1
|
Ababneh O, Nishizaki D, Kato S, Kurzrock R. Tumor necrosis factor superfamily signaling: life and death in cancer. Cancer Metastasis Rev 2024:10.1007/s10555-024-10206-6. [PMID: 39363128 DOI: 10.1007/s10555-024-10206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Immune checkpoint inhibitors have shaped the landscape of cancer treatment. However, many patients either do not respond or suffer from later progression. Numerous proteins can control immune system activity, including multiple tumor necrosis factor (TNF) superfamily (TNFSF) and TNF receptor superfamily (TNFRSF) members; these proteins play a complex role in regulating cell survival and death, cellular differentiation, and immune system activity. Notably, TNFSF/TNFRSF molecules may display either pro-tumoral or anti-tumoral activity, or even both, depending on tumor type. Therefore, TNF is a prototype of an enigmatic two-faced mediator in oncogenesis. To date, multiple anti-TNF agents have been approved and/or included in guidelines for treating autoimmune disorders and immune-related toxicities after immune checkpoint blockade for cancer. A confirmed role for the TNFSF/TNFRSF members in treating cancer has proven more elusive. In this review, we highlight the cancer-relevant TNFSF/TNFRSF family members, focusing on the death domain-containing and co-stimulation members and their signaling pathways, as well as their complicated role in the life and death of cancer cells.
Collapse
Affiliation(s)
- Obada Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Daisuke Nishizaki
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Shumei Kato
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, Department of Medicine, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Razelle Kurzrock
- WIN Consortium, Paris, France.
- Department of Medicine, MCW Cancer Center, Milwaukee, WI, USA.
- Department of Oncology, University of Nebraska, Omaha, NE, USA.
| |
Collapse
|
2
|
Pe KCS, Jewmoung S, Rad SAH, Chantarat N, Chanswangphuwana C, Tashiro H, Suppipat K, Tawinwung S. Optimization of anti-TIM3 chimeric antigen receptor with CD8α spacer and TNFR-based costimulation for enhanced efficacy in AML therapy. Biomed Pharmacother 2024; 179:117388. [PMID: 39243430 DOI: 10.1016/j.biopha.2024.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
CAR T cell therapy for AML remains limited due to the lack of a proper target without on-target off-tumor toxicity. TIM3 is a promising target due to its high expression on AML cells and absence in most normal hematopoietic cells. Previous reports have shown that each CAR component impacts CAR functionality. Here, we optimized TIM-3 targeting CAR T cells for AML therapy. We generated CARs targeting TIM3 with two different non-signaling domains: an IgG2-CH3 spacer with CD28 transmembrane domain (CH3/CD28) and a CD8α spacer with CD8α transmembrane domain (CD8/CD8), and evaluated their characteristics and function. Incorporating the non-signaling CH3/CD28 domain resulted in unstable CAR expression in anti-TIM3 CAR T cells, leading to lower surface CAR expression over time and reduced cytotoxic function compared to anti-TIM3 CARs with the CD8/CD8 domain. Both types of anti-TIM3 CAR T cells transiently exhibited fratricide, which subsided overtime, and both CAR T cells achieved substantial T cell expansion. To further optimize the design, we explored the effects of different costimulatory domains. Compared with CD28 costimulation, 4-1BB and CD27 combined with a CD8/CD8 non-signaling domain showed higher cytokine secretion, superior antitumor activity, and enhanced T-cell persistence after repeated antigen exposure. These findings emphasize the impact of the optimal design of CAR constructs that provide efficient function. In the context of anti-TIM3 CAR T cells, using a CD8α spacer and transmembrane domain with TNFR-based costimulation is a promising CAR design to improve anti-TIM3 CAR T cell function for AML therapy.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Animals
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Immunotherapy, Adoptive/methods
- CD8 Antigens/metabolism
- CD8 Antigens/immunology
- Cell Line, Tumor
- Mice
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Kristine Cate S Pe
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirirut Jewmoung
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | | - Natthida Chantarat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Chantiya Chanswangphuwana
- Division of Hematology, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Haruko Tashiro
- Department of Hematology/Oncology, Teikyo University School of Medicine, Tokyo, Japan
| | - Koramit Suppipat
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Department of Research Affair, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand; Thailand Hub of Talents in Cancer Immunotherapy (TTCI), Bangkok, Thailand.
| |
Collapse
|
3
|
Thorman AW, Reigle J, Chutipongtanate S, Yang J, Shamsaei B, Pilarczyk M, Fazel-Najafabadi M, Adamczak R, Kouril M, Bhatnagar S, Hummel S, Niu W, Morrow AL, Czyzyk-Krzeska MF, McCullumsmith R, Seibel W, Nassar N, Zheng Y, Hildeman DA, Medvedovic M, Herr AB, Meller J. Accelerating drug discovery and repurposing by combining transcriptional signature connectivity with docking. SCIENCE ADVANCES 2024; 10:eadj3010. [PMID: 39213358 PMCID: PMC11364105 DOI: 10.1126/sciadv.adj3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
We present an in silico approach for drug discovery, dubbed connectivity enhanced structure activity relationship (ceSAR). Building on the landmark LINCS library of transcriptional signatures of drug-like molecules and gene knockdowns, ceSAR combines cheminformatic techniques with signature concordance analysis to connect small molecules and their targets and further assess their biophysical compatibility using molecular docking. Candidate compounds are first ranked in a target structure-independent manner, using chemical similarity to LINCS analogs that exhibit transcriptomic concordance with a target gene knockdown. Top candidates are subsequently rescored using docking simulations and machine learning-based consensus of the two approaches. Using extensive benchmarking, we show that ceSAR greatly reduces false-positive rates, while cutting run times by multiple orders of magnitude and further democratizing drug discovery pipelines. We further demonstrate the utility of ceSAR by identifying and experimentally validating inhibitors of BCL2A1, an important antiapoptotic target in melanoma and preterm birth-associated inflammation.
Collapse
Affiliation(s)
- Alexander W. Thorman
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - James Reigle
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Somchai Chutipongtanate
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Juechen Yang
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Behrouz Shamsaei
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Marcin Pilarczyk
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Mehdi Fazel-Najafabadi
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Rafal Adamczak
- Department of Informatics, Faculty of Physics, Astronomy an Informatics, Nicolaus Copernicus University, Toruń, Poland
| | - Michal Kouril
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Surbhi Bhatnagar
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Sarah Hummel
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Wen Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Ardythe L. Morrow
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Veterans Affairs, Cincinnati Veteran Affairs Medical Center, Cincinnati, OH, USA
| | | | - William Seibel
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nicolas Nassar
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Yi Zheng
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - David A. Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew B. Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jarek Meller
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Informatics, Faculty of Physics, Astronomy an Informatics, Nicolaus Copernicus University, Toruń, Poland
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
4
|
Lima CAC, Martins MR, Dos Santos RL, da Silva LM, Da Silva JPA, Forones NM, Torres LC. Soluble levels of 4-1BB (CD137) and OX40 (CD134) are associated with cancer progression in gastric adenocarcinoma. J Surg Oncol 2024. [PMID: 38853545 DOI: 10.1002/jso.27726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND AND OBJECTIVES Previous studies have demonstrated that soluble forms of T-cell costimulatory molecules 4-1BB (s4-1BB) and OX40 (sOX40) interact with immune cells and may constitute a mechanism of immune evasion by tumors in various cancers. The role of the soluble forms of 4-1BB and OX40 in GC remains unclear. We aimed to examine the association between serum levels of s4-1BB and sOX40 and tumor progression in patients with GC. METHODS Between 2017 and 2018, a cross-sectional study was performed with serum samples of 83 GC patients and 20 healthy controls. RESULTS Patients with stage IV metastatic gastric cancer had significantly higher levels of soluble OX40 in comparison with stage III patients with lymph nodes metastasis (p = 0.0003) and stages I and II patients (p = 0.005), whereas the opposite was found for soluble 4-1BB levels, with lower levels being found in advanced stage III (p = 0.003) compared with initial stages I/II. CONCLUSIONS The sOX40 and s4-1BB-mediated T cell interactions may be involved in antitumor immune responses in GC, possibly favoring tumor escape and progression. Serum levels of sOX40 and s4-1BB are associated with staging in GC and may constitute biomarkers for prognosis, as well as potential targets for immunotherapy.
Collapse
Affiliation(s)
- Cecilia Araújo Carneiro Lima
- Translational Research Laboratory Prof CA Hart (IMIP), Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Hospital de Câncer de Pernambuco, Recife, Brazil
- Postgraduate program in translational medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Real Instituto de Cirurgia Oncológica (RICO-RHP), Recife, Brazil
| | - Mário Rino Martins
- Translational Research Laboratory Prof CA Hart (IMIP), Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Hospital de Câncer de Pernambuco, Recife, Brazil
- Real Instituto de Cirurgia Oncológica (RICO-RHP), Recife, Brazil
| | - Rogerio Luiz Dos Santos
- Translational Research Laboratory Prof CA Hart (IMIP), Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Hospital de Câncer de Pernambuco, Recife, Brazil
- Real Instituto de Cirurgia Oncológica (RICO-RHP), Recife, Brazil
| | - Luciana Mata da Silva
- Translational Research Laboratory Prof CA Hart (IMIP), Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Hospital de Câncer de Pernambuco, Recife, Brazil
- Postgraduate program in translational medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jeronimo Paulo Assis Da Silva
- Translational Research Laboratory Prof CA Hart (IMIP), Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Hospital de Câncer de Pernambuco, Recife, Brazil
- Postgraduate program in translational medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Real Instituto de Cirurgia Oncológica (RICO-RHP), Recife, Brazil
| | - Nora Manoukian Forones
- Department of Digestive Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Leuridan Cavalcante Torres
- Translational Research Laboratory Prof CA Hart (IMIP), Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, Brazil
- Hospital de Câncer de Pernambuco, Recife, Brazil
- Postgraduate program in translational medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
5
|
Archer S, Brailey PM, Song M, Bartlett PD, Figueiredo I, Gurel B, Guo C, Brucklacher-Waldert V, Thompson HL, Akinwale J, Boyle SE, Rossant C, Birkett NR, Pizzey J, Maginn M, Legg J, Williams R, Johnston CM, Bland-Ward P, de Bono JS, Pierce AJ. CB307: A Dual Targeting Costimulatory Humabody VH Therapeutic for Treating PSMA-Positive Tumors. Clin Cancer Res 2024; 30:1595-1606. [PMID: 38593226 PMCID: PMC11016891 DOI: 10.1158/1078-0432.ccr-23-3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 04/11/2024]
Abstract
PURPOSE CD137 is a T- and NK-cell costimulatory receptor involved in consolidating immunologic responses. The potent CD137 agonist urelumab has shown clinical promise as a cancer immunotherapeutic but development has been hampered by on-target off-tumor toxicities. A CD137 agonist targeted to the prostate-specific membrane antigen (PSMA), frequently and highly expressed on castration-resistant metastatic prostate cancer (mCRPC) tumor cells, could bring effective immunotherapy to this immunologically challenging to address disease. EXPERIMENTAL DESIGN We designed and manufactured CB307, a novel half-life extended bispecific costimulatory Humabody VH therapeutic to elicit CD137 agonism exclusively in a PSMA-high tumor microenvironment (TME). The functional activity of CB307 was assessed in cell-based assays and in syngeneic mouse antitumor pharmacology studies. Nonclinical toxicology and toxicokinetic properties of CB307 were assessed in a good laboratory practice (GLP) compliant study in cynomolgus macaques. RESULTS CB307 provides effective CD137 agonism in a PSMA-dependent manner, with antitumor activity both in vitro and in vivo, and additional activity when combined with checkpoint inhibitors. A validated novel PSMA/CD137 IHC assay demonstrated a higher prevalence of CD137-positive cells in the PSMA-expressing human mCRPC TME with respect to primary lesions. CB307 did not show substantial toxicity in nonhuman primates and exhibited a plasma half-life supporting weekly clinical administration. CONCLUSIONS CB307 is a first-in-class immunotherapeutic that triggers potent PSMA-dependent T-cell activation, thereby alleviating toxicologic concerns against unrestricted CD137 agonism.
