1
|
La Paglia L, Mauro M, Arizza V, Urso A, Simon S, Drahos L, di Stefano V, Luparello C, Vazzana M, Vizzini A. Bioinformatics analyses of the proteome of Holothuria tubulosa coelomic fluid and the first evidence of primary cilium in coelomocyte cells. Front Immunol 2025; 16:1539751. [PMID: 40443667 PMCID: PMC12119288 DOI: 10.3389/fimmu.2025.1539751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/07/2025] [Indexed: 06/02/2025] Open
Abstract
The holothurian immune system is characterized by complex defense mechanisms that act through humoral and cellular pathways. Coelomocites are the cellular component of coelomic fluid, and they are involved in host defense, stress response, wound healing, organ regeneration, and tissue homeostasis. The close phylogenetic relationship between Holothuria tubulosa and chordate phylum makes it a good model for studying the evolution of immune processes. To elucidate the immune landscape in H. tubulosa, we applied an approach combining proteomic analysis of coelomic fluid separated into cellular fraction and extracellular fraction and bioinformatics and in silico analyses. A Search Tool for the Retrieval of Interacting Genes/Protein analysis indicated a highly functional homology to the human protein of immune recognition factors, non-canonical immune-related proteins, signaling molecules, and effector protein, cytoskeleton, and actin remodeling, and provided the first evidence in invertebrate immune cells of an intracellular protein fraction linked to ancestral structure resembling primary cilium involved in cell signaling.
Collapse
Affiliation(s)
- Laura La Paglia
- Institute of High Performance Computing and Networking (ICAR)-CNR, National Research Council of Italy, Palermo, Italy
| | - Manuela Mauro
- Department of Biological and Technological Science, Chemical and Pharmaceutical Science (STEBICEF), University of Studies of Palermo, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological and Technological Science, Chemical and Pharmaceutical Science (STEBICEF), University of Studies of Palermo, Palermo, Italy
| | - Alfonso Urso
- Institute of High Performance Computing and Networking (ICAR)-CNR, National Research Council of Italy, Palermo, Italy
| | - Sugár Simon
- Mass Spectrometry (MS) Proteomics Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Laszlo Drahos
- Mass Spectrometry (MS) Proteomics Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Vita di Stefano
- Department of Biological and Technological Science, Chemical and Pharmaceutical Science (STEBICEF), University of Studies of Palermo, Palermo, Italy
| | - Claudio Luparello
- Department of Biological and Technological Science, Chemical and Pharmaceutical Science (STEBICEF), University of Studies of Palermo, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological and Technological Science, Chemical and Pharmaceutical Science (STEBICEF), University of Studies of Palermo, Palermo, Italy
| | - Aiti Vizzini
- Department of Biological and Technological Science, Chemical and Pharmaceutical Science (STEBICEF), University of Studies of Palermo, Palermo, Italy
| |
Collapse
|
2
|
Ho BHT, Spicer BA, Dunstone MA. Action of the Terminal Complement Pathway on Cell Membranes. J Membr Biol 2025:10.1007/s00232-025-00343-6. [PMID: 40122920 DOI: 10.1007/s00232-025-00343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
The complement pathway is one of the most ancient elements of the host's innate response and includes a set of protein effectors that rapidly react against pathogens. The late stages of the complement reaction are broadly categorised into two major outcomes. Firstly, C5a receptors, expressed on membranes of host cells, are activated by C5a to generate pro-inflammatory responses. Secondly, target cells are lysed by a hetero-oligomeric pore known as the membrane attack complex (MAC) that punctures the cellular membrane, causing ion and osmotic flux. Generally, several membrane-bound and soluble inhibitors protect the host membrane from complement damage. This includes inhibitors against the MAC, such as clusterin and CD59. This review addresses the most recent molecular and structural insights behind the activation and modulation of the integral membrane proteins, the C5a receptors (C5aR1 and C5aR2), as well as the regulation of MAC assembly. The second aspect of the review focuses on the molecular basis behind inflammatory diseases that are reflective of failure to regulate the terminal complement effectors. Although each arm is unique in its function, both pathways may share similar outcomes in these diseases. As such, the review outlines potential synergy and crosstalk between C5a receptor activation and MAC-mediated cellular responses.
Collapse
Affiliation(s)
- Bill H T Ho
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Michelle A Dunstone
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Nakayama K, Obayashi Y, Munechika L, Kitamura SI, Yanagida T, Honjo M, Murakami S, Hirose E. Regeneration of tunic cuticle is suppressed in edible ascidian Halocynthia roretzi contracting soft tunic syndrome. DISEASES OF AQUATIC ORGANISMS 2024; 159:37-48. [PMID: 39087618 DOI: 10.3354/dao03801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Soft tunic syndrome is an infectious disease caused by the flagellate Azumiobodo hoyamushi, which severely damages the aquaculture of the edible ascidian Halocynthia roretzi. Tunic is a cellulosic extracellular matrix entirely covering the body in ascidians and other tunicates, and its dense cuticle layer covers the tunic surface as a physical barrier against microorganisms. When the tunic of intact H. roretzi individuals was cut into strips, electron-dense fibers (DFs) appeared on the cut surface of the tunic matrix and aggregated to regenerate a new cuticular layer in seawater within a few days. DF formation was partially or completely inhibited in individuals with soft tunic syndrome, and DF formation was also inhibited by the presence of some proteases, indicating the involvement of proteolysis in the process of tunic softening as well as cuticle regeneration. Using pure cultures of the causative flagellate A. hoyamushi, the expression of protease genes and secretion of some proteases were confirmed by RNA-seq analysis and a 4-methylcoumaryl-7-amide substrate assay. Some of these proteases may degrade proteins in the tunic matrix. These findings suggest that the proteases of A. hoyamushi is the key to understanding the mechanisms of cuticular regeneration inhibition and tunic softening.
Collapse
Affiliation(s)
- Kei Nakayama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Yumiko Obayashi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Leo Munechika
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Shin-Ichi Kitamura
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie, 514-8507, Japan
| | - Tetsuya Yanagida
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Miho Honjo
- Miyagi Prefecture Fisheries Technology Institute, Ishinomaki, Miyagi, 986-2135, Japan
| | - Shoko Murakami
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Euichi Hirose
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| |
Collapse
|
4
|
Sun J, Liu C, Wang L, Song L. The Establishment of Complement System Is from Gene Duplication and Domain Shuffling. Int J Mol Sci 2024; 25:8119. [PMID: 39125697 PMCID: PMC11312191 DOI: 10.3390/ijms25158119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The mammalian complement system constitutes a highly sophisticated body defense machinery. The evolutionary origin of the complement system can be traced to Coelenterata as the presence of the central component C3 and two activation proteases BF and MASP. In the present study, the main complement components were screened and analyzed from the genomes of different species in metazoan subphyla/phyla. C1q with classical domains can be traced to Annelida, and ficolin and MBL to Urochordata. C1r and C1s are only found in Chondrichthyes and even higher species, and MASP is traced to Coelenterata. In the evolutionary tree, C1r from Vertebrates is close to MASP1/2/3 from Deuterostomia and Coelenterata, and C1s from Vertebrates is close to MASP-like protease (MASPL) from Arthropoda, Mollusca, and Annelida. C2, BF, and DF can be traced to Mollusca, Coelenterata, and Porifera, respectively. There are no clear C2 and BF branches in the evolutionary tree. C3 can be traced to Coelenterata, and C4 and C5 are only in Chondrichthyes and even higher species. There are three clear C3, C4, and C5 branches in the evolutionary tree. C6-like (C6L) and C8 can be traced to Urochordata, and C7-like (C7L) can be traced to Cephalochordara. C6L, C7L, and C8 from Urochordata and Cephalochordara provide the structural conditions for the formation of Vertebrate MAC components. The findings unveil the evolutionary principles of the complement system and provide insight into its sophistication.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
5
|
Arata K, Yamaguchi T, Takamune K, Yasumoto S, Kondo M, Kato SI, Yoshikuni M, Ohno K, Kato-Unoki Y, Okada G, Fujii T. Pattern recognition receptors involved in the immune system of hagfish (Eptatretus burgeri). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105065. [PMID: 37741564 DOI: 10.1016/j.dci.2023.105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
The initial defense against invading pathogenic microbes is the activation of innate immunity by binding of pattern recognition receptors (PRRs) to pathogen associated molecular patterns (PAMPs). To explain the action of PRRs from hagfish, one of the extant jawless vertebrates, we purified the GlcNAc recognition complex (GRC) from serum using GlcNAc-agarose. The GRC comprises four proteins of varying molecular masses: 19 kDa, 26 kDa, 27 kDa, and 31 kDa. Exposure of Escherichia coli to the GRC led to the phagocytic activation of macrophages, revealing the opsonic function of the GRC. The GRC in serum formed a large complex with a molecular mass of approximately 1200 kDa. The GRC bound to Escherichia coli but not to rabbit red blood cells, despite both having GlcNAc on their surface. These structural and binding properties are similar to those of mannose-binding lectin (MBL). The amino acid sequence of a portion of the 31 kDa protein in the GRC matched the amino acid sequence of variable lymphocyte receptor (VLR)-B in some place. According to the Western blot analysis, the 31 kDa protein was recognized by the anti-hagfish VLR-B antiserum. Based on the results, it appears that the GRC functions as a PRR like MBL and that its 31 kDa protein has a structure similar to that of VLR-B.
