1
|
Jang JS, Kang IS, Cha YN, Lee ZH, Dinauer MC, Kim YJ, Kim C. Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption. BMB Rep 2020. [PMID: 31072447 PMCID: PMC6889896 DOI: 10.5483/bmbrep.2019.52.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient (Vav1-/-) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of Vav1-/- mice than in WT mice. Furthermore, the bone status of Vav1-/- mice was analyzed in situ and the femurs of Vav1-/- mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an αvβ3 integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption. [BMB Reports 2019; 52(11): 659-664].
Collapse
Affiliation(s)
- Jin Sun Jang
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea
| | - In Soon Kang
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea
| | - Young-Nam Cha
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Mary C Dinauer
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63100, USA
| | - Young-June Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chaekyun Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea
| |
Collapse
|
2
|
Tiryaki VM, Ayres VM, Ahmed I, Shreiber DI. A novel quantitative volumetric spreading index definition and assessment of astrocyte spreading in vitro. Cytometry A 2017; 91:794-799. [PMID: 28746797 DOI: 10.1002/cyto.a.23183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A novel quantitative volumetric spreading index (VSI) is defined that depends on the total distance between object voxels and the contact surface plane in three-dimensional (3D) space. The VSI, which ranges from 0 to 1, is rotationally invariant around the z-axis. VSI can be used to quantify the degree of individual cell spreading, which is important for analysis of cell interactions with their environment. The VSIs of astrocytes cultured on a nanofibrillar surface and three different comparative planar surfaces have been calculated from confocal laser scanning microscope z-series images, and the effects of both culture surface and immunoreactivity on the degree of cell spreading were investigated. VSI calculations indicated a statistical correlation between increased reactivity, based on immunolabeling for glial fibrillary acidic protein, and decreased cell spreading. Further results provided a quantitative measure for the increased spreading of quiescent-like and reactive-like astrocytes on planar substrates functionalized with poly-l-lysine. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Volkan Müjdat Tiryaki
- Department of Computer Engineering, School of Engineering and Architecture, Siirt University, Siirt 56100, Turkey
| | - Virginia M Ayres
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824
| | - Ijaz Ahmed
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
3
|
Abstract
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.
Collapse
Key Words
- Ac, acidic
- Ahr, aryl hydrocarbon receptor
- CH, calponin homology
- CSH3, most C-terminal SH3 domain of Vav proteins
- DAG, diacylglycerol
- DH, Dbl-homology domain
- Dbl-homology
- GDP/GTP exchange factors
- GEF, guanosine nucleotide exchange factor
- HIV, human immunodeficiency virus
- IP3, inositoltriphosphate
- NFAT, nuclear factor of activated T-cells
- NSH3, most N-terminal SH3 domain of Vav proteins
- PH, plekstrin-homology domain
- PI3K, phosphatidylinositol-3 kinase
- PIP3, phosphatidylinositol (3,4,5)-triphosphate
- PKC, protein kinase C
- PKD, protein kinase D
- PLC-g, phospholipase C-g
- PRR, proline-rich region
- PTK, protein tyrosine kinase
- Phox, phagocyte oxidase
- Rho GTPases
- SH2, Src homology 2
- SH3, Src homology 3
- SNP, single nucleotide polymorphism
- TCR, T-cell receptor
- Vav
- ZF, zinc finger region
- cGMP, cyclic guanosine monophosphate
- cancer
- cardiovascular biology
- disease
- immunology
- nervous system
- signaling
- therapies
Collapse
Affiliation(s)
- Xosé R Bustelo
- a Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer ; Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca ; Campus Unamuno; Salamanca , Spain
| |
Collapse
|
4
|
VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. Nat Commun 2014; 5:5579. [PMID: 25412913 PMCID: PMC4241504 DOI: 10.1038/ncomms6579] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022] Open
Abstract
The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.
Collapse
|
5
|
Jenkins MR, Stinchcombe JC, Au-Yeung BB, Asano Y, Ritter AT, Weiss A, Griffiths GM. Distinct structural and catalytic roles for Zap70 in formation of the immunological synapse in CTL. eLife 2014; 3:e01310. [PMID: 24596147 PMCID: PMC3936284 DOI: 10.7554/elife.01310] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/22/2014] [Indexed: 11/13/2022] Open
Abstract
T cell receptor (TCR) activation leads to a dramatic reorganisation of both membranes and receptors as the immunological synapse forms. Using a genetic model to rapidly inhibit Zap70 catalytic activity we examined synapse formation between cytotoxic T lymphocytes and their targets. In the absence of Zap70 catalytic activity Vav-1 activation occurs and synapse formation is arrested at a stage with actin and integrin rich interdigitations forming the interface between the two cells. The membranes at the synapse are unable to flatten to provide extended contact, and Lck does not cluster to form the central supramolecular activation cluster (cSMAC). Centrosome polarisation is initiated but aborts before reaching the synapse and the granules do not polarise. Our findings reveal distinct roles for Zap70 as a structural protein regulating integrin-mediated control of actin vs its catalytic activity that regulates TCR-mediated control of actin and membrane remodelling during formation of the immunological synapse. DOI: http://dx.doi.org/10.7554/eLife.01310.001.
Collapse
Affiliation(s)
- Misty R Jenkins
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Byron B Au-Yeung
- Department of Medicine, University of California, San Francisco, San Francisco, United States
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institue, University of California, San Francisco, San Francisco, United States
| | - Yukako Asano
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Alex T Ritter
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cell Biology and Metabolism Branch, National Institutes of Health, Bethesda, United States
| | - Arthur Weiss
- Department of Medicine, University of California, San Francisco, San Francisco, United States
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
- Howard Hughes Medical Institue, University of California, San Francisco, San Francisco, United States
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Razidlo GL, Wang Y, Chen J, Krueger EW, Billadeau DD, McNiven MA. Dynamin 2 potentiates invasive migration of pancreatic tumor cells through stabilization of the Rac1 GEF Vav1. Dev Cell 2013; 24:573-85. [PMID: 23537630 PMCID: PMC3905678 DOI: 10.1016/j.devcel.2013.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/03/2013] [Accepted: 02/19/2013] [Indexed: 01/03/2023]
Abstract
The large GTPase Dynamin 2 (Dyn2) is markedly upregulated in pancreatic cancer, is a potent activator of metastatic migration, and is required for Rac1-mediated formation of lamellipodia. Here we demonstrate an unexpected mechanism of Dyn2 action in these contexts via direct binding to the Rac1 guanine nucleotide exchange factor (GEF) Vav1. Surprisingly, disruption of the Dyn2-Vav1 interaction targets Vav1 to the lysosome for degradation via an interaction with the cytoplasmic chaperone Hsc70, resulting in a dramatic reduction of Vav1 protein stability. Importantly, a specific mutation in Vav1 near its Dyn2-binding C-terminal Src homology 3 (SH3) domain prevents Hsc70 binding, resulting in a stabilization of Vav1 levels. Dyn2 binding regulates the interaction of Vav1 with Hsc70 to control the stability and subsequent activity of this oncogenic GEF. These findings elucidate how Dyn2 activates Rac1, lamellipod protrusion, and invasive cellular migration and provide insight into how this specific Vav is ectopically expressed in pancreatic tumors.