Collapse
Affiliation(s)
- Sophie Archer
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Phillip M. Brailey
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Minjung Song
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Phillip D. Bartlett
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Ines Figueiredo
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
| | - Bora Gurel
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
| | - Christina Guo
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
- Prostate Cancer Targeted Therapies Group, Royal Marsden Hospital, Sutton, United Kingdom
| | | | | | - Jude Akinwale
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Samantha E. Boyle
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Christine Rossant
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Neil R. Birkett
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Julia Pizzey
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Mark Maginn
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - James Legg
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Richard Williams
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Colette M. Johnston
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Philip Bland-Ward
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Johann S. de Bono
- Cancer Biomarkers Group, The Institute of Cancer Research, London, United Kingdom
- Prostate Cancer Targeted Therapies Group, Royal Marsden Hospital, Sutton, United Kingdom
| | - Andrew J. Pierce
- Crescendo Biologics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
6
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Dane Wittrup K. CD8 + T cell priming that is required for curative intratumorally anchored anti-4-1BB immunotherapy is constrained by Tregs. Nat Commun 2024; 15:1900. [PMID: 38429261 PMCID: PMC10907589 DOI: 10.1038/s41467-024-45625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024] Open
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical success has been limited by on-target, off-tumor activity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of a ɑ4-1BB antibody fused to the collagen-binding protein LAIR. While combination treatment with an antitumor antibody (TA99) shows only modest efficacy, simultaneous depletion of CD4+ T cells boosts cure rates to over 90% of mice. Mechanistically, this synergy depends on ɑCD4 eliminating tumor draining lymph node regulatory T cells, resulting in priming and activation of CD8+ T cells which then infiltrate the tumor microenvironment. The cytotoxic program of these newly primed CD8+ T cells is then supported by the combined effect of TA99 and ɑ4-1BB-LAIR. The combination of TA99 and ɑ4-1BB-LAIR with a clinically approved ɑCTLA-4 antibody known for enhancing T cell priming results in equivalent cure rates, which validates the mechanistic principle, while the addition of ɑCTLA-4 also generates robust immunological memory against secondary tumor rechallenge. Thus, our study establishes the proof of principle for a clinically translatable cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Joshua M Peters
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
7
|
Fukuda K, Miura Y, Maeda T, Hayashi S, Kikuchi K, Takashima Y, Matsumoto T, Kuroda R. LIGHT regulated gene expression in rheumatoid synovial fibroblasts. Mol Biol Rep 2024; 51:356. [PMID: 38401037 PMCID: PMC10894125 DOI: 10.1007/s11033-024-09311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Synovial hyperplasia caused by rheumatoid arthritis (RA), an autoimmune inflammatory disease, leads to the destruction of the articular cartilage and bone. A member of the tumor necrosis factor superfamily, Lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (LIGHT) has been shown to correlate with the pathogenesis of RA. METHODS We used cDNA microarray analysis to compare the expression of genes in rheumatoid fibroblast-like synoviocytes with and without LIGHT stimulation. RESULTS Significant changes in gene expression (P-values < 0.05 and fold change ≥ 2.0) were associated mainly with biological function categories of glycoprotein, glycosylation site as N-linked, plasma membrane part, integral to plasma membrane, intrinsic to plasma membrane, signal, plasma membrane, signal peptide, alternative splicing, and topological domain as extracellular. CONCLUSIONS Our results indicate that LIGHT may regulate the expression in RA-FLS of genes which are important in the differentiation of several cell types and in cellular functions.
Collapse
Affiliation(s)
- Koji Fukuda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yasushi Miura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Division of Orthopedic Science, Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma, Kobe, Hyogo, 654-0142, Japan.
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
8
|
Xu C, Zhou X, Webb L, Yalavarthi S, Zheng W, Saha S, Schweickhardt R, Soloviev M, Jenkins MH, Brandstetter S, Belousova N, Alimzhanov M, Rabinovich B, Deshpande AM, Brewis N, Helming L. M9657 Is a Bispecific Tumor-Targeted Anti-CD137 Agonist That Induces MSLN-Dependent Antitumor Immunity without Liver Inflammation. Cancer Immunol Res 2024; 12:195-213. [PMID: 38091375 DOI: 10.1158/2326-6066.cir-23-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The costimulatory receptor CD137 (also known as TNFRSF9 or 4-1BB) sustains effective cytotoxic T-cell responses. Agonistic anti-CD137 cancer immunotherapies are being investigated in clinical trials. Development of the first-generation CD137-agonist monotherapies utomilumab and urelumab was unsuccessful due to low antitumor efficacy mediated by the epitope recognized on CD137 or hepatotoxicity mediated by Fcγ receptors (FcγR) ligand-dependent CD137 activation, respectively. M9657 was engineered as a tetravalent bispecific antibody (mAb2) in a human IgG1 backbone with LALA mutations to reduce binding to FCγRs. Here, we report that M9657 selectively binds to mesothelin (MSLN) and CD137 with similar affinity in humans and cynomolgus monkeys. In a cellular functional assay, M9657 enhanced CD8+ T cell-mediated cytotoxicity and cytokine release in the presence of tumor cells, which was dependent on both MSLN expression and T-cell receptor/CD3 activation. Both FS122m, a murine surrogate with the same protein structure as M9657, and chimeric M9657, a modified M9657 antibody with the Fab portion replaced with an anti-murine MSLN motif, demonstrated in vivo antitumor efficacy against various tumors in wild-type and human CD137 knock-in mice, and this was accompanied by activated CD8+ T-cell infiltration in the tumor microenvironment. The antitumor immunity of M9657 and FS122m depended on MSLN expression density and the mAb2 structure. Compared with 3H3, a murine surrogate of urelumab, FS122m and chimeric M9657 displayed significantly lower on-target/off-tumor toxicity. Taken together, M9657 exhibits a promising profile for development as a tumor-targeting immune agonist with potent anticancer activity without systemic immune activation and associated hepatotoxicity.
Collapse
Affiliation(s)
- Chunxiao Xu
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Xueyuan Zhou
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Lindsay Webb
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | | | - Wenxin Zheng
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Somdutta Saha
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | - Rene Schweickhardt
- Discovery and Development Technologies, EMD Serono, Billerica, Massachusetts
| | - Maria Soloviev
- Discovery and Development Technologies, EMD Serono, Billerica, Massachusetts
| | - Molly H Jenkins
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| | | | | | | | | | | | - Neil Brewis
- F-star Therapeutics, Cambridge, United Kingdom
| | - Laura Helming
- Research Unit Oncology, EMD Serono, Billerica, Massachusetts
| |
Collapse
|
9
|
Mestiri S, El-Ella DMA, Fernandes Q, Bedhiafi T, Almoghrabi S, Akbar S, Inchakalody V, Assami L, Anwar S, Uddin S, Gul ARZ, Al-Muftah M, Merhi M, Raza A, Dermime S. The dynamic role of immune checkpoint molecules in diagnosis, prognosis, and treatment of head and neck cancers. Biomed Pharmacother 2024; 171:116095. [PMID: 38183744 DOI: 10.1016/j.biopha.2023.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common cancer type, accounting for approximately 277,597 deaths worldwide. Recently, the Food and Drug Administration (FDA) has approved immune checkpoint blockade (ICB) agents targeting programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) as a treatment regimen for head and neck squamous cell carcinomas (HNSCC). Studies have reported the role of immune checkpoint inhibitors as targeted therapeutic regimens that unleash the immune response against HNSCC tumors. However, the overall response rates to immunotherapy vary between 14-32% in recurrent or metastatic HNSCC, with clinical response and treatment success being unpredictable. Keeping this perspective in mind, it is imperative to understand the role of T cells, natural killer cells, and antigen-presenting cells in modulating the immune response to immunotherapy. In lieu of this, these immune molecules could serve as prognostic and predictive biomarkers to facilitate longitudinal monitoring and understanding of treatment dynamics. These immune biomarkers could pave the path for personalized monitoring and management of HNSCC. In this review, we aim to provide updated immunological insight on the mechanism of action, expression, and the clinical application of immune cells' stimulatory and inhibitory molecules as prognostic and predictive biomarkers in HNC. The review is focused mainly on CD27 and CD137 (members of the TNF-receptor superfamily), natural killer group 2 member D (NKG2D), tumor necrosis factor receptor superfamily member 4 (TNFRSF4 or OX40), S100 proteins, PD-1, PD-L1, PD-L2, T cell immunoglobulin and mucin domain 3 (TIM-3), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), indoleamine-pyrrole 2,3-dioxygenase (IDO), B and T lymphocyte attenuator (BTLA). It also highlights the importance of T, natural killer, and antigen-presenting cells as robust biomarker tools for understanding immune checkpoint inhibitor-based treatment dynamics. Though a comprehensive review, all aspects of the immune molecules could not be covered as they were beyond the scope of the review; Further review articles can cover other aspects to bridge the knowledge gap.
Collapse
Affiliation(s)
- Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Salam Almoghrabi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Laila Assami
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shaheena Anwar
- Department of Biosciences, Salim Habib University, Karachi, Pakistan
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Muftah
- Translational Cancer and Immunity Centre, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
10
|
Singh R, Kim YH, Lee SJ, Eom HS, Choi BK. 4-1BB immunotherapy: advances and hurdles. Exp Mol Med 2024; 56:32-39. [PMID: 38172595 PMCID: PMC10834507 DOI: 10.1038/s12276-023-01136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Since its initial description 35 years ago as an inducible molecule expressed in cytotoxic and helper T cells, 4-1BB has emerged as a crucial receptor in T-cell-mediated immune functions. Numerous studies have demonstrated the involvement of 4-1BB in infection and tumor immunity. However, the clinical development of 4-1BB agonist antibodies has been impeded by the occurrence of strong adverse events, notably hepatotoxicity, even though these antibodies have exhibited tremendous promise in in vivo tumor models. Efforts are currently underway to develop a new generation of agonist antibodies and recombinant proteins with modified effector functions that can harness the potent T-cell modulation properties of 4-1BB while mitigating adverse effects. In this review, we briefly examine the role of 4-1BB in T-cell biology, explore its clinical applications, and discuss future prospects in the field of 4-1BB agonist immunotherapy.
Collapse
Affiliation(s)
- Rohit Singh
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Young-Ho Kim
- Diagnostics and Therapeutics Technology Branch, Division of Technology Convergence, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| | - Sang-Jin Lee
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyeon-Seok Eom
- Hematological Malignancy Center, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Beom K Choi
- Immuno-oncology Branch, Division of Rare and Refractory Cancer, National Cancer Center, Goyang, 10408, Republic of Korea.
