Wikström
- Division of Experimental Pathology, Department of Laboratory Medicine, University Hospital Malmö, Lund University, SE-205 02 Malmö, Sweden
| | | | | |
Collapse
|
42
|
[Immunotherapy based on dendritic cells: from experimentation to clinical development]. PATHOLOGIE-BIOLOGIE 2003; 51:74-5. [PMID: 12801806 DOI: 10.1016/s0369-8114(03)00102-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the DC-based immunotherapy of cancer has been promising in animal models, several questions need to be addressed in depth in humans: the generation of various types of dendritic cells, the analysis of their potential and the immunomonitoring of cancer patients. In our laboratory, our efforts have been focused on (i) the study of the cytotoxic activity of dendritic cells; (ii) the generation of a novel population of human dendritic cells from monocytes cultured in IL-3 and IFN-beta; (iii) the optimisation of the immunostimulatory properties of DC using Fas-ligand surexpression or adjuvants promoting DC/gamma-delta T cell interaction.
Collapse
|
43
|
Joo HG, Fleming TP, Tanaka Y, Dunn TJ, Linehan DC, Goedegebuure PS, Eberlein TJ. Human dendritic cells induce tumor-specific apoptosis by soluble factors. Int J Cancer 2002; 102:20-8. [PMID: 12353229 DOI: 10.1002/ijc.10656] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen producing cells (APCs) for initiation of immune responses including anti-tumor immune responses. In previous reports, it has been shown that DCs efficiently take up and process apoptotic or necrotic bodies of tumor cells. It has also been shown that DCs pulsed with tumor cell apoptotic bodies, lysates or peptides generate potent anti-tumor immune responses. Direct interactions between DCs and viable tumor cells, however, have not been clearly elucidated. We report that monocyte-derived, CD1a+ immature DCs (iDCs) significantly inhibit the growth of breast tumor cells in coculture and transwell experiments in the presence of soluble CD40 ligand (sCD40L), LPS or both. The growth inhibition effects correlated with cell cycle arrest and apoptosis of breast tumor cells. The effects were associated with morphological changes of tumor cells from a round shape to a flat, spindle shape. In contrast, no inhibition of proliferation or morphological changes was observed on normal PBMC, K562 or breast fibroblasts. Interestingly, iDCs undergoing maturation induced by sCD40L+LPS induced a much stronger growth inhibitory effect than iDCs alone or mature DCs treated with sCD40L+LPS. Fractionation of supernatants showed the anti-tumor effects were mediated by a TNF-alpha-dependent and -independent mechanism. Soluble FasL and TRAIL were not involved. Our findings suggest that maturing DCs have the intrinsic ability to induce cell-cycle arrest and apoptosis of breast tumor cells through soluble factors, but not normal cells, in addition to their Ag presentation function.
Collapse
Affiliation(s)
- Hong-Gu Joo
- Department of Surgery and the Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Voisine C, Hubert FX, Trinité B, Heslan M, Josien R. Two phenotypically distinct subsets of spleen dendritic cells in rats exhibit different cytokine production and T cell stimulatory activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2284-91. [PMID: 12193693 DOI: 10.4049/jimmunol.169.5.2284] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We recently reported that splenic dendritic cells (DC) in rats can be separated into CD4(+) and CD4(-) subsets and that the CD4(-) subset exhibited a natural cytotoxic activity in vitro against tumor cells. Moreover, a recent report suggests that CD4(-) DC could have tolerogenic properties in vivo. In this study, we have analyzed the phenotype and in vitro T cell stimulatory activity of freshly isolated splenic DC subsets. Unlike the CD4(-) subset, CD4(+) splenic DC expressed CD5, CD90, and signal regulatory protein alpha molecules. Both fresh CD4(-) and CD4(+) DC displayed an immature phenotype, although CD4(+) cells constitutively expressed moderate levels of CD80. The half-life of the CD4(-), but not CD4(+) DC in vitro was extremely short but cells could be rescued from death by CD40 ligand, IL-3, or GM-CSF. The CD4(-) DC produced large amounts of the proinflammatory cytokines IL-12 and TNF-alpha and induced Th1 responses in allogeneic CD4(+) T cells, whereas the CD4(+) DC produced low amounts of IL-12 and no TNF-alpha, but induced Th1 and Th2 responses. As compared with the CD4(+) DC that strongly stimulated the proliferation of purified CD8(+) T cells, the CD4(-) DC exhibited a poor CD8(+) T cell stimulatory capacity that was substantially increased by CD40 stimulation. Therefore, as previously shown in mice and humans, we have identified the existence of a high IL-12-producing DC subset in the rat that induces Th1 responses. The fact that both the CD4(+) and CD4(-) DC subsets produced low amounts of IFN-alpha upon viral infection suggests that they are not related to plasmacytoid DC.
Collapse
Affiliation(s)
- Cécile Voisine
- Institut National de la Santé et de la Recherche Médicale, Unité 437, Nantes, France
| | | | | | | | | |
Collapse
|
45
|
Pifer J, Robison D, Funk PE. The avian ChB6 alloantigen triggers apoptosis in a mammalian cell line. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1372-8. [PMID: 12133961 DOI: 10.4049/jimmunol.169.3.1372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many developing B lymphocytes are deleted by apoptosis. However, the mechanism signaling their demise remains poorly understood. Like mammals, chicken B cells are selected during their development; >95% of the cells in the bursa of Fabricius die without entering the secondary immune system. The molecule chB6 (Bu-1) has been used as a marker to identify B cells in the chicken. ChB6 is a type I transmembrane glycoprotein whose function is enigmatic. We have provided evidence that chB6 can induce a rapid form of cell death exhibiting characteristics of apoptosis. Here we further examine cell death induced by chB6 in a transfected mouse cell line. ChB6 is shown to cause apoptosis in this cell line as detected by a TUNEL assay for DNA fragmentation. This apoptosis is subject to regulation by signals from growth factor or by Bcl-x(L). Furthermore, we show that Ab binding to chB6 leads to cleavage of caspase 8, caspase 3, and poly(ADP ribose) polymerase. Overall, these data support the hypothesis that chB6 is a novel death receptor on avian B cells.
Collapse
Affiliation(s)
- Jeannette Pifer
- Department of Biological Sciences, DePaul University, Chicago, IL 60614,USA
| | | | | |
Collapse
|