Collapse
Affiliation(s)
- Gina L. Razidlo
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| | - Yu Wang
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| | - Jing Chen
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| | - Eugene W. Krueger
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| | - Daniel D. Billadeau
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| | - Mark A. McNiven
- Department of Biochemistry and Molecular Biology and the Center for Digestive Diseases, Rochester, Minnesota, 55905 USA
| |
Collapse
|
7
|
Chang KH, Sanchez-Aguilera A, Shen S, Sengupta A, Madhu MN, Ficker AM, Dunn SK, Kuenzi AM, Arnett JL, Santho RA, Agirre X, Perentesis JP, Deininger MW, Zheng Y, Bustelo XR, Williams DA, Cancelas JA. Vav3 collaborates with p190-BCR-ABL in lymphoid progenitor leukemogenesis, proliferation, and survival. Blood 2012; 120:800-11. [PMID: 22692505 PMCID: PMC3412345 DOI: 10.1182/blood-2011-06-361709] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 05/29/2012] [Indexed: 11/20/2022] Open
Abstract
Despite the introduction of tyrosine kinase inhibitor therapy, the prognosis for p190-BCR-ABL(+) acute lymphoblastic leukemia remains poor. In the present study, we present the cellular and molecular roles of the Rho GTPase guanine nucleotide exchange factor Vav in lymphoid leukemogenesis and explore the roles of Vav proteins in BCR-ABL-dependent signaling. We show that genetic deficiency of the guanine nucleotide exchange factor Vav3 delays leukemogenesis by p190-BCR-ABL and phenocopies the effect of Rac2 deficiency, a downstream effector of Vav3. Compensatory up-regulation of expression and activation of Vav3 in Vav1/Vav2-deficient B-cell progenitors increases the transformation ability of p190-BCR-ABL. Vav3 deficiency induces apoptosis of murine and human leukemic lymphoid progenitors, decreases the activation of Rho GTPase family members and p21-activated kinase, and is associated with increased Bad phosphorylation and up-regulation of Bax, Bak, and Bik. Finally, Vav3 activation only partly depends on ABL TK activity, and Vav3 deficiency collaborates with tyrosine kinase inhibitors to inhibit CrkL activation and impair leukemogenesis in vitro and in vivo. We conclude that Vav3 represents a novel specific molecular leukemic effector for multitarget therapy in p190-BCR-ABL-expressing acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Kyung Hee Chang
- Division of Experimental Hematology, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Carlin LM, Evans R, Milewicz H, Fernandes L, Matthews DR, Perani M, Levitt J, Keppler MD, Monypenny J, Coolen T, Barber PR, Vojnovic B, Suhling K, Fraternali F, Ameer-Beg S, Parker PJ, Thomas NSB, Ng T. A targeted siRNA screen identifies regulators of Cdc42 activity at the natural killer cell immunological synapse. Sci Signal 2011; 4:ra81. [PMID: 22126964 DOI: 10.1126/scisignal.2001729] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells kill tumor cells and virally infected cells, and an effective NK cell response requires processes, such as motility, recognition, and directional secretion, that rely on cytoskeletal rearrangement. The Rho guanosine triphosphatase (GTPase) Cdc42 coordinates cytoskeletal reorganization downstream of many receptors. The Rho-related GTPase from plants 1 (ROP1) exhibits oscillatory activation behavior at the apical plasma membrane of growing pollen tubes; however, a similar oscillation in Rho GTPase activity has so far not been demonstrated in mammalian cells. We hypothesized that oscillations in Cdc42 activity might occur within NK cells as they interact with target cells. Through fluorescence lifetime imaging of a Cdc42 biosensor, we observed that in live NK cells forming immunological synapses with target cells, Cdc42 activity oscillated after exhibiting an initial increase. We used protein-protein interaction networks and structural databases to identify candidate proteins that controlled Cdc42 activity, leading to the design of a targeted short interfering RNA screen. The guanine nucleotide exchange factors RhoGEF6 and RhoGEF7 were necessary for Cdc42 activation within the NK cell immunological synapse. In addition, the kinase Akt and the p85α subunit of phosphoinositide 3-kinase (PI3K) were required for Cdc42 activation, the periodicity of the oscillation in Cdc42 activity, and the subsequent polarization of cytotoxic vesicles toward target cells. Given that PI3Ks are targets of tumor therapies, our findings suggest the need to monitor innate immune function during the course of targeted therapy against these enzymes.
Collapse
Affiliation(s)
- Leo M Carlin
- Richard Dimbleby Department of Cancer Research, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
T-cell receptor early signalling complex activation in response to interferon-alpha receptor stimulation. Biochem J 2010; 428:429-37. [PMID: 20388118 PMCID: PMC2888567 DOI: 10.1042/bj20091660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signalling through the IFNalphaR (interferon-alpha receptor) and TCR (T-cell receptor) in Jurkat T lymphocytes results in distinct immune responses. Despite this both receptors elicit ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) phosphorylation. Vav and Slp76 are shown to be required for IFNalpha (interferon-alpha)-stimulated ERK activity. These form a subset of proteins which behave identically on stimulation of both receptors. TCR deletion abrogates IFNalphaR-stimulated MAPK activity, whereas the canonical JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway is unaffected. Thus recruitment of the intact TCR ESC (early signalling complex) is necessary for this downstream MAPK response. Despite using a common ESC, stimulation of the IFNalphaR does not produce the transcriptional response associated with TCR. Up-regulation of the MAPK pathway by IFNalphaR might be important to ensure that the cell responds to only one stimulant.
Collapse
|
10
|
Henderson RB, Grys K, Vehlow A, de Bettignies C, Zachacz A, Henley T, Turner M, Batista F, Tybulewicz VL. A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival. J Exp Med 2010; 207:837-53. [PMID: 20308364 PMCID: PMC2856036 DOI: 10.1084/jem.20091489] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 02/22/2010] [Indexed: 01/03/2023] Open
Abstract
Rac1 and Rac2 GTPases transduce signals from multiple receptors leading to cell migration, adhesion, proliferation, and survival. In the absence of Rac1 and Rac2, B cell development is arrested at an IgD- transitional B cell stage that we term transitional type 0 (T0). We show that T0 cells cannot enter the white pulp of the spleen until they mature into the T1 and T2 stages, and that this entry into the white pulp requires integrin and chemokine receptor signaling and is required for cell survival. In the absence of Rac1 and Rac2, transitional B cells are unable to migrate in response to chemokines and cannot enter the splenic white pulp. We propose that loss of Rac1 and Rac2 causes arrest at the T0 stage at least in part because transitional B cells need to migrate into the white pulp to receive survival signals. Finally, we show that in the absence of Syk, a kinase that transduces B cell antigen receptor signals required for positive selection, development is arrested at the same T0 stage, with transitional B cells excluded from the white pulp. Thus, these studies identify a novel developmental checkpoint that coincides with B cell positive selection.
Collapse
Affiliation(s)
- Robert B. Henderson
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Katarzyna Grys
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Anne Vehlow
- Cancer Research UK London Research Institute, London WC2A 3PX, England, UK
| | - Carine de Bettignies
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Agnieszka Zachacz
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | - Tom Henley
- The Babraham Institute, Cambridge CB2 4AT, England, UK
| | - Martin Turner
- The Babraham Institute, Cambridge CB2 4AT, England, UK
| | - Facundo Batista
- Cancer Research UK London Research Institute, London WC2A 3PX, England, UK
| | - Victor L.J. Tybulewicz
- Division of Immune Cell Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| |
Collapse
|
11
|
Vav1 couples the T cell receptor to cAMP response element activation via a PKC-dependent pathway. Cell Signal 2010; 22:944-54. [PMID: 20138987 DOI: 10.1016/j.cellsig.2010.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 12/21/2022]
Abstract
The transcription factor cAMP-responsive element binding protein (CREB) is a regulator of the expression of several genes important for lymphocyte activation and proliferation. However, the proximal signaling events leading to activation of CREB in T cells upon antigen receptor stimulation remain unknown. Here we identify a role for Vav1 in the activation of the cAMP response element (CRE), the binding site for CREB. T cell receptor (TCR)/CD28 - induced costimulation of Jurkat T cells expressing Vav1 but not a GEF-deficient mutant showed increased CRE activation (7.2+/-2.4 fold over control), whereas Vav1 downregulation by siRNA reduced activation of CRE by 2.6+/-1.3 fold. Inhibition of PKC and MEK but not p38 could reduce Vav1-mediated CRE activation, suggesting that Vav1 transmits TCR and CD28 signals to activation of CRE via PKC and ERK signaling pathways. As a consequence, downregulation of Vav1 impaired the expression of several CRE-containing genes like cyclin D1, INFgamma and IL-2, whereas overexpression of Vav1 enhanced CRE-dependent gene expression. Furthermore, cAMP-induced CRE-dependent transcription and gene expression was also modulated by Vav1, but did not require activation of PKC and the GEF function of Vav1. Our data provide insights into the signal transduction events regulating CRE-mediated gene expression in T cells, which affects T cell development, proliferation and activation. We identify Vav1 as an essential component of TCR-induced CRE activation and gene expression, which underlines the central role for Vav1 as key player for TCR signal transduction and gene expression.