- Innobationbio, Co., Ltd., Mapo-gu, Seoul, 03929, Republic of Korea.
| |
Collapse
|
11
|
Battin C, De Sousa Linhares A, Leitner J, Grossmann A, Lupinek D, Izadi S, Castilho A, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Stritzker J, Steinberger P. Engineered soluble, trimerized 4-1BBL variants as potent immunomodulatory agents. Cancer Immunol Immunother 2023; 72:3029-3043. [PMID: 37310433 PMCID: PMC10412504 DOI: 10.1007/s00262-023-03474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Targeting co-stimulatory receptors promotes the activation and effector functions of anti-tumor lymphocytes. 4-1BB (CD137/TNFSF9), a member of the tumor necrosis factor receptor superfamily (TNFR-SF), is a potent co-stimulatory receptor that plays a prominent role in augmenting effector functions of CD8+ T cells, but also CD4+ T cells and NK cells. Agonistic antibodies against 4-1BB have entered clinical trials and shown signs of therapeutic efficacy. Here, we have used a T cell reporter system to evaluate various formats of 4-1BBL regarding their capacity to functionally engage its receptor. We found that a secreted 4-1BBL ectodomain harboring a trimerization domain derived from human collagen (s4-1BBL-TriXVIII) is a strong inducer of 4-1BB co-stimulation. Similar to the 4-1BB agonistic antibody urelumab, s4-1BBL-TriXVIII is very potent in inducing CD8+ and CD4+ T cell proliferation. We provide first evidence that s4-1BBL-TriXVIII can be used as an effective immunomodulatory payload in therapeutic viral vectors. Oncolytic measles viruses encoding s4-1BBL-TriXVIII significantly reduced tumor burden in a CD34+ humanized mouse model, whereas measles viruses lacking s4-1BBL-TriXVIII were not effective. Natural soluble 4-1BB ligand harboring a trimerization domain might have utility in tumor therapy especially when delivered to tumor tissue as systemic administration might induce liver toxicity.
Collapse
Affiliation(s)
- Claire Battin
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Annika De Sousa Linhares
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna Grossmann
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Daniela Lupinek
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
- Loop Lab Bio GmbH, Vienna, Austria
| | - Shiva Izadi
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, Institute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Jochen Stritzker
- Themis Bioscience GmbH, Vienna, Austria; a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.
- Loop Lab Bio GmbH, Vienna, Austria.
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology, Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Rodríguez-Galán A, Dosil SG, Hrčková A, Fernández-Messina L, Feketová Z, Pokorná J, Fernández-Delgado I, Camafeita E, Gómez MJ, Ramírez-Huesca M, Gutiérrez-Vázquez C, Sánchez-Cabo F, Vázquez J, Vaňáčová Š, Sánchez-Madrid F. ISG20L2: an RNA nuclease regulating T cell activation. Cell Mol Life Sci 2023; 80:273. [PMID: 37646974 PMCID: PMC10468436 DOI: 10.1007/s00018-023-04925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
ISG20L2, a 3' to 5' exoribonuclease previously associated with ribosome biogenesis, is identified here in activated T cells as an enzyme with a preferential affinity for uridylated miRNA substrates. This enzyme is upregulated in T lymphocytes upon TCR and IFN type I stimulation and appears to be involved in regulating T cell function. ISG20L2 silencing leads to an increased basal expression of CD69 and induces greater IL2 secretion. However, ISG20L2 absence impairs CD25 upregulation, CD3 synaptic accumulation and MTOC translocation towards the antigen-presenting cell during immune synapsis. Remarkably, ISG20L2 controls the expression of immunoregulatory molecules, such as AHR, NKG2D, CTLA-4, CD137, TIM-3, PD-L1 or PD-1, which show increased levels in ISG20L2 knockout T cells. The dysregulation observed in these key molecules for T cell responses support a role for this exonuclease as a novel RNA-based regulator of T cell function.
Collapse
Affiliation(s)
- Ana Rodríguez-Galán
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara G Dosil
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Anna Hrčková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lola Fernández-Messina
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Zuzana Feketová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Julie Pokorná
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Irene Fernández-Delgado
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Emilio Camafeita
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Manuel José Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Ramírez-Huesca
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Štěpánka Vaňáčová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5/A35, 625 00, Brno, Czech Republic
| | - Francisco Sánchez-Madrid
- Instituto Investigación Sanitaria Princesa (IIS-IP), Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Intercellular Communication in the Inflammatory Response, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
13
|
Pichler AC, Carrié N, Cuisinier M, Ghazali S, Voisin A, Axisa PP, Tosolini M, Mazzotti C, Golec DP, Maheo S, do Souto L, Ekren R, Blanquart E, Lemaitre L, Feliu V, Joubert MV, Cannons JL, Guillerey C, Avet-Loiseau H, Watts TH, Salomon BL, Joffre O, Grinberg-Bleyer Y, Schwartzberg PL, Lucca LE, Martinet L. TCR-independent CD137 (4-1BB) signaling promotes CD8 +-exhausted T cell proliferation and terminal differentiation. Immunity 2023; 56:1631-1648.e10. [PMID: 37392737 PMCID: PMC10649891 DOI: 10.1016/j.immuni.2023.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.
Collapse
Affiliation(s)
- Andrea C Pichler
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadège Carrié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marine Cuisinier
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Samira Ghazali
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Allison Voisin
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pierre-Paul Axisa
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Céline Mazzotti
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Maheo
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Laura do Souto
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Rüçhan Ekren
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Eve Blanquart
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Lea Lemaitre
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Virginie Feliu
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Jennifer L Cannons
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camille Guillerey
- Cancer Immunotherapies Group, The University of Queensland, Brisbane, QLD, Australia
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benoit L Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France; Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivier Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Yenkel Grinberg-Bleyer
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liliana E Lucca
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.
| | - Ludovic Martinet
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France.
| |
Collapse
|
14
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
15
|
Melero I, Sanmamed MF, Glez-Vaz J, Luri-Rey C, Wang J, Chen L. CD137 (4-1BB)-Based Cancer Immunotherapy on Its 25th Anniversary. Cancer Discov 2023; 13:552-569. [PMID: 36576322 DOI: 10.1158/2159-8290.cd-22-1029] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022]
Abstract
Twenty-five years ago, we reported that agonist anti-CD137 monoclonal antibodies eradicated transplanted mouse tumors because of enhanced CD8+ T-cell antitumor immunity. Mouse models indicated that anti-CD137 agonist antibodies synergized with various other therapies. In the clinic, the agonist antibody urelumab showed evidence for single-agent activity against melanoma and non-Hodgkin lymphoma but caused severe liver inflammation in a fraction of the patients. CD137's signaling domain is included in approved chimeric antigen receptors conferring persistence and efficacy. A new wave of CD137 agonists targeting tumors, mainly based on bispecific constructs, are in early-phase trials and are showing promising safety and clinical activity. SIGNIFICANCE CD137 (4-1BB) is a costimulatory receptor of T and natural killer lymphocytes whose activity can be exploited in cancer immunotherapy strategies as discovered 25 years ago. Following initial attempts that met unacceptable toxicity, new waves of constructs acting agonistically on CD137 are being developed in patients, offering signs of clinical and pharmacodynamic activity with tolerable safety profiles.
Collapse
Affiliation(s)
- Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Lieping Chen
- Department of Immunobiology, Yale University, New Haven, Connecticut
| |
Collapse
|
16
|
Jin H, Wang L, Bernards R. Rational combinations of targeted cancer therapies: background, advances and challenges. Nat Rev Drug Discov 2023; 22:213-234. [PMID: 36509911 DOI: 10.1038/s41573-022-00615-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
Over the past two decades, elucidation of the genetic defects that underlie cancer has resulted in a plethora of novel targeted cancer drugs. Although these agents can initially be highly effective, resistance to single-agent therapies remains a major challenge. Combining drugs can help avoid resistance, but the number of possible drug combinations vastly exceeds what can be tested clinically, both financially and in terms of patient availability. Rational drug combinations based on a deep understanding of the underlying molecular mechanisms associated with therapy resistance are potentially powerful in the treatment of cancer. Here, we discuss the mechanisms of resistance to targeted therapies and how effective drug combinations can be identified to combat resistance. The challenges in clinically developing these combinations and future perspectives are considered.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liqin Wang
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - René Bernards
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Daniels MA, Luera D, Teixeiro E. NFκB signaling in T cell memory. Front Immunol 2023; 14:1129191. [PMID: 36911729 PMCID: PMC9998984 DOI: 10.3389/fimmu.2023.1129191] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Memory T cells play an essential role in protecting against infectious diseases and cancer and contribute to autoimmunity and transplant rejection. Understanding how they are generated and maintained in the context of infection or vaccination holds promise to improve current immune-based therapies. At the beginning of any immune response, naïve T cells are activated and differentiate into cells with effector function capabilities. In the context of infection, most of these cells die once the pathogenic antigen has been cleared. Only a few of them persist and differentiate into memory T cells. These memory T cells are essential to host immunity because they are long-lived and can perform effector functions immediately upon re-infection. How a cell becomes a memory T cell and continues being one for months and even years past the initial infection is still not fully understood. Recent reviews have thoroughly discussed the transcriptional, epigenomic, and metabolic mechanisms that govern T cell memory differentiation. Yet much less is known of how signaling pathways that are common circuitries of multiple environmental signals regulate T cell outcome and, precisely, T cell memory. The function of the NFκB signaling system is perhaps best understood in innate cells. Recent findings suggest that NFκB signaling plays an essential and unique role in generating and maintaining CD8 T cell memory. This review aims to summarize these findings and discuss the remaining questions in the field.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dezzarae Luera
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
18
|
Palmeri JR, Lax BM, Peters JM, Duhamel L, Stinson JA, Santollani L, Lutz EA, Pinney W, Bryson BD, Wittrup KD. Tregs constrain CD8 + T cell priming required for curative intratumorally anchored anti-4-1BB immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526116. [PMID: 36778460 PMCID: PMC9915483 DOI: 10.1101/2023.01.30.526116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical development has been hampered by on-target, off-tumor toxicity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of an ɑ4-1BB antibody fused to the collagen binding protein LAIR. While combination treatment with an antitumor antibody (TA99) displayed only modest efficacy, simultaneous depletion of CD4+ T cells boosted cure rates to over 90% of mice. We elucidated two mechanisms of action for this synergy: ɑCD4 eliminated tumor draining lymph node Tregs, enhancing priming and activation of CD8+ T cells, and TA99 + ɑ4-1BB-LAIR supported the cytotoxic program of these newly primed CD8+ T cells within the tumor microenvironment. Replacement of ɑCD4 with ɑCTLA-4, a clinically approved antibody that enhances T cell priming, produced equivalent cure rates while additionally generating robust immunological memory against secondary tumor rechallenge.
Collapse
Affiliation(s)
- Joseph R Palmeri
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Brianna M Lax
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Joshua M Peters
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - Lauren Duhamel
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Luciano Santollani
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - William Pinney
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| | - Bryan D Bryson
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Ragon Institute of MIT, MGH, and Harvard; Cambridge, MA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research; Cambridge, MA
- Department of Chemical Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
- Department of Biological Engineering of Massachusetts Institute of Technology (MIT); Cambridge, MA
| |
Collapse
|
19
|
Vidard L. 4-1BB and cytokines trigger human NK, γδ T, and CD8 + T cell proliferation and activation, but are not required for their effector functions. Immun Inflamm Dis 2023; 11:e749. [PMID: 36705415 PMCID: PMC9753824 DOI: 10.1002/iid3.749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION This study was designed to compare the costimulatory molecules and cytokines required to trigger the proliferation and activation of natural killer (NK), γδ T, and CD8+ T cells, and gain in-depth insight into the mechanisms shifting tolerance to immunity. METHODS K562-derived artificial antigen-presenting cells (aAPCs); that is, K562 forced to express CD86 and 4-1BBL costimulatory receptors, in the presence of cytokines, were used to mimic dendritic cells (DCs) and provide signals to support the proliferation and activation of NK, γδ T, and CD8+ T cells. RESULTS Three signals are required to trigger optimal proliferation in MART-1-specific CD8+ T cells: activation of T-cell receptors (TCRs) by the major histocompatibility complex (MHC) I/peptide complexes (signal 1); 4-1BB engagement (signal 2); and IL-15 and IL-21 receptor co-signaling (signal 3). NK and γδ T cell proliferation also require three signals, but the precise nature of signal 1 involving cell-to-cell contact was not determined. Once they become effectors, only signal 1 determines the sensitivity or resistance of the target cells to cytolysis by killer lymphocytes. When freshly purified, none had effector functions, except the NK cells, which could be activated by CD16 engagement. CONCLUSIONS Therefore, lymphocytes committed to kill are produced as inactive precursors, and the license to kill is delivered by three signals, allowing for extensive proliferation and effector function acquisition. This data challenges the paradigm of anergy and supports the danger signal theory originally proposed by Polly Matzinger, which states that killer cells are tolerant by default, thereby protecting the mammalian body from autoimmunity.
