1
|
Unique properties of tissue-resident memory T cells in the lungs: implications for COVID-19 and other respiratory diseases. Nat Rev Immunol 2022; 23:329-335. [PMID: 36494455 PMCID: PMC9735123 DOI: 10.1038/s41577-022-00815-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Tissue-resident memory T (TRM) cells were originally identified as a tissue-sequestered population of memory T cells that show lifelong persistence in non-lymphoid organs. That definition has slowly evolved with the documentation of TRM cells having variable terms of tissue residency combined with a capacity to return to the wider circulation. Nonetheless, reductionist experiments have identified an archetypical population of TRM cells showing intrinsic permanent residency in a wide range of non-lymphoid organs, with one notable exception: the lungs. Despite the fact that memory T cells generated during a respiratory infection are maintained in the circulation, local TRM cell numbers in the lung decline concomitantly with a decay in T cell-mediated protection. This Perspective describes the mechanisms that underpin long-term T cell lodgement in non-lymphoid tissues and explains why residency is transient for select TRM cell subsets. In doing so, it highlights the unusual nature of memory T cell egress from the lungs and speculates on the broader disease implications of this process, especially during infection with SARS-CoV-2.
Collapse
|
2
|
Zahran AM, El-Badaway O, Elsayh IK, Osman MM. Delineation of T cell subsets in chronic rhinosinusitis with nasal polyps. ACTA OTORHINOLARYNGOLOGICA ITALICA 2022; 42:441-449. [DOI: 10.14639/0392-100x-n2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022]
|
3
|
Jeong S, Jeon M, Lee H, Kim SY, Park SH, Shin EC. IFITM3 Is Upregulated Characteristically in IL-15-Mediated Bystander-Activated CD8 + T Cells during Influenza Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1901-1911. [PMID: 35346965 DOI: 10.4049/jimmunol.2100629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In bystander activation, pre-existing memory CD8+ T cells unrelated to the infecting microbes are activated by cytokines without cognate Ags. The detailed mechanisms and unique gene signature of bystander activation remain to be elucidated. In this study, we investigated bystander activation of OT-1 memory cells in a mouse model of influenza infection. We found that OT-1 memory cells are activated with upregulation of granzyme B and IFN-γ, during PR8 (A/Puerto Rico/8/1934) infection, and IL-15 is a critical cytokine for bystander activation. In transcriptomic analysis, the IFN-induced gene signature was upregulated in bystander-activated OT-1 memory cells during PR8 infection but not in the presence of TCR stimulation. Among the IFN-induced genes, upregulation of IFN-induced transmembrane protein 3 (IFITM3) distinguished bystander-activated OT-1 memory cells from TCR-activated OT-1 memory cells. Therefore, we reveal that bystander-activated memory CD8+ T cells have a unique transcriptomic feature compared with TCR-activated memory CD8+ T cells. In particular, IFITM3 upregulation can be used as a marker of bystander-activated memory CD8+ T cells at early infection.
Collapse
Affiliation(s)
- Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minwoo Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hoyoung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - So-Young Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Toczylowska B, Zieminska E, Podlecka-Pietowska A, Ruszczynska A, Chalimoniuk M. Serum metabolic profiles and metal levels of patients with multiple sclerosis and patients with neuromyelitis optica spectrum disorders - NMR spectroscopy and ICP–MS studies. Mult Scler Relat Disord 2022; 60:103672. [DOI: 10.1016/j.msard.2022.103672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 11/29/2022]
|
5
|
Significance of bystander T cell activation in microbial infection. Nat Immunol 2022; 23:13-22. [PMID: 34354279 DOI: 10.1038/s41590-021-00985-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
During microbial infection, pre-existing memory CD8+ T cells that are not specific for the infecting pathogens can be activated by cytokines without cognate antigens, termed bystander activation. Studies in mouse models and human patients demonstrate bystander activation of memory CD8+ T cells, which exerts either protective or detrimental effects on the host, depending on the infection model or disease. Research has elucidated mechanisms underlying the bystander activation of CD8+ T cells in terms of the responsible cytokines and the effector mechanisms of bystander-activated CD8+ T cells. In this Review, we describe the history of research on bystander CD8+ T cell activation as well as evidence of bystander activation. We also discuss the mechanisms and immunopathological roles of bystander activation in various microbial infections.
Collapse
|
6
|
Toward a universal influenza virus vaccine: Some cytokines may fulfill the request. Cytokine 2021; 148:155703. [PMID: 34555604 DOI: 10.1016/j.cyto.2021.155703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023]
Abstract
The influenza virus annually causes widespread damages to the health and economy of the global community. Vaccination is currently the most crucial strategy in reducing the number of patients. Genetic variations, the high diversity of pandemic viruses, and zoonoses make it challenging to select suitable strains for annual vaccine production. If new pandemic viruses emerge, it will take a long time to produce a vaccine according to the new strains. In the present study, intending to develop a universal influenza vaccine, new bicistronic DNA vaccines were developed that expressed NP or NPm antigen with one of modified IL-18/ IL-17A/ IL-22 cytokine adjuvants. NPm is a mutant form of the antigen that has the ability for cytoplasmic accumulation. In order to investigate and differentiate the role of each of the components of Th1, Th2, Th17, and Treg cellular immune systems in the performance of vaccines, Treg competent and Treg suppressed mouse groups were used. Mice were vaccinated with Foxp3-FC immunogen to produce Treg suppressed mouse groups. The potential of the vaccines to stimulate the immune system was assessed by IFN-γ/IL-17A Dual FluoroSpot. The vaccine's ability to induce humoral immune response was determined by measuring IgG1, IgG2a, and IgA-specific antibodies against the antigen. Kinetics of Th1, Th2, and Th17 cellular immune responses after vaccination, were assessed by evaluating the expression changes of IL-17A, IFN-γ, IL-18, IL-22, IL-4, and IL-2 cytokines by semi-quantitative real-time RT-PCR. To assess the vaccines' ability to induce heterosubtypic immunity, challenge tests with homologous and heterologous viruses were performed and then the virus titer was measured in the lungs of animals. Evaluation of the data obtained from this study showed that the DNA-vaccines coding NPm have more ability to induces a potent cross-cellular immune response and protective immunity than DNA-vaccines coding NP. Although the use of IL-18/ IL-17A/ IL-22 genetic adjuvants enhanced immune responses and protective immunity, Administration of NPm in combination with modified IL-18 (Igk-mIL18-IgFC) induced the most effective immunity in Treg competent mice group.
Collapse
|
7
|
Maurice NJ, Taber AK, Prlic M. The Ugly Duckling Turned to Swan: A Change in Perception of Bystander-Activated Memory CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:455-462. [PMID: 33468558 DOI: 10.4049/jimmunol.2000937] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
Memory T cells (Tmem) rapidly mount Ag-specific responses during pathogen reencounter. However, Tmem also respond to inflammatory cues in the absence of an activating TCR signal, a phenomenon termed bystander activation. Although bystander activation was first described over 20 years ago, the physiological relevance and the consequences of T cell bystander activation have only become more evident in recent years. In this review, we discuss the scenarios that trigger CD8 Tmem bystander activation including acute and chronic infections that are either systemic or localized, as well as evidence for bystander CD8 Tmem within tumors and following vaccination. We summarize the possible consequences of bystander activation for the T cell itself, the subsequent immune response, and the host. We highlight when T cell bystander activation appears to benefit or harm the host and briefly discuss our current knowledge gaps regarding regulatory signals that can control bystander activation.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Department of Immunology, University of Washington, Seattle, WA 98109; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
8
|
Siggins MK, Thwaites RS, Openshaw PJM. Durability of Immunity to SARS-CoV-2 and Other Respiratory Viruses. Trends Microbiol 2021; 29:648-662. [PMID: 33896688 PMCID: PMC8026254 DOI: 10.1016/j.tim.2021.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Even in nonpandemic times, respiratory viruses account for a vast global burden of disease. They remain a major cause of illness and death and they pose a perpetual threat of breaking out into epidemics and pandemics. Many of these respiratory viruses infect repeatedly and appear to induce only narrow transient immunity, but the situation varies from one virus to another. In the absence of effective specific treatments, understanding the role of immunity in protection, disease, and resolution is of paramount importance. These problems have been brought into sharp focus by the coronavirus disease 2019 (COVID-19) pandemic. Here, we summarise what is now known about adaptive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and draw comparisons with immunity to other respiratory viruses, focusing on the longevity of protective responses.