Collapse
Affiliation(s)
- Kenya Arata
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Tomokazu Yamaguchi
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Kazufumi Takamune
- Division of Natural Science, Faculty of Advanced Science and Technology, Kumamoto University(4), 2-39-1 Kurokami, Kumamoto, 860-8555, Japan.
| | - Shinya Yasumoto
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Shin-Ichi Kato
- Fishery Research Laboratory, Kyushu University, Fukutsu, 811-3304, Japan
| | | | - Kaoru Ohno
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Aichi, Japan
| | - Yoko Kato-Unoki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | - Genya Okada
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Ujina-Higashi, Minami-ku, Hiroshima, 734-8558, Japan
| | - Tamotsu Fujii
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Ujina-Higashi, Minami-ku, Hiroshima, 734-8558, Japan
| |
Collapse
|
6
|
Gu Y, Zhu L, Wang X, Li H, Hou L, Kong X. Research progress of pattern recognition receptors in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109028. [PMID: 37633345 DOI: 10.1016/j.fsi.2023.109028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Though Procambarus clarkii (red swamp crayfish) is a lower invertebrate, it has nonetheless developed a complex innate immune system. The crayfish farming industry has suffered considerable economic losses in recent years as a consequence of bacterial and viral diseases. Hence, perhaps the most effective ways to prevent microbial infections in P. clarkii are to examine and elucidate its innate immunity. The first step in the immune response is to recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). PRRs are expressed mainly on immune cell surfaces and recognize at least one PAMP. Thence, downstream immune responses are activated and pathogens are phagocytosed. To date, the PRRs identified in P. clarkii include Toll-like receptors (TLRs), lectins, fibrinogen-related proteins (FREPs), and β-1,3-glucan-binding proteins (BGRPs). The present review addresses recent progress in research on PRRs and aims to provide guidance for improving immunity and preventing and treating infectious diseases in P. clarkii.
Collapse
Affiliation(s)
- Yanlong Gu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Xinru Wang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Hao Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Libo Hou
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
7
|
Lu J, Zhao Z, Li Q, Pang Y. Review of the unique and dominant lectin pathway of complement activation in agnathans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104593. [PMID: 36442606 DOI: 10.1016/j.dci.2022.104593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
As the most primitive vertebrates, lampreys are significant in understanding the early origin and evolution of the vertebrate innate and adaptive immune systems. The complement system is a biological response system with complex and precise regulatory mechanisms and plays an important role in innate and adaptive immunity. It consists of more than 30 distinct components, including intrinsic components, regulatory factors, and complement receptors. Complement system is the humoral backbone of the innate immune defense and complement-like factors have also been found in cyclostomes. Our knowledge as such in lamprey has dramatically increased in the recent years. The searching for complement components in the reissner lamprey Lethenteron reissneri genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in lamprey. This review, summarizes the key themes and recent updates on the complement system of agnathans and discusses the individual complement components of lampreys, and critically compare their functions to that of mammalian complement components. Interestingly, the adaptive immune system of agnathans differs from that of gnathostomes. Lamprey complement components also display some distinctive features, such as lampreys are characterized by the variable lymphocyte receptors (VLRs)-based alternative adaptive immunity. This review may serve as important literature for deducing the evolution of the immune system from invertebrates to vertebrates.
Collapse
Affiliation(s)
- Jiali Lu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Zhisheng Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
8
|
Sun J, Wang L, Song L. The primitive complement system in molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104565. [PMID: 36216083 DOI: 10.1016/j.dci.2022.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The complement system is an important immune defense mechanism that plays essential roles in both innate and adaptive immunity of vertebrates. Since complement components are identified in deuterostome and even primitive protostome species, the origin and evolution of complement system in invertebrates have been of great interest. Recently, research on the complement system in mollusc immunity has been increasing due to their importance in worldwide aquaculture, and their phylogenetic position. Complement components including C3, C1q domain containing protein (C1qDCP), C-type lectin (CTL), ficolin-like, mannose-binding lectin (MBL)-associated serine proteases like (MASPL), and factor B have been identified, suggesting the existence of complement system in molluscs. The lectin pathway has been outlined in molluscs, which is initiated by CTL with CCP domain and MASPL protein to generate C3 cleavage fragments. The molluscan C1qDCP exhibits the capability to bind human IgG, indicating the existence of possible C1qDCP-mediated activation pathway in molluscs. The activation of C3 regulates the expressions of immune effectors (cytokines and antibacterial peptides), mediates the haemocyte phagocytosis, and inhibits the bacterial growth. Some MACPF domain containing proteins may replace the missing terminal pathway in molluscs. This article provides a review of complement system in molluscs, including its components, activation mechanisms and functions in the immune response of molluscs.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
9
|
Zhao BR, Wang XX, Liu PP, Wang XW. Complement-related proteins in crustacean immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104577. [PMID: 36265592 DOI: 10.1016/j.dci.2022.104577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an important part of innate immune system, complement system is widely involved in defense response and immune regulation, and plays an important biological role. The complement system has been deeply studied. More than 30 complement-related molecules and three major complement-activation pathways have been identified in vertebrates. Crustacean animals do not have complement system. There are only some complement-related proteins in crustaceans which are important for host defense. In this review, we summarize the current knowledge about complement-related proteins in crustaceans, and their functions in crustacean immunity. We also make a comparation of the crustacean pro-phenoloxidase activating system and the mammalian complement system. This review provides a better understanding of the evolution and function of complement-related proteins in crustaceans.
Collapse
Affiliation(s)
- Bao-Rui Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ping-Ping Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, And State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
10
|
Duarte PL, Andrade FRN, Sousa ARDO, Andrade AL, de Vasconcelos MA, Teixeira EH, Nagano CS, Sampaio AH, Carneiro RF. A fibrinogen-related Lectin from Echinometra lucunter represents a new FReP family in Echinodermata phylum. FISH & SHELLFISH IMMUNOLOGY 2022; 131:150-159. [PMID: 36216229 DOI: 10.1016/j.fsi.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Fibrinogen-related proteins (FREPs) have been identified in several animals. They are involved in the body's defense, acting as mediators of phagocytosis. Ficolins and intelectins are some of the most studied Fibrinogen-related Domain (FReD)-containing lectins. In this work, we have isolated a singular FReD-containing lectin, which cannot be classified as ficolin or intelectin. ELL (Echinometra lucunter lectin) was isolated from coelomic plasma by affinity chromatography on xanthan gum. Primary structure was determined by tandem mass spectrometry. Moreover, antimicrobial activity of ELL was evaluated against planktonic cells and biofilm of Escherichia coli, Staphylococcus aureus and S. epidermidis. ELL showed hemagglutinating activity in Ca2+ presence, which was inhibited by glycoprotein mucin and thyroglobulin. Complete amino acid sequence consisted of 229 residues, including a FReD in the N-terminal. Searches for similarity found that ELL was very close to putative proteins from Strongylocentrotus purpuratus. ELL showed moderate similarity with uncharacterized sea stars proteins and protochordate intelectins. ELL was able to inhibit the planktonic growth of the Gram-positive bacteria and significantly reduce the biofilm formation of all bacteria tested. In conclusion, we identified a new type of FReP-containing lectin with some structural and functional conservation towards intelectins.
Collapse
Affiliation(s)
- Philippe Lima Duarte
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-970, Fortaleza, Ceará, Brazil
| | - Francisco Regivânio Nascimento Andrade
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-970, Fortaleza, Ceará, Brazil
| | - Andressa Rocha de Oliveira Sousa
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-970, Fortaleza, Ceará, Brazil
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, 60430-160, Fortaleza, Ceará, Brazil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, 60430-160, Fortaleza, Ceará, Brazil; Laboratorio de Quimica de Proteínas e Produtos Naturais - LABQUIMP, Universidade do Estado de Minas Gerais, Unidade Divinópolis, 35501-170, Divinópolis, Minas Gerais, Brazil
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, 60430-160, Fortaleza, Ceará, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-970, Fortaleza, Ceará, Brazil
| | - Alexandre Holanda Sampaio
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-970, Fortaleza, Ceará, Brazil
| | - Rômulo Farias Carneiro
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-970, Fortaleza, Ceará, Brazil.
| |
Collapse
|
11
|
Wang C, Li P, Guo L, Cao H, Mo W, Xin Y, Jv R, Zhao Y, Liu X, Ma C, Chen D, Wang H. A new potential risk: The impacts of Klebsiella pneumoniae infection on the histopathology, transcriptome and metagenome of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2022; 131:918-928. [PMID: 36356857 DOI: 10.1016/j.fsi.2022.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Klebsiella pneumoniae is a common conditional pathogen found in natural soil water sources and vegetation and can infect invertebrates, vertebrates, and plants. In this study, we isolated K. pneumoniae from the hepatopancreas of the Chinese mitten crab (Eriocheir sinensis) for the first time and then we analysed its effects of on the histopathological changes, the transcriptome of the hepatopancreas, and the gut microbiota of this crab species. The findings of this study showed that K. pneumoniae infection has led to significant structural changes in the hepatopancreas, such as the production of vacuolated tissue structures, disorganized cell arrangement, and lysis of some hepatopancreatic cells. Also, the infection caused activation of the antioxidant-related enzymes such as SOD and CAT by inducing oxidative stress. The transcriptome of the hepatopancreas identified 10,940 differentially expressed genes (DEGs) in the susceptible (SG) groups and control (CG) groups, and 8495 DEGs in the SG groups and anti-infective (AI) groups. The KEGG pathway revealed upregulated DEGs caused by K. pneumoniae infection that involved in the immune response and apoptotic functional pathways, and also downregulated DEGs involved in the digestive absorption, metabolic, and biosynthetic signaling pathways. Meanwhile, metagenics sequencing revealed that at the phylum, class, order, family, and genus levels, K. pneumoniae infection altered the composition of the gut microbiota of E. sinensis, through increasing the abundance of Prolixibacteraceae, Enterobacterales, and Roseimarinus and decreasing the abundance of Alphaproteobacteria. The flora structure has also been changed between the SG and AI groups, with the abundance of Firmicutes, Erysipelotrichales, and Erysipelotrichaceae that were significantly decreased in the SG groups than in the AI groups. But, the abundance of Acinetobacter was considerably higher than in the AI group. In summary, K. pneumoniae infection induced oxidative stress in E. sinensis, triggered changes in immune-related gene expression, and caused structural changes in the gut microbiota. This study provides data to support the analysis of bacterial infection probes in several crustacean species.