Collapse
Affiliation(s)
- Laurent Vidard
- Department of Immuno‐OncologySanofiVitry‐sur‐SeineFrance
| |
Collapse
|
20
|
Kim AMJ, Nemeth MR, Lim SO. 4-1BB: A promising target for cancer immunotherapy. Front Oncol 2022; 12:968360. [PMID: 36185242 PMCID: PMC9515902 DOI: 10.3389/fonc.2022.968360] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy, powered by its relative efficacy and safety, has become a prominent therapeutic strategy utilized in the treatment of a wide range of diseases, including cancer. Within this class of therapeutics, there is a variety of drug types such as immune checkpoint blockade therapies, vaccines, and T cell transfer therapies that serve the purpose of harnessing the body’s immune system to combat disease. Of these different types, immune checkpoint blockades that target coinhibitory receptors, which dampen the body’s immune response, have been widely studied and established in clinic. In contrast, however, there remains room for the development and improvement of therapeutics that target costimulatory receptors and enhance the immune response against tumors, one of which being the 4-1BB (CD137/ILA/TNFRSF9) receptor. 4-1BB has been garnering attention as a promising therapeutic target in the setting of cancer, amongst other diseases, due to its broad expression profile and ability to stimulate various signaling pathways involved in the generation of a potent immune response. Since its discovery and demonstration of potential as a clinical target, major progress has been made in the knowledge of 4-1BB and the development of clinical therapeutics that target it. Thus, we seek to summarize and provide a comprehensive update and outlook on those advancements in the context of cancer and immunotherapy.
Collapse
Affiliation(s)
- Alyssa Min Jung Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Macy Rose Nemeth
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Seung-Oe Lim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute of Drug Discovery, Purdue University, West Lafayette, IN, United States
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, United States
- *Correspondence: Seung-Oe Lim,
| |
Collapse
|
21
|
Tserunyan V, Finley SD. Computational analysis of 4-1BB-induced NFκB signaling suggests improvements to CAR cell design. Cell Commun Signal 2022; 20:129. [PMID: 36028884 PMCID: PMC9413922 DOI: 10.1186/s12964-022-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-expressing cells are a powerful modality of adoptive cell therapy against cancer. The potency of signaling events initiated upon antigen binding depends on the costimulatory domain within the structure of the CAR. One such costimulatory domain is 4-1BB, which affects cellular response via the NFκB pathway. However, the quantitative aspects of 4-1BB-induced NFκB signaling are not fully understood. METHODS We developed an ordinary differential equation-based mathematical model representing canonical NFκB signaling activated by CD19scFv-4-1BB. After a global sensitivity analysis on model parameters, we ran Monte Carlo simulations of cell population-wide variability in NFκB signaling and quantified the mutual information between the extracellular signal and different levels of the NFκB signal transduction pathway. RESULTS In response to a wide range of antigen concentrations, the magnitude of the transient peak in NFκB nuclear concentration varies significantly, while the timing of this peak is relatively consistent. Global sensitivity analysis showed that the model is robust to variations in parameters, and thus, its quantitative predictions would remain applicable to a broad range of parameter values. The model predicts that overexpressing NEMO and disabling IKKβ deactivation can increase the mutual information between antigen levels and NFκB activation. CONCLUSIONS Our modeling predictions provide actionable insights to guide CAR development. Particularly, we propose specific manipulations to the NFκB signal transduction pathway that can fine-tune the response of CD19scFv-4-1BB cells to the antigen concentrations they are likely to encounter. Video Abstract.
Collapse
Affiliation(s)
- Vardges Tserunyan
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Stacey D Finley
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Peper-Gabriel JK, Pavlidou M, Pattarini L, Morales-Kastresana A, Jaquin TJ, Gallou C, Hansbauer EM, Richter M, Lelievre H, Scholer-Dahirel A, Bossenmaier B, Sancerne C, Riviere M, Grandclaudon M, Zettl M, Bel Aiba RS, Rothe C, Blanc V, Olwill SA. The PD-L1/4-1BB Bispecific Antibody-Anticalin Fusion Protein PRS-344/S095012 Elicits Strong T-Cell Stimulation in a Tumor-Localized Manner. Clin Cancer Res 2022; 28:3387-3399. [PMID: 35121624 PMCID: PMC9662934 DOI: 10.1158/1078-0432.ccr-21-2762] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Accepted: 02/02/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE While patients responding to checkpoint blockade often achieve remarkable clinical responses, there is still significant unmet need due to resistant or refractory tumors. A combination of checkpoint blockade with further T-cell stimulation mediated by 4-1BB agonism may increase response rates and durability of response. A bispecific molecule that blocks the programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) axis and localizes 4-1BB costimulation to a PD-L1-positive (PD-L1+) tumor microenvironment (TME) or tumor draining lymph nodes could maximize antitumor immunity and increase the therapeutic window beyond what has been reported for anti-4-1BB mAbs. EXPERIMENTAL DESIGN We generated and characterized the PD-L1/4-1BB bispecific molecule PRS-344/S095012 for target binding and functional activity in multiple relevant in vitro assays. Transgenic mice expressing human 4-1BB were transplanted with human PD-L1-expressing murine MC38 cells to assess in vivo antitumoral activity. RESULTS PRS-344/S095012 bound to its targets with high affinity and efficiently blocked the PD-1/PD-L1 pathway, and PRS-344/S095012-mediated 4-1BB costimulation was strictly PD-L1 dependent. We demonstrated a synergistic effect of both pathways on T-cell stimulation with the bispecific PRS-344/S095012 being more potent than the combination of mAbs. PRS-344/S095012 augmented CD4-positive (CD4+) and CD8-positive (CD8+) T-cell effector functions and enhanced antigen-specific T-cell stimulation. Finally, PRS-344/S095012 demonstrated strong antitumoral efficacy in an anti-PD-L1-resistant mouse model in which soluble 4-1BB was detected as an early marker for 4-1BB agonist activity. CONCLUSIONS The PD-L1/4-1BB bispecific PRS-344/S095012 efficiently combines checkpoint blockade with a tumor-localized 4-1BB-mediated stimulation burst to antigen-specific T cells, more potent than the combination of mAbs, supporting the advancement of PRS-344/S095012 toward clinical development. See related commentary by Shu et al., p. 3182.
Collapse
Affiliation(s)
| | | | - Lucia Pattarini
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | | | | | - Catherine Gallou
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | | | | | - Helene Lelievre
- Institut de Recherches Internationales Servier Oncology R&D Unit, Suresnes, France
| | - Alix Scholer-Dahirel
- Institut de Recherches Internationales Servier Oncology R&D Unit, Suresnes, France
| | | | - Celine Sancerne
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | - Matthieu Riviere
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | - Maximilien Grandclaudon
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | - Markus Zettl
- Pieris Pharmaceuticals GmbH, Hallbergmoos, Germany
| | | | | | - Veronique Blanc
- Institut de Recherches Servier, Center for Therapeutic Innovation Oncology, Croissy-sur-Seine, France
| | | |
Collapse
|
23
|
Rojas M, Heuer LS, Zhang W, Chen YG, Ridgway WM. The long and winding road: From mouse linkage studies to a novel human therapeutic pathway in type 1 diabetes. Front Immunol 2022; 13:918837. [PMID: 35935980 PMCID: PMC9353112 DOI: 10.3389/fimmu.2022.918837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity involves a loss of immune tolerance to self-proteins due to a combination of genetic susceptibility and environmental provocation, which generates autoreactive T and B cells. Genetic susceptibility affects lymphocyte autoreactivity at the level of central tolerance (e.g., defective, or incomplete MHC-mediated negative selection of self-reactive T cells) and peripheral tolerance (e.g., failure of mechanisms to control circulating self-reactive T cells). T regulatory cell (Treg) mediated suppression is essential for controlling peripheral autoreactive T cells. Understanding the genetic control of Treg development and function and Treg interaction with T effector and other immune cells is thus a key goal of autoimmunity research. Herein, we will review immunogenetic control of tolerance in one of the classic models of autoimmunity, the non-obese diabetic (NOD) mouse model of autoimmune Type 1 diabetes (T1D). We review the long (and still evolving) elucidation of how one susceptibility gene, Cd137, (identified originally via linkage studies) affects both the immune response and its regulation in a highly complex fashion. The CD137 (present in both membrane and soluble forms) and the CD137 ligand (CD137L) both signal into a variety of immune cells (bi-directional signaling). The overall outcome of these multitudinous effects (either tolerance or autoimmunity) depends upon the balance between the regulatory signals (predominantly mediated by soluble CD137 via the CD137L pathway) and the effector signals (mediated by both membrane-bound CD137 and CD137L). This immune balance/homeostasis can be decisively affected by genetic (susceptibility vs. resistant alleles) and environmental factors (stimulation of soluble CD137 production). The discovery of the homeostatic immune effect of soluble CD137 on the CD137-CD137L system makes it a promising candidate for immunotherapy to restore tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - William M. Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: William M. Ridgway,
| |
Collapse
|
24
|
Adaptive immune resistance at the tumour site: mechanisms and therapeutic opportunities. Nat Rev Drug Discov 2022; 21:529-540. [PMID: 35701637 DOI: 10.1038/s41573-022-00493-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/11/2022]
Abstract
Tumours employ various tactics to adapt and eventually resist immune attack. These mechanisms are collectively called adaptive immune resistance (AIR). The first defined and therapeutically validated AIR mechanism is the selective induction of programmed cell death 1 ligand 1 (PDL1) by interferon-γ in the tumour. Blockade of PDL1 binding to its receptor PD1 by antibodies (anti-PD therapy) has resulted in remission of a fraction of patients with advanced-stage cancer, especially in solid tumours. However, many clinical trials combining anti-PD therapy with other antitumour drugs conducted without a strong mechanistic rationale have failed to identify a synergistic or additive effect. In this Perspective article, we discuss why defining AIR mechanisms at the tumour site should be a key focus to direct future drug development as well as practical approaches to improve current cancer therapy.