Collapse
Affiliation(s)
- Matthew K Siggins
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
9
|
Blair TC, Alice AF, Zebertavage L, Crittenden MR, Gough MJ. The Dynamic Entropy of Tumor Immune Infiltrates: The Impact of Recirculation, Antigen-Specific Interactions, and Retention on T Cells in Tumors. Front Oncol 2021; 11:653625. [PMID: 33968757 PMCID: PMC8101411 DOI: 10.3389/fonc.2021.653625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Analysis of tumor infiltration using conventional methods reveals a snapshot view of lymphocyte interactions with the tumor environment. However, lymphocytes have the unique capacity for continued recirculation, exploring varied tissues for the presence of cognate antigens according to inflammatory triggers and chemokine gradients. We discuss the role of the inflammatory and cellular makeup of the tumor environment, as well as antigen expressed by cancer cells or cross-presented by stromal antigen presenting cells, on recirculation kinetics of T cells. We aim to discuss how current cancer therapies may manipulate lymphocyte recirculation versus retention to impact lymphocyte exclusion in the tumor.
Collapse
Affiliation(s)
- Tiffany C Blair
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Lauren Zebertavage
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| |
Collapse
|
10
|
Low JS, Farsakoglu Y, Amezcua Vesely MC, Sefik E, Kelly JB, Harman CCD, Jackson R, Shyer JA, Jiang X, Cauley LS, Flavell RA, Kaech SM. Tissue-resident memory T cell reactivation by diverse antigen-presenting cells imparts distinct functional responses. J Exp Med 2021; 217:151854. [PMID: 32525985 PMCID: PMC7398161 DOI: 10.1084/jem.20192291] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/25/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022] Open
Abstract
CD8+ tissue-resident memory T cells (TRM cells) are poised at the portals of infection and provide long-term protective immunity. Despite their critical roles, the precise mechanics governing TRM cell reactivation in situ are unknown. Using a TCR-transgenic Nur77-GFP reporter to distinguish “antigen-specific” from “bystander” reactivation, we demonstrate that lung CD8+ TRM cells are reactivated more quickly, yet less efficiently, than their counterparts in the draining LNs (TLN cells). Global profiling of reactivated memory T cells revealed tissue-defined and temporally regulated recall response programs. Unlike the reactivation of CD8+ TLN cells, which is strictly dependent on CD11c+XCR1+ APCs, numerous antigen-presenting partners, both hematopoietic and non-hematopoietic, were sufficient to reactivate lung CD8+ TRM cells, but the quality of TRM cell functional responses depended on the identity of the APCs. Together, this work uncovers fundamental differences in the activation kinetics, mechanics, and effector responses between CD8+ memory T cells in peripheral vs. lymphoid organs, revealing a novel tissue-specific paradigm for the reactivation of memory CD8+ T cells.
Collapse
Affiliation(s)
- Jun Siong Low
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Yagmur Farsakoglu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA
| | - Maria Carolina Amezcua Vesely
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Joseph B Kelly
- Department of Ecology and Evolutionary Biology, Stony Brook University, Stony Brook, NY
| | | | - Ruaidhri Jackson
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Justin A Shyer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Xiaodong Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Linda S Cauley
- Department of Immunology, University of Connecticut Health Center, Farmington, CT
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Howard Hughes Medical Institute, Yale University, New Haven, CT
| | - Susan M Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA
| |
Collapse
|
11
|
Garcia GL, Valenzuela A, Manzoni T, Vaughan AE, López CB. Distinct Chronic Post-Viral Lung Diseases upon Infection with Influenza or Parainfluenza Viruses Differentially Impact Superinfection Outcome. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:543-553. [PMID: 31866346 DOI: 10.1016/j.ajpath.2019.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/07/2019] [Accepted: 11/05/2019] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma remain prevalent human lung diseases. Variability in epithelial and inflammatory components that results in pathologic heterogeneity complicates the development of treatments for these diseases. Early childhood infection with parainfluenza virus or respiratory syncytial virus is strongly associated with the development of asthma and COPD later in life, and exacerbations of these diseases correlate with the presence of viral RNA in the lung. Well-characterized animal models of postviral chronic lung diseases are necessary to study the underlying mechanisms of viral-related COPD and asthma and to develop appropriate therapies. In this study, we cross-analyzed chronic lung disease caused by infection with Sendai virus (SeV) or influenza A virus in mice. Differences were observed in lesion composition and inflammatory profiles between SeV- and influenza A virus-induced long-term lung disease. In addition, a primary SeV infection led to worsened pathologic findings on secondary heterologous viral challenge, whereas the reversed infection scheme protected against disease in response to a secondary viral challenge >1 month after the primary infection. These data demonstrate the differential effect of primary viral infections in the susceptibility to disease exacerbation in response to a different secondary viral infection and highlight the usefulness of these viral models as tools to understand the underlying mechanisms that mediate distinct chronic postviral lung diseases.
Collapse
Affiliation(s)
- Geyon L Garcia
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alex Valenzuela
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tomaz Manzoni
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
12
|
The activation of bystander CD8 + T cells and their roles in viral infection. Exp Mol Med 2019; 51:1-9. [PMID: 31827070 PMCID: PMC6906361 DOI: 10.1038/s12276-019-0316-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/09/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
During viral infections, significant numbers of T cells are activated in a T cell receptor-independent and cytokine-dependent manner, a phenomenon referred to as "bystander activation." Cytokines, including type I interferons, interleukin-18, and interleukin-15, are the most important factors that induce bystander activation of T cells, each of which plays a somewhat different role. Bystander T cells lack specificity for the pathogen, but can nevertheless impact the course of the immune response to the infection. For example, bystander-activated CD8+ T cells can participate in protective immunity by secreting cytokines, such as interferon-γ. They also mediate host injury by exerting cytotoxicity that is facilitated by natural killer cell-activating receptors, such as NKG2D, and cytolytic molecules, such as granzyme B. Interestingly, it has been recently reported that there is a strong association between the cytolytic function of bystander-activated CD8+ T cells and host tissue injury in patients with acute hepatitis A virus infection. The current review addresses the induction of bystander CD8+ T cells, their effector functions, and their potential roles in immunity to infection, immunopathology, and autoimmunity.
Collapse
|
13
|
NK Cells Accumulate in Infected Tissues and Contribute to Pathogenicity of Ebola Virus in Mice. J Virol 2019; 93:JVI.01703-18. [PMID: 30814283 PMCID: PMC6498052 DOI: 10.1128/jvi.01703-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/10/2019] [Indexed: 01/26/2023] Open
Abstract
Ebola virus (EBOV) outbreaks can claim numerous lives and also devastate the local health infrastructure, as well as the economy, of affected countries. Lethal EBOV infection has been documented to decrease the levels of several immune cells in the blood that are necessary to defend the host. This decrease in immune cells is, however, not observed in individuals who survive EBOV infection. Having a better grasp of how these immune cells are lost is therefore of high importance to develop and improve new and existing therapeutics. The significance of our research is in identifying the mechanism responsible for the apparent loss of immune cells in lethal EBOV infection. This will allow therapeutic options aimed at preventing the loss of these immune cells, therefore allowing infected individuals to better fight the infection. Understanding the immune parameters responsible for survival following Ebola virus (EBOV) infection is paramount for developing countermeasures. In lethal EBOV infections, levels of both NK and T cells decline drastically in the circulation and lymphoid tissues before death. However, the fate of these lymphocytes in viral replication sites remains unknown. In this study, reverse transcription-PCR (RT-PCR) and fluorescence-activated cell sorting (FACS) analysis were used to investigate lymphocyte frequencies in various infected mouse tissues after challenge with mouse-adapted EBOV (MA-EBOV). A decrease in NK cell numbers from systemic circulation was observed concomitant to an increase of these cells in tissues that are supporting active replication of EBOV. Unexpectedly, NK accumulation in virus replication sites correlated with enhanced EBOV disease progression in specific conditions; at a high challenge dose, NK-depleted mice displayed lower viremia and liver damage and higher hepatic T cell levels. Upregulation of UL16 binding protein 1 (ULBP-1) was detected in hepatic T cells, suggesting that NK cells participate in their elimination. Overall, this study supports the concept that NK cells accumulate in EBOV-infected tissues and can contribute to viral pathogenicity. IMPORTANCE Ebola virus (EBOV) outbreaks can claim numerous lives and also devastate the local health infrastructure, as well as the economy, of affected countries. Lethal EBOV infection has been documented to decrease the levels of several immune cells in the blood that are necessary to defend the host. This decrease in immune cells is, however, not observed in individuals who survive EBOV infection. Having a better grasp of how these immune cells are lost is therefore of high importance to develop and improve new and existing therapeutics. The significance of our research is in identifying the mechanism responsible for the apparent loss of immune cells in lethal EBOV infection. This will allow therapeutic options aimed at preventing the loss of these immune cells, therefore allowing infected individuals to better fight the infection.
Collapse
|
14
|
Ickrath P, Scherzad A, Kleinsasser N, Ginzkey C, Hagen R, Hackenberg S. Influence of nasal polyp tissue on the differentiation and activation of T lymphocytes in a co-culture system. Biomed Rep 2019; 10:119-126. [PMID: 30719290 DOI: 10.3892/br.2019.1185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
T cell subpopulations in nasal polyps differ from peripheral lymphocytes in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). However, little is known about the modulatory influence of the inflamed nasal polyp epithelial cells on the phenotype of the T cells. The aim of the present study was to assess this interaction. Tissue and blood samples were collected from 16 patients undergoing paranasal sinus surgery. Polypoid tissue was cultured under air-liquid interface conditions. Subsequently, cluster of differentiation (CD)3/CD28 activated peripheral lymphocytes from the same patients were added. After 3 days lymphocytes were separated from co-culture and analyzed by multicolor flow cytometry. Additionally, cytokine expression of the polyp tissue was measured using a human T helper cell (TH)1/TH2/TH17 antibody array. Viability staining of CD3+ lymphocytes detected fewer apoptotic cells under co-culture conditions compared with in mono-culture. There was a significantly higher frequency of CD4+ and CD8+ T cells in the co-culture system than in PBMC culture alone. Human leukocyte antigen (HLA)-DR isotype was significantly downregulated on co-cultured CD3+ lymphocytes and CD3+CD4+ T cells compared with the mono-cultured counterparts. Conventional Forkhead box P3- memory CD4+ T cells and activated regulatory T cells increased in frequency, and resting regulatory T cells decreased in the co-culture. Cytokine analysis identified expression of interleukin (IL)-6, IL-6 receptor, granulocyte-macrophage colony-stimulating factor, transforming growth factor-β and macrophage inflammatory protein-3 in the polyp tissue. In summary, the present study performed a comparison between peripheral lymphocytes cultured with and without nasal polyp tissue cells was performed. The downregulation of HLA and the differentiation of Treg and Tconv by nasal polypoid tissue on PBMCs was demonstrated. Interestingly, the in vivo downregulation of HLA-DR on CD3+ lymphocytes, as reported previously, was confirmed in vitro. The inhibitory effect of polypoid tissue on the activation of lymphocytes is a possible pathogenic mechanism underlying CRSwNP.
Collapse
Affiliation(s)
- Pascal Ickrath
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Würzburg, D-97080 Würzburg, Germany
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Würzburg, D-97080 Würzburg, Germany
| | - Norbert Kleinsasser
- Department of Otorhinolaryngology, Head and Neck Surgery, Kepler University Hospital, 4021 Linz, Austria
| | - Chr Ginzkey
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Otto Koerner Rostock University Medical Center, D-18057 Rostock, Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Würzburg, D-97080 Würzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|
15
|
Czesnikiewicz-Guzik M, Nosalski R, Mikolajczyk TP, Vidler F, Dohnal T, Dembowska E, Graham D, Harrison DG, Guzik TJ. Th1-type immune responses to Porphyromonas gingivalis antigens exacerbate angiotensin II-dependent hypertension and vascular dysfunction. Br J Pharmacol 2018; 176:1922-1931. [PMID: 30414380 PMCID: PMC6534780 DOI: 10.1111/bph.14536] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/15/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose Emerging evidence indicates that hypertension is mediated by immune mechanisms. We hypothesized that exposure to Porphyromonas gingivalis antigens, commonly encountered in periodontal disease, can enhance immune activation in hypertension and exacerbate the elevation in BP, vascular inflammation and vascular dysfunction. Experimental Approach Th1 immune responses were elicited through immunizations using P. gingivalis lysate antigens (10 μg) conjugated with aluminium oxide (50 μg) and IL‐12 (1 μg). The hypertension and vascular endothelial dysfunction evoked by subpressor doses of angiotensin II (0.25 mg·kg−1·day−1) were studied, and vascular inflammation was quantified by flow cytometry and real‐time PCR. Key Results Systemic T‐cell activation, a characteristic of hypertension, was exacerbated by P. gingivalis antigen stimulation. This translated into increased aortic vascular inflammation with enhanced leukocyte, in particular, T‐cell and macrophage infiltration. The expression of the Th1 cytokines, IFN‐γ and TNF‐α, and the transcription factor, TBX21, was increased in aortas of P. gingivalis/IL‐12/aluminium oxide‐immunized mice, while IL‐4 and TGF‐β were unchanged. These immune changes in mice with induced T‐helper‐type 1 immune responses were associated with an enhanced elevation of BP and endothelial dysfunction compared with control mice in response to 2 week infusion of a subpressor dose of angiotensin II. Conclusions and Implications These results support the concept that Th1 immune responses induced by bacterial antigens such as P. gingivalis can increase sensitivity to subpressor pro‐hypertensive insults such as low‐dose angiotensin II, thus providing a mechanistic link between chronic infection, such as periodontitis, and hypertension. Linked Articles This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc
Collapse
Affiliation(s)
- Marta Czesnikiewicz-Guzik
- Department of Periodontology and Oral Sciences Research Group, University of Glasgow Dental School and Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.,Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University School of Medicine, Kraków, Poland
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz P Mikolajczyk
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Francesca Vidler
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz Dohnal
- Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University School of Medicine, Kraków, Poland
| | - Elzbieta Dembowska
- Department of Periodontology, Pomeranian Medical University, Szczecin, Poland
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - David G Harrison
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
16
|
Korenkov D, Isakova-Sivak I, Rudenko L. Basics of CD8 T-cell immune responses after influenza infection and vaccination with inactivated or live attenuated influenza vaccine. Expert Rev Vaccines 2018; 17:977-987. [DOI: 10.1080/14760584.2018.1541407] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniil Korenkov
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russia
| | - Larisa Rudenko
- Department of Virology, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”, Saint Petersburg, Russia
| |
Collapse
|
17
|
Loo CP, Nelson NA, Lane RS, Booth JL, Loprinzi Hardin SC, Thomas A, Slifka MK, Nolz JC, Lund AW. Lymphatic Vessels Balance Viral Dissemination and Immune Activation following Cutaneous Viral Infection. Cell Rep 2018; 20:3176-3187. [PMID: 28954233 DOI: 10.1016/j.celrep.2017.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 01/22/2023] Open
Abstract
Lymphatic vessels lie at the interface between peripheral sites of pathogen entry, adaptive immunity, and the systemic host. Though the paradigm is that their open structure allows for passive flow of infectious particles from peripheral tissues to lymphoid organs, virus applied to skin by scarification does not spread to draining lymph nodes. Using cutaneous infection by scarification, we analyzed the effect of viral infection on lymphatic transport and evaluated its role at the host-pathogen interface. We found that, in the absence of lymphatic vessels, canonical lymph-node-dependent immune induction was impaired, resulting in exacerbated pathology and compensatory, systemic priming. Furthermore, lymphatic vessels decouple fluid and cellular transport in an interferon-dependent manner, leading to viral sequestration while maintaining dendritic cell transport for immune induction. In conclusion, we found that lymphatic vessels balance immune activation and viral dissemination and act as an "innate-like" component of tissue host viral defense.
Collapse
Affiliation(s)
- Christopher P Loo
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nicholas A Nelson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Ryan S Lane
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jamie L Booth
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sofia C Loprinzi Hardin
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey C Nolz
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
18
|
Osborn JF, Mooster JL, Hobbs SJ, Munks MW, Barry C, Harty JT, Hill AB, Nolz JC. Enzymatic synthesis of core 2 O-glycans governs the tissue-trafficking potential of memory CD8 + T cells. Sci Immunol 2018; 2:2/16/eaan6049. [PMID: 29030501 DOI: 10.1126/sciimmunol.aan6049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022]
Abstract
Trafficking of memory CD8+ T cells out of the circulation is essential to provide protective immunity against intracellular pathogens in nonlymphoid tissues. However, the molecular mechanisms that dictate the trafficking potential of diverse memory CD8+ T cell populations are not completely defined. We show that after infection or inflammatory challenge, central memory (TCM) CD8+ T cells rapidly traffic into nonlymphoid tissues, whereas most effector memory cells remain in the circulation. Furthermore, we demonstrate that cellular migration of memory CD8+ T cells into nonlymphoid tissues is driven by interleukin-15 (IL-15)-stimulated enzymatic synthesis of core 2 O-glycans, which generates functional ligands for E- and P-selectins. Given that IL-15-stimulated expression of glycosyltransferase enzymes is largely a feature of TCM CD8+ T cells, this allows TCM to selectively migrate out of the circulation and into nonlymphoid tissues. Collectively, our data indicate that entry of memory CD8+ T cells into inflamed, nonlymphoid tissues is primarily restricted to TCM cells that have the capacity to synthesize core 2 O-glycans.
Collapse
Affiliation(s)
- Jossef F Osborn
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jana L Mooster
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Samuel J Hobbs
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Michael W Munks
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Conrad Barry
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA. .,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
19
|
Souquette A, Thomas PG. Past Life and Future Effects-How Heterologous Infections Alter Immunity to Influenza Viruses. Front Immunol 2018; 9:1071. [PMID: 29872429 PMCID: PMC5972221 DOI: 10.3389/fimmu.2018.01071] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza virus frequently mutates due to its error-prone polymerase. This feature contributes to influenza virus’s ability to evade pre-existing immunity, leading to annual epidemics and periodic pandemics. T cell memory plays a key protective role in the face of an antigenically distinct influenza virus strain because T cell targets are often derived from conserved internal proteins, whereas humoral immunity targets are often sites of increased mutation rates that are tolerated by the virus. Most studies of influenza T cell memory are conducted in naive, specific pathogen free mice and do not account for repetitive influenza infection throughout a lifetime, sequential acute heterologous infections between influenza infections, or heterologous chronic co-infections. By contrast to these mouse models, humans often experience numerous influenza infections, encounter heterologous acute infections between influenza infections, and are infected with at least one chronic virus. In this review, we discuss recent advances in understanding the effects of heterologous infections on the establishment and maintenance of CD8+ T cell immunological memory. Understanding the various factors that affect immune memory can provide insights into the development of more effective vaccines and increase reproducibility of translational studies between animal models and clinical results.
Collapse
Affiliation(s)
- Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
20
|
Schmidt ME, Varga SM. The CD8 T Cell Response to Respiratory Virus Infections. Front Immunol 2018; 9:678. [PMID: 29686673 PMCID: PMC5900024 DOI: 10.3389/fimmu.2018.00678] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Department of Pathology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
21
|
Grau M, Valsesia S, Mafille J, Djebali S, Tomkowiak M, Mathieu AL, Laubreton D, de Bernard S, Jouve PE, Ventre E, Buffat L, Walzer T, Leverrier Y, Marvel J. Antigen-Induced but Not Innate Memory CD8 T Cells Express NKG2D and Are Recruited to the Lung Parenchyma upon Viral Infection. THE JOURNAL OF IMMUNOLOGY 2018; 200:3635-3646. [PMID: 29632146 DOI: 10.4049/jimmunol.1701698] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
The pool of memory-phenotype CD8 T cells is composed of Ag-induced (AI) and cytokine-induced innate (IN) cells. IN cells have been described as having properties similar to those of AI memory cells. However, we found that pathogen-induced AI memory cells can be distinguished in mice from naturally generated IN memory cells by surface expression of NKG2D. Using this marker, we described the increased functionalities of AI and IN memory CD8 T cells compared with naive cells, as shown by comprehensive analysis of cytokine secretion and gene expression. However, AI differed from IN memory CD8 T cells by their capacity to migrate to the lung parenchyma upon inflammation or infection, a process dependent on their expression of ITGA1/CD49a and ITGA4/CD49d integrins.
Collapse
Affiliation(s)
- Morgan Grau
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| | - Séverine Valsesia
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| | - Julien Mafille
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| | - Sophia Djebali
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| | - Martine Tomkowiak
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| | - Anne-Laure Mathieu
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| | - Daphné Laubreton
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| | | | | | - Erwan Ventre
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| | | | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| | - Yann Leverrier
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Université de Lyon, F-69007 Lyon, France; and
| |
Collapse
|
22
|
Abstract
CD8+ tissue-resident memory T cells (TRM cells) in two mucosal tissues, the skin and the female reproductive tract, proliferate in situ to generate a secondary pool of TRM cells that does not exit into the circulation.
Collapse
Affiliation(s)
- Jun Siong Low
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Takamura S. Persistence in Temporary Lung Niches: A Survival Strategy of Lung-Resident Memory CD8 + T Cells. Viral Immunol 2017; 30:438-450. [PMID: 28418771 PMCID: PMC5512299 DOI: 10.1089/vim.2017.0016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Respiratory virus infections, such as those mediated by influenza virus, parainfluenza virus, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus (SARS-CoV), rhinovirus, and adenovirus, are responsible for substantial morbidity and mortality, especially in children and older adults. Furthermore, the potential emergence of highly pathogenic strains of influenza virus poses a significant public health threat. Thus, the development of vaccines capable of eliciting long-lasting protective immunity to those pathogens is a major public health priority. CD8+ Tissue-resident memory T (TRM) cells are a newly defined population that resides permanently in the nonlymphoid tissues including the lung. These cells are capable of providing local protection immediately after infection, thereby promoting rapid host recovery. Recent studies have offered new insights into the anatomical niches that harbor lung CD8+ TRM cells, and also identified the requirement and limitations of TRM maintenance. However, it remains controversial whether lung CD8+ TRM cells are continuously replenished by new cells from the circulation or permanently lodged in this site. A better understanding of how lung CD8+ TRM cells are generated and maintained and the tissue-specific factors that drive local TRM formation is required for optimal vaccine development. This review focuses on recent advance in our understanding of CD8+ TRM cell establishment and maintenance in the lung, and describes how those processes are uniquely regulated in this tissue.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Kindai University , Faculty of Medicine, Osaka, Japan
| |
Collapse
|
24
|
Hunter MC, Teijeira A, Halin C. T Cell Trafficking through Lymphatic Vessels. Front Immunol 2016; 7:613. [PMID: 28066423 PMCID: PMC5174098 DOI: 10.3389/fimmu.2016.00613] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/05/2016] [Indexed: 01/06/2023] Open
Abstract
T cell migration within and between peripheral tissues and secondary lymphoid organs is essential for proper functioning of adaptive immunity. While active T cell migration within a tissue is fairly slow, blood vessels and lymphatic vessels (LVs) serve as speedy highways that enable T cells to travel rapidly over long distances. The molecular and cellular mechanisms of T cell migration out of blood vessels have been intensively studied over the past 30 years. By contrast, less is known about T cell trafficking through the lymphatic vasculature. This migratory process occurs in one manner within lymph nodes (LNs), where recirculating T cells continuously exit into efferent lymphatics to return to the blood circulation. In another manner, T cell trafficking through lymphatics also occurs in peripheral tissues, where T cells exit the tissue by means of afferent lymphatics, to migrate to draining LNs and back into blood. In this review, we highlight how the anatomy of the lymphatic vasculature supports T cell trafficking and review current knowledge regarding the molecular and cellular requirements of T cell migration through LVs. Finally, we summarize and discuss recent insights regarding the presumed relevance of T cell trafficking through afferent lymphatics.
Collapse
Affiliation(s)
- Morgan C. Hunter
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alvaro Teijeira
- Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Adegunsoye A, Hrusch CL, Bonham CA, Jaffery MR, Blaine KM, Sullivan M, Churpek MM, Strek ME, Noth I, Sperling AI. Skewed Lung CCR4 to CCR6 CD4 + T Cell Ratio in Idiopathic Pulmonary Fibrosis Is Associated with Pulmonary Function. Front Immunol 2016; 7:516. [PMID: 27933058 PMCID: PMC5120085 DOI: 10.3389/fimmu.2016.00516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Rationale Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal lung disease. While it has been suggested that T cells may contribute to IPF pathogenesis, these studies have focused primarily on T cells outside of the pulmonary interstitium. Thus, the role of T cells in the diseased lung tissue remains unclear. Objective To identify whether specific CD4+ T cell subsets are differentially represented in lung tissue from patients with IPF. Methods CD4+ T cell subsets were measured in lung tissue obtained from patients with IPF at the time of lung transplantation, and from age- and gender-matched organ donors with no known lung disease. Subsets were identified by their surface expression of CCR4, CCR6, and CXCR3 chemokine receptors. CD4+ T cell subsets were correlated with measurements of lung function obtained prior to transplantation. Results Compared to controls, IPF patients had a higher proportion of lung CD4+ T cells, a higher proportion of CCR4+ CD4+ T cells, and a lower proportion of CCR6+ CD4+ T cells. The increase in CCR4+ CD4+ T cells in IPF lung tissue was not due to increased Tregs. Intriguingly, the increase in the ratio of CCR4+ cells to CCR6+ cells correlated significantly with better lung function. Conclusion Our findings suggest a new paradigm that not all T cell infiltrates in IPF lungs are detrimental, but instead, specialized subsets may actually be protective. Thus, augmentation of the chemokines that recruit protective T cells, while blocking chemokines that recruit detrimental T cells, may constitute a novel approach to IPF therapy.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Cara L Hrusch
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Catherine A Bonham
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Mohammad R Jaffery
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Kelly M Blaine
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Meghan Sullivan
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Matthew M Churpek
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Mary E Strek
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Imre Noth
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago , Chicago, IL , USA
| | - Anne I Sperling
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
26
|
Ming B, Gao M, Zou H, Chen H, Sun Y, Xiao Y, Lai L, Xiong P, Xu Y, Tan Z, Wang J, Chen G, Gong F, Xia J, Zheng F. HMGB1 blockade differentially impacts pulmonary inflammation and defense responses in poly(I:C)/LPS-exposed heart transplant mice. Mol Immunol 2016; 76:80-9. [PMID: 27387278 DOI: 10.1016/j.molimm.2016.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 01/05/2023]
Abstract
A large number of recipients are in a compromised immune defense condition because of the routine application of immunosuppressive regimens after heart transplantation. Our previous work demonstrated that blockade of high-mobility group box 1 (HMGB1) prolongs the graft survival. Whether and how HMGB1 blockade impacts respiratory responses against pathogen-like challenge in organ transplant recipients when it improves cardiac graft are not elucidated. At the present study, after abdominal heterotopic heart transplantation, the recipient mice were treated with HMGB1 mAb, and then challenged with poly(I:C) or LPS intratracheally on day 7 post transplantation. We found that the level of bronchoalveolar lavage (BAL) HMGB1 was elevated after heart transplantation, and aggravated responses to respiratory tract poly(I:C)/LPS challenge were observed. HMGB1 neutralizing mAb treatment in poly(I:C)-challenged recipient mice alleviated pulmonary histopathological changes, neutrophil infiltration and inflammatory cytokine release, but unaffected the level of IFN-β, the distribution of CD11b(+)CD27(+)/CD11b(+)CD27(-) NK cell subsets, and CD8(+) T cell responses. In LPS-exposed recipient mice, HMGB1 mAb treatment ameliorated pulmonary inflammatory damage and enhanced the phagocytosis of phagocytic cells. Thus, this study may establish a basis for the application of HMGB1 blockade to improve the outcomes of heart transplant recipients because HMGB1 inhibition ameliorates pulmonary inflammation, but maintains defense-associated responses.
Collapse
Affiliation(s)
- Bingxia Ming
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Gao
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Zou
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huoying Chen
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Sun
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Xiao
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lai
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xiong
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | - Feili Gong
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiovascular Surgery, Central Hospital of Wuhan, Wuhan, China
| | - Fang Zheng
- Department of immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, China; Key Laboratory of Organ Transplantation, Ministry of Public Health, China.
| |
Collapse
|
27
|
Cauley LS. Environmental cues orchestrate regional immune surveillance and protection by pulmonary CTLs. J Leukoc Biol 2016; 100:905-912. [PMID: 27317751 DOI: 10.1189/jlb.1mr0216-074r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/24/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue-resident memory CD8 T cells (TRM) provide preemptive immunity against infections that begin in peripheral tissues by guarding the site of initial pathogen exposure. Their role in immunity to respiratory virus infection is particularly important because severe damage to the alveoli can be avoided when local populations of TRM cells reduce viral burdens and dampen the responses of effector CD8 T cells in the lungs. Although a connection between rapid immune activation and early viral control is well established, the signals that keep TRM cells poised for action in the local tissues remain poorly defined. Recent studies have shown that environmental cues influence the fate decisions of activated CTLs during memory formation. Manipulation of these signaling pathways could provide new ways to capitalize on protection from TRM cells in mucosal tissues, while reducing collateral damage and pathology during vaccination.
Collapse
Affiliation(s)
- Linda S Cauley
- Department of Immunology, University of Connecticut Medical School, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
28
|
Memory CD8 + T Cells Require Increased Concentrations of Acetate Induced by Stress for Optimal Function. Immunity 2016; 44:1312-24. [DOI: 10.1016/j.immuni.2016.03.016] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
|
29
|
Braun M, Ress ML, Yoo YE, Scholz CJ, Eyrich M, Schlegel PG, Wölfl M. IL12-mediated sensitizing of T-cell receptor-dependent and -independent tumor cell killing. Oncoimmunology 2016; 5:e1188245. [PMID: 27622043 DOI: 10.1080/2162402x.2016.1188245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022] Open
Abstract
Interleukin 12 (IL12) is a key inflammatory cytokine critically influencing Th1/Tc1-T-cell responses at the time of initial antigen encounter. Therefore, it may be exploited for cancer immunotherapy. Here, we investigated how IL12, and other inflammatory cytokines, shape effector functions of human T-cells. Using a defined culture system, we followed the gradual differentiation and function of antigen-specific CD8(+) T cells from their initial activation as naïve T cells through their expansion phase as early memory cells to full differentiation as clonally expanded effector T cells. The addition of IL12 8 days after the initial priming event initiated two mechanistically separate events: First, IL12 sensitized the T-cell receptor (TCR) for antigen-specific activation, leading to an approximately 10-fold increase in peptide sensitivity and, in consequence, enhanced tumor cell killing. Secondly, IL12 enabled TCR/HLA-independent activation and cytotoxicity: this "non-specific" effect was mediated by the NK cell receptor DNAM1 (CD226) and dependent on ligand expression of the target cells. This IL12 regulated, DNAM1-mediated killing is dependent on src-kinases as well as on PTPRC (CD45) activity. Thus, besides enhancing TCR-mediated activation, we here identified for the first time a second IL12 mediated mechanism leading to activation of a receptor-dependent killing pathway via DNAM1.
Collapse
Affiliation(s)
- Matthias Braun
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany; Else-Kröner Forschungskolleg for Interdisciplinary Translational Immunology, School of Medicine, University of Würzburg, Würzburg, Germany
| | - Marie L Ress
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg , Würzburg, Germany
| | - Young-Eun Yoo
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg , Würzburg, Germany
| | - Claus J Scholz
- Core Unit Systems Medicine, University of Würzburg , Würzburg, Germany
| | - Matthias Eyrich
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg , Würzburg, Germany
| | - Paul G Schlegel
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany; Clinical Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Matthias Wölfl
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Würzburg, Würzburg, Germany; Clinical Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Lauvau G, Boutet M, Williams TM, Chin SS, Chorro L. Memory CD8(+) T Cells: Innate-Like Sensors and Orchestrators of Protection. Trends Immunol 2016; 37:375-385. [PMID: 27131432 DOI: 10.1016/j.it.2016.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 12/24/2022]
Abstract
Recent findings have revealed roles for systemic and mucosa-resident memory CD8(+) T cells in the orchestration of innate immune responses critical to host defense upon microbial infection. Here we integrate these findings into the current understanding of the molecular and cellular signals controlling memory CD8(+) T cell reactivation and the mechanisms by which these cells mediate effective protection in vivo. The picture that emerges presents memory CD8(+) T cells as early sensors of danger signals, mediating protective immunity both through licensing of cellular effectors of the innate immune system and via the canonical functions associated with memory T cells. We discuss implications for the development of T cell vaccines and therapies and highlight important areas in need of further investigation.
Collapse
Affiliation(s)
- Grégoire Lauvau
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY, USA.
| | - Marie Boutet
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY, USA
| | - Tere M Williams
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY, USA
| | - Shu Shien Chin
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY, USA
| | - Laurent Chorro
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, New York, NY, USA
| |
Collapse
|
31
|
Regulation of effector and memory CD8(+) T cell function by inflammatory cytokines. Cytokine 2015; 82:16-23. [PMID: 26688544 DOI: 10.1016/j.cyto.2015.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 01/03/2023]
Abstract
Cells communicate with each other through the production and secretion of cytokines, which are integral to the host response to infection. Once recognized by specific cytokine receptors expressed on the cell surface, these exogenous signals direct the biological function of a cell in order to adapt to their microenvironment. CD8(+) T cells are critical immune cells that play an important role in the control and elimination of intracellular pathogens. Current findings have demonstrated that cytokines influence all aspects of the CD8(+) T cell response to infection or immunization. The cytokine milieu induced at the time of activation impacts the overall magnitude and function of the effector CD8(+) T cell response and the generation of functional memory CD8(+) T cells. This review will focus on the impact of inflammatory cytokines on different aspects of CD8(+) T cell biology.
Collapse
|
32
|
Abstract
Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review will focus on the mechanisms by which memory T cells migrate to the site where their target antigen is present, with particular emphasis on their migration to transplanted organs. First, we will define the known subsets of memory T cells (central, effector, and tissue resident) and their circulation patterns. Second, we will review the cellular and molecular mechanisms by which memory T cells migrate to inflamed and non-inflamed tissues and highlight the emerging paradigm of antigen-driven, trans-endothelial migration. Third, we will discuss the relevance of this knowledge to organ transplantation and the prevention or treatment of allograft rejection.
Collapse
Affiliation(s)
- Qianqian Zhang
- Tsinghua University School of Medicine , Beijing , China ; University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Fadi G Lakkis
- University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
33
|
Richer MJ, Pewe LL, Hancox LS, Hartwig SM, Varga SM, Harty JT. Inflammatory IL-15 is required for optimal memory T cell responses. J Clin Invest 2015; 125:3477-90. [PMID: 26241055 DOI: 10.1172/jci81261] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/18/2015] [Indexed: 12/22/2022] Open
Abstract
Due to their ability to rapidly proliferate and produce effector cytokines, memory CD8+ T cells increase protection following reexposure to a pathogen. However, low inflammatory immunizations do not provide memory CD8+ T cells with a proliferation advantage over naive CD8+ T cells, suggesting that cell-extrinsic factors enhance memory CD8+ T cell proliferation in vivo. Herein, we demonstrate that inflammatory signals are critical for the rapid proliferation of memory CD8+ T cells following infection. Using murine models of viral infection and antigen exposure, we found that type I IFN-driven expression of IL-15 in response to viral infection prepares memory CD8+ T cells for rapid division independently of antigen reexposure by transiently inducing cell-cycle progression via a pathway dependent on mTOR complex-1 (mTORC1). Moreover, exposure to IL-15 allowed more rapid division of memory CD8+ T cells following antigen encounter and enhanced their protective capacity against viral infection. Together, these data reveal that inflammatory IL-15 promotes optimal responses by memory CD8+ T cells.
Collapse
|
34
|
Mifsud EJ, Tan ACL, Brown LE, Chua BYL, Jackson DC. Generation of Adaptive Immune Responses Following Influenza Virus Challenge is Not Compromised by Pre-Treatment with the TLR-2 Agonist Pam2Cys. Front Immunol 2015; 6:290. [PMID: 26097481 PMCID: PMC4457020 DOI: 10.3389/fimmu.2015.00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/20/2015] [Indexed: 11/18/2022] Open
Abstract
Immunostimulatory agents provide a new category of anti-microbial agents that activate the host’s innate immune system allowing control of viral and/or bacterial infections. The TLR-2 agonist PEG-Pam2Cys has been shown to mediate potent anti-viral activity against influenza viruses when administered prophylactically (1). Here, we demonstrate that the treatment of mice with PEG-Pam2Cys does not compromise their ability to generate adaptive immune responses following subsequent challenge with influenza virus. The antibody induced in mice pre-treated with Pam2Cys possessed hemagglutination-inhibiting activities and the CD8+ T-cell responses that were elicited provided protection against heterologous viral challenge. In the absence of an effective influenza vaccine, an agent that provides immediate protection against the virus and does not compromise the induction of influenza-specific immunity on exposure to infectious virus provides an opportunity for population immunity to be achieved through natural exposure to virus.
Collapse
Affiliation(s)
- Edin Jessica Mifsud
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Parkville, VIC , Australia
| | - Amabel C L Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Parkville, VIC , Australia
| | - Lorena Elizabeth Brown
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Parkville, VIC , Australia
| | - Brendon Yew Loong Chua
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Parkville, VIC , Australia
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
35
|
Molecular mechanisms of CD8(+) T cell trafficking and localization. Cell Mol Life Sci 2015; 72:2461-73. [PMID: 25577280 DOI: 10.1007/s00018-015-1835-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
Cytotoxic CD8(+) T cells are potent mediators of host protection against disease due to their ability to directly kill cells infected with intracellular pathogens and produce inflammatory cytokines at the site of infection. To fully achieve this objective, naïve CD8(+) T cells must be able to survey the entire body for the presence of foreign or "non-self" antigen that is delivered to draining lymph nodes following infection or tissue injury. Once activated, CD8(+) T cells undergo many rounds of cell division, acquire effector functions, and are no longer restricted to the circulation and lymphoid compartments like their naïve counterparts, but rather are drawn to inflamed tissues to combat infection. As CD8(+) T cells transition from naïve to effector to memory populations, this is accompanied by dynamic changes in the expression of adhesion molecules and chemokine receptors that ultimately dictate their localization in vivo. Thus, an understanding of the molecular mechanisms regulating CD8(+) T cell trafficking and localization is critical for vaccine design, control of infectious diseases, treatment of autoimmune disorders, and cancer immunotherapy.
Collapse
|
36
|
Rudraraju R, Sealy RE, Surman SL, Thomas PG, Dayton BH, Hurwitz JL. Non-random lymphocyte distribution among virus-infected cells of the respiratory tract. Viral Immunol 2014; 26:378-84. [PMID: 24328934 DOI: 10.1089/vim.2013.0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rules of T cell positioning within virus-infected respiratory tract tissues are poorly understood. We therefore marked cervical lymph node or spleen cells from Sendai virus (SeV) primed mice and transferred lymphocytes to animals infected with SeV expressing an enhanced green fluorescent protein (SeV-eGFP). Confocal imaging showed that when T cells entered a field of infected respiratory tract epithelium, they assumed a spatial distribution that maximized distances between each donor cell and its nearest neighbor. We therefore hypothesized that lymphocytes repelled one another by altering their chemokine/cytokine microenvironment. Subsequent in vitro tests confirmed that when SeV-primed lymphocytes were co-cultured with infected respiratory tract stroma, there was a profound upregulation of chemokines including RANTES, CXCL9, CXCL10, and CCL2. Based on these data, we propose that newly resident lymphocytes within virus-infected respiratory tract tissues may create halos of chemokines/cytokines to mark their territories; lymphocyte cross-talk may then inhibit cell overlap and redundancy to expedite virus clearance.
Collapse
Affiliation(s)
- Rajeev Rudraraju
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | | | | | | | | | |
Collapse
|
37
|
Pant H, Hughes A, Miljkovic D, Schembri M, Wormald P, Macardle P, Grose R, Zola H, Krumbiegel D. Accumulation of effector memory CD8+ T cells in nasal polyps. Am J Rhinol Allergy 2014; 27:e117-26. [PMID: 24119592 DOI: 10.2500/ajra.2013.27.3958] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND T lymphocytes are prevalent in sinus mucosa and are implicated in chronic rhinosinusitis (CRS) pathogenesis. However, the major T-cell subpopulations, helper (CD4+) and cytotoxic (CD8+), have not been adequately examined in CRS. This study was designed to characterize human sinus mucosa and peripheral blood (PB) CD4+ and CD8+ T cells and their level of differentiation in CRS with nasal polyps (NPs), CRS without NPs, and control patients. METHODS A prospective study was performed. Percentages of CD4+ and CD8+ T cells and their levels of differentiation were analyzed in sinus mucosa and PB by flow cytometry. Cell populations were defined as naive, central memory, effector memory, and effector T cells using cell surface markers CD45RA, CD62L, and CD27. The influence of coexisting allergy, sinus eosinophilic mucus (EM), and culture results were examined. RESULTS In all patients, sinus mucosa had a lower percentage of CD4+ and a higher percentage of CD8+ T cells compared with PB. However, CRS with NPs (n = 86) had a significantly higher percentage of mucosal CD8+ T cells compared with CRS without NPs (n = 40) in control (n = 13) patients (p < 0.0001). Effector memory T cells were increased in sinuses compared with PB in all patients; however, the percentage of effector memory CD8+ T cells was greatest in CRS with NP mucosa (p = 0.002). Surprisingly coexisting allergy or culture results did not influence the mucosal T-cell phenotype. CRS with NP patients with sinus EM had a significantly higher percentage of mucosal CD8+ T cells. CONCLUSION Sinus mucosa in CRS with NPs is characterized by a significant enrichment of CD8+ T cells and a relative deficiency of CD4+ T cells. The majority of NP CD8+ T cells had a terminally differentiated, mature, effector memory phenotype, which raises the question, whether these cells are pathogenic or appear as a consequence of inflammation, independent of the presence of allergy or positive microbial culture.
Collapse
Affiliation(s)
- Harshita Pant
- Department of Otolaryngology Head and Neck Surgery, University of Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim MT, Harty JT. Impact of Inflammatory Cytokines on Effector and Memory CD8+ T Cells. Front Immunol 2014; 5:295. [PMID: 24995011 PMCID: PMC4062963 DOI: 10.3389/fimmu.2014.00295] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/05/2014] [Indexed: 01/01/2023] Open
Abstract
Inflammatory cytokines have long been recognized to produce potent APCs to elicit robust T cell responses for protective immunity. The impact of inflammatory cytokine signaling directly on T cells, however, has only recently been appreciated. Although much remains to be learned, the CD8 T cell field has made considerable strides in understanding the effects of inflammatory cytokines throughout the CD8 T cell response. Key findings first identified IL-12 and type I interferons as "signal 3" cytokines, emphasizing their importance in generating optimal CD8 T cell responses. Separate investigations revealed another inflammatory cytokine, IL-15, to play a critical role in memory CD8 T cell maintenance. These early studies highlighted potential regulators of CD8 T cells, but were unable to provide mechanistic insight into how these inflammatory cytokines enhanced CD8 T cell-mediated immunity. Here, we describe the mechanistic advances that have been made in our lab regarding the role of "signal 3" cytokines and IL-15 in optimizing effector and memory CD8 T cell number and function. Furthermore, we assess initial progress on the role of cytokines, such as TGF-β, in generation of recently described resident memory CD8 T cell populations.
Collapse
Affiliation(s)
- Marie T Kim
- Interdisciplinary Program in Immunology, University of Iowa , Iowa City, IA , USA
| | - John T Harty
- Interdisciplinary Program in Immunology, University of Iowa , Iowa City, IA , USA ; Department of Microbiology, University of Iowa , Iowa City, IA , USA ; Department of Pathology, University of Iowa , Iowa City, IA , USA
| |
Collapse
|
39
|
Crosby EJ, Goldschmidt MH, Wherry EJ, Scott P. Engagement of NKG2D on bystander memory CD8 T cells promotes increased immunopathology following Leishmania major infection. PLoS Pathog 2014; 10:e1003970. [PMID: 24586170 PMCID: PMC3937277 DOI: 10.1371/journal.ppat.1003970] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/17/2014] [Indexed: 02/07/2023] Open
Abstract
One of the hallmarks of adaptive immunity is the development of a long-term pathogen specific memory response. While persistent memory T cells certainly impact the immune response during a secondary challenge, their role in unrelated infections is less clear. To address this issue, we utilized lymphocytic choriomeningitis virus (LCMV) and Listeria monocytogenes immune mice to investigate whether bystander memory T cells influence Leishmania major infection. Despite similar parasite burdens, LCMV and Listeria immune mice exhibited a significant increase in leishmanial lesion size compared to mice infected with L. major alone. This increased lesion size was due to a severe inflammatory response, consisting not only of monocytes and neutrophils, but also significantly more CD8 T cells. Many of the CD8 T cells were LCMV specific and expressed gzmB and NKG2D, but unexpectedly expressed very little IFN-γ. Moreover, if CD8 T cells were depleted in LCMV immune mice prior to challenge with L. major, the increase in lesion size was lost. Strikingly, treating with NKG2D blocking antibodies abrogated the increased immunopathology observed in LCMV immune mice, showing that NKG2D engagement on LCMV specific memory CD8 T cells was required for the observed phenotype. These results indicate that bystander memory CD8 T cells can participate in an unrelated immune response and induce immunopathology through an NKG2D dependent mechanism without providing increased protection. Cutaneous leishmaniasis has a wide spectrum of clinical presentations, from mild self-healing lesions to severe chronic infections. Differences in each individual's response are related to pathogen dose and the genetic and physiological status of the host, but exactly what causes the broad spectrum of disease is not well understood. Here we show that previous infection with a viral or bacterial pathogen led to increased immunopathology associated with L. major infection. This increase in immunopathology was not associated with any changes in parasite control and was characterized by an exaggerated inflammatory infiltrate into the site of infection. Ultimately, this increase in immunopathology was dependent on the presence of memory CD8 T cells from the previous infection and their expression of the NK cell receptor NKG2D, as depletion of these cells prior to infection with L. major or blockade of this receptor during infection ameliorated the disease. Our work suggests that the immunological history of a patient may be playing an underlying role in the pathology associated with leishmania infection and could be an important consideration for the understanding and treatment of this and other human diseases. This work also identifies the NKG2D pathway as a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Erika J. Crosby
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael H. Goldschmidt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - E. John Wherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Nolz JC, Harty JT. IL-15 regulates memory CD8+ T cell O-glycan synthesis and affects trafficking. J Clin Invest 2014; 124:1013-26. [PMID: 24509081 DOI: 10.1172/jci72039] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
Memory and naive CD8+ T cells exhibit distinct trafficking patterns. Specifically, memory but not naive CD8+ T cells are recruited to inflamed tissues in an antigen-independent manner. However, the molecular mechanisms that regulate memory CD8+ T cell trafficking are largely unknown. Here, using murine models of infection and T cell transfer, we found that memory but not naive CD8+ T cells dynamically regulate expression of core 2 O-glycans, which interact with P- and E-selectins to modulate trafficking to inflamed tissues. Following infection, antigen-specific effector CD8+ T cells strongly expressed core 2 O-glycans, but this glycosylation pattern was lost by most memory CD8+ T cells. After unrelated infection or inflammatory challenge, memory CD8+ T cells synthesized core 2 O-glycans independently of antigen restimulation. The presence of core 2 O-glycans subsequently directed these cells to inflamed tissue. Memory and naive CD8+ T cells exhibited the opposite pattern of epigenetic modifications at the Gcnt1 locus, which encodes the enzyme that initiates core 2 O-glycan synthesis. The open chromatin configuration in memory CD8+ T cells permitted de novo generation of core 2 O-glycans in a TCR-independent, but IL-15-dependent, manner. Thus, IL-15 stimulation promotes antigen-experienced memory CD8+ T cells to generate core 2 O-glycans, which subsequently localize them to inflamed tissues. These findings suggest that CD8+ memory T cell trafficking potentially can be manipulated to improve host defense and immunotherapy.
Collapse
|
41
|
Sckisel GD, Tietze JK, Zamora AE, Hsiao HH, Priest SO, Wilkins DEC, Lanier LL, Blazar BR, Baumgarth N, Murphy WJ. Influenza infection results in local expansion of memory CD8(+) T cells with antigen non-specific phenotype and function. Clin Exp Immunol 2014; 175:79-91. [PMID: 23937663 DOI: 10.1111/cei.12186] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2013] [Indexed: 12/30/2022] Open
Abstract
Primary viral infections induce activation of CD8(+) T cells responsible for effective resistance. We sought to characterize the nature of the CD8(+) T cell expansion observed after primary viral infection with influenza. Infection of naive mice with different strains of influenza resulted in the rapid expansion of memory CD8(+) T cells exhibiting a unique bystander phenotype with significant up-regulation of natural killer group 2D (NKG2D), but not CD25, on the CD44(high) CD8(+) T cells, suggesting an antigen non-specific phenotype. We further confirmed the non-specificity of this phenotype on ovalbumin-specific (OT-I) CD8(+) T cells, which are not specific to influenza. These non-specific CD8(+) T cells also displayed increased lytic capabilities and were observed primarily in the lung. Thus, influenza infection was shown to induce a rapid, antigen non-specific memory T cell expansion which is restricted to the specific site of inflammation. In contrast, CD8(+) T cells of a similar phenotype could be observed in other organs following administration of systemic agonistic anti-CD40 and interleukin-2 immunotherapy, demonstrating that bystander expansion in multiple sites is possible depending on whether the nature of activation is either acute or systemic. Finally, intranasal blockade of NKG2D resulted in a significant increase in viral replication early during the course of infection, suggesting that NKG2D is a critical mediator of anti-influenza responses prior to the initiation of adaptive immunity. These results characterize further the local bystander expansion of tissue-resident, memory CD8(+) T cells which, due to their early induction, may play an important NKG2D-mediated, antigen non-specific role during the early stages of viral infection.
Collapse
Affiliation(s)
- Gail D Sckisel
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A, Khanna K, Cauley LS. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 2013; 95:215-24. [PMID: 24006506 DOI: 10.1189/jlb.0313180] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that some respiratory virus infections leave local populations of tissue TRM cells in the lungs which disappear as heterosubtypic immunity declines. The location of these TRM cells and their contribution to the protective CTL response have not been clearly defined. Here, fluorescence microscopy is used to show that some CD103(+) TRM cells remain embedded in the walls of the large airways long after pulmonary immunization but are absent from systemically primed mice. Viral clearance from the lungs of the locally immunized mice precedes the development of a robust Teff response in the lungs. Whereas large numbers of virus-specific CTLs collect around the bronchial tree during viral clearance, there is little involvement of the remaining lung tissue. Much larger numbers of TEM cells enter the lungs of the systemically immunized animals but do not prevent extensive viral replication or damage to the alveoli. Together, these experiments show that virus-specific antibodies and TRM cells are both required for optimal heterosubtypic immunity, whereas circulating memory CD8 T cells do not substantially alter the course of disease.
Collapse
Affiliation(s)
- Tao Wu
- 1.University of Connecticut Health Center, L3062, 263 Farmington Ave., Farmington, CT 06032, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Masopust D, Schenkel JM. The integration of T cell migration, differentiation and function. Nat Rev Immunol 2013; 13:309-20. [PMID: 23598650 DOI: 10.1038/nri3442] [Citation(s) in RCA: 441] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
T cells function locally. Accordingly, T cells' recognition of antigen, their subsequent activation and differentiation, and their role in the processes of infection control, tumour eradication, autoimmunity, allergy and alloreactivity are intrinsically coupled with migration. Recent discoveries revise our understanding of the regulation and patterns of T cell trafficking and reveal limitations in current paradigms. Here, we review classic and emerging concepts, highlight the challenge of integrating new observations with existing T cell classification schemes and summarize the heuristic framework provided by viewing T cell differentiation and function first through the prism of migration.
Collapse
Affiliation(s)
- David Masopust
- Department of Microbiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
44
|
Wakim LM, Gupta N, Mintern JD, Villadangos JA. Enhanced survival of lung tissue-resident memory CD8⁺ T cells during infection with influenza virus due to selective expression of IFITM3. Nat Immunol 2013; 14:238-45. [PMID: 23354485 DOI: 10.1038/ni.2525] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/17/2012] [Indexed: 01/01/2023]
Abstract
Infection with influenza virus results in the deposition of anti-influenza CD8(+) resident memory T cells (T(RM) cells) in the lung. As a consequence of their location in the lung mucosal tissue, these cells are exposed to cytopathic pathogens over the life of the organism and may themselves be susceptible to infection. Here we found that lung T(RM) cells selectively maintained expression of the interferon-induced transmembrane protein IFITM3, a protein that confers broad resistance to viral infection. Lung T(RM) cells that lacked IFITM3 expression were more susceptible to infection than were their normal counterparts and were selectively lost during a secondary bout of infection. Thus, lung T(RM) cells were programmed to retain IFITM3 expression, which facilitated their survival and protection from viral infection during subsequent exposures.
Collapse
Affiliation(s)
- Linda M Wakim
- Division of Inflammation, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | | | | |
Collapse
|
45
|
Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol 2013; 6:14-23. [PMID: 23131785 PMCID: PMC4034055 DOI: 10.1038/mi.2012.96] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucosal tissues are continually bombarded with infectious agents seeking to gain entry into the body. The absence of a tough physical exterior layer surrounding these tissues creates a unique challenge for the immune system, which manages to provide broad protection against a plethora of different organisms with the aid of special adaptations that augment immunity at these vulnerable sites. For example, specialized populations of memory T lymphocytes reside at initial sites of pathogen entry into the body, where they provide an important protective barrier. Similar anatomically-confined populations of pathogen-specific CD8 T cells can be found near the outer margins of the body following recovery from a variety of local infections, where they share very similar phenotypic characteristics. How these tissue-resident T cells are retained in a single anatomic location where they can promote immunity is beginning to be defined. Here, we will review current knowledge of the mechanisms that help establish and maintain these regional lymphocytes in the mucosal tissues and discuss relevant data that enhance our understanding of the contribution of these lymphocyte populations to protective immunity against infectious diseases.
Collapse
|
46
|
Pathogen-specific inflammatory milieux tune the antigen sensitivity of CD8(+) T cells by enhancing T cell receptor signaling. Immunity 2012; 38:140-52. [PMID: 23260194 DOI: 10.1016/j.immuni.2012.09.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/07/2012] [Indexed: 12/11/2022]
Abstract
CD8(+) T cells confer host protection through T-cell-receptor (TCR)-mediated recognition of foreign antigens presented by infected cells. Thus, generation of CD8(+) T cell populations with high antigen sensitivity is critical for efficient pathogen clearance. Besides selection of high-affinity TCRs, the molecular mechanisms regulating the antigen sensitivity of CD8(+) T cells remain poorly defined. Herein, we have demonstrated that the antigen sensitivity of effector and memory CD8(+) T cells is dynamically regulated and can be tuned by pathogen-induced inflammatory milieux independently of the selection of cells with higher TCR affinity. Mechanistically, we have demonstrated that the signal-transduction capacity of key TCR proximal molecules is enhanced by inflammatory cytokines, which reduced the antigen density required to trigger antimicrobial functions. Dynamic tuning of CD8(+) T cell antigen sensitivity by inflammatory cytokines most likely optimizes immunity to specific pathogens while minimizing the risk of immunopathology at steady state.
Collapse
|
47
|
The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection against influenza A virus. Immunol Cell Biol 2012; 91:96-104. [PMID: 23146941 DOI: 10.1038/icb.2012.54] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we examined the reactivity of human peripheral blood mononuclear cells to a panel of influenza A virus (IAV) CD8(+) T-cell epitopes that are recognised by the major human leukocyte antigen (HLA) groups represented in the human population. We examined the level of recognition in a sample of the human population and the potential coverage that could be achieved if these were incorporated into a T-cell epitope-based vaccine. We then designed a candidate influenza vaccine that incorporated three of the examined HLA-A2-restricted influenza epitopes into Pam2Cys-based lipopeptides. These lipopeptides do not require the addition of an adjuvant and can be delivered directly to the respiratory mucosa enabling the generation of local memory cell populations that are crucial for clearance of influenza. Intranasal administration of a mixture of three lipopeptides to HLA-A2 transgenic HHD mice elicited multiple CD8(+) T-cell specificities in the spleen and lung that closely mimicked the response generated following natural infection with influenza. These CD8(+) T cells were associated with viral reduction following H3N1 influenza virus challenge for as long as 3 months after lipopeptide administration. In addition, lipopeptides containing IAV-targeting epitopes conferred substantial benefit against death following infection with a virulent H1N1 strain. Because CD8(+) T cell epitopes are often derived from highly conserved regions of influenza viruses, such vaccines need not be reformulated annually and unlike current antibody-inducing vaccines could provide cross-protective immunity against newly emerging pandemic viruses.
Collapse
|
48
|
Chen X, Xiu F, Horvath CN, Damjanovic D, Thanthrige-Don N, Jeyanathan M, Xing Z. Regulation of TB vaccine-induced airway luminal T cells by respiratory exposure to endotoxin. PLoS One 2012; 7:e41666. [PMID: 22844510 PMCID: PMC3402539 DOI: 10.1371/journal.pone.0041666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/22/2012] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) vaccine-induced airway luminal T cells (ALT) have recently been shown to be critical to host defense against pulmonary TB. However, the mechanisms that maintain memory ALT remain poorly understood. In particular, whether respiratory mucosal exposure to environmental agents such as endotoxin may regulate the size of vaccine-induced ALT population is still unclear. Using a murine model of respiratory genetic TB vaccination and respiratory LPS exposure, we have addressed this issue in the current study. We have found that single or repeated LPS exposure increases the number of antigen-specific ALT which are capable of robust secondary responses to pulmonary mycobacterial challenge. To investigate the potential mechanisms by which LPS exposure modulates the ALT population, we have examined the role of ALT proliferation and peripheral T cell recruitment. We have found that LPS exposure-increased ALT is not dependent on increased ALT proliferation as respiratory LPS exposure does not significantly increase the rate of proliferation of ALT. But rather, we find it to be dependent upon the recruitment of peripheral T cells into the airway lumen as blockade of peripheral T cell supplies markedly reduces the initially increased ALT. Thus, our data suggest that environmental exposure to airborne agents such as endotoxin has a profound modulatory effect on TB vaccine-elicited T cells within the respiratory tract. Our study provides a new, M.tb antigen-independent mechanism by which the respiratory mucosal anti-TB memory T cells may be maintained.
Collapse
Affiliation(s)
- Xuerong Chen
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Fangming Xiu
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Carly N. Horvath
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Daniela Damjanovic
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Niroshan Thanthrige-Don
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mangalakumari Jeyanathan
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre, and Department of Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
49
|
Understanding delayed T-cell priming, lung recruitment, and airway luminal T-cell responses in host defense against pulmonary tuberculosis. Clin Dev Immunol 2012; 2012:628293. [PMID: 22545059 PMCID: PMC3321538 DOI: 10.1155/2012/628293] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/18/2012] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis (M.tb), the causative bacterium of pulmonary tuberculosis (TB), is a serious global health concern. Central to M.tb effective immune avoidance is its ability to modulate the early innate inflammatory response and prevent the establishment of adaptive T-cell immunity for nearly three weeks. When compared with other intracellular bacterial lung pathogens, such as Legionella pneumophila, or even closely related mycobacterial species such as M. smegmatis, this delay is astonishing. Customarily, the alveolar macrophage (AM) acts as a sentinel, detecting and alerting surrounding cells to the presence of an invader. However, in the case of M.tb, this may be impaired, thus delaying the recruitment of antigen-presenting cells (APCs) to the lung. Upon uptake by APC populations, M.tb is able to subvert and delay the processing of antigen, MHC class II loading, and the priming of effector T cell populations. This delay ultimately results in the deferred recruitment of effector T cells to not only the lung interstitium but also the airway lumen. Therefore, it is of upmost importance to dissect the mechanisms that contribute to the delayed onset of immune responses following M.tb infection. Such knowledge will help design the most effective vaccination strategies against pulmonary TB.
Collapse
|
50
|
Goulding J, Tahiliani V, Salek-Ardakani S. OX40:OX40L axis: emerging targets for improving poxvirus-based CD8(+) T-cell vaccines against respiratory viruses. Immunol Rev 2012; 244:149-68. [PMID: 22017437 PMCID: PMC3422077 DOI: 10.1111/j.1600-065x.2011.01062.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human respiratory tract is an entry point for over 200 known viruses that collectively contribute to millions of annual deaths worldwide. Consequently, the World Health Organization has designated respiratory viral infections as a priority for vaccine development. Despite enormous advances in understanding the attributes of a protective mucosal antiviral immune response, current vaccines continue to fail in effectively generating long-lived protective CD8(+) T-cell immunity. To date, the majority of licensed human vaccines afford protection against infectious pathogens through the generation of specific immunoglobulin responses. In recent years, the selective manipulation of specific costimulatory pathways, which are critical in regulating T cell-mediated immune responses, has generated increasing interest. Impressive results in animal models have shown that the tumor necrosis factor receptor (TNFR) family member OX40 (CD134) and its binding partner OX40L (CD252) are key costimulatory molecules involved in the generation of protective CD8(+) T-cell responses at mucosal surfaces, such as the lung. In this review, we highlight these new findings with a particular emphasis on their potential as immunological adjuvants to enhance poxvirus-based CD8(+) T-cell vaccines.
Collapse
Affiliation(s)
- John Goulding
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | | | | |
Collapse
|