Collapse
Affiliation(s)
- Chen Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Pengfei Li
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Leifeng Guo
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Hongzhen Cao
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Wei Mo
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Yunteng Xin
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Rong Jv
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Yun Zhao
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xiaolong Liu
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Changning Ma
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Duanduan Chen
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China; School of Agricultural Science and Engineering Liaocheng University, Liaocheng, 252000, China.
| | - Hui Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
12
|
Yanagida T, Nakayama K, Sawada T, Honjo M, Murakami S, Iida T, Hirose E, Kitamura SI. Innate immunity in the edible ascidian Halocynthia roretzi developing soft tunic syndrome: Hemolymph can eliminate the causative flagellates and discriminate allogeneic hemocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 127:659-665. [PMID: 35779813 DOI: 10.1016/j.fsi.2022.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The infection of the kinetoplastid flagellate Azumiobodo hoyamushi causes soft tunic syndrome that often results in mass mortality in the aquaculture of the edible ascidian Halocynthia roretzi. In the diseased ascidian individuals, the flagellates are exclusively found in the tunic matrix that entirely cover the epidermis, and never invade into internal tissues, such as a mantle. The present study for the first time demonstrated that the ascidian blood plasma and hemolymph have an activity to agglutinate and disintegrate the flagellates, suggesting the innate immunity protects the internal tissue from the invasion of A. hoyamushi. This activity is indifferent between the healthy and the diseased individuals. Allo-specific recognition and cytotoxic reaction among ascidian hemocytes, so-called contact reaction, occur among the individuals of healthy-healthy, healthy-diseased, and diseased-diseased combination, and therefore, the hemocytes from diseased individuals still retain the allo-reactivity. Moreover, the allo-reactive combinations are not changed under the presence of the flagellates, indicating the flagellates neither suppress nor induce the effector system of the contact reaction. These results suggest that the infection of A. hoyamushi does not impair the innate immunity in the ascidian hemolymph.
Collapse
Affiliation(s)
- Tetsuya Yanagida
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Tomoo Sawada
- Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, 755-8505, Japan
| | - Miho Honjo
- Miyagi Prefecture Fisheries Technology Institute, Ishinomaki, Miyagi, 986-2135, Japan
| | - Shoko Murakami
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Takaji Iida
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, 794-8555, Japan
| | - Euichi Hirose
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, 790-8577, Japan.
| |
Collapse
|
13
|
Imamichi Y, Hikosaka K, Kawai N, Koubaku N, Hosoi M, Mizuta S, Yokoyama Y. Purification, characterization and cDNA cloning of a lectin from the brittle star Ophioplocus japonicus. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110757. [PMID: 35644319 DOI: 10.1016/j.cbpb.2022.110757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
Abstract
Lectins are carbohydrate-binding proteins that possess specific sugar-binding properties and are involved in various biological activities in different organisms. In this study, purification, characterization, and cDNA cloning of a brittle star lectin, designated as Ophioplocus japonicus agglutinin (OJA), were conducted. OJA was isolated from the brittle star O. japonicus by affinity chromatography on a Sephadex G-25 column, followed by ion-exchange chromatography on a Resource Q column. This lectin yielded distinct bands at approximately 176 or 17 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing or reducing conditions, respectively. It also exhibited Ca2+-dependent hemagglutination activity, which, however, was not affected by other metal cations, such as Ba2+, Co2+, Cu2+, Zn2+, Fe2+, Mg2+, and Mn2+. The OJA activity was strongly inhibited by glucose and xylose among the monosaccharides tested, and by bovine thyroglobulin among the glycoproteins tested. Cloning of the OJA cDNA revealed that its primary structure contained the C-type lectin domain (CTLD). The results of this study showed that OJA is an echinoderm-derived glucose/xylose-specific lectin that belongs to the C-type lectin superfamily.
Collapse
Affiliation(s)
- Yoshitaka Imamichi
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Kensuke Hikosaka
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Naoki Kawai
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Naruchika Koubaku
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Masatomi Hosoi
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Shoshi Mizuta
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Yoshihiro Yokoyama
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan.
| |
Collapse
|
14
|
Bavia L, Santiesteban-Lores LE, Carneiro MC, Prodocimo MM. Advances in the complement system of a teleost fish, Oreochromisniloticus. FISH & SHELLFISH IMMUNOLOGY 2022; 123:61-74. [PMID: 35227880 DOI: 10.1016/j.fsi.2022.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
As the earliest known vertebrate possessing a complete immune system, teleost fish played an important role in the evolution of this system. The complement system is an ancient defense mechanism present in invertebrates and vertebrates. In teleost fish the complement system is formed by more than 35 circulating proteins, or found at the cell surface. This system is activated by three pathways: alternative, classical and lectin, generating functions such as the opsonization, lysis and modulation of the innate and adaptive immune responses. The complement system is an important immunological indicator that can be used to study and monitor the effects of environmental, nutritional, and infectious processes. The Nile tilapia (Oreochromis niloticus) is a teleost fish of great economic interest due to its characteristics of easy cultivation, high growth rates, and tolerance to adverse environmental conditions. In addition, Nile tilapia is an excellent model for ecotoxicological studies, however, there are very few studies reporting the performance of the complement system in this species after exposure to environmental pollutants. The aim of this review is to gather recent studies with to address the molecular and functional characterizations of the complement system in Nile tilapia and provide new insights about this defense mechanism. Looking to the future, we believe that the complement system analysis in Tilapia can be used as a biomarker of water quality and the general health status of fish.
Collapse
Affiliation(s)
- Lorena Bavia
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Lazara Elena Santiesteban-Lores
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Milena Carvalho Carneiro
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
15
|
Sun J, Wang L, Yang W, Li Y, Jin Y, Wang L, Song L. A novel C-type lectin activates the complement cascade in the primitive oyster Crassostrea gigas. J Biol Chem 2021; 297:101352. [PMID: 34715129 PMCID: PMC8605247 DOI: 10.1016/j.jbc.2021.101352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
The ancient origin of the lectin pathway of the complement system can be traced back to protochordates (such as amphioxus and tunicates) by the presence of components such as ficolin, glucose-binding lectin, mannose-binding lectin-associated serine protease (MASP), and C3. Evidence for a more primitive origin is offered in the present study on the Pacific oyster Crassostrea gigas. C3 protein in C. gigas (CgC3) was found to be cleaved after stimulation with the bacteria Vibrio splendidus. In addition, we identified a novel C-type lectin (defined as CgCLec) with a complement control protein (CCP) domain, which recognized various pathogen-associated molecular patterns (PAMPs) and bacteria. This protein was involved in the activation of the complement system by binding CgMASPL-1 to promote cleavage of CgC3. The production of cytokines and antibacterial peptides, as well as the phagocytotic ratio of haemocytes in CgCLec-CCP-, CgMASPL-1-, or CgC3-knockdown oysters, decreased significantly after V. splendidus stimulation. Moreover, this activated CgC3 participated in perforation of bacterial envelopes and inhibiting survival of the infecting bacteria. These results collectively suggest that there existed an ancient lectin pathway in molluscs, which was activated by a complement cascade to regulate the production of immune effectors, phagocytosis, and bacterial lysis.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Liyan Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yinan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Yingnan Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China; Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China.
| |
Collapse
|
16
|
Okada M, Akimoto T, Ishihara A, Yamauchi K. Expanded collectin family in bullfrog (Rana catesbeiana): Identification and characterization of plasma collectins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104108. [PMID: 33909995 DOI: 10.1016/j.dci.2021.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
BLAST searches against databases for the bullfrog (Rana catesbeiana), using the collectin sequence previously identified in tadpoles, revealed the presence of at least 20 members of the collectin gene family. Phylogenetic analysis demonstrated that the bullfrog possesses expanded gene subfamilies encoding mannose-binding lectin (MBL) and pulmonary surfactant-associated protein D (PSAPD). Two collectins, of 20 kDa (PSAPD1) and 25 kDa (PSAPD6), were purified as a mixture from adult bullfrog plasma using affinity chromatography. These collectins were present as an oligomer of ~400 kDa in their native state, and showed Ca2+-dependent carbohydrate binding with different sugar preferences. Affinity-purified collectins showed weak E. coli agglutination and bactericidal activities, compared with those of plasma. Although both PSAPD1 and PSAPD6 genes were predominantly expressed in the liver, PSAPD1 transcripts were abundant in adults whereas PSAPD6 transcripts were abundant in tadpoles. The findings indicate that two gene subfamilies in the collectin family have diverged structurally, functionally and transcriptionally in the bullfrog. Rapid expansion of the collectin family in bullfrogs may reflect the onset of sub-functionalization of the prototype MBL gene towards tetrapod MBL and PSAPDs, and may be one means of natural adaptation in the innate immune system to various pathogens in both aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Masako Okada
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Takanori Akimoto
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Akinori Ishihara
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
17
|
Emery MA, Dimos BA, Mydlarz LD. Cnidarian Pattern Recognition Receptor Repertoires Reflect Both Phylogeny and Life History Traits. Front Immunol 2021; 12:689463. [PMID: 34248980 PMCID: PMC8260672 DOI: 10.3389/fimmu.2021.689463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Pattern recognition receptors (PRRs) are evolutionarily ancient and crucial components of innate immunity, recognizing danger-associated molecular patterns (DAMPs) and activating host defenses. Basal non-bilaterian animals such as cnidarians must rely solely on innate immunity to defend themselves from pathogens. By investigating cnidarian PRR repertoires we can gain insight into the evolution of innate immunity in these basal animals. Here we utilize the increasing amount of available genomic resources within Cnidaria to survey the PRR repertoires and downstream immune pathway completeness within 15 cnidarian species spanning two major cnidarian clades, Anthozoa and Medusozoa. Overall, we find that anthozoans possess prototypical PRRs, while medusozoans appear to lack these immune proteins. Additionally, anthozoans consistently had higher numbers of PRRs across all four classes relative to medusozoans, a trend largely driven by expansions in NOD-like receptors and C-type lectins. Symbiotic, sessile, and colonial cnidarians also have expanded PRR repertoires relative to their non-symbiotic, mobile, and solitary counterparts. Interestingly, cnidarians seem to lack key components of mammalian innate immune pathways, though similar to PRR numbers, anthozoans possess more complete immune pathways than medusozoans. Together, our data indicate that anthozoans have greater immune specificity than medusozoans, which we hypothesize to be due to life history traits common within Anthozoa. Overall, this investigation reveals important insights into the evolution of innate immune proteins within these basal animals.