Collapse
|
25
|
Anderson KG, Oda SK, Bates BM, Burnett MG, Rodgers Suarez M, Ruskin SL, Greenberg PD. Engineering adoptive T cell therapy to co-opt Fas ligand-mediated death signaling in ovarian cancer enhances therapeutic efficacy. J Immunother Cancer 2022; 10:jitc-2021-003959. [PMID: 35264436 PMCID: PMC8915280 DOI: 10.1136/jitc-2021-003959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 01/23/2023] Open
Abstract
Background In the USA, more than 50% of patients with ovarian cancer die within 5 years of diagnosis, highlighting the need for therapeutic innovations. Mesothelin (MSLN) is a candidate immunotherapy target; it is overexpressed by ovarian tumors and contributes to malignant/invasive phenotypes, making tumor antigen loss disadvantageous. We previously showed that MSLN-specific T cell receptor (TCR)-engineered T cells preferentially accumulate within established tumors, delay tumor growth, and significantly prolong survival in the ID8VEGF mouse model that replicates many aspects of human disease. However, T cell persistence and antitumor activity were not sustained. We therefore focused on Fas/FasL signaling that can induce activation-induced cell death, an apoptotic mechanism that regulates T cell expansion. Upregulation of FasL by tumor cells and tumor vasculature has been detected in the tumor microenvironment (TME) of human and murine ovarian cancers, can induce apoptosis in infiltrating, Fas (CD95) receptor-expressing lymphocytes, and can protect ovarian cancers from tumor-infiltrating lymphocytes. Methods To overcome potential FasL-mediated immune evasion and enhance T cell responses, we generated an immunomodulatory fusion protein (IFP) containing the Fas extracellular binding domain fused to a 4-1BB co-stimulatory domain, rather than the natural death domain. Murine T cells were engineered to express an MSLN-specific TCR (TCR1045), alone or with the IFP, transferred into ID8VEGF tumor-bearing mice and evaluated for persistence, proliferation, cytokine production and efficacy. Human T cells were similarly engineered to express an MSLN-specific TCR (TCR530) alone or with a truncated Fas receptor or a Fas-4-1BB IFP and evaluated for cytokine production and tumor lysis. Results Relative to murine T cells expressing only TCR1045, T cells expressing both TCR1045 and a Fas-4-1BB IFP preferentially persisted in the TME of tumor-bearing mice, with improved T cell proliferation and survival. Moreover, TCR1045/IFP+ T cells significantly prolonged survival in tumor-bearing mice, compared with TCR1045-only T cells. Human T cells expressing TCR530 and a Fas-4-1BB IFP exhibit enhanced functional activity and viability compared with cells with only TCR530. Conclusions As many ovarian tumors overexpress FasL, an IFP that converts the Fas-mediated death signal into pro-survival and proliferative signals may be used to enhance engineered adoptive T cell therapy for patients.
Collapse
Affiliation(s)
- Kristin G Anderson
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shannon K Oda
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Breanna M Bates
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Madison G Burnett
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Susan L Ruskin
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Philip D Greenberg
- Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA .,Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
26
|
Stairiker CJ, Pfister SX, Hendrickson E, Yang W, Xie T, Lee C, Zhang H, Dillon C, Thomas GD, Salek-Ardakani S. EZH2 Inhibition Compromises α4-1BB-Mediated Antitumor Efficacy by Reducing the Survival and Effector Programming of CD8 + T Cells. Front Immunol 2021; 12:770080. [PMID: 34925340 PMCID: PMC8683156 DOI: 10.3389/fimmu.2021.770080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Enhancer of Zeste Homolog 2 (EZH2) inhibitors (EZH2i) are approved to treat certain cancer types. Previous studies have suggested the potential to combine EZH2i with immune checkpoint blockade targeting coinhibitory receptors like PD-(L)1 and CTLA-4, but whether it can also enhance the activity of agents targeting costimulatory receptors is not known. Here, we explore the combination between EZH2i and an agonist antibody targeting the T cell costimulatory receptor 4-1BB (α4-1BB). Our data show that EZH2i compromise the efficacy of α4-1BB in both CT26 colon carcinoma and in an in vivo protein immunization model. We link this to reduced effector survival and increased BIM expression in CD8+ T cells upon EZH2i treatment. These data support the requirement of EZH2 function in 4-1BB-mediated CD8+ T cell expansion and effector programming and emphasize the consideration that must be given when combining such antitumoral therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Cell Survival/immunology
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
- Enhancer of Zeste Homolog 2 Protein/immunology
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Humans
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/prevention & control
- Tumor Burden/drug effects
- Tumor Burden/genetics
- Tumor Burden/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Mice
Collapse
Affiliation(s)
- Christopher J. Stairiker
- Cancer Immunology Discovery, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Sophia Xiao Pfister
- Cancer Immunology Discovery, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Eleanore Hendrickson
- Translational Sciences, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Wenjing Yang
- Computational Biology, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Tao Xie
- Computational Biology, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Catherine Lee
- Translational Sciences, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Haikuo Zhang
- Translational Sciences, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Christopher Dillon
- Translational Sciences, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Graham D. Thomas
- Cancer Immunology Discovery, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| | - Shahram Salek-Ardakani
- Cancer Immunology Discovery, Worldwide Research, Development Medical, Pfizer Inc., San Diego, CA, United States
| |
Collapse
|
27
|
Roles of OX40 and OX40 Ligand in Mycosis Fungoides and Sézary Syndrome. Int J Mol Sci 2021; 22:ijms222212576. [PMID: 34830466 PMCID: PMC8617822 DOI: 10.3390/ijms222212576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS), the most common types of cutaneous T-cell lymphoma (CTCL), are characterized by proliferation of mature CD4+ T-helper cells. Patients with advanced-stage MF and SS have poor prognosis, with 5-year survival rates of 52%. Although a variety of systemic therapies are currently available, there are no curative options for such patients except for stem cell transplantation, and thus the treatment of advanced MF and SS still remains challenging. Therefore, elucidation of the pathophysiology of MF/SS and development of medical treatments are desired. In this study, we focused on a molecule called OX40. We examined OX40 and OX40L expression and function using clinical samples of MF and SS and CTCL cell lines. OX40 and OX40L were co-expressed on tumor cells of MF and SS. OX40 and OX40L expression was increased and correlated with disease severity markers in MF/SS patients. Anti-OX40 antibody and anti-OX40L antibody suppressed the proliferation of CTCL cell lines both in vitro and in vivo. These results suggest that OX40–OX40L interactions could contribute to the proliferation of MF/SS tumor cells and that the disruption of OX40–OX40L interactions could become a new therapeutic strategy for the treatment of MF/SS.
Collapse
|
28
|
Lushnikova A, Bohr J, Wickbom A, Münch A, Sjöberg K, Hultgren O, Wirén A, Hultgren Hörnquist E. Patients With Microscopic Colitis Have Altered Levels of Inhibitory and Stimulatory Biomarkers in Colon Biopsies and Sera Compared to Non-inflamed Controls. Front Med (Lausanne) 2021; 8:727412. [PMID: 34722568 PMCID: PMC8555710 DOI: 10.3389/fmed.2021.727412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: Microscopic colitis (MC) is an inflammatory bowel condition with two subtypes, lymphocytic colitis (LC) and collagenous colitis (CC). Unlike patients with ulcerative colitis (UC) and non-inflamed individuals, MC patients have reduced risk of developing colorectal cancer, possibly due to increased immune surveillance in MC patients. Aim: To examine differences in levels of immunomodulatory molecules, including those involved in immune checkpoint mechanisms, in sera from patients with MC and in colonic biopsies from patients with MC and UC compared with controls. Methods: Using Luminex, 23 analytes (4-1BB, 4-1BBL, APRIL, BAFF, BTLA, CD27, CD28, CD80, CTLA-4, E-cadherin, Galectin-3, GITR, HVEM, IDO, IL-2Rα, LAG-3, MICA, MICB, PD-1, PD-L1, PD-L2, sCD40L and TIM-3) were studied in serum from patients with active MC (n = 35) and controls (n = 23), and in colonic biopsies from patients with active LC (n = 9), active CC (n = 16) and MC in histological remission (LC n = 6, CC n = 6), active UC (n = 15) and UC in remission (n = 12) and controls (n = 58). Results: In serum, IDO, PD-1, TIM-3, 4-1BB, CD27, and CD80 were decreased whereas 4-1BBL and IL-2Rα were increased in MC patients compared with controls. In contrast, in biopsies, levels of PD-L2 and 4-1BB were increased in MC and UC patients with active disease. Furthermore, in biopsies from CC and UC but not LC patients with active disease, CTLA-4, PD-1, APRIL, BAFF, and IL-2Rα were increased compared with controls. PD-L1 was increased in CC but not UC or LC patients. CD27 and TIM-3 were decreased in biopsies from MC patients in comparison to controls whereas levels of MICB were decreased in patients with active UC compared with controls. Conclusions: Compared with non-inflamed controls, levels of soluble and membrane-bound immunomodulatory molecules were systemically and locally altered in MC and UC patients, with most analytes being decreased in serum but enhanced in colonic biopsies. These findings contribute to knowledge about checkpoint molecules and their role as biomarkers in MC and may also contribute to knowledge about possible mechanisms behind the seemingly protective effects of MC against colorectal cancer.
Collapse
Affiliation(s)
| | - Johan Bohr
- Division of Gastroenterology, Department of Medicine, Örebro University Hospital, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anna Wickbom
- Division of Gastroenterology, Department of Medicine, Örebro University Hospital, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Andreas Münch
- Department of Gastroenterology and Hepatology in Linköping, and Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Klas Sjöberg
- Department of Clinical Sciences, Lund University, Department of Gastroenterology, Skåne University Hospital, Malmö, Sweden
| | - Olof Hultgren
- Department of Clinical Immunology and Transfusion Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anders Wirén
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | | |
Collapse
|
29
|
Edilova MI, Law JC, Zangiabadi S, Ting K, Mbanwi AN, Arruda A, Uehling D, Isaac M, Prakesch M, Al-Awar R, Minden MD, Abdul-Sater AA, Watts TH. The PKN1- TRAF1 signaling axis as a potential new target for chronic lymphocytic leukemia. Oncoimmunology 2021; 10:1943234. [PMID: 34589290 PMCID: PMC8475556 DOI: 10.1080/2162402x.2021.1943234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
TRAF1 is a pro-survival adaptor molecule in TNFR superfamily (TNFRSF) signaling. TRAF1 is overexpressed in many B cell cancers including refractory chronic lymphocytic leukemia (CLL). Little has been done to assess the role of TRAF1 in human cancer. Here we show that the protein kinase C related kinase Protein Kinase N1 (PKN1) is required to protect TRAF1 from cIAP-mediated degradation during constitutive CD40 signaling in lymphoma. We show that the active phospho-Thr774 form of PKN1 is constitutively expressed in CLL but minimally detected in unstimulated healthy donor B cells. Through a screen of 700 kinase inhibitors, we identified two inhibitors, OTSSP167, and XL-228, that inhibited PKN1 in the nanomolar range and induced dose-dependent loss of TRAF1 in RAJI cells. OTSSP167 or XL-228 treatment of primary patient CLL samples led to a reduction in TRAF1, pNF-κB p65, pS6, pERK, Mcl-1 and Bcl-2 proteins, and induction of activated caspase-3. OTSSP167 synergized with venetoclax in inducing CLL death, correlating with loss of TRAF1, Mcl-1, and Bcl-2. Although correlative, these findings suggest the PKN1-TRAF1 signaling axis as a potential new target for CLL. These findings also suggest the use of the orally available inhibitor OTSSP167 in combination treatment with venetoclax for TRAF1 overexpressing CLL.
Collapse
Affiliation(s)
- Maria I Edilova
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jaclyn C Law
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Safoura Zangiabadi
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), Faculty of Health, York University, Toronto, ON, Canada
| | - Kenneth Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Achire N Mbanwi
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Methvin Isaac
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre (MHRC), Faculty of Health, York University, Toronto, ON, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Ren A, Yin W, Miller H, Westerberg LS, Candotti F, Park CS, Lee P, Gong Q, Chen Y, Liu C. Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Front Immunol 2021; 12:725587. [PMID: 34512655 PMCID: PMC8429820 DOI: 10.3389/fimmu.2021.725587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Eriksen LL, Nielsen MA, Laursen TL, Deleuran B, Vilstrup H, Støy S. Early loss of T lymphocyte 4-1BB receptor expression is associated with higher short-term mortality in alcoholic hepatitis. PLoS One 2021; 16:e0255574. [PMID: 34352016 PMCID: PMC8341529 DOI: 10.1371/journal.pone.0255574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Objectives In alcoholic hepatitis (AH), dysfunctional T lymphocytes may contribute to the high mortality from infections. T lymphocyte activation is governed by the expression of co-stimulatory receptors such as 4-1BB balanced by inhibitory receptors such as Programmed Death receptor 1 (PD-1). 4-1BB expression is unaccounted for in AH, while PD-1 is elevated. We characterized expression of 4-1BB and PD-1 and the associated T lymphocyte functional status in AH and investigated whether these were associated with short-term mortality. Methods Thirty-five patients with AH (at diagnosis and days 7 and 90) were compared with healthy controls (HC). Spontaneous and in vitro stimulated receptor expression were quantified by flow cytometry, and plasma proteins by ELISA. Results At diagnosis, the patients showed increased stimulated 4-1BB responses of CD4+ T lymphocytes. Also, the frequencies of PD-1+ T lymphocytes both with and without co-expressed 4-1BB were increased. Further, interferon-gamma was predominantly produced in T lymphocytes co-expressing 4-1BB. A decrease in the frequency of spontaneous 4-1BB+ T lymphocytes and an increase in soluble 4-1BB during the first week after diagnosis were associated with higher mortality at day 90 in AH. PD-1 expression showed no systematic dynamics related to mortality. Conclusions We found an increased stimulated 4-1BB response of T lymphocytes in AH and early loss of these lymphocytes was associated with a higher short-term mortality. This suggests a role of T lymphocyte 4-1BB expression in the progression of AH.
Collapse
Affiliation(s)
- Lotte Lindgreen Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- * E-mail:
| | | | - Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Sidsel Støy
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
Kim SH, Singh R, Han C, Cho E, Kim YI, Lee DG, Kim YH, Kim SS, Shin DH, You HJ, Lee HW, Kwon BS, Choi BK. Chronic activation of 4-1BB signaling induces granuloma development in tumor-draining lymph nodes that is detrimental to subsequent CD8 + T cell responses. Cell Mol Immunol 2021; 18:1956-1968. [PMID: 32868911 PMCID: PMC8322392 DOI: 10.1038/s41423-020-00533-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/11/2020] [Indexed: 11/09/2022] Open
Abstract
The antitumor capabilities of agonistic anti-4-1BB mAbs have made them an attractive target for tumor immunotherapy. However, the adverse side effects associated with agonist antibodies have hindered their clinical development. Here, we aimed to study the immune-related adverse events of repeated doses and long-term use of agonistic anti-4-1BB mAbs. We show that chronic activation of 4-1BB signals induced the accumulation of IFN-γ-producing PD-1+CD8+ T cells in the secondary lymphoid organs of tumor-bearing mice by increasing the number of dividing CD8+ T cells, which was beneficial for suppressing tumor growth in the early phase of anti-4-1BB induction. However, repeated exposure to anti-4-1BB mAbs led to granuloma development in tumor-draining lymph nodes (TDLNs) of mice due to recruitment and accumulation of macrophages via the CD8+ T cell-IFN-γ axis. This was accompanied by excessive lymph node swelling, which impaired the sequential activation of CD8+ T cells. Our data provide insights into the immune-related adverse events of long-term agonist 4-1BB antibody dosing, which should be considered during the clinical development of immunomodulating therapy.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Division of Tumor Immunology, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Rohit Singh
- Division of Tumor Immunology, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Chungyong Han
- Division of Tumor Immunology, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Eunjung Cho
- Division of Tumor Immunology, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Yu I Kim
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Don G Lee
- Biomedicine Production Branch, Program for Immunotherapy Research, Goyang, 10408, Republic of Korea
| | - Young H Kim
- Division of Tumor Immunology, National Cancer Center, Goyang, 10408, Republic of Korea
- Eutilex Institute for Biomedical Research, Eutilex, Co., Ltd., Seoul, 08594, Republic of Korea
| | - Sang Soo Kim
- Division of Convergence Technology, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Dong Hoon Shin
- Division of Translational Science, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hye Jin You
- Division of Translational Science, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hyeon-Woo Lee
- Institute of Oral Biology, School of Dentistry, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Byoung S Kwon
- Eutilex Institute for Biomedical Research, Eutilex, Co., Ltd., Seoul, 08594, Republic of Korea
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Beom K Choi
- Biomedicine Production Branch, Program for Immunotherapy Research, Goyang, 10408, Republic of Korea.
| |
Collapse
|
33
|
Geuijen C, Tacken P, Wang LC, Klooster R, van Loo PF, Zhou J, Mondal A, Liu YB, Kramer A, Condamine T, Volgina A, Hendriks LJA, van der Maaden H, Rovers E, Engels S, Fransen F, den Blanken-Smit R, Zondag-van der Zande V, Basmeleh A, Bartelink W, Kulkarni A, Marissen W, Huang CY, Hall L, Harvey S, Kim S, Martinez M, O'Brien S, Moon E, Albelda S, Kanellopoulou C, Stewart S, Nastri H, Bakker ABH, Scherle P, Logtenberg T, Hollis G, de Kruif J, Huber R, Mayes PA, Throsby M. A human CD137×PD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat Commun 2021; 12:4445. [PMID: 34290245 PMCID: PMC8295259 DOI: 10.1038/s41467-021-24767-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Immune checkpoint inhibitors demonstrate clinical activity in many tumor types, however, only a fraction of patients benefit. Combining CD137 agonists with these inhibitors increases anti-tumor activity preclinically, but attempts to translate these observations to the clinic have been hampered by systemic toxicity. Here we describe a human CD137xPD-L1 bispecific antibody, MCLA-145, identified through functional screening of agonist- and immune checkpoint inhibitor arm combinations. MCLA-145 potently activates T cells at sub-nanomolar concentrations, even under suppressive conditions, and enhances T cell priming, differentiation and memory recall responses. In vivo, MCLA-145 anti-tumor activity is superior to immune checkpoint inhibitor comparators and linked to recruitment and intra-tumor expansion of CD8 + T cells. No graft-versus-host-disease is observed in contrast to other antibodies inhibiting the PD-1 and PD-L1 pathway. Non-human primates treated with 100 mg/kg/week of MCLA-145 show no adverse effects. The conditional activation of CD137 signaling by MCLA-145, triggered by neighboring cells expressing >5000 copies of PD-L1, may provide both safety and potency advantages.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Zhou
- Incyte Corporation, Wilmington, DE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Soyeon Kim
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina Martinez
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaun O'Brien
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edmund Moon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Albelda
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Etxeberria I, Glez-Vaz J, Teijeira Á, Melero I. New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open 2021; 4:e000733. [PMID: 32611557 PMCID: PMC7333812 DOI: 10.1136/esmoopen-2020-000733] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
CD137 (4-1BB) is a surface glycoprotein that belongs to the tumour necrosis factor receptor family (TNFRSF9). Its expression is induced on activation on a number of leucocyte types. Interestingly, for cancer immunotherapy, CD137 becomes expressed on primed T and natural killer (NK) cells, which on ligation provides powerful costimulatory signals. Perturbation of CD137 by CD137L or agonist monoclonal antibodies on activated CD8 T cells protects such antigen-specific cytotoxic T lymphocytes from apoptosis, enhances effector functionalities and favours persistence and memory differentiation. As a consequence, agonist antibodies exert potent antitumour effects in mouse models and the CD137 signalling domain is critical in chimeric antigen receptors (CAR) of CAR T cells approved to be used in the clinic. New formats of CD137 agonist moieties are being clinically developed, seeking potent costimulation targeted to the tumour microenvironment to avoid liver inflammation side effects, that have thus far limited and delayed clinical development.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain.
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain; Department of Immunology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
35
|
Schneider D, Xiong Y, Wu D, Hu P, Alabanza L, Steimle B, Mahmud H, Anthony-Gonda K, Krueger W, Zhu Z, Dimitrov DS, Orentas RJ, Dropulić B. Trispecific CD19-CD20-CD22-targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models. Sci Transl Med 2021; 13:13/586/eabc6401. [PMID: 33762438 DOI: 10.1126/scitranslmed.abc6401] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/21/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
A substantial number of patients with leukemia and lymphoma treated with anti-CD19 or anti-CD22 monoCAR-T cell therapy relapse because of antigen loss or down-regulation. We hypothesized that B cell tumor antigen escape may be overcome by a chimeric antigen receptor (CAR) design that simultaneously targets three B cell leukemia antigens. We engineered trispecific duoCAR-T cells with lentiviral vectors encoding two CAR open reading frames that target CD19, CD20, and CD22. The duoCARs were composed of a CAR with a tandem CD19- and CD20-targeting binder, linked by the P2A self-cleaving peptide to a second CAR targeting CD22. Multiple combinations of intracellular T cell signaling motifs were evaluated. The most potent duoCAR architectures included those with ICOS, OX40, or CD27 signaling domains rather than those from CD28 or 4-1BB. We identified four optimal binder and signaling combinations that potently rejected xenografted leukemia and lymphoma tumors in vivo. Moreover, in mice bearing a mixture of B cell lymphoma lines composed of parental triple-positive cells, CD19-negative, CD20-negative, and CD22-negative variants, only the trispecific duoCAR-T cells rapidly and efficiently rejected the tumors. Each of the monoCAR-T cells failed to prevent tumor progression. Analysis of intracellular signaling profiles demonstrates that the distinct signaling of the intracellular domains used may contribute to these differential effects. Multispecific duoCAR-T cells are a promising strategy to prevent antigen loss-mediated relapse or the down-regulation of target antigen in patients with B cell malignancies.
Collapse
Affiliation(s)
- Dina Schneider
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA.
| | - Ying Xiong
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Darong Wu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Peirong Hu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Leah Alabanza
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Brittany Steimle
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Hasan Mahmud
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | | | - Winfried Krueger
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Zhongyu Zhu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | | | - Rimas J Orentas
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Boro Dropulić
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA.
| |
Collapse
|
36
|
Mascarelli DE, Rosa RSM, Toscaro JM, Semionatto IF, Ruas LP, Fogagnolo CT, Lima GC, Bajgelman MC. Boosting Antitumor Response by Costimulatory Strategies Driven to 4-1BB and OX40 T-cell Receptors. Front Cell Dev Biol 2021; 9:692982. [PMID: 34277638 PMCID: PMC8277962 DOI: 10.3389/fcell.2021.692982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy explores several strategies to enhance the host immune system’s ability to detect and eliminate cancer cells. The use of antibodies that block immunological checkpoints, such as anti–programed death 1/programed death 1 ligand and cytotoxic T-lymphocyte–associated protein 4, is widely recognized to generate a long-lasting antitumor immune response in several types of cancer. Evidence indicates that the elimination of tumors by T cells is the key for tumor control. It is well known that costimulatory and coinhibitory pathways are critical regulators in the activation of T cells. Besides blocking checkpoints inhibitors, the agonistic signaling on costimulatory molecules also plays an important role in T-cell activation and antitumor response. Therefore, molecules driven to costimulatory pathways constitute promising targets in cancer therapy. The costimulation of tumor necrosis factor superfamily receptors on lymphocytes surface may transduce signals that control the survival, proliferation, differentiation, and effector functions of these immune cells. Among the members of the tumor necrosis factor receptor superfamily, there are 4-1BB and OX40. Several clinical studies have been carried out targeting these molecules, with agonist monoclonal antibodies, and preclinical studies exploring their ligands and other experimental approaches. In this review, we discuss functional aspects of 4-1BB and OX40 costimulation, as well as the progress of its application in immunotherapies.