Collapse
|
12
|
Spurrell DR, Luckashenak NA, Minney DC, Chaplin A, Penninger JM, Liwski RS, Clements JL, West KA. Vav1 regulates the migration and adhesion of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:310-8. [PMID: 19542442 DOI: 10.4049/jimmunol.0802096] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dendritic cells (DCs) are the most potent APCs for activating naive T cells, a process facilitated by the ability of immature DCs to mature and home to lymph nodes after encountering an inflammatory stimulus. Proteins involved in cytoskeletal rearrangement play an important role in regulating the adherence and motility of DCs. Vav1, a guanine nucleotide exchange factor for Rho family GTPases, mediates cytoskeletal rearrangement in hematopoietic cells following integrin ligation. We show that Vav1 is not required for the normal maturation of DCs in vitro; however, it is critical for DC binding to fibronectin and regulates the distribution but not the formation of podosomes. We also found that DC Vav1 was an important component of a signaling pathway involving focal adhesion kinase, phospholipase C-gamma2, and ERK1/2 following integrin ligation. Surprisingly, Vav1(-/-) DCs had increased rates of migration in vivo compared with wild-type control DCs. In vitro findings show that the presence of adhesive substrates such as fibronectin resulted in inhibition of migration. However, there was less inhibition in the absence of Vav1. These findings suggest that DC migration is negatively regulated by adhesion and integrin-mediated signaling and that Vav1 has a central role in this process.
Collapse
Affiliation(s)
- David R Spurrell
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gahmberg CG, Fagerholm SC, Nurmi SM, Chavakis T, Marchesan S, Grönholm M. Regulation of integrin activity and signalling. Biochim Biophys Acta Gen Subj 2009; 1790:431-44. [PMID: 19289150 DOI: 10.1016/j.bbagen.2009.03.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/05/2009] [Accepted: 03/10/2009] [Indexed: 01/09/2023]
Abstract
The ability of cells to attach to each other and to the extracellular matrix is of pivotal significance for the formation of functional organs and for the distribution of cells in the body. Several molecular families of proteins are involved in adhesion, and recent work has substantially improved our understanding of their structures and functions. Also, these molecules are now being targeted in the fight against disease. However, less is known about how their activity is regulated. It is apparent that among the different classes of adhesion molecules, the integrin family of adhesion receptors is unique in the sense that they constitute a large group of widely distributed receptors, they are unusually complex and most importantly their activities are strictly regulated from the inside of the cell. The activity regulation is achieved by a complex interplay of cytoskeletal proteins, protein kinases, phosphatases, small G proteins and adaptor proteins. Obviously, we are only in the beginning of our understanding of how the integrins function, but already now fascinating details have become apparent. Here, we describe recent progress in the field, concentrating mainly on mechanistical and structural studies of integrin regulation. Due to the large number of articles dealing with integrins, we focus on what we think are the most exciting and rewarding directions of contemporary research on cell adhesion and integrins.
Collapse
Affiliation(s)
- Carl G Gahmberg
- Division of Biochemistry, Faculty of Biosciences, University of Helsinki, Viikinkaari 5, 00014, Finland.
| | | | | | | | | | | |
Collapse
|
14
|
Smith SD, Jaffer ZM, Chernoff J, Ridley AJ. PAK1-mediated activation of ERK1/2 regulates lamellipodial dynamics. J Cell Sci 2008; 121:3729-36. [PMID: 18940914 DOI: 10.1242/jcs.027680] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PAK1 is a member of the p21-activated kinase (PAK) family of serine/threonine kinases that are activated by the Rho GTPases Rac and Cdc42, and are implicated in regulating morphological polarity, cell migration and adhesion. Here we investigate the function of PAK1 in cell motility using macrophages derived from PAK1-null mice. We show that CSF1, a macrophage chemoattractant, transiently stimulates PAK1 and MAPK activation, and that MAPK activation is reduced in PAK1-/- macrophages. PAK1 regulates the dynamics of lamellipodium extension as cells spread in response to adhesion but is not essential for macrophage migration or chemotaxis towards CSF1. Following adhesion, PAK1-/- macrophages spread more rapidly and have more lamellipodia than wild-type cells; however, these lamellipodia were less stable than those in wild-type macrophages. ERK1/2 activity was reduced in PAK1-/- macrophages during adhesion, and inhibition of ERK1/2 activation in wild-type macrophages was sufficient to increase the spread area and mimic the lamellipodial dynamics of PAK1-/- macrophages. Together, these data indicate that PAK1 signals via ERK1/2 to regulate lamellipodial stability.
Collapse
Affiliation(s)
- Stephen D Smith
- Ludwig Institute for Cancer Research, University College London, 91 Riding House Street, London W1W 7BS, UK
| | | | | | | |
Collapse
|
15
|
Beemiller P, Krummel MF. Distinct functions for HS1 in chemosensory versus adhesive signaling. Nat Immunol 2008; 9:833-4. [DOI: 10.1038/ni0808-833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Abstract
Leukocyte-function-associated antigen-1 (LFA-1) is an integrin that is critical for T-cell adhesion and immunologic responses. As a transmembrane receptor and adhesion molecule, LFA-1 signals bidirectionally, whereby information about extracellular ligands is passed outside-in while cellular activation is transmitted inside-out to the adhesive ectodomain. Here, we review the role of small guanosine triphosphatases (GTPases) in LFA-1 signaling. Rap1, a Ras-related GTPase, appears to be central to LFA-1 function. Rap1 is regulated by receptor signaling [e.g. T-cell receptor (TCR), CD28, and cytotoxic T-lymphocyte antigen-4 (CTLA-4)] and by adapter proteins [e.g. adhesion and degranulation-promoting adapter protein (ADAP) and Src kinase-associated phosphoprotein of 55 kDa (SKAP-55)]. Inside-out signaling flows through Rap1 to regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) and Rap1-GTP interacting adapter molecule (RIAM) that act in conjunction with the cytoskeleton on the cytosolic domain of LFA-1 to increase adhesion of the ectodomain. Outside-in signaling also relies on small GTPases such as Rho proteins. Vav-1, a guanine nucleotide exchange factor for Rho proteins, is activated as a consequence of LFA-1 engagement. Jun-activating binding protein-1 (JAB-1) and cytohesin-1 have been implicated as possible outside-in signaling intermediates. We have recently shown that Ras is also downstream of LFA-1 engagement: LFA-1 signaling through phospholipase D (PLD) to RasGRP1 was required for Ras activation on the plasma membrane following stimulation of TCR.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
17
|
Wei B, da Rocha Dias S, Wang H, Rudd CE. CTL-associated antigen-4 ligation induces rapid T cell polarization that depends on phosphatidylinositol 3-kinase, Vav-1, Cdc42, and myosin light chain kinase. THE JOURNAL OF IMMUNOLOGY 2007; 179:400-8. [PMID: 17579061 DOI: 10.4049/jimmunol.179.1.400] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CTLA-4 can negatively regulate cytokine production and proliferation, increase motility, and override the TCR-induced stop-signal needed for stable T cell-APC conjugation. Despite this, little is known regarding whether CTLA-4 can alter T cell morphology and the nature of the signaling events that could account for this event. In this study, we demonstrate that anti-CTLA-4 and CD3/CTLA-4 induce rapid T cell polarization (i.e., within 15-30 min) with increases in lamellipodia, filopodia, and uropod formation. This was observed with anti-CTLA-4 and CD80-Ig ligation of CTLA-4, but not with anti-CD3 alone, or anti-CD3/CD28 coligation. Polarization required PI3K, the guanine nucleotide exchange factor Vav1, the GTP-binding protein Cdc42, as well as myosin L chain kinase. By contrast, a key downstream target of PI3K, protein kinase B, as well as Rho kinase and RhoA, were not needed. Our results demonstrate that CTLA-4 is a potent activator T cell polarization needed for motility, and this process involves specific set of signaling proteins that might contribute to coreceptor regulation of T cell function.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- CD3 Complex/immunology