Collapse
Affiliation(s)
- Madison A Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Bradford A Dimos
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Laura D Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
18
|
Acedo-Espinoza E, Lagarda-Diaz I, Cabrera R, Guzman-Partida AM, Maldonado-Arce A, Ortega-Nieblas MM, Chan-Chan L, Vázquez-Moreno L. Insights into the Structural Features, Conformational Stability and Functional Activity of the Olneya tesota PF2 Lectin. Protein Pept Lett 2021; 28:403-413. [PMID: 32798370 DOI: 10.2174/0929866527666200813204303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The O. tesota lectin PF2 is a tetrameric protein with subunits of 33 kDa that recognizes only complex carbohydrates, resistant to proteolytic enzymes and has insecticidal activity against Phaseolus beans pest. OBJECTIVE To explore PF2 lectin features at different protein structural levels and to evaluate the effect of temperature and pH on its functionality and conformational stability. METHODS PF2 lectin was purified by affinity chromatography. Its primary structure was resolved by mass spectrometry and analyzed by bioinformatic tools, including its tertiary structure homology modeling. The effect of temperature and pH on its conformational traits and stability was addressed by dynamic light scattering, circular dichroism, and intrinsic fluorescence. The hemagglutinating activity was evaluated using a suspension of peripheral blood erythrocytes. RESULTS The proposed PF2 folding comprises a high content of beta sheets. At pH 7 and 25°C, the hydrodynamic diameter (Dh) was found to be 12.3 nm which corresponds to the oligomeric native state of PF2 lectin. Dh increased under the other evaluated pH and temperature conditions, suggesting protein aggregation. At basic pH, PF2 exhibited low conformational stability. The native PF2 (pH 7) retained its full hemagglutinating activity up to 45°C and exhibited one transition state with a melting temperature of 76.8°C. CONCLUSION PF2 showed distinctive characteristics found in legume lectins. The pH influences the functionality and conformational stability of the protein. PF2 lectin displayed a relatively narrow thermostability to the loss of secondary structure and hemagglutinating activity.
Collapse
Affiliation(s)
- Edgar Acedo-Espinoza
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | | | - Rosina Cabrera
- Centro de Investigación y Desarrollo en Agrobiotecnología Alimentaria (Consortium between Centro de Investigación en Alimentación y Desarrollo and Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco), Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo 42163, Mexico
| | - Ana M Guzman-Partida
- CONACyT- Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora 83304, Mexico
| | - Amir Maldonado-Arce
- Departamento de Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - María M Ortega-Nieblas
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | | | - Luz Vázquez-Moreno
- CONACyT- Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora 83304, Mexico
| |
Collapse
|
19
|
Li J, Chen Y, Gu W, Xu F, Li H, Shan S, Sun X, Yin M, Yang G, Chen L. Characterization of a common carp intelectin gene with bacterial binding and agglutination activity. FISH & SHELLFISH IMMUNOLOGY 2021; 108:32-41. [PMID: 33249124 DOI: 10.1016/j.fsi.2020.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/27/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Intelectin (ITLN) is a type of glycan-binding lectin involved in many physiological processes and some human diseases. Here we report a common carp intelectin (cITLN). Like other orthologs, cITLN also contains a conserved fibrinogen-related domain (FReD) and a unique intelectin domain, expresses in all the tissues tested with the highest level in the hindgut, and responds to bacterial challenge in the acute phase. We also expressed cITLN in Escherichia coli (E. coli) system, and the purified recombinant cITLN could neither affect the surface of bacteria nor inhibit the growth of bacteria, but it can agglutinate both gram-positive and gram-negative bacteria in a calcium-dependent manner. The cITLN's ability of agglutination of gram-positive bacteria is stronger than that of gram-negative bacteria. This is probably because recombinant cITLN could binding peptidoglycan (PGN) with a higher degree to lipopolysaccharide (LPS). Our results of cITLN provided new insight into the function of intelectin in the intestinal mucosal immunity.
Collapse
Affiliation(s)
- Jinyi Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Yanru Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Wei Gu
- Shandong Key Laboratory of Animal Microecological Preparation, Shandong Baolai-Leelai Bio-Tech Co., Ltd, No.28th, Chuangye Street, Taishan District, Tai'an, 271000, PR China
| | - Fojiao Xu
- Ramon V. del Rosario College of Business, G/F Faculty Center, 2401 Taft Avenue, 1004, Manila, Philippines
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Xiaojie Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Miao Yin
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China
| | - Lei Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, PR China.
| |
Collapse
|
20
|
Yu S, Shen Z, Han X, Chai Y, Liu Y, Liu J, Lin X, Cui M, Zhang F, Li Q, Zhu Q. Molecular characterization and complement activating functional analysis of a new collectin(TfCol-11) from Trachidermus fasciatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103486. [PMID: 31473265 DOI: 10.1016/j.dci.2019.103486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/25/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
The complement system is a crucial component of the innate immune system that links innate and adaptive immunity. CL-11, a protein similar to Mannose-binding lectin (MBL), plays significant role in the innate immune system in mammals and fish, serving as an initiator of the lectin pathway of complement activation. In this study, a CL-11 homolog (TfCol-11) was identified in roughskin sculpin (Trachidermus fasciatus), and its expression and role in immune responses were characterized. The open reading frame of TfCol-11 is 795 bp long, encoding a 264 amino acid polypeptide. The deduced amino acid sequence of this protein is highly homologous to sequences in other teleosts, and is similar to vertebrate CL-11, containing a canonical collagen-like region, a carbohydrate recognition domain, and a neck region. Recombinant TfCol-11 purified from Escherichia coli(E.coli) was able to bind to different microbes in a Ca2+-independent manner. Meanwhile, a 993 bp-long of partial MASP cDNA with a 96 bp 5' untranslated region (UTR) was also cloned from roughskin sculpin, containing 299 amino acids and consisting of three domains (CUB-EGF-CUB). qRT-PCR indicated that TfCol-11 and MASP mRNAs were predominately co-expressed in the liver. The temporal expression of TfCol-11 and MASP were both drastically up-regulated in the liver, skin, and blood by LPS challenge. Recombinant TfCol-11 purified from E.coli BL21(DE3) was able to agglutinate some bacteria in a Ca2+-dependent manner. In addition, an in vitro pull-down experiment demonstrated that TfCol-11 was able to bind to MASP, and in vivo experiments showed that TfCol-11 was associated with increased membrane attack complex (MAC) levels. It is therefore possible that TfCol-11 may plays a role in activating the complement system and in the defense against invading microorganisms in roughskin sculpin.
Collapse
Affiliation(s)
- Shanshan Yu
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China
| | - Zilin Shen
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China
| | - Xiaodi Han
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China
| | - Yingmei Chai
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China
| | - Yingying Liu
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China
| | - Jian Liu
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China
| | - Xiaopeng Lin
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China
| | - Mengran Cui
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China
| | - Feng Zhang
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China
| | - Qiguang Li
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China
| | - Qian Zhu
- Ocean College, Shandong University (Weihai), Weihai, 264209, PR China.