Collapse
Affiliation(s)
- Daniele E Mascarelli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Rhubia S M Rosa
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Jessica M Toscaro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isadora F Semionatto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luciana P Ruas
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Carolinne T Fogagnolo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel C Lima
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Pro Rectory of Graduation, University of São Paulo, São Paulo, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
37
|
Crawford A, Chiu D. Targeting Solid Tumors Using CD3 Bispecific Antibodies. Mol Cancer Ther 2021; 20:1350-1358. [PMID: 34045228 DOI: 10.1158/1535-7163.mct-21-0073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapies to treat cancer have made tremendous progress over the past decade. In particular, T cell-directed therapies have gained considerable attention with CD3 bispecific antibodies and CAR T cells showing potent responses against hematologic tumors. At present, the ability to adapt these therapeutics to treat solid tumors is less established. Herein, we discuss recent advances in T cell-engaging CD3 bispecific antibodies targeting solid tumors, potential mechanisms of resistance, and future prospects. A better understanding of the mechanisms of immune evasion in solid tumors will enable the development of strategies to overcome this resistance and inform choices of therapeutic combinations.
Collapse
Affiliation(s)
| | - Danica Chiu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| |
Collapse
|
38
|
Beck RJ, Weigelin B, Beltman JB. Mathematical Modelling Based on In Vivo Imaging Suggests CD137-Stimulated Cytotoxic T Lymphocytes Exert Superior Tumour Control Due to an Enhanced Antimitotic Effect on Tumour Cells. Cancers (Basel) 2021; 13:cancers13112567. [PMID: 34073822 PMCID: PMC8197176 DOI: 10.3390/cancers13112567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Cytotoxic T lymphocytes (CTLs) play an important role in controlling tumours, and an improved understanding of how they accomplish this will benefit immunotherapeutic cancer treatment strategies. Stimulation of CTLs by targeting their CD137 receptor is a strategy currently under investigation for enhancing responses against tumours, yet so far only limited quantitative knowledge regarding the effects of such stimulation upon CTLs has been obtained. Here, we develop mathematical models to describe dynamic in vivo two-photon imaging of tumour infiltrating CTLs, to characterise differences in their function either in the presence or absence of a CD137 agonist antibody. We showed that an increased antiproliferative effect and a more sustained presence of CTLs within the tumour were the most important effects associated with anti-CD137 treatment. Abstract Several immunotherapeutic strategies for the treatment of cancer are under development. Two prominent strategies are adoptive cell transfer (ACT) of CTLs and modulation of CTL function with immune checkpoint inhibitors or with costimulatory antibodies. Despite some success with these approaches, there remains a lack of detailed and quantitative descriptions of the events following CTL transfer and the impact of immunomodulation. Here, we have applied ordinary differential equation models to two photon imaging data derived from a B16F10 murine melanoma. Models were parameterised with data from two different treatment conditions: either ACT-only, or ACT with intratumoural costimulation using a CD137 targeted antibody. Model dynamics and best fitting parameters were compared, in order to assess the mode of action of the CTLs and examine how the CD137 antibody influenced their activities. We found that the cytolytic activity of the transferred CTLs was minimal without CD137 costimulation, and that the CD137 targeted antibody did not enhance the per-capita killing ability of the transferred CTLs. Instead, the results of our modelling study suggest that an antiproliferative effect of CTLs exerted upon the tumour likely accounted for the majority of the reduction in tumour growth after CTL transfer. Moreover, we found that CD137 most likely improved tumour control via enhancement of this antiproliferative effect, as well as prolonging the period in which CTLs were inside the tumour, leading to a sustained duration of their antitumour effects following CD137 stimulation.
Collapse
Affiliation(s)
- Richard J. Beck
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden University, 2333 CC Leiden, The Netherlands;
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Joost B. Beltman
- Leiden Academic Centre for Drug Research, Division of Drug Discovery and Safety, Leiden University, 2333 CC Leiden, The Netherlands;
- Correspondence:
| |
Collapse
|
39
|
An Oncolytic Adenovirus Encoding SA-4-1BBL Adjuvant Fused to HPV-16 E7 Antigen Produces a Specific Antitumor Effect in a Cancer Mouse Model. Vaccines (Basel) 2021; 9:vaccines9020149. [PMID: 33673295 PMCID: PMC7917608 DOI: 10.3390/vaccines9020149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Human papillomaviruses (HPVs) are responsible for about 25% of cancer cases worldwide. HPV-16 E7 antigen is a tumor-associated antigen (TAA) commonly expressed in HPV-induced tumors; however, it has low immunogenicity. The interaction of 4-1BBL with its receptor induces pleiotropic effects on innate, adaptive, and regulatory immunity and, if fused to TAAs in DNA vaccines, can improve the antitumor response; however, there is low transfection and antitumor efficiency. Oncolytic virotherapy is promising for antitumor gene therapy as it can be selectively replicated in tumor cells, inducing cell lysis, and furthermore, tumor cell debris can be taken in by immune cells to potentiate antitumor responses. In this study, we expressed the immunomodulatory molecule SA-4-1BBL fused to E7 on an oncolytic adenovirus (OAd) system. In vitro infection of TC-1 tumor cells and NIH-3T3 non-tumor cells with SA/E7/4-1BBL OAd demonstrated that only tumor cells are selectively destroyed. Moreover, protein expression is targeted to the endoplasmic reticulum in both cell lines when a signal peptide (SP) is added. Finally, in an HPV-induced cancer murine model, the therapeutic oncolytic activity of OAd can be detected, and this can be improved when fused to E7 and SP.
Collapse
|
40
|
CD137 + T-Cells: Protagonists of the Immunotherapy Revolution. Cancers (Basel) 2021; 13:cancers13030456. [PMID: 33530328 PMCID: PMC7866028 DOI: 10.3390/cancers13030456] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The CD137 receptor is expressed by activated antigen-specific T-cells. CD137+ T-cells were identified inside TILs and PBMCs of different tumor types and have proven to be the naturally occurring antitumor effector cells, capable of expressing a wide variability in terms of TCR specificity against both shared and neoantigenic tumor-derived peptides. The aim of this review is thus summarizing and highlighting their role as drivers of patients’ immune responses in anticancer therapies as well as their potential role in future and current strategies of immunotherapy. Abstract The CD137 receptor (4-1BB, TNF RSF9) is an activation induced molecule expressed by antigen-specific T-cells. The engagement with its ligand, CD137L, is capable of increasing T-cell survival, proliferation, and cytokine production. This allowed to identify the CD137+ T-cells as the real tumor-specific activated T-cell population. In fact, these cells express various TCRs that are specific for a wide range of tumor-derived peptides, both shared and neoantigenic ones. Moreover, their prevalence in sites close to the tumor and their unicity in killing cancer cells both in vitro and in vivo, raised particular interest in studying their potential role in different strategies of immunotherapy. They indeed showed to be a reliable marker able to predict patient’s outcome to immune-based therapies as well as monitor their response. In addition, the possibility of isolating and expanding this population, turned promising in order to generate effector antitumor T-cells in the context of adoptive T-cell therapies. CD137-targeting monoclonal antibodies have already shown their antitumor efficacy in cancer patients and a number of clinical trials are thus ongoing to test their possible introduction in different combination approaches of immunotherapy. Finally, the intracellular domain of the CD137 receptor was introduced in the anti-CD19 CAR-T cells that were approved by FDA for the treatment of pediatric B-cell leukemia and refractory B-cell lymphoma.
Collapse
|
41
|
Nandi D, Pathak S, Verma T, Singh M, Chattopadhyay A, Thakur S, Raghavan A, Gokhroo A, Vijayamahantesh. T cell costimulation, checkpoint inhibitors and anti-tumor therapy. J Biosci 2021. [PMID: 32345776 DOI: 10.1007/s12038-020-0020-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hallmarks of the adaptive immune response are specificity and memory. The cellular response is mediated by T cells which express cell surface T cell receptors (TCRs) that recognize peptide antigens in complex with major histocompatibility complex (MHC) molecules on antigen presenting cells (APCs). However, binding of cognate TCRs with MHC-peptide complexes alone (signal 1) does not trigger optimal T cell activation. In addition to signal 1, the binding of positive and negative costimulatory receptors to their ligands modulates T cell activation. This complex signaling network prevents aberrant activation of T cells. CD28 is the main positive costimulatory receptor on naı¨ve T cells; upon activation, CTLA4 is induced but reduces T cell activation. Further studies led to the identification of additional negative costimulatory receptors known as checkpoints, e.g. PD1. This review chronicles the basic studies in T cell costimulation that led to the discovery of checkpoint inhibitors, i.e. antibodies to negative costimulatory receptors (e.g. CTLA4 and PD1) which reduce tumor growth. This discovery has been recognized with the award of the 2018 Nobel prize in Physiology/Medicine. This review highlights the structural and functional roles of costimulatory receptors, the mechanisms by which checkpoint inhibitors work, the challenges encountered and future prospects.
Collapse
Affiliation(s)
- Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru 560 012, India
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Reithofer M, Rosskopf S, Leitner J, Battin C, Bohle B, Steinberger P, Jahn-Schmid B. 4-1BB costimulation promotes bystander activation of human CD8 T cells. Eur J Immunol 2020; 51:721-733. [PMID: 33180337 PMCID: PMC7986150 DOI: 10.1002/eji.202048762] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023]
Abstract
Costimulatory signals potently promote T‐cell proliferation and effector function. Agonistic antibodies targeting costimulatory receptors of the TNFR family, such as 4‐1BB and CD27, have entered clinical trials in cancer patients. Currently there is limited information how costimulatory signals regulate antigen‐specific but also bystander activation of human CD8 T cells. Engineered antigen presenting cells (eAPC) efficiently presenting several common viral epitopes on HLA‐A2 in combination with MHC class I tetramer staining were used to investigate the impact of costimulatory signals on human CD8 T‐cell responses. CD28 costimulation potently augmented the percentage and number of antigen‐reactive CD8 T cells, whereas eAPC expressing 4‐1BB‐ligand induced bystander proliferation of CD8 T cells and massive expansion of NK cells. Moreover, the 4‐1BB agonist urelumab similarly induced bystander proliferation of CD8 T cells and NK cells in a dose‐dependent manner. However, the promotion of bystander CD8 T‐cell responses is not a general attribute of costimulatory TNF receptor superfamily (TNFRSF) members, since CD27 signals enhanced antigen‐specific CD8 T cells responses without promoting significant bystander activation. Thus, the differential effects of costimulatory signals on the activation of human bystander CD8 T cells should be taken into account when costimulatory pathways are harnessed for cancer immunotherapy.
Collapse
Affiliation(s)
- Manuel Reithofer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sandra Rosskopf
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Choi BK, Lee HW. The Murine CD137/CD137 Ligand Signalosome: A Signal Platform Generating Signal Complexity. Front Immunol 2020; 11:553715. [PMID: 33362756 PMCID: PMC7758191 DOI: 10.3389/fimmu.2020.553715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
CD137, a member of the TNFR family, is a costimulatory receptor, and CD137L, a member of the TNF family, is its ligand. Studies using CD137- and CD137L-deficient mice and antibodies against CD137 and CD137L have revealed the diverse and paradoxical effects of these two proteins in various cancers, autoimmunity, infections, and inflammation. Both their cellular diversity and their spatiotemporal expression patterns indicate that they mediate complex immune responses. This intricacy is further enhanced by the bidirectional signal transduction events that occur when these two proteins interact in various types of immune cells. Here, we review the biology of murine CD137/CD137L, particularly, the complexity of their proximal signaling pathways, and speculate on their roles in immune responses.
Collapse
Affiliation(s)
- Beom K Choi
- Biomedicine Production Branch, Program for Immunotherapy Research, National Cancer Center, Goyang, South Korea
| | - Hyeon-Woo Lee
- Department of Pharmacology, School of Dentistry, Graduate School, Institute of Oral Biology, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
44
|
Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, Kiaie SH, Jadidi-Niaragh F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci 2020; 77:3693-3710. [PMID: 32006051 PMCID: PMC11104895 DOI: 10.1007/s00018-020-03459-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy is considered as an effective method for cancer treatment owing to the induction of specific and long-lasting anti-cancer effects. Immunotherapeutic strategies have shown significant success in human malignancies, particularly in prostate cancer (PCa), a major global health issue regarding its high metastatic rates. In fact, the first cancer vaccine approved by FDA was Provenge, which has been successfully used for treatment of PCa. Despite the remarkable success of cancer immunotherapy in PCa, many of the developed immunotherapy methods show poor therapeutic outcomes. Immunosuppression in tumor microenvironment (TME) induced by non-functional T cells (CD4+ and CD8+), tolerogenic dendritic cells (DCs), and regulatory T cells, has been reported to be the main obstacle to the effectiveness of anti-tumor immune responses induced by an immunotherapy method. The present review particularly focuses on the latest findings of the immune checkpoints (ICPs), including CTLA-4, PD-1, PD-L1, LAG-3, OX40, B7-H3, 4-1BB, VISTA, TIM-3, and ICOS; these checkpoints are able to have immune modulatory effects on the TME of PCa. This paper further discusses different approaches in ICPs targeting therapy and summarizes the latest advances in the clinical application of ICP-targeted therapy as monotherapy or in combination with other cancer therapy modalities in PCa.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| | - Houman Kahroba
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saied Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasrin Maleki-Dizaji
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Barghi
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Li W, Qiu S, Chen J, Jiang S, Chen W, Jiang J, Wang F, Si W, Shu Y, Wei P, Fan G, Tian R, Wu H, Xu C, Wang H. Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. Immunity 2020; 53:456-470.e6. [PMID: 32758419 DOI: 10.1016/j.immuni.2020.07.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
Abstract
Clinical evidence suggests that poor persistence of chimeric antigen receptor-T cells (CAR-T) in patients limits therapeutic efficacy. Here, we designed a CAR with recyclable capability to promote in vivo persistence and to sustain antitumor activity. We showed that the engagement of tumor antigens induced rapid ubiquitination of CARs, causing CAR downmodulation followed by lysosomal degradation. Blocking CAR ubiquitination by mutating all lysines in the CAR cytoplasmic domain (CARKR) markedly repressed CAR downmodulation by inhibiting lysosomal degradation while enhancing recycling of internalized CARs back to the cell surface. Upon encountering tumor antigens, CARKR-T cells ameliorated the loss of surface CARs, which promoted their long-term killing capacity. Moreover, CARKR-T cells containing 4-1BB signaling domains displayed elevated endosomal 4-1BB signaling that enhanced oxidative phosphorylation and promoted memory T cell differentiation, leading to superior persistence in vivo. Collectively, our study provides a straightforward strategy to optimize CAR-T antitumor efficacy by redirecting CAR trafficking.
Collapse
Affiliation(s)
- Wentao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Qiu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Chen
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shutan Jiang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wendong Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingwei Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen Si
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yilai Shu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haitao Wu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
46
|
Betts A, van der Graaf PH. Mechanistic Quantitative Pharmacology Strategies for the Early Clinical Development of Bispecific Antibodies in Oncology. Clin Pharmacol Ther 2020; 108:528-541. [PMID: 32579234 PMCID: PMC7484986 DOI: 10.1002/cpt.1961] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
Bispecific antibodies (bsAbs) have become an integral component of the therapeutic research strategy to treat cancer. In addition to clinically validated immune cell re‐targeting, bsAbs are being designed for tumor targeting and as dual immune modulators. Explorative preclinical and emerging clinical data indicate potential for enhanced efficacy and reduced systemic toxicity. However, bsAbs are a complex modality with challenges to overcome in early clinical trials, including selection of relevant starting doses using a minimal anticipated biological effect level approach, and predicting efficacious dose despite nonintuitive dose response relationships. Multiple factors can contribute to variability in the clinic, including differences in functional affinity due to avidity, receptor expression, effector to target cell ratio, and presence of soluble target. Mechanistic modeling approaches are a powerful integrative tool to understand the complexities and aid in clinical translation, trial design, and prediction of regimens and strategies to reduce dose limiting toxicities of bsAbs. In this tutorial, the use of mechanistic modeling to impact decision making for bsAbs is presented and illustrated using case study examples.
Collapse
Affiliation(s)
- Alison Betts
- Applied Biomath, Concord, Massachusetts, USA.,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Piet H van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.,Certara, Canterbury, UK
| |
Collapse
|
47
|
Recombinant Costimulatory Fusion Proteins as Functional Immunomodulators Enhance Antitumor Activity in Murine B16F10 Melanoma. Vaccines (Basel) 2020; 8:vaccines8020223. [PMID: 32423130 PMCID: PMC7349950 DOI: 10.3390/vaccines8020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 11/23/2022] Open
Abstract
Blocking inhibitory signaling and engaging stimulatory signaling have emerged as important therapeutic modalities for cancer immunotherapy. This study aimed to investigate immunomodulatory features of three recombinant costimulatory ligand proteins in a mouse model, which are extracellular domains of OX40-ligand (OX40L), 4-1BB-ligand (4-1BBL), or two domains in tandem, fused with the transmembrane domain of diphtheria toxin (DTT), named DTT-COS1, DTT-COS2, and DTT-COS12, respectively. In vitro study showed that DTT-COS1 and DTT-COS12 had immunological activity increasing the ratio of CD8/CD4 T cells. Treatments with DTT-COS1 and DTT-COS12 dramatically generated immune protection against the B16F10 tumor challenge in both prophylactic and therapeutic efficacy. Furthermore, regarding tumor microenvironment (TME) immunomodulation, DTT-COS1 treatment increased the proportion of CD4+ effector T cells (Teff) and decreased the expression of a suppressive cytokine. Meanwhile, DTT-COS12 reduced regulatory T cells (Treg) and improved the level of stimulatory cytokines. In addition, endogenous antibodies against OX40L/4-1BBL were generated, which may help with antitumor responses. Unexpectedly, DTT-COS2 lacked antitumor effects in vitro and in vivo. Importantly, serum analysis of liver-function associated factors and pro-inflammatory cytokines demonstrated that treatments were safe formulations in mice without signs of systemic toxicity. Remarkably, DTT-COS1 and DTT-COS12 are functional immunomodulators for mouse B16F10 melanoma, creating practical preclinical value in cancer immunotherapy.
Collapse
|
48
|
Qu QX, Zhu XY, Du WW, Wang HB, Shen Y, Zhu YB, Chen C. 4-1BB Agonism Combined With PD-L1 Blockade Increases the Number of Tissue-Resident CD8+ T Cells and Facilitates Tumor Abrogation. Front Immunol 2020; 11:577. [PMID: 32391001 PMCID: PMC7193033 DOI: 10.3389/fimmu.2020.00577] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Although the milestone discovery of immune checkpoint blockade (ICB) has been translated into clinical practice, only a fraction of patients can benefit from it with durable responses and subsequent long-term survival. Here, we tested the anti-tumor effect of combining PD-L1 blockade with 4-1BB costimulation in 3LL and 4T1.2 murine tumor models. Dual treatment induced further tumor regression and enhanced survival in tumor-bearing mice more so than PD-L1 and 4-1BB mAb alone. It was demonstrated that dual anti-PD-L1/anti-4-1BB immunotherapy increased the number of intratumoral CD103+CD8+ T cells and altered their distribution. Phenotypically, CD103+CD8+ T cells expressed a higher level of 4-1BB and PD-1 than their CD103− counterparts. Administration of PD-L1 mAb and 4-1BB mAb further increased the cytolytic capacity of CD103+CD8+ T cells. In vivo, CD103−CD8+ T cells could differentiate into CD103+CD8+ progeny cells. In a human setting, more CD8+ T cells differentiated into CD103+CD8+ T cells in the peripheral tumor region of lung cancer tissues than in the central tumor region. Collectively, infiltrated CD103+CD8+ T cells served as a potential effector T cell population. Combining 4-1BB agonism with PD-L1 blockade could increase tumor-infiltrated CD103+CD8+T cells, thereby facilitating tumor regression.
Collapse
Affiliation(s)
- Qiu-Xia Qu
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Xin-Yun Zhu
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Wen Du
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Bin Wang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Shen
- Clinical Immunology Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Yi-Bei Zhu
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Cheng Chen
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
49
|
Philipson BI, O'Connor RS, May MJ, June CH, Albelda SM, Milone MC. 4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling. Sci Signal 2020; 13:13/625/eaay8248. [PMID: 32234960 DOI: 10.1126/scisignal.aay8248] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clinical response to chimeric antigen receptor (CAR) T cell therapy is correlated with CAR T cell persistence, especially for CAR T cells that target CD19+ hematologic malignancies. 4-1BB-costimulated CAR (BBζ) T cells exhibit longer persistence after adoptive transfer than do CD28-costimulated CAR (28ζ) T cells. 4-1BB signaling improves T cell persistence even in the context of 28ζ CAR activation, which indicates distinct prosurvival signals mediated by the 4-1BB cytoplasmic domain. To specifically study signal transduction by CARs, we developed a cell-free, ligand-based activation and ex vivo culture system for CD19-specific CAR T cells. We observed greater ex vivo survival and subsequent expansion of BBζ CAR T cells when compared to 28ζ CAR T cells. We showed that only BBζ CARs activated noncanonical nuclear factor κB (ncNF-κB) signaling in T cells basally and that the anti-CD19 BBζ CAR further enhanced ncNF-κB signaling after ligand engagement. Reducing ncNF-κB signaling reduced the expansion and survival of anti-CD19 BBζ T cells and was associated with a substantial increase in the abundance of the most pro-apoptotic isoforms of Bim. Although our findings do not exclude the importance of other signaling differences between BBζ and 28ζ CARs, they demonstrate the necessary and nonredundant role of ncNF-κB signaling in promoting the survival of BBζ CAR T cells, which likely underlies the engraftment persistence observed with this CAR design.
Collapse
Affiliation(s)
- Benjamin I Philipson
- Medical Scientist Training Program, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roddy S O'Connor
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Walsh Z, Yang Y, Kohler ME. Immunobiology of chimeric antigen receptor T cells and novel designs. Immunol Rev 2020; 290:100-113. [PMID: 31355496 DOI: 10.1111/imr.12794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023]
Abstract
Advances in the development of immunotherapies have offered exciting new options for the treatment of malignant diseases that are refractory to conventional cytotoxic chemotherapies. The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) has demonstrated dramatic results in clinical trials and highlights the promise of novel immune-based approaches to the treatment of cancer. As experience with CAR T cells has expanded with longer follow-up and to a broader range of diseases, new obstacles have been identified which limit the potential lifelong benefits of CAR T cell therapy. These obstacles highlight not only the gaps in knowledge of the optimal clinical application of this "living drug", but also gaps in our understanding of the fundamental biology of CAR T cells themselves. In this review, we discuss the obstacles facing CAR T cell therapy, how these relate to our current understanding of CAR T cell biology and approaches to enhance the clinical efficacy of this therapy.
Collapse
Affiliation(s)
- Zachary Walsh
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Yinmeng Yang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - M Eric Kohler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.,Division of Blood and Marrow Transplantation and Cellular Therapeutics, Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|