- CTLA-4 Antigen
- Cell Movement/immunology
- Cells, Cultured
- Humans
- Immune Sera/physiology
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/physiology
- Mice
- Myosin-Light-Chain Kinase/physiology
- Phosphatidylinositol 3-Kinases/physiology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-vav/physiology
- Pseudopodia/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Up-Regulation/immunology
- cdc42 GTP-Binding Protein/physiology
- rho-Associated Kinases
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Bin Wei
- Molecular Immunology Section, Department of Immunology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
18
|
Oka T, Ihara S, Fukui Y. Cooperation of DEF6 with activated Rac in regulating cell morphology. J Biol Chem 2006; 282:2011-8. [PMID: 17121847 DOI: 10.1074/jbc.m605153200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rho-family GTPases have been implicated in actin remodeling and subsequent morphologic changes in various cells. DEF6, a pleckstrin homology domain-containing protein, has been reported to regulate Rho-family GTPases as a guanine nucleotide exchange factor. Here, we demonstrate that DEF6 also has the property of cooperating with activated Rac1. DEF6 bound selectively to Rac1 loaded with GTP. The interaction is mediated by the effector domain of Rac1. Overexpression of GFP-DEF6 together with constitutively active Rac1 in COS-7 cells significantly changed their cell shape; this was not seen in the absence of activated Rac1. This effect of DEF6 on cellular morphology was shown to be independent of its guanine nucleotide exchange activity. Because DEF6 does not contain any sequences previously known to interact with Rac, we explored the domain necessary for the binding. The amino-terminal portion and central parts of DEF6 were required for the binding. Finally, we succeeded in creating mutants of DEF6 with point mutations in the amino-terminal portion, which abrogate the binding to activated Rac1. These mutants did not exhibit the morphologic change in COS-7 cells when they were co-expressed with activated Rac1. These results suggest that DEF6 not only activates Rho-family GTPases but also cooperates with activated Rac1 to exert its cellular function.
Collapse
Affiliation(s)
- Tsutomu Oka
- Division of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
19
|
Gupton SL, Waterman-Storer CM. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 2006; 125:1361-74. [PMID: 16814721 DOI: 10.1016/j.cell.2006.05.029] [Citation(s) in RCA: 457] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 01/11/2006] [Accepted: 05/18/2006] [Indexed: 12/23/2022]
Abstract
Cells exhibit a biphasic migration-velocity response to increasing adhesion strength, with fast migration occurring at intermediate extracellular matrix (ECM) concentration and slow migration occurring at low and high ECM concentration. A simple mechanical model has been proposed to explain this observation, in which too little adhesion does not provide sufficient traction whereas too much adhesion renders cells immobile. Here we characterize a phenotype for rapid cell migration, which in contrast to the previous model reveals a complex interdependence of subcellular systems that mediates optimal cell migration in response to increasing adhesion strength. The organization and activity of actin, myosin II, and focal adhesions (FAs) are spatially and temporally highly variable and do not exhibit a simple correlation with optimal motility rates. Furthermore, we can recapitulate rapid migration at a nonoptimal ECM concentration by manipulating myosin II activity. Thus, the interplay between actomyosin and FA dynamics results in a specific balance between adhesion and contraction, which induces maximal migration velocity.
Collapse
Affiliation(s)
- Stephanie L Gupton
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
20
|
Wilsbacher JL, Moores SL, Brugge JS. An active form of Vav1 induces migration of mammary epithelial cells by stimulating secretion of an epidermal growth factor receptor ligand. Cell Commun Signal 2006; 4:5. [PMID: 16709244 PMCID: PMC1524963 DOI: 10.1186/1478-811x-4-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 05/18/2006] [Indexed: 11/16/2022] Open
Abstract
Background Vav proteins are guanine nucleotide exchange factors (GEF) for Rho family GTPases and are activated following engagement of membrane receptors. Overexpression of Vav proteins enhances lamellipodium and ruffle formation, migration, and cell spreading, and augments activation of many downstream signaling proteins like Rac, ERK and Akt. Vav proteins are composed of multiple structural domains that mediate their GEF function and binding interactions with many cellular proteins. In this report we examine the mechanisms responsible for stimulation of cell migration by an activated variant of Vav1 and identify the domains of Vav1 required for this activity. Results We found that expression of an active form of Vav1, Vav1Y3F, in MCF-10A mammary epithelial cells increases cell migration in the absence or presence of EGF. Vav1Y3F was also able to drive Rac1 activation and PAK and ERK phosphorylation in MCF-10A cells in the absence of EGF stimulation. Mutations in the Dbl homology, pleckstrin homology, or cysteine-rich domains of Vav1Y3F abolished Rac1 or ERK activation in the absence of EGF and blocked the migration-promoting activity of Vav1Y3F. In contrast, mutations in the SH2 and C-SH3 domains did not affect Rac activation by Vav1Y3F, but reduced the ability of Vav1Y3F to induce EGF-independent migration and constitutive ERK phosphorylation. EGF-independent migration of MCF-10A cells expressing Vav1Y3F was abolished by treatment of cells with an antibody that prevents ligand binding to the EGF receptor. In addition, conditioned media collected from Vav1Y3F expressing cells stimulated migration of parental MCF-10A cells. Lastly, treatment of cells with the EGF receptor inhibitory antibody blocked the Vav1Y3F-induced, EGF-independent stimulation of ERK phosphorylation, but had no effect on Rac1 activation or PAK phosphorylation. Conclusion Our results indicate that increased migration of active Vav1 expressing cells is dependent on Vav1 GEF activity and secretion of an EGF receptor ligand. In addition, activation of ERK downstream of Vav1 is dependent on autocrine EGF receptor stimulation while active Vav1 can stimulate Rac1 and PAK activation independent of ligand binding to the EGF receptor. Thus, stimulation of migration by activated Vav1 involves both EGF receptor-dependent and independent activities induced through the Rho GEF domain of Vav1.
Collapse
Affiliation(s)
- Julie L Wilsbacher
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
- Current address : Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | - Sheri L Moores
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
- Current address : GlaxoSmithKline, Oncology, Collegeville, PA 19426, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
21
|
Wells CM, Bhavsar PJ, Evans IR, Vigorito E, Turner M, Tybulewicz V, Ridley AJ. Vav1 and Vav2 play different roles in macrophage migration and cytoskeletal organization. Exp Cell Res 2005; 310:303-10. [PMID: 16137676 DOI: 10.1016/j.yexcr.2005.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 07/25/2005] [Accepted: 07/29/2005] [Indexed: 02/06/2023]
Abstract
Vav family proteins act as guanine nucleotide exchange factors for Rho family proteins, which are known to orchestrate cytoskeletal changes and cell migration in response to extracellular stimuli. Using mice deficient for Vav1, Vav2 and/or Vav3, overlapping and isoform-specific functions of the three Vav proteins have been described in various hematopoietic cell types, but their roles in regulating cell morphology and migration have not been studied in detail. To investigate whether Vav isoforms have redundant or unique functions in regulating adhesion and migration, we investigated the properties of Vav1-deficient and Vav2-deficient macrophages. Both Vav1-deficient and Vav2-deficient cells have a smaller adhesive area; yet, only Vav1-deficient cells have a reduced migration speed, which coincides with a lower level of microtubules. Vav2-deficient macrophages display a high level of constitutive membrane ruffling, but neither Vav1 nor Vav2 is required for colony stimulating factor-1-induced membrane ruffling and cell spreading. Our results suggest that the migration speed of macrophages is regulated independently of spread area or membrane ruffling and that Vav1 is selectively required to maintain a normal migration speed.