| |
Collapse
|
21
|
Gorbushin AM. Derivatives of the lectin complement pathway in Lophotrochozoa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 94:35-58. [PMID: 30682446 DOI: 10.1016/j.dci.2019.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 05/16/2023]
Abstract
A plethora of non-overlapping immune molecular mechanisms in metazoans is the most puzzling issue in comparative immunobiology. No valid evolutionary retrospective on these mechanisms has been developed. In this study, we aimed to reveal the origin and evolution of the immune complement-like system in Lophotrochozoa. For this, we analyzed publicly available transcriptomes of prebilaterian and lophotrochozoan species, mapping lineage-specific molecular events on the phylogenetic tree. We found that there were no orthologs of mannose-binding lectin (MBL) and ficolins (FCN) in Lophotrochozoa but C1q-like proteins (C1qL), bearing both a collagen domain and a globular C1q domain, were omnipresent in them. This suggests that among all complement-like activators the C1qL-specific domain architecture was an evolutionarily first. Two novel protostomian MASP-Related Molecules, MReM1 and MReM2, might hypothetically compensate for the loss of a prebilaterian MASP-orthologous gene and act in complex with C1qL and C1qDC as a "proto-activator" of an ancient "proto-complement". We proposed a new model of the complement evolution predicting that numerous lineage-specific complement-like systems should have evolved from a stem "antique" molecular complex. First evolved in the common ancestor of coelomic animals, the "antique" humoral complex consisted of a TEP molecule, the common ancestor of TEP-associated proteases (C2/Bf/Сf/Lf), the common ancestor of MASP-like proteases (MASP/C1r/C1s, MReM1/MReM2) and multimeric recognition proteins (C1q-, MBL- and FCN-homologs). Further evolutionary specialization and expansion of the complex was independent and lineage-specific, examples being the mammalian complement system and the Apogastropoda complement-like complex. The latter includes an impressive array of multimeric recognition proteins, the variable immunoglobulin and lectin domain containing molecules (VIgL), homologous to C1q, MBL, FCN and other lectins. Four novel polymorphic subfamilies of VIgLs were found to be expressed in Apogastropoda: C1q-related proteins (QREP), zona pellucida-related proteins (ZREP), Scavenger Receptor Cys-Rich-related proteins (SREP) and HPA-lectin related proteins (HREP). The transcriptional response of fibrinogen-related proteins of VIgL family (LlFREP), LlQREP and LlSREP to infestation of common periwinkle, Littorina littorea, with digenean parasite Himasthla elongata correlates with that of LlMReM1, supporting the model suggested in this study.
Collapse
Affiliation(s)
- Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), Saint-Petersburg, Russia.
| |
Collapse
|
22
|
Gerdol M, Luo YJ, Satoh N, Pallavicini A. Genetic and molecular basis of the immune system in the brachiopod Lingula anatina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:7-30. [PMID: 29278680 DOI: 10.1016/j.dci.2017.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The extension of comparative immunology to non-model systems, such as mollusks and annelids, has revealed an unexpected diversity in the complement of immune receptors and effectors among evolutionary lineages. However, several lophotrochozoan phyla remain unexplored mainly due to the lack of genomic resources. The increasing accessibility of high-throughput sequencing technologies offers unique opportunities for extending genome-wide studies to non-model systems. As a result, the genome-based study of the immune system in brachiopods allows a better understanding of the alternative survival strategies developed by these immunologically neglected phyla. Here we present a detailed overview of the molecular components of the immune system identified in the genome of the brachiopod Lingula anatina. Our findings reveal conserved intracellular signaling pathways as well as unique strategies for pathogen detection and killing in brachiopods.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy; Anton Dohrn Zoological Station, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
23
|
Franchi N, Ballarin L. Immunity in Protochordates: The Tunicate Perspective. Front Immunol 2017; 8:674. [PMID: 28649250 PMCID: PMC5465252 DOI: 10.3389/fimmu.2017.00674] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Tunicates are the closest relatives of vertebrates, and their peculiar phylogenetic position explains the increasing interest toward tunicate immunobiology. They are filter-feeding organisms, and this greatly influences their defense strategies. The majority of the studies on tunicate immunity were carried out in ascidians. The tunic acts as a first barrier against pathogens and parasites. In addition, the oral siphon and the pharynx represent two major, highly vascularized, immune organs, where circulating hemocytes can sense non-self material and trigger immune responses that, usually, lead to inflammation and phagocytosis. Inflammation involves the recruitment of circulating cytotoxic, phenoloxidase (PO)-containing cells in the infected area, where they degranulate as a consequence of non-self recognition and release cytokines, complement factors, and the enzyme PO. The latter, acting on polyphenol substrata, produces cytotoxic quinones, which polymerize to melanin, and reactive oxygen species, which induce oxidative stress. Both the alternative and the lectin pathways of complement activation converge to activate C3: C3a and C3b are involved in the recruitment of hemocytes and in the opsonization of foreign materials, respectively. The interaction of circulating professional phagocytes with potentially pathogenic foreign material can be direct or mediated by opsonins, either complement dependent or complement independent. Together with cytotoxic cells, phagocytes are active in the encapsulation of large materials. Cells involved in immune responses, collectively called immunocytes, represent a large fraction of hemocytes, and the presence of a cross talk between cytotoxic cells and phagocytes, mediated by secreted humoral factors, was reported. Lectins play a pivotal role as pattern-recognition receptors and opsonizing agents. In addition, variable region-containing chitin-binding proteins, identified in the solitary ascidian Ciona intestinalis, control the settlement and colonization of bacteria in the gut.
Collapse
Affiliation(s)
- Nicola Franchi
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
24
|
Abstract
The innate immune system represents the first line of defense against pathogens and comprises both a cellular and a humoral arm. Fluid-phase pattern recognition molecules (PRMs), which include collectins, ficolins, and pentraxins, are key components of the humoral arm of innate immunity and are expressed by a variety of cells, including myeloid, epithelial, and endothelial cells, mainly in response to infectious and inflammatory conditions. Soluble PRMs share basic multifunctional properties including activation and regulation of the complement cascade, opsonization of pathogens and apoptotic cells, regulation of leukocyte extravasation, and fine-tuning of inflammation. Therefore, soluble PRMs are part of the immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on the long pentraxin PTX3.
Collapse
|
25
|
Chen Q, Bai S, Dong C. A fibrinogen-related protein identified from hepatopancreas of crayfish is a potential pattern recognition receptor. FISH & SHELLFISH IMMUNOLOGY 2016; 56:349-357. [PMID: 27417229 DOI: 10.1016/j.fsi.2016.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/30/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Fibrinogen-related protein (FREP) family is a large group of proteins containing fibrinogen-like (FBG) domain and plays multiple physiological roles in animals. However, their immune functions in crayfish are not fully explored. In the present study, a novel fibrinogen-like protein (designated as PcFBN1) was identified and characterized from hepatopancreas of red swamp crayfish Procambarus clarkii. The cDNA sequence of PcFBN1 contains an open reading frame (ORF) of 1353 bp encoding a protein of 450 amino acids. Sequence and structural analysis indicated that PcFBN1 contains an FBG domain in C-terminal and a putative signal peptide of 19 amino acids in N-terminal. Semi-quantitative PCR revealed that the main expression of PcFBN1 was observed in hepatopancreas and hemocyte. Temporal expression analysis exhibited that PcFBN1 expression could be significantly induced by heat-killed Aeromonas hydrophila. Tissue distribution and temporal change of PcFBN1 suggested that PcFBN1 may be involved in immune responses of red swamp crayfish. Recombinant PcFBN1 protein binds and agglutinates both gram-negative bacteria Escherichia coli and gram-positive bacteria Micrococcus lysodeikticus. Moreover, binding and agglutination is Ca(2+) dependent. Further analysis indicated that PcFBN1 recognizes some acetyl group-containing substance LPS and PGN. RNAi experiment revealed that PcFBN1 is required for bacterial clearance and survival from A. hydrophila infection. Reduction of PcFBN1 expression significantly decreased the survival and enhanced the number of A. hydrophila in the hemolymph. These results indicated that PcFBN1 plays an important role in the innate immunity of red swamp crayfish as a potential pattern recognition receptor.
Collapse
Affiliation(s)
- Qiming Chen
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Suhua Bai
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Chaohua Dong
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
26
|
Wang K, Pales Espinosa E, Tanguy A, Allam B. Alterations of the immune transcriptome in resistant and susceptible hard clams (Mercenaria mercenaria) in response to Quahog Parasite Unknown (QPX) and temperature. FISH & SHELLFISH IMMUNOLOGY 2016; 49:163-176. [PMID: 26690665 DOI: 10.1016/j.fsi.2015.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
Quahog Parasite Unknown (QPX) is a fatal protistan parasite that causes severe losses in the hard clam (Mercenaria mercenaria) fisheries along the northeastern coast of the US. Field and laboratory studies of QPX disease have demonstrated a major role for water temperature and M. mercenaria genetic origin in disease development. Infections are more likely to occur at cold temperatures, with clam stocks originating from southern states being more susceptible than clams from northern origin where disease is enzootic. Even though the influence of temperature on QPX infection have been examined in susceptible and resistant M. mercenaria at physiological and cellular scales, the underlying molecular mechanisms associated with host-pathogen interactions remain largely unknown. This study was carried out to explore the molecular changes in M. mercenaria in response to temperature and QPX infection on the transcriptomic level, and also to compare molecular responses between susceptible and resistant clam stocks. A M. mercenaria oligoarray (15 K Agilent) platform was produced based on our previously generated transcriptomic data and was used to compare gene expression profiles in naive and QPX-infected susceptible (Florida stock) and resistant (Massachusetts) clams maintained at temperatures favoring disease development (13 °C) or clam healing (21 °C). In addition, transcriptomic changes reflecting focal (the site of infection, mantle) and systemic (circulating hemocytes) responses were also assessed using the oligoarray platform. Results revealed significant regulation of multiple biological pathways by temperature and QPX infection, mainly associated with immune recognition, microbial killing, protein synthesis, oxidative protection and metabolism. Alterations were widely systemic with most changes in gene expression revealed in hemocytes, highlighting the role of circulating hemocytes as the first line of defense against pathogenic stress. A large number of complement-related recognition molecules with fibrinogen or C1q domains were shown to be specially induced following QPX challenge, and the expression of these molecules was significantly higher in resistant clams as compared to susceptible ones. These highly variable immune proteins may be potent candidate molecular markers for future study of M. mercenaria resistance against QPX. Beyond the specific case of clam response to QPX, this study also provides insights into the primitive complement-like system in the hard clam.
Collapse
Affiliation(s)
- Kailai Wang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Arnaud Tanguy
- UPMC Université Paris 6, Station Biologique de Roscoff, 29682, Roscoff, France
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
27
|
Hirano M. Evolution of vertebrate adaptive immunity: immune cells and tissues, and AID/APOBEC cytidine deaminases. Bioessays 2015. [PMID: 26212221 DOI: 10.1002/bies.201400178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
All surviving jawed vertebrate representatives achieve diversity in immunoglobulin-based B and T cell receptors for antigen recognition through recombinatorial rearrangement of V(D)J segments. However, the extant jawless vertebrates, lampreys and hagfish, instead generate three types of variable lymphocyte receptors (VLRs) through a template-mediated combinatorial assembly of different leucine-rich repeat (LRR) sequences. The clonally diverse VLRB receptors are expressed by B-like lymphocytes, while the VLRA and VLRC receptors are expressed by lymphocyte lineages that resemble αβ and γδ T lymphocytes, respectively. These findings suggest that three basic types of lymphocytes, one B-like and two T-like, are an essential feature of vertebrate adaptive immunity. Around 500 million years ago, a common ancestor of jawed and jawless vertebrates evolved a genetic program for the development of prototypic lymphoid cells as a foundation for an adaptive immune system. This acquisition preceded the convergent evolution of alternative types of clonally diverse receptors for antigens in all vertebrates, as reviewed in this article.
Collapse
Affiliation(s)
- Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
Li H, Zhang H, Jiang S, Wang W, Xin L, Wang H, Wang L, Song L. A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system. FISH & SHELLFISH IMMUNOLOGY 2015; 44:566-575. [PMID: 25800112 DOI: 10.1016/j.fsi.2015.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
C-type lectins (CTLs), serving as pattern recognition receptors (PRRs), are a superfamily of Ca(2+)-dependent carbohydrate-recognition proteins that participate in nonself-recognition and pathogen elimination. In the present study, a single carbohydrate-recognition domain (CRD) CTL was identified from oyster Crassostrea gigas (designated as CgCLec-2). There was only one CRD within the deduced amino acid sequence of CgCLec-2 consisting of 129 amino acid residues. A conserved EPN (Glu246-Pro247-Asn248) motif was found in Ca(2+)-binding site 2 of CgCLec-2. The CgCLec-2 mRNA could be detected in all the examined tissues at different expression levels in oysters. The mRNA expression of CgCLec-2 in hemocytes was up-regulated significantly at 6 h post Vibrio splendidus challenge. The recombinant CgCLec-2 (rCgCLec-2) could bind various Pathogen-Associated Molecular Patterns (PAMPs), including lipopolysaccharide, mannan and peptidoglycan, and displayed strong binding abilities to Vibrio anguillarum, V. splendidus and Yarrowiali polytica and week binding ability to Staphylococcus aureus. It could also enhance the phagocytic activity of oyster hemocytes to V. splendidus and exhibited growth suppression activity against gram-positive bacteria S. aureus but no effect on gram-negative bacteria V. splendidus. Furthermore, the interaction between rCgCLec-2 and rCgMASPL-1 was confirmed by GST Pull down. The results suggested that CgCLec-2 served as not only a PRR in immune recognition but also a regulatory factor in pathogen elimination, and played a potential role in the activation of complement system.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
29
|
Endo Y, Matsushita M, Fujita T. New insights into the role of ficolins in the lectin pathway of innate immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:49-110. [PMID: 25805122 DOI: 10.1016/bs.ircmb.2015.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the innate immune system, a variety of recognition molecules provide the first-line host defense to prevent infection and maintain endogenous homeostasis. Ficolin is a soluble recognition molecule, which senses pathogen-associated molecular patterns on microbes and aberrant sugar structures on self-cells. It consists of a collagen-like stalk and a globular fibrinogen-like domain, the latter binding to carbohydrates such as N-acetylglucosamine. Ficolins have been widely identified in animals from higher invertebrates to mammals. In mammals, ficolins form complexes with mannose-binding lectin-associated serine proteases (MASPs), and ficolin-MASP complexes trigger complement activation via the lectin pathway. Once activated, complement mediates many immune responses including opsonization, phagocytosis, and cytokine production. Although the precise function of each ficolin is still under investigation, accumulating information suggests that ficolins have a crucial role in host defense by recognizing a variety of microorganisms and interacting with effector proteins.
Collapse
Affiliation(s)
- Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Kanagawa, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan; Fukushima General Hygiene Institute, Fukushima, Japan
| |
Collapse
|
30
|
Human lectins and their roles in viral infections. Molecules 2015; 20:2229-71. [PMID: 25642836 PMCID: PMC6272597 DOI: 10.3390/molecules20022229] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of virus proteins is an important component of the immune response to viral pathogens. A component of this immune recognition is the family of lectins; pattern recognition receptors (PRRs) that recognise viral pathogen-associated molecular patterns (PAMPs) including viral glycoproteins. In this review we discuss the contribution of soluble and membrane-associated PRRs to immunity against virus pathogens, and the potential role of these molecules in facilitating virus replication. These processes are illustrated with examples of viruses including human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Ebola virus (EBOV). We focus on the structure, function and genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based antiviral therapies is also discussed.
Collapse
|
31
|
Yamaguchi T, Takamune K, Kondo M, Takahashi Y, Kato-Unoki Y, Nakao M, Sano N, Fujii T. Hagfish C1q: its unique binding property. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:47-53. [PMID: 24201131 DOI: 10.1016/j.dci.2013.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 10/02/2013] [Accepted: 10/25/2013] [Indexed: 06/02/2023]
Abstract
Hagfish C1q (HaC1q) was identified and characterized as a pattern-recognition molecule (PRM) in the hagfish complement system. The serum from hagfish, Eptatretus burgeri, was applied to a GlcNAc-agarose column and eluted sequentially with GlcNAc and EDTA. Four (31, 27, 26, and 19 kDa) and one (26 kDa) proteins were detected as bound molecules in the GlcNAc- and the EDTA-eluates, respectively. Among these, the 26 kDa protein from the EDTA eluate was found to be a homologue of mammalian C1q through cDNA analysis. HaC1q had an ability to bind to various microbes in a Ca(2+)-dependent manner and its target ligands on the microbes were lipopolysaccharide, lipoteichoic acid, and peptidoglycan. The binding of HaC1q to GlcNAc-agarose was not inhibited by an excess amount of monosaccharide such as GlcNAc. While HaC1q bound to Sepharose 6B with a matrix of GlcNAc-agarose (polymer of agarobiose), it did not bind to Sepharose 4B that contained lower concentration of agarobiose than Sepharose 6B. Therefore, the target of HaC1q on GlcNAc-agarose was concluded to be agarobiose and high density of the target moiety seemed to be required for the stable binding. This finding was in accordance with the known behavior of other lectins involved in the complement system. We have concluded that HaC1q recognizes agarobiose-like structures present on the surface of microbes and acts as a pattern-recognition molecule in the process for elimination of invading microbes.
Collapse
Affiliation(s)
- Tomokazu Yamaguchi
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kazufumi Takamune
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Yukinori Takahashi
- Department of Applied Aquabiology, National Fisheries University, Shimonoseki, Yamaguchi 759-6595, Japan
| | - Yoko Kato-Unoki
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Miki Nakao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Naomi Sano
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Ujina-Higashi, Hiroshima 734-8558, Japan
| | - Tamotsu Fujii
- Department of Health Sciences, Faculty of Human Culture and Science, Prefectural University of Hiroshima, Ujina-Higashi, Hiroshima 734-8558, Japan
| |
Collapse
|
32
|
Affiliation(s)
- Shaochun Yuan
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Xin Tao
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
| | - Anlong Xu
- State Key Laboratory of Biocontrol, National Engineering Center of South China Sea for Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China; , , , ,
- Center of Scientific Research, Beijing University of Chinese Medicine, Beijing 100029, People’s Republic of China
| |
Collapse
|
33
|
Doolittle RF, McNamara K, Lin K. Correlating structure and function during the evolution of fibrinogen-related domains. Protein Sci 2012; 21:1808-23. [PMID: 23076991 PMCID: PMC3575912 DOI: 10.1002/pro.2177] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/29/2022]
Abstract
Fibrinogen-related domains (FReDs) are found in a variety of animal proteins with widely different functions, ranging from non-self recognition to clot formation. All appear to have a common surface where binding of one sort or other occurs. An examination of 19 completed animal genomes--including a sponge and sea anemone, six protostomes, and 11 deuterostomes--has allowed phylogenies to be constructed that show where various types of FReP (proteins containing FReDs) first made their appearance. Comparisons of sequences and structures also reveal particular features that correlate with function, including the influence of neighbor-domains. A particular set of insertions in the carboxyl-terminal subdomain was involved in the transition from structures known to bind sugars to those known to bind amino-terminal peptides. Perhaps not unexpectedly, FReDs with different functions have changed at different rates, with ficolins by far the fastest changing group. Significantly, the greatest amount of change in ficolin FReDs occurs in the third subdomain ("P domain"), the very opposite of the situation in most other vertebrate FReDs. The unbalanced style of change was also observed in FReDs from non-chordates, many of which have been implicated in innate immunity.
Collapse
Affiliation(s)
- Russell F Doolittle
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, USA.
| | | | | |
Collapse
|
34
|
Moura RDM, Aragão KS, de Melo AA, Carneiro RF, Osório CBH, Luz PB, de Queiroz AFS, Dos Santos EA, de Alencar NMN, Cavada BS. Holothuria grisea agglutinin (HGA): the first invertebrate lectin with anti-inflammatory effects. Fundam Clin Pharmacol 2012; 27:656-68. [PMID: 22943744 DOI: 10.1111/j.1472-8206.2012.01073.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/30/2012] [Accepted: 06/22/2012] [Indexed: 12/16/2022]
Abstract
Holothuria grisea agglutinin (HGA) is a dimeric lectin of molecular mass 228 kDa by gel filtration with monomers of 105 kDa by SDS-PAGE. The lectin is highly thermostable as it retains full activity for 1 h at 70 °C. Unlike other lectins purified from marine invertebrates, the hemagglutination activity of HGA does not require any divalent metal ions. The affinity analysis of HGA showed that only mucin was able to inhibit the hemagglutinating activity. HGA administered intravenously was tested in classical models of nociception and inflammation. HGA was able to inhibit neutrophil migration into the peritoneal cavity induced by carrageenan. This inhibitory effect was 68% at a dose of 1 mg/kg. In acetic acid-induced writhing tests, a significant antinociceptive effect was observed by treatment with HGA (0.1; 1 or 10 mg/kg) reducing constrictions by 27, 90 and 84%, respectively. In formalin tests, HGA at a dose of 10 mg/kg showed antinociceptive effect only in the inflammatory phase (phase 2). Nevertheless, in hot-plate tests, HGA did not show any nociceptive effect. In rota-rod and open-field tests, HGA did not alter the animals' behavior. The treatment with HGA 10 mg/kg presented diminished myeloperoxidase activity activity (81.6% inhibition) and raised the circulating levels of NO by 50.4% when compared with the carrageenan group. HGA has demonstrated the ability to modulate the inflammatory response in models of inflammation in vivo. HGA is the first marine invertebrate lectin that showed an anti-inflammatory effect. This finding opens a new perspective on the potential of lectins from the marine environment.
Collapse
Affiliation(s)
- Raniere da M Moura
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Campus do Pici, s/n, Bloco 907, Fortaleza, CE, 60451-970, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Puill-Stephan E, Seneca FO, Miller DJ, van Oppen MJH, Willis BL. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora. PLoS One 2012; 7:e39099. [PMID: 22792163 PMCID: PMC3391189 DOI: 10.1371/journal.pone.0039099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/18/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. METHODOLOGY/PRINCIPAL FINDINGS Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. CONCLUSIONS/SIGNIFICANCE Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further clarify emerging evidence of a complex innate immunity system in corals.
Collapse
Affiliation(s)
- Eneour Puill-Stephan
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Laboratoire Optimisation des Régulations Physiologiques, Université de Bretagne Occidentale, Brest, France
| | - François O. Seneca
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Biological Sciences, Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - David J. Miller
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Queensland, Australia
| | - Madeleine J. H. van Oppen
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Bette L. Willis
- AIMS@JCU, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
36
|
Zhang Z, Shi X, Qu M, Ding S. Characterization and bacterial-binding activity of a novel C-type lectin from the red-spotted grouper, Epinephelus akaara. GENETICS AND MOLECULAR RESEARCH 2012; 11:2958-71. [DOI: 10.4238/2012.may.11.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Ogawa T, Watanabe M, Naganuma T, Muramoto K. Diversified carbohydrate-binding lectins from marine resources. JOURNAL OF AMINO ACIDS 2011; 2011:838914. [PMID: 22312473 PMCID: PMC3269628 DOI: 10.4061/2011/838914] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/13/2011] [Indexed: 12/20/2022]
Abstract
Marine bioresources produce a great variety of specific and potent bioactive molecules including natural organic compounds such as fatty acids, polysaccharides, polyether, peptides, proteins, and enzymes. Lectins are also one of the promising candidates for useful therapeutic agents because they can recognize the specific carbohydrate structures such as proteoglycans, glycoproteins, and glycolipids, resulting in the regulation of various cells via glycoconjugates and their physiological and pathological phenomenon through the host-pathogen interactions and cell-cell communications. Here, we review the multiple lectins from marine resources including fishes and sea invertebrate in terms of their structure-activity relationships and molecular evolution. Especially, we focus on the unique structural properties and molecular evolution of C-type lectins, galectin, F-type lectin, and rhamnose-binding lectin families.
Collapse
Affiliation(s)
- Tomohisa Ogawa
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
38
|
Huang H, Huang S, Yu Y, Yuan S, Li R, Wang X, Zhao H, Yu Y, Li J, Yang M, Xu L, Chen S, Xu A. Functional characterization of a ficolin-mediated complement pathway in amphioxus. J Biol Chem 2011; 286:36739-36748. [PMID: 21832079 PMCID: PMC3196118 DOI: 10.1074/jbc.m111.245944] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/20/2011] [Indexed: 12/28/2022] Open
Abstract
The ficolin-mediated complement pathway plays an important role in vertebrate immunity, but it is not clear whether this pathway exists in invertebrates. Here we identified homologs of ficolin pathway components from the cephalochordate amphioxus and investigated whether they had been co-opted into a functional ficolin pathway. Four of these homologs, ficolin FCN1, serine protease MASP1 and MASP3, and complement component C3, were highly expressed in mucosal tissues and gonads, and were significantly up-regulated following bacterial infection. Recombinant FCN1 could induce hemagglutination, discriminate among sugar components, and specifically recognize and aggregate several bacteria (especially gram-positive strains) without showing bactericidal activity. This suggested that FCN1 is a dedicated pattern-recognition receptor. Recombinant serine protease MASP1/3 formed complexes with recombinant FCN1 and facilitated the activation of native C3 protein in amphioxus humoral fluid, in which C3 acted as an immune effector. We conclude that amphioxus have developed a functional ficolin-complement pathway. Because ficolin pathway components have not been reported in non-chordate species, our findings supported the idea that this pathway may represent a chordate-specific innovation in the evolution of the complement system.
Collapse
Affiliation(s)
- Huiqing Huang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Shengfeng Huang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Yingcai Yu
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Shaochun Yuan
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Rui Li
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Xin Wang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Hongchen Zhao
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Yanhong Yu
- the Institute of Reproductive Immunology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jun Li
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Manyi Yang
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Liqun Xu
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Shangwu Chen
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| | - Anlong Xu
- From the Department of Biochemistry, College of Life Sciences, State Key Laboratory of Biocontrol, National Engineering Research Center of South China Sea Marine Biotechnology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China and
| |
Collapse
|
39
|
Cha IS, Castillo CSD, Nho SW, Hikima JI, Aoki T, Jung TS. Innate immune response in the hemolymph of an ascidian, Halocynthia roretzi, showing soft tunic syndrome, using label-free quantitative proteomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:809-816. [PMID: 21256860 DOI: 10.1016/j.dci.2011.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/16/2011] [Accepted: 01/16/2011] [Indexed: 05/30/2023]
Abstract
Soft tunic syndrome of Halocynthia roretzi manifests as soft, weak, and rupturable tunics, causing mass mortality. Utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS), innate immune response was established by comparing hemolymph protein profiles of ascidians with healthy or softened tunics. Of 100 proteins in each individual ascidian, 59 proteins from healthy and 56 proteins from diseased ascidians were functionally classified. Proteins found only in diseased individuals included trypsin inhibitor and Hr-29, and with high exponentially modified protein abundance index (emPAI) values. From 41 proteins identified to be common to both healthy and diseased ascidians, 15 were associated with innate immune response. Ficolin 3, a component of the lectin-complement system, was significantly decreased in diseased ascidians, but a cell surface protein, type II transmembrane serine protease-1 (TTSP), was considerably elevated. These results suggest that trypsin inhibitor, ficolin 3, and TTSP are probably involved in the innate immune response related to this tunic disease. Beside, Hr-29 could be suggested as a biomarker for soft tunic syndrome.
Collapse
Affiliation(s)
- In Seok Cha
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Gajwa-Dong, Jinju, Gyeongnam, Republic of Korea
| | | | | | | | | | | |
Collapse
|
40
|
Huang S, Wang X, Yan Q, Guo L, Yuan S, Huang G, Huang H, Li J, Dong M, Chen S, Xu A. The Evolution and Regulation of the Mucosal Immune Complexity in the Basal Chordate Amphioxus. THE JOURNAL OF IMMUNOLOGY 2011; 186:2042-55. [DOI: 10.4049/jimmunol.1001824] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Kvennefors ECE, Leggat W, Kerr CC, Ainsworth TD, Hoegh-Guldberg O, Barnes AC. Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1219-1229. [PMID: 20600272 DOI: 10.1016/j.dci.2010.06.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
Reef-building corals are representatives of one of the earliest diverging metazoan lineages and are experiencing increases in bleaching events (breakdown of the coral-Symbiodinium symbiosis) and disease outbreaks. The present study investigates the roles of two pattern recognition proteins, the mannose binding lectin Millectin and a complement factor C3-like protein (C3-Am), in the coral Acropora millepora. The results indicate that the innate immune functions of these molecules are conserved and arose early in evolution. C3-Am is expressed in response to injury, and may function as an opsonin. In contrast, Millectin expression is up-regulated in response to lipopolysaccharide and peptidoglycan. These observations, coupled with localization of Millectin in nematocysts in epidermal tissue, and reported binding of pathogens, are consistent with a key role for the lectin in innate immunity. Furthermore, Millectin was consistently detected binding to the symbiont Symbiodinium in vivo, indicating that the Millectin function of recognition and binding of non-self-entities may have been co-opted from an ancient innate immune system into a role in symbiosis.
Collapse
|
42
|
Sasaki T, Hiraoka T, Kobayashi M. Hemolytic activity is mediated by the endogenous lectin in the mosquito hemolymph serum. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1032-1039. [PMID: 20193690 DOI: 10.1016/j.jinsphys.2010.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 05/28/2023]
Abstract
Although cytolysis of invading organisms is an innate form of immunity used by invertebrates, so far the underlying mechanism remains less explored. The pupal hemolymph of the mosquito Armigeres subalbatus induces an activity that causes hemolysis of human red blood cells (HRBC). This hemolytic activity was inhibited by sialic acid (N-acetylneuraminic acid) and serine protease inhibitors. We purified the sialic acid-specific lectin(s) from the pupal hemolymph using formaldehyde-fixed HRBC and determined the sequence of the amino-terminal 19 amino acid residues. A polyclonal antibody produced against this N-terminal peptide clearly inhibited the hemolytic activity of the hemolymph in vitro, thus suggesting that the hemolysis of HRBC is caused by the lectin present in the mosquito hemolymph. We suggest that mosquitoes possess a cytolysis system.
Collapse
Affiliation(s)
- Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
| | | | | |
Collapse
|
43
|
Cerenius L, Kawabata SI, Lee BL, Nonaka M, Söderhäll K. Proteolytic cascades and their involvement in invertebrate immunity. Trends Biochem Sci 2010; 35:575-83. [PMID: 20541942 DOI: 10.1016/j.tibs.2010.04.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 01/04/2023]
Abstract
Bacteria and other potential pathogens are cleared rapidly from the body fluids of invertebrates by the immediate response of the innate immune system. Proteolytic cascades, following their initiation by pattern recognition proteins, control several such reactions, notably coagulation, melanisation, activation of the Toll receptor and complement-like reactions. However, there is considerable variation among invertebrates and these cascades, although widespread, are not present in all phyla. In recent years, significant progress has been made in identifying and characterizing these cascades in insects. Notably, recent work has identified several connections and shared principles among the different pathways, suggesting that cross-talk between them may be common.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
44
|
Purification, characterization and cDNA cloning of a novel lectin from the jellyfish Nemopilema nomurai. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:12-8. [DOI: 10.1016/j.cbpb.2010.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 11/19/2022]
|
45
|
Nonaka M, Satake H. Urochordate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 708:302-10. [DOI: 10.1007/978-1-4419-8059-5_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Skjoedt MO, Palarasah Y, Rasmussen K, Vitved L, Salomonsen J, Kliem A, Hansen S, Koch C, Skjodt K. Two mannose-binding lectin homologues and an MBL-associated serine protease are expressed in the gut epithelia of the urochordate species Ciona intestinalis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:59-68. [PMID: 19699760 DOI: 10.1016/j.dci.2009.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 05/28/2023]
Abstract
The lectin complement pathway has important functions in vertebrate host defence and accumulating evidence of primordial complement components trace its emergence to invertebrate phyla. We introduce two putative mannose-binding lectin homologues (CioMBLs) from the urochordate species Ciona intestinalis. The CioMBLs display similarities with vertebrate MBLs and comprise a collagen-like region, alpha-helical coiled-coils and a carbohydrate recognition domain (CRD) with conserved residues involved in calcium and carbohydrate binding. Structural analysis revealed an oligomerization through interchain disulphide bridges between N-terminal cysteine residues and cysteines located between the neck region and the CRD. RT-PCR showed a tissue specific expression of CioMBL in the gut and by immunohistochemistry analysis we also demonstrated that CioMBL co-localize with an MBL-associated serine protease in the epithelia cells lining the stomach and intestine. In conclusion we present two urochordate MBLs and identify an associated serine protease, which support the concept of an evolutionary ancient origin of the lectin complement pathway.
Collapse
Affiliation(s)
- Mikkel-Ole Skjoedt
- Research Unit of Immunology and Microbiology, Institute of Medical Biology, Faculty of Health Science, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bowdish DME, Gordon S. Conserved domains of the class A scavenger receptors: evolution and function. Immunol Rev 2009; 227:19-31. [PMID: 19120472 DOI: 10.1111/j.1600-065x.2008.00728.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The class A scavenger receptors are phagocytic pattern recognition receptors that are well represented in vertebrate genomes. The high level of conservation among vertebrates implies that this is an evolutionarily conserved family of receptors and indicates the presence of a common ancestral gene. The identity of this ancestral gene is not clear, as it appears that many of the domains of the scavenger receptors (e.g. collagenous, scavenger receptor cysteine rich) originated early in evolutionary history and are found in many combinations, often in genes of unknown function. These early receptors may function in cell-cell recognition, aggregation, or lipid recognition, and their involvement in pattern recognition, phagocytosis, and homeostasis may have been adaptations of such conserved patterns. Herein, we reclassify the class A scavenger receptors based on recent discoveries of new members of this family, describe the evolution of the various domains of the class A scavenger receptors, and discuss the appearance and function of these domains through evolutionary history.
Collapse
Affiliation(s)
- Dawn M E Bowdish
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
48
|
Bonura A, Vizzini A, Salerno G, Parrinello N, Longo V, Colombo P. Isolation and expression of a novel MBL-like collectin cDNA enhanced by LPS injection in the body wall of the ascidian Ciona intestinalis. Mol Immunol 2009; 46:2389-94. [PMID: 19481807 DOI: 10.1016/j.molimm.2009.04.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/18/2009] [Accepted: 04/29/2009] [Indexed: 11/28/2022]
Abstract
Collectins are a family of calcium-dependent lectins that are characterized by their collagen-like domains. Considerable interest has been focused on this class of proteins because of their ability to interact with components of the complement system activating a cascade of events responsible for the activation of the innate immune system. A differential screening between LPS-challenged and naïve Ciona intestinalis has been performed allowing the isolation of a full length cDNA encoding for a 221 AA protein. In silico analysis has shown that this polypeptide displays protein domains with similarities to mannose-binding lectins. A phylogenetic analysis suggested that C. intestinalis MBL has evolved early as a prototype of vertebrate MBL. Real-time PCR assay demonstrated that this gene is strongly activated after LPS injection in the tunica. In situ hybridization performed in LPS-induced animals has shown that this gene is expressed in granular amoebocytes and large granules hemocytes in the inflamed body wall tissue. Finally, an antimicrobial activity of the C. intestinalis MBL has been demonstrated.
Collapse
Affiliation(s)
- Angela Bonura
- Istituto di Biomedicina ed Immunologia Molecolare Alberto Monroy del Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Jiang H, Cai YM, Chen LQ, Zhang XW, Hu SN, Wang Q. Functional annotation and analysis of expressed sequence tags from the hepatopancreas of mitten crab (Eriocheir sinensis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:317-326. [PMID: 18815839 DOI: 10.1007/s10126-008-9146-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 09/05/2008] [Indexed: 05/26/2023]
Abstract
Due to its popularity as a traditional food, intensive harvesting of the mitten crab (Eriocheir sinensis) is common and has lead to an increase in disease incidence, resulting in catastrophic losses to crab aquaculture. The hepatopancreas of E. sinensis is not only an important digestive organ but also an indispensable immune organ. We constructed a nonnormalized cDNA library from the hepatopancreas of E. sinensis and acquired 3,297 high-quality expressed sequence tags representing 1,178 unigenes. More than half of these unigenes were novel genes for this species; the remaining had homologs in public databases, which is of great importance for future functional research. We also investigated the association of these genes with immune processes for insight into one of the main functions of the hepatopancreas besides metabolism. Despite the relatively low sampling scalar of our cDNA library, we were able to demonstrate several important properties of the hepatopancreatic transcriptome and identified numerous genes that were closely associated with immune responses. These results might serve as the basis for an in-depth genomics study of E. sinensis, including transcriptome analysis, physical mapping, and whole genome sequencing.
Collapse
Affiliation(s)
- Hui Jiang
- School of Life Science, East China Normal University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
50
|
Haczku A. Protective role of the lung collectins surfactant protein A and surfactant protein D in airway inflammation. J Allergy Clin Immunol 2008; 122:861-79; quiz 880-1. [PMID: 19000577 DOI: 10.1016/j.jaci.2008.10.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 10/13/2008] [Accepted: 10/13/2008] [Indexed: 12/30/2022]
Abstract
The acute inflammatory airway response is characterized by a time-dependent onset followed by active resolution. Emerging evidence suggests that epithelial cells of the proximal and distal air spaces release host defense mediators that can facilitate both the initiation and the resolution part of inflammatory airway changes. These molecules, also known as the hydrophilic surfactant proteins (surfactant protein [SP]-A and SP-D) belong to the class of collagenous lectins (collectins). The collectins are a small family of soluble pattern recognition receptors containing collagenous regions and C-type lectin domains. SP-A and SP-D are most abundant in the lung. Because of their structural uniqueness, specific localization, and functional versatility, lung collectins are important players of the pulmonary immune responses. Recent studies in our laboratory and others indicated significant associations of lung collectin levels with acute and chronic airway inflammation in both animal models and patients, suggesting the usefulness of these molecules as disease biomarkers. Research on wild-type and mutant recombinant molecules in vivo and in vitro showed that SP-A and SP-D bind carbohydrates, lipids, and nucleic acids with a broad-spectrum specificity and initiate phagocytosis of inhaled pathogens as well as apoptotic cells. Investigations on gene-deficient and conditional overexpresser mice indicated that lung collectins also directly modulate innate immune cell function and T-cell-dependent inflammatory events. Thus, these molecules have a unique, dual-function capacity to induce pathogen elimination and control proinflammatory mechanisms, suggesting a potential suitability for therapeutic prevention and treatment of chronic airway inflammation. This article reviews evidence supporting that the lung collectins play an immune-protective role and are essential for maintenance of the immunologic homeostasis in the lung.
Collapse
Affiliation(s)
- Angela Haczku
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|