1
|
Szeto AC, Clark PA, Ferreira AC, Heycock M, Griffiths EL, Jou E, Mannion J, Luan SL, Storrar S, Knolle MD, Kozik P, Jolin HE, Fallon PG, McKenzie AN. Mef2d potentiates type-2 immune responses and allergic lung inflammation. Science 2024; 384:eadl0370. [PMID: 38935708 PMCID: PMC7616247 DOI: 10.1126/science.adl0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Innate lymphoid cells (ILCs) and adaptive T lymphocytes promote tissue homeostasis and protective immune responses. Their production depends on the transcription factor GATA3, which is further elevated specifically in ILC2s and T helper 2 cells to drive type-2 immunity during tissue repair, allergic disorders, and anti-helminth immunity. The control of this crucial up-regulation is poorly understood. Using CRISPR screens in ILCs we identified previously unappreciated myocyte-specific enhancer factor 2d (Mef2d)-mediated regulation of GATA3-dependent type-2 lymphocyte differentiation. Mef2d-deletion from ILC2s and/or T cells specifically protected against an allergen lung challenge. Mef2d repressed Regnase-1 endonuclease expression to enhance IL-33 receptor production and IL-33 signaling and acted downstream of calcium-mediated signaling to translocate NFAT1 to the nucleus to promote type-2 cytokine-mediated immunity.
Collapse
Affiliation(s)
- Aydan C.H. Szeto
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Ana C.F. Ferreira
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Morgan Heycock
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Emma L. Griffiths
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Eric Jou
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Shi-Lu Luan
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Sophie Storrar
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Martin D. Knolle
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Helen E. Jolin
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | | | | |
Collapse
|
2
|
Ren M, Li J, Xu Z, Nan B, Gao H, Wang H, Lin Y, Shen H. Arsenic exposure induced renal fibrosis via regulation of mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3679-3693. [PMID: 38511876 DOI: 10.1002/tox.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Environmental arsenic exposure is one of the major global public health problems. Studies have shown that arsenic exposure can cause renal fibrosis, but the underlying mechanism is still unclear. Integrating the in vivo and in vitro models, this study investigated the potential molecular pathways for arsenic-induced renal fibrosis. In this study, SD rats were treated with 0, 5, 25, 50, and 100 mg/L NaAsO2 for 8 weeks via drinking water, and HK2 cells were treated with different doses of NaAsO2 for 48 h. The in vivo results showed that arsenic content in the rats' kidneys increased as the dose increased. Body weight decreased and kidney coefficient increased at 100 mg/L. As a response to the elevated NaAsO2 dose, inflammatory cell infiltration, renal tubular injury, glomerular atrophy, tubulointerstitial hemorrhage, and fibrosis became more obvious indicated by HE and Masson staining. The kidney transcriptome profiles further supported the protein-protein interactions involved in NaAsO2-induced renal fibrosis. The in vivo results, in together with the in vitro experiments, have revealed that exposure to NaAsO2 disturbed mitochondrial dynamics, promoted mitophagy, activated inflammation and the TGF-β1/SMAD signaling pathway, and finally resulted in fibrosis. In summary, arsenic exposure contributed to renal fibrosis via regulating the mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling axis. This study presented an adverse outcome pathway for the development of renal fibrosis due to arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Miaomiao Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zehua Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heng Wang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Venz R, Goyala A, Soto-Gamez A, Yenice T, Demaria M, Ewald CY. In-vivo screening implicates endoribonuclease Regnase-1 in modulating senescence-associated lysosomal changes. GeroScience 2024; 46:1499-1514. [PMID: 37644339 PMCID: PMC10828269 DOI: 10.1007/s11357-023-00909-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Accumulation of senescent cells accelerates aging and age-related diseases, whereas preventing this accumulation extends the lifespan in mice. A characteristic of senescent cells is increased staining with β-galactosidase (β-gal) ex vivo. Here, we describe a progressive accumulation of β-gal staining in the model organism C. elegans during aging. We show that distinct pharmacological and genetic interventions targeting the mitochondria and the mTORC1 to the nuclear core complex axis, the non-canonical apoptotic, and lysosomal-autophagy pathways slow the age-dependent accumulation of β-gal. We identify a novel gene, rege-1/Regnase-1/ZC3H12A/MCPIP1, modulating β-gal staining via the transcription factor ets-4/SPDEF. We demonstrate that knocking down Regnase-1 in human cell culture prevents senescence-associated β-gal accumulation. Our data provide a screening pipeline to identify genes and drugs modulating senescence-associated lysosomal phenotypes.
Collapse
Affiliation(s)
- Richard Venz
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Tugce Yenice
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
4
|
Yoshinaga M, Takeuchi O. Regulation of inflammatory diseases via the control of mRNA decay. Inflamm Regen 2024; 44:14. [PMID: 38491500 PMCID: PMC10941436 DOI: 10.1186/s41232-024-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammation orchestrates a finely balanced process crucial for microorganism elimination and tissue injury protection. A multitude of immune and non-immune cells, alongside various proinflammatory cytokines and chemokines, collectively regulate this response. Central to this regulation is post-transcriptional control, governing gene expression at the mRNA level. RNA-binding proteins such as tristetraprolin, Roquin, and the Regnase family, along with RNA modifications, intricately dictate the mRNA decay of pivotal mediators and regulators in the inflammatory response. Dysregulated activity of these factors has been implicated in numerous human inflammatory diseases, underscoring the significance of post-transcriptional regulation. The increasing focus on targeting these mechanisms presents a promising therapeutic strategy for inflammatory and autoimmune diseases. This review offers an extensive overview of post-transcriptional regulation mechanisms during inflammatory responses, delving into recent advancements, their implications in human diseases, and the strides made in therapeutic exploitation.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
5
|
Wang L, Sun T, Liu X, Wang Y, Qiao X, Chen N, Liu F, Zhou X, Wang H, Shen H. Myocarditis: A multi-omics approach. Clin Chim Acta 2024; 554:117752. [PMID: 38184138 DOI: 10.1016/j.cca.2023.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Myocarditis, an inflammatory condition of weakened heart muscles often triggered by a variety of causes, that can result in heart failure and sudden death. Novel ways to enhance our understanding of myocarditis pathogenesis is available through newer modalities (omics). In this review, we examine the roles of various biomolecules and associated functional pathways across genomics, transcriptomics, proteomics, and metabolomics in the pathogenesis of myocarditis. Our analysis further explores the reproducibility and variability intrinsic to omics studies, underscoring the necessity and significance of employing a multi-omics approach to gain profound insights into myocarditis pathogenesis. This integrated strategy not only enhances our understanding of the disease, but also confirms the critical importance of a holistic multi-omics approach in disease analysis.
Collapse
Affiliation(s)
- Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tao Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Nuo Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fangqian Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaoxiang Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
6
|
Yoshinaga M, Takeuchi O. RNA Metabolism Governs Immune Function and Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:145-161. [PMID: 38467978 DOI: 10.1007/978-981-99-9781-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Inflammation is a complex process that protects our body from various insults such as infection, injury, and stress. Proper inflammation is beneficial to eliminate the insults and maintain organ homeostasis, however, it can become detrimental if uncontrolled. To tightly regulate inflammation, post-transcriptional mechanisms governing RNA metabolism play a crucial role in monitoring the expression of immune-related genes, such as tumor necrosis factor (TNF) and interleukin-6 (IL-6). These mechanisms involve the coordinated action of various RNA-binding proteins (RBPs), including the Regnase family, Roquin, and RNA methyltransferases, which are responsible for mRNA decay and/or translation regulation. The collaborative efforts of these RBPs are essential in preventing aberrant immune response activation and consequently safeguarding against inflammatory and autoimmune diseases. This review provides an overview of recent advancements in our understanding of post-transcriptional regulation within the immune system and explores the specific roles of individual RBPs in RNA metabolism and regulation.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Zong J, Yang L, Wei L, Wang D, Wang X, Zhang Z. MALT1 Positively Relates to T Helper 1 and T Helper 17 cells, and Serves as a Potential Biomarker for Predicting 30-Day Mortality in Stanford Type A Aortic Dissection Patients. TOHOKU J EXP MED 2023; 261:299-307. [PMID: 37704417 DOI: 10.1620/tjem.2023.j077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Mucosa-associated lymphoid tissue 1 (MALT1) regulates inflammation and T helper (Th) cell differentiation, which may participate in the progression of Stanford type A aortic dissection (TAAD). This study intended to assess the association of MALT1 expression with prognosis in TAAD patients. In this prospective study, MALT1 expression was measured by reverse transcription-quantitative polymerase chain reaction assay from peripheral blood samples in 100 TAAD patients and 100 non-AD controls (non-AD patients with chest pain) before treatment. Besides, Th1, Th2, and Th17 cells of TAAD patients before treatment were measured by flow cytometry assay, and their 30-day mortality was recorded. MALT1 expression was ascended in TAAD patients vs. non-AD controls (P < 0.001). In TAAD patients, elevated MALT1 expression was linked with hypertension complication (P = 0.009), increased systolic blood pressure (r = 0.291, P = 0.003), C-reactive protein (CRP) (r = 0.286, P = 0.004), and D-dimer (r = 0.359, P < 0.001). Additionally, MALT1 expression was positively correlated with Th1 cells (r = 0.312, P = 0.002) and Th17 cells (r = 0.397, P < 0.001), but not linked with Th2 cells (r = -0.166, P = 0.098). Notably, the 30-day mortality of TAAD patients was 28.0%. MALT1 expression [odds ratio (OR) = 1.936, P = 0.004], CRP (OR = 1.108, P = 0.002), D-dimer (OR = 1.094, P = 0.003), and surgery timing (emergency vs. selective) (OR = 8.721, P = 0.024) independently predicted increased risk of death within 30 days in TAAD patients. Furthermore, the combination of the above-mentioned independent factors had an excellent ability in predicting 30-day mortality with the area under curve of 0.949 (95% confidence interval: 0.909-0.989). MALT1 expression relates to increased Th1 cells, Th17 cells, and 30-day mortality risk in TAAD patients.
Collapse
Affiliation(s)
- Junqing Zong
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Lingbo Yang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Lei Wei
- Department of Cardiovascular Surgery, Shanxi Provincial People's Hospital
| | - Dong Wang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Xuening Wang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Zhongjie Zhang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| |
Collapse
|
8
|
RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res 2023; 33:97-115. [PMID: 36599968 PMCID: PMC9892603 DOI: 10.1038/s41422-022-00752-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/07/2022] [Indexed: 01/06/2023] Open
Abstract
Autoimmunity and autoinflammation arise from aberrant immunological and inflammatory responses toward self-components, contributing to various autoimmune diseases and autoinflammatory diseases. RNA-binding proteins (RBPs) are essential for immune cell development and function, mainly via exerting post-transcriptional regulation of RNA metabolism and function. Functional dysregulation of RBPs and abnormities in RNA metabolism are closely associated with multiple autoimmune or autoinflammatory disorders. Distinct RBPs play critical roles in aberrant autoreactive inflammatory responses via orchestrating a complex regulatory network consisting of DNAs, RNAs and proteins within immune cells. In-depth characterizations of RBP-RNA interactomes during autoimmunity and autoinflammation will lead to a better understanding of autoimmune pathogenesis and facilitate the development of effective therapeutic strategies. In this review, we summarize and discuss the functions of RBP-RNA interactions in controlling aberrant autoimmune inflammation and their potential as biomarkers and therapeutic targets.
Collapse
|
9
|
Innate immune sensing of pathogens and its post-transcriptional regulations by RNA-binding proteins. Arch Pharm Res 2023; 46:65-77. [PMID: 36725818 PMCID: PMC9891759 DOI: 10.1007/s12272-023-01429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023]
Abstract
Innate immunity is one of the most ancient and conserved aspect of the immune system. It is responsible for an anti-infective response and has been intrinsically linked to the generation of inflammation. While the inflammatory response entails signaling to the adaptive immune system, it can be self-perpetuating and over-exaggerated, resulting in deleterious consequences, including cytokine storm, sepsis, and the development of inflammatory and autoimmune diseases. Cytokines are the defining features of the immune system. They are critical to mediation of inflammation and host immune defense, and are tightly regulated at several levels, including transcriptional and post-transcriptional levels. Recently, the role of post-transcriptional regulation in fine-tuning cytokine expression has become more appreciated. This interest has advanced our understanding of how various mechanisms are integrated and regulated to determine the amount of cytokine production in cells during inflammatory responses. Here, we would like to review how innate immunity recognizes and responds to pathogens by pattern-recognition receptors, and the molecular mechanisms regulating inflammatory responses, with a focus on the post-transcriptional regulations of inflammatory mediators by RNA-binding proteins, especially Regnase-1. Finally, we will discuss the regulatory mechanisms of Regnase-1 and highlight therapeutic strategies based on targeting Regnase-1 activity and its turnover as potential treatment options for chronic and autoimmune diseases.
Collapse
|
10
|
Roles of RNA-binding proteins in immune diseases and cancer. Semin Cancer Biol 2022; 86:310-324. [PMID: 35351611 DOI: 10.1016/j.semcancer.2022.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
Genetic information that is transcribed from DNA to mRNA, and then translated from mRNA to protein, is regulated by complex and sophisticated post-transcriptional mechanisms. Recently, it has become clear that mRNA degradation not only acts to remove unnecessary mRNA, but is also closely associated with the regulation of translation initiation, and is essential for maintaining cellular homeostasis. Various RNA-binding proteins (RBPs) have been reported to play central roles in the mechanisms of mRNA stability and translation initiation through various signal transduction pathways, and to modulate gene expression faster than the transcription process via post-transcriptional modifications in response to intracellular and extracellular stimuli, without de novo protein synthesis. On the other hand, inflammation is necessary for the elimination of pathogens associated with infection, and is tightly controlled to avoid the overexpression of inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). It is increasingly becoming clear that RBPs play important roles in the post-transcriptional regulation of these immune responses. Furthermore, it