Collapse
Affiliation(s)
- Claire M Wells
- Ludwig Institute for Cancer Research, Royal Free and University College Medical School Branch, 91 Riding House Street, London W1W 7BS, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The Vav family proteins (Vav1, Vav2, Vav3) are cytoplasmic guanine nucleotide exchange factors (GEFs) for Rho-family GTPases. T-cell antigen receptor (TCR) signalling results in the tyrosine phosphorylation of Vav proteins and hence their activation. Results from mice deficient in one or more Vav proteins has shown that they play critical roles in T-cell development and activation. Vav1 is required for TCR-induced calcium flux, activation of the ERK MAP kinase pathway, activation of the NF-kappaB transcription factor, inside-out activation of the integrin LFA-1, TCR clustering, and polarisation of the T cell. Although many of these processes may require the GEF activity of Vav1, it is possible that Vav1 also has adaptor-like functions. Recent evidence suggests that Vav1 might also function in the nucleus, where it undergoes arginine methylation. An emerging theme is that Vav proteins may have important functions downstream of receptors other than the TCR, such as integrins and chemokine receptors.
Collapse
Affiliation(s)
- Victor L J Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
23
|
García-Bernal D, Wright N, Sotillo-Mallo E, Nombela-Arrieta C, Stein JV, Bustelo XR, Teixidó J. Vav1 and Rac control chemokine-promoted T lymphocyte adhesion mediated by the integrin alpha4beta1. Mol Biol Cell 2005; 16:3223-35. [PMID: 15872091 PMCID: PMC1165406 DOI: 10.1091/mbc.e04-12-1049] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The chemokine CXCL12 promotes T lymphocyte adhesion mediated by the integrin alpha4beta1. CXCL12 activates the GTPase Rac, as well as Vav1, a guanine-nucleotide exchange factor for Rac, concomitant with up-regulation of alpha4beta1-dependent adhesion. Inhibition of CXCL12-promoted Rac and Vav1 activation by transfection of dominant negative Rac or Vav1 forms, or by transfection of their siRNA, remarkably impaired the increase in T lymphocyte attachment to alpha4beta1 ligands in response to this chemokine. Importantly, inhibition of Vav1 expression by RNA interference resulted in a blockade of Rac activation in response to CXCL12. Adhesions in flow chambers and soluble binding assays using these transfectants indicated that initial ligand binding and adhesion strengthening mediated by alpha4beta1 were dependent on Vav1 and Rac activation by CXCL12. Finally, CXCL12-promoted T-cell transendothelial migration involving alpha4beta1-mediated adhesion was notably inhibited by expression of dominant negative Vav1 and Rac. These results indicate that activation of Vav1-Rac signaling pathway by CXCL12 represents an important inside-out event controlling efficient up-regulation of alpha4beta1-dependent T lymphocyte adhesion.
Collapse
Affiliation(s)
- David García-Bernal
- Department of Immunology, Centro de Investigaciones Biológicas, CSIC, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Bertagnolo V, Brugnoli F, Mischiati C, Sereni A, Bavelloni A, Carini C, Capitani S. Vav promotes differentiation of human tumoral myeloid precursors. Exp Cell Res 2005; 306:56-63. [PMID: 15878332 DOI: 10.1016/j.yexcr.2004.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 11/30/2004] [Accepted: 12/04/2004] [Indexed: 11/28/2022]
Abstract
Vav is one of the genetic markers that correlate with the differentiation of hematopoietic cells. In T and B cells, it appears crucial for both development and functions, while, in non-lymphoid hematopoietic cells, Vav seems not involved in cell maturation, but rather in the response of mature cells to agonist-dependent proliferation and phagocytosis. We have previously demonstrated that the amount and the tyrosine phosphorylation of Vav are up-regulated in both whole cells and nuclei of tumoral promyelocytes induced to granulocytic maturation by ATRA and that tyrosine-phosphorylated Vav does not display any ATRA-induced GEF activity but contributes to the regulation of PI 3-K activity. In this study, we report that Vav accumulates in nuclei of ATRA-treated APL-derived cells and that the down-modulation of Vav prevents differentiation of tumoral promyelocytes, indicating that it is a key molecule in ATRA-dependent myeloid maturation. On the other hand, the overexpression of Vav induces an increased expression of surface markers of granulocytic differentiation without affecting the maturation-related changes of the nuclear morphology. Consistent with an effect of Vav on the transcriptional machinery, array profiling shows that the inhibition of the Syk-dependent tyrosine phosphorylation of Vav reduces the number of ATRA-induced genes. Our data support the unprecedented notion that Vav plays crucial functions in the maturation process of myeloid cells, and suggest that Vav can be regarded as a potential target for the therapeutic treatment of myeloproliferative disorders.
Collapse
MESH Headings
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/physiology
- Cell Differentiation/physiology
- Cell Line, Tumor
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Gene Expression/genetics
- Gene Expression/physiology
- Gene Expression Regulation, Leukemic/drug effects
- Granulocytes/physiology
- HL-60 Cells
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Myeloid Progenitor Cells/drug effects
- Myeloid Progenitor Cells/metabolism
- Myeloid Progenitor Cells/pathology
- Phosphorylation
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-vav
- RNA, Small Interfering/genetics
- Stilbenes/pharmacology
- Transfection
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Signal Transduction Unit-Laboratory of Cell Biology, Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Via Fossato di Mortara, 66, 44100 Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Faccio R, Teitelbaum SL, Fujikawa K, Chappel J, Zallone A, Tybulewicz VL, Ross FP, Swat W. Vav3 regulates osteoclast function and bone mass. Nat Med 2005; 11:284-90. [PMID: 15711558 DOI: 10.1038/nm1194] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 12/14/2004] [Indexed: 12/26/2022]
Abstract
Osteoporosis, a leading cause of morbidity in the elderly, is characterized by progressive loss of bone mass resulting from excess osteoclastic bone resorption relative to osteoblastic bone formation. Here we identify Vav3, a Rho family guanine nucleotide exchange factor, as essential for stimulated osteoclast activation and bone density in vivo. Vav3-deficient osteoclasts show defective actin cytoskeleton organization, polarization, spreading and resorptive activity resulting from impaired signaling downstream of the M-CSF receptor and alpha(v)beta3 integrin. Vav3-deficient mice have increased bone mass and are protected from bone loss induced by systemic bone resorption stimuli such as parathyroid hormone or RANKL. Moreover, we provide genetic and biochemical evidence for the role of Syk tyrosine kinase as a crucial upstream regulator of Vav3 in osteoclasts. Thus, Vav3 is a potential new target for antiosteoporosis therapy.
Collapse
Affiliation(s)
- Roberta Faccio
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rosenberger G, Gal A, Kutsche K. αPIX Associates with Calpain 4, the Small Subunit of Calpain, and Has a Dual Role in Integrin-mediated Cell Spreading. J Biol Chem 2005; 280:6879-89. [PMID: 15611136 DOI: 10.1074/jbc.m412119200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of integrins to the extracellular matrix results in actin cytoskeletal rearrangements, e.g. during cell spreading, by regulating the activity of Rho GTP-ases. We have shown previously that alphaPIX (Cool-2 or ARHGEF6), a Rac1/Cdc42-specific guanine nucleotide exchange factor (GEF), binds to beta-parvin/affixin and colocalizes with integrin-linked kinase in actively spreading cells, suggesting that alphaPIX is involved in integrin-induced signaling leading to activation of Rac1/Cdc42. Here we report calpain 4, the small subunit of the proteases mu-calpain and m-calpain, as a novel binding partner of alphaPIX. This association was identified by the CytoTrap system and confirmed by coimmunoprecipitation and glutathione S-transferase pull-down assays. The alphaPIX triple domain SH3-DH-PH was found to be required for calpain 4 binding. During integrin-dependent spreading of CHO-K1 cells, alphaPIX colocalized with mu- and m-calpain, integrin-linked kinase, and beta1 integrin in early integrin-containing clusters. Overexpression of alphaPIX wild type but not the GEF-deficient mutant (L386R/L387S) resulted in enhanced formation of characteristic cellular protrusions during cell spreading, suggesting that alphaPIX GEF activity is necessary for this specific actin cytoskeletal reorganization. The calpain inhibitors calpeptin and calpain inhibitor IV significantly inhibited integrin-dependent cell spreading. However, concomitant overexpression of alphaPIX wild type or the L386R/L387S mutant restored cell spreading. Together, these data suggest that alphaPIX is a component of early integrin clusters and plays a dual role in integrin-dependent cell spreading. Whereas alphaPIX GEF activity contributes to enhanced formation of cellular protrusions, the GEF-independent association with calpain 4 leads to induction of a yet unknown signaling cascade resulting in cell spreading.
Collapse
Affiliation(s)
- Georg Rosenberger
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, D-22529 Hamburg, Germany
| | | | | |
Collapse
|
27
|
Kawakatsu T, Ogita H, Fukuhara T, Fukuyama T, Minami Y, Shimizu K, Takai Y. Vav2 as a Rac-GDP/GTP Exchange Factor Responsible for the Nectin-induced, c-Src- and Cdc42-mediated Activation of Rac. J Biol Chem 2005; 280:4940-7. [PMID: 15485841 DOI: 10.1074/jbc.m408710200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that form homo- and hetero-trans-dimers (trans-interactions). Nectins first form cell-cell contact and then recruit cadherins to the nectin-based cell-cell contact sites to form adherens junctions cooperatively with cadherins. In addition, the trans-interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which enhances the formation of adherens junctions by forming filopodia and lamellipodia, respectively. The trans-interactions of nectins first recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then phosphorylates and activates FRG, a Cdc42-GDP/GTP exchange factor (GEF) for Cdc42. The activation of both c-Src and Cdc42 by FRG is necessary for the activation of Rac, but the Rac-GEF responsible for this activation of Rac remains unknown. We showed here that the nectin-induced activation of Rac was inhibited by a dominant negative mutant of Vav2, a Rac-GEF. Nectins recruited and tyrosine-phosphorylated Vav2 through c-Src at the nectin-based cell-cell contact sites, whereas Cdc42 was not necessary for the nectin-induced recruitment of Vav2 or the nectin-induced, c-Src-mediated tyrosine phosphorylation of Vav2. Cdc42 activated through c-Src then enhanced the GEF activity of tyrosine-phosphorylated Vav2 on Rac1. These results indicate that Vav2 is a GEF responsible for the nectin-induced, c-Src-, and Cdc42-mediated activation of Rac.
Collapse
Affiliation(s)
- Tomomi Kawakatsu
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Papaharalambus C, Sajjad W, Syed A, Zhang C, Bergo MO, Alexander RW, Ahmad M. Tumor necrosis factor alpha stimulation of Rac1 activity. Role of isoprenylcysteine carboxylmethyltransferase. J Biol Chem 2005; 280:18790-6. [PMID: 15647276 DOI: 10.1074/jbc.m410081200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that both isoprenylcysteine carboxylmethyltransferase (ICMT) and one of its substrates, the RhoGTPase Rac1, are critical for the tumor necrosis factor alpha (TNF alpha) stimulation of vascular cell adhesion molecule-1 expression in endothelial cells (EC). Here, we have shown that ICMT regulates TNF alpha stimulation of Rac1 activity. TNF alpha stimulation of EC increased the membrane association of Rac1, an event that is essential for Rac1 activity. ICMT inhibitor N-acetyl-S-farnesyl-L-cysteine (AFC) blocked the accumulation of Rac1 into the membrane both in resting and TNF alpha-stimulated conditions. Similarly, the membrane-associated Rac1 was lower in Icmt-deficient versus wild-type mouse embryonic fibroblasts (MEFs). TNF alpha also increased the level of GTP-Rac1, the active form of Rac1, in EC. AFC completely suppressed the TNF alpha stimulation of increase in GTP-Rac1 levels. Confocal microscopy revealed resting EC Rac1 was present in the plasma membrane and also in the perinuclear region. AFC mislocalized Rac1, both from the plasma membrane and the perinuclear region. Mislocalization of Rac1 was also observed in Icmt-deficient versus wild-type MEFs. To determine the consequences of ICMT inhibition, we investigated the effect of AFC on p38 mitogen-activated protein (MAP) kinase phosphorylation, which is downstream of Rac1. AFC inhibited the TNF alpha stimulation of p38 MAP kinase phosphorylation in EC. TNF alpha stimulation of p38 MAP kinase phosphorylation was also significantly attenuated in Icmt-deficient versus wild-type MEFs. To understand the mechanism of inhibition of Rac1 activity, we examined the effect of ICMT inhibition on the interaction of Rac1 with its inhibitor, Rho guanine nucleotide dissociation inhibitor (RhoGDI). The association of Rac1 with its inhibitor RhoGDI was dramatically increased in the Icmt-deficient versus wild-type MEFs both in resting as well as in TNF alpha-stimulated conditions, suggesting that RhoGDI was involved in inhibiting Rac1 activity under the conditions of ICMT inhibition. These results suggest that ICMT regulates Rac1 activity by controlling the interaction of Rac1 with RhoGDI. We hypothesize that ICMT regulates the release of Rac1 from RhoGDI.
Collapse
Affiliation(s)
- Christopher Papaharalambus
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Clemens RA, Newbrough SA, Chung EY, Gheith S, Singer AL, Koretzky GA, Peterson EJ. PRAM-1 is required for optimal integrin-dependent neutrophil function. Mol Cell Biol 2004; 24:10923-32. [PMID: 15572693 PMCID: PMC533979 DOI: 10.1128/mcb.24.24.10923-10932.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PML-retinoic acid receptor alpha (RARalpha) regulated adaptor molecule 1 (PRAM-1) is an intracellular adaptor molecule that is upregulated during the induced granulocytic differentiation of promyelocytic leukemic cells and during normal human myelopoiesis. This report describes the generation of PRAM-1-deficient mice and an analysis of the function of this adaptor in neutrophil differentiation and mature neutrophil function. We demonstrate here that neutrophil differentiation is not impaired in PRAM-1-deficient mice and that PRAM-1-deficient neutrophils function normally following engagement of Fcgamma receptors. In contrast, mature PRAM-1-null neutrophils exhibit significant defects in adhesion-dependent reactive oxygen intermediate production and degranulation. Surprisingly, other integrin-dependent responses, such as cell spreading and activation of several signaling pathways, are normal. Together, these findings demonstrate the uncoupling of key integrin-dependent responses in the absence of PRAM-1 and show this adaptor to be critical for select integrin functions in neutrophils.
Collapse
Affiliation(s)
- Regina A Clemens
- Dept. of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Vicente-Manzanares M, Cruz-Adalia A, Martín-Cófreces NB, Cabrero JR, Dosil M, Alvarado-Sánchez B, Bustelo XR, Sánchez-Madrid F. Control of lymphocyte shape and the chemotactic response by the GTP exchange factor Vav. Blood 2004; 105:3026-34. [PMID: 15618472 DOI: 10.1182/blood-2004-07-2925] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rho GTPases control many facets of cell polarity and migration; namely, the reorganization of the cellular cytoskeleton to extracellular stimuli. Rho GTPases are activated by GTP exchange factors (GEFs), which induce guanosine diphosphate (GDP) release and the stabilization of the nucleotide-free state. Thus, the role of GEFs in the regulation of the cellular response to extracellular cues during cell migration is a critical step of this process. In this report, we have analyzed the activation and subcellular localization of the hematopoietic GEF Vav in human peripheral blood lymphocytes stimulated with the chemokine stromal cell-derived factor-1 (SDF-1alpha). We show a robust activation of Vav and its redistribution to motility-associated subcellular structures, and we provide biochemical evidence of the recruitment of Vav to the membrane of SDF-1alpha-activated human lymphocytes, where it transiently interacts with the SDF-1alpha receptor CXCR4. Overexpression of a dominant negative form of Vav abolished lymphocyte polarization, actin polymerization, and migration. SDF-1alpha-mediated cell polarization and migration also were impaired by overexpression of an active, oncogenic Vav, although the mechanism appears to be different. Together, our data postulate a pivotal role for Vav in the transmission of the migratory signal through the chemokine receptor CXCR4.
Collapse
|
31
|
Arthur WT, Quilliam LA, Cooper JA. Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. ACTA ACUST UNITED AC 2004; 167:111-22. [PMID: 15479739 PMCID: PMC2172522 DOI: 10.1083/jcb.200404068] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The Ras-related GTPase Rap1 stimulates integrin-mediated adhesion and spreading in various mammalian cell types. Here, we demonstrate that Rap1 regulates cell spreading by localizing guanine nucleotide exchange factors (GEFs) that act via the Rho family GTPase Rac1. Rap1a activates Rac1 and requires Rac1 to enhance spreading, whereas Rac1 induces spreading independently of Rap1. Active Rap1a binds to a subset of Rac GEFs, including VAV2 and Tiam1 but not others such as SWAP-70 or COOL-1. Overexpressed VAV2 and Tiam1 specifically require Rap1 to promote spreading, even though Rac1 is activated independently of Rap1. Rap1 is necessary for the accumulation of VAV2 in membrane protrusions at the cell periphery. In addition, if VAV2 is artificially localized to the cell edge with the subcellular targeting domain of Rap1a, it increases cell spreading independently of Rap1. These results lead us to propose that Rap1 promotes cell spreading by localizing a subset of Rac GEFs to sites of active lamellipodia extension.
Collapse
|
32
|
Abstract
Vav proteins are evolutionarily conserved from nematodes to mammals and play a pivotal role in many aspects of cellular signaling, coupling cell surface receptors to various effectors functions. In mammals, there are three family members; Vav1 is specifically expressed in the hematopoietic system, whereas Vav2 and Vav3 are more ubiquitously expressed. Vav proteins contain multiple domains that enable their function in various fashions. The participation of the Vav proteins in several processes that require cytoskeletal reorganization, such as the formation of the immunological synapse (IS), phagocytosis, platelet aggregation, spreading, and transformation will be discussed in this review. We will also cover how the Vav proteins succeed in controlling these processes by their function as guanine nucleotide exchange factors (GEFs) for the Rho/Rac family of GTPases. The contribution of the Vav proteins in a GEF-independent manner to the organization of the cytoskeleton will also be deliberated. The scope of this review is to highlight the numerous roles of the Vav signal transducer proteins in actin organization.
Collapse
Affiliation(s)
- Idit Hornstein
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
33
|
Gakidis MAM, Cullere X, Olson T, Wilsbacher JL, Zhang B, Moores SL, Ley K, Swat W, Mayadas T, Brugge JS. Vav GEFs are required for beta2 integrin-dependent functions of neutrophils. ACTA ACUST UNITED AC 2004; 166:273-82. [PMID: 15249579 PMCID: PMC2172310 DOI: 10.1083/jcb.200404166] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Integrin regulation of neutrophils is essential for appropriate adhesion and transmigration into tissues. Vav proteins are Rho family guanine nucleotide exchange factors that become tyrosine phosphorylated in response to adhesion. Using Vav1/Vav3-deficient neutrophils (Vav1/3ko), we show that Vav proteins are required for multiple β2 integrin-dependent functions, including sustained adhesion, spreading, and complement-mediated phagocytosis. These defects are not attributable to a lack of initial β2 activation as Vav1/3ko neutrophils undergo chemoattractant-induced arrest on intercellular adhesion molecule-1 under flow. Accordingly, in vivo, Vav1/3ko leukocytes arrest on venular endothelium yet are unable to sustain adherence. Thus, Vav proteins are specifically required for stable adhesion. β2-induced activation of Cdc42, Rac1, and RhoA is defective in Vav1/3ko neutrophils, and phosphorylation of Pyk2, paxillin, and Akt is also significantly reduced. In contrast, Vav proteins are largely dispensable for G protein-coupled receptor–induced signaling events and chemotaxis. Thus, Vav proteins play an essential role coupling β2 to Rho GTPases and regulating multiple integrin-induced events important in leukocyte adhesion and phagocytosis.
Collapse
|
34
|
Kaminski S, Del Pozo MA, Hipskind RA, Altman A, Villalba M. Distinct Functions of Vav1 in JNK1 Activation in Jurkat T Cells Versus Non-Haematopoietic Cells. Scand J Immunol 2004; 59:527-35. [PMID: 15182247 DOI: 10.1111/j.1365-3083.2004.01429.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Vav1, the 95-kDa protein encoded by the vav1 proto-oncogene, is expressed exclusively in haematopoietic cells, where it becomes phosphorylated on tyrosine residues in response to antigen receptor ligation. Vav1 was found to act as a Rac1-specific guanine nucleotide exchange factor and to activate c-Jun N-terminal kinase (JNK1) in vitro and in ectopic expression systems using non-haematopoietic cells. Here, we studied the role of Vav1 in JNK1 activation in T cells versus non-haematopoietic cells. Vav1 overexpression activated JNK1 in COS7 and 293T cells but not in Jurkat T lymphocytes. In contrast, constitutively activated Rac1 efficiently stimulated JNK1 in both cell types under the same conditions. Vav1 did function in T cells because it clearly stimulated the activity of a nuclear factor of activated T-cell reporter plasmid in the same cells. Moreover, Vav1 induction of JNK1 in T cells required coexpression with calcineurin. This cooperation was cell type specific because it was not observed in COS7 or 293T cells. In contrast, Vav1 did not cooperate with calcineurin to activate either extracellular signal-regulated kinase 2 or p38. These findings demonstrate that Vav1 alone is a poor activator of the JNK1 pathway in T cells and emphasize the importance of studying the physiological functions of Vav1 in haematopoietic cells.
Collapse
Affiliation(s)
- S Kaminski
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France
| | | | | | | | | |
Collapse
|
35
|
Zimmerman AW, Nelissen JMDT, van Emst-de Vries SE, Willems PHGM, de Lange F, Collard JG, van Leeuwen FN, Figdor CG. Cytoskeletal restraints regulate homotypic ALCAM-mediated adhesion through PKCα independently of Rho-like GTPases. J Cell Sci 2004; 117:2841-52. [PMID: 15169840 DOI: 10.1242/jcs.01139] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The activated leukocyte cell adhesion molecule (ALCAM) is dynamically regulated by the actin cytoskeleton. In this study we explored the molecular mechanisms and signaling pathways underlying the cytoskeletal restraints of this homotypic adhesion molecule. We observed that ALCAM-mediated adhesion induced by cytoskeleton-disrupting agents is accompanied by activation of the small GTPases RhoA, Rac1 and Cdc42. Interestingly, unlike adhesion mediated by integrins or cadherins, ALCAM-mediated adhesion appears to be independent of Rho-like GTPase activity. By contrast, we demonstrated that protein kinase C (PKC) plays a major role in ALCAM-mediated adhesion. PKC inhibition by chelerythrine chloride and myristoylated PKC pseudosubstrate, as well as PKC downregulation by PMA strongly reduce cytoskeleton-dependent ALCAM-mediated adhesion. Since serine and threonine residues are dispensable for ALCAM-mediated adhesion and ALCAM is not phosphorylated, we can rule out that ALCAM itself is a direct PKC substrate. We conclude that PKCα plays a dominant role in cytoskeleton-dependent avidity modulation of ALCAM.
Collapse
Affiliation(s)
- Aukje W Zimmerman
- Department of Tumor Immunology, University Medical Center St Radboud, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sánchez-Martín L, Sánchez-Sánchez N, Gutiérrez-López MD, Rojo AI, Vicente-Manzanares M, Pérez-Alvarez MJ, Sánchez-Mateos P, Bustelo XR, Cuadrado A, Sánchez-Madrid F, Rodríguez-Fernández JL, Cabañas C. Signaling through the Leukocyte Integrin LFA-1 in T Cells Induces a Transient Activation of Rac-1 That Is Regulated by Vav and PI3K/Akt-1. J Biol Chem 2004; 279:16194-205. [PMID: 14960575 DOI: 10.1074/jbc.m400905200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Integrin LFA-1 is a receptor that is able to transmit multiple intracellular signals in leukocytes. Herein we show that LFA-1 induces a potent and transient increase in the activity of the small GTPase Rac-1 in T cells. Maximal Rac-1 activity peaked 10-15 min after LFA-1 stimulation and rapidly declined to basal levels at longer times. We have identified Vav, a guanine nucleotide exchange factor for Rac-1, and PI3K/Akt, as regulators of the activation and inactivation phases of the activity of Rac-1, respectively, in the context of LFA-1 signaling based on the following experimental evidence: (i) LFA-1 induced activation of Vav and PI3K/Akt with kinetics consistent with a regulatory role for these molecules on Rac-1, (ii) overexpression of a constitutively active Vav mutant induces activation of Rac independently of LFA-1 stimulation whereas overexpression of a dominant-negative Vav mutant blocks LFA-1-mediated Rac activation, (iii) pharmacological inhibition of PI3K/Akt prevented the fall in the activity of Rac-1 after its initial activation but had no effect on Vav activity, and (iv) overexpression of a dominant-negative or a constitutively active Akt-1 induced or inhibited, respectively, Rac-1 activity. Finally, we show that T cells with a sustained Rac activity have impaired capacity to elongate onto ICAM-1. These results demonstrate that down-regulation of the activity of this GTPase is a requirement for the regulation of T cell morphology and motility and highlight the importance of temporal regulation of the signaling triggered from this integrin.
Collapse
Affiliation(s)
- Lorena Sánchez-Martín
- Instituto de Farmacología y Toxicología (CSIC-UCM), Facultad de Medicina UCM, Madrid 28040, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Newbrough SA, Mocsai A, Clemens RA, Wu JN, Silverman MA, Singer AL, Lowell CA, Koretzky GA. SLP-76 regulates Fcgamma receptor and integrin signaling in neutrophils. Immunity 2003; 19:761-9. [PMID: 14614862 DOI: 10.1016/s1074-7613(03)00305-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While the contribution of intracellular adaptor proteins to lymphocyte activation has been well studied, the function of these molecules in innate immune effector cells such as neutrophils has not been extensively addressed. Here we demonstrate a critical role for the adaptor molecule SH2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76) in FcgammaR and integrin signaling. Stimulation of these receptors induces tyrosine phosphorylation and cytoplasmic relocalization of SLP-76 in freshly isolated murine neutrophils. Neutrophils lacking SLP-76 demonstrate decreased FcgammaR-induced calcium flux and reactive oxygen intermediate (ROI) production in response to immune complex stimulation. More dramatically, SLP-76-/- neutrophils fail to produce ROI, spread, or activate critical downstream regulators in response to integrin ligation. These results provide genetic evidence for a critical role of SLP-76 in the regulation of neutrophil function.
Collapse
Affiliation(s)
- Sally A Newbrough
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hogg N, Laschinger M, Giles K, McDowall A. T-cell integrins: more than just sticking points. J Cell Sci 2003; 116:4695-705. [PMID: 14600256 DOI: 10.1242/jcs.00876] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
T cells use integrins in essentially all of their functions. They use integrins to migrate in and out of lymph nodes and, following infection, to migrate into other tissues. At the beginning of an immune response, integrins also participate in the immunological synapse formed between T cells and antigen-presenting cells. Because the ligands for integrins are widely expressed, integrin activity on T cells must be tightly controlled. Integrins become active following signalling through other membrane receptors, which cause both affinity alteration and an increase in integrin clustering. Lipid raft localization may increase integrin activity. Signalling pathways involving ADAP, Vav-1 and SKAP-55, as well as Rap1 and RAPL, cause clustering of leukocyte function-associated antigen-1 (LFA-1; integrin αLβ2). T-cell integrins can also signal, and the pathways dedicated to the migratory activity of T cells have been the most investigated so far. Active LFA-1 causes T-cell attachment and lamellipodial movement induced by myosin light chain kinase at the leading edge, whereas RhoA and ROCK cause T-cell detachment at the trailing edge. Another important signalling pathway acts through CasL/Crk, which might regulate the activity of the GTPases Rac and Rap1 that have important roles in T-cell migration.
Collapse
Affiliation(s)
- Nancy Hogg
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, UK.
| | | | | | | |
Collapse
|
39
|
Hornstein I, Mortin MA, Katzav S. DroVav, the Drosophila melanogaster homologue of the mammalian Vav proteins, serves as a signal transducer protein in the Rac and DER pathways. Oncogene 2003; 22:6774-84. [PMID: 14555990 DOI: 10.1038/sj.onc.1207027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian Vav signal transducer proteins couple receptor tyrosine kinase signals to the activation of the Rho/Rac GTPases, leading to cell differentiation and/or proliferation. The unique and complex structure of mammalian Vav proteins is preserved in the Drosophila melanogaster homologue, DroVav. We demonstrate that DroVav functions as a guanine-nucleotide exchange factor (GEF) for DRac. Drosophila cells overexpressing wild-type (wt) DroVav exhibited a normal morphology. However, overexpression of a truncated DroVav mutant (that functions as an oncogene when expressed in NIH3T3 cells) results in striking changes in the actin cytoskeleton, resembling those usually visible following Rac activation. Dominant-negative DRac abrogated these morphological changes, suggesting that the effect of the truncated DroVav mutant is mediated by activation of DRac. In Drosophila cells, we find that stimulation of the Drosophila EGF receptor (DER) increases tyrosine phosphorylation of DroVav, which in turn associates with tyrosine-phosphorylated DER. In addition, the following results imply that DroVav participates in downstream DER signalling, such as ERK phosphorylation: (a) overexpression of DroVav induces ERK phosphorylation; and (b) 'knockout' of DroVav by RNA interference blocks ERK phosphorylation induced by DER stimulation. Unlike mammalian Vav proteins, DroVav was not found to induce Jnk phosphorylation under the experimental circumstances tested in fly cells. These results establish the role of DroVav as a signal transducer that participates in receptor tyrosine kinase pathways and functions as a GEF for the small RhoGTPase, DRac.
Collapse
Affiliation(s)
- Idit Hornstein
- The Hubert H Humphrey Center for Experimental Medicine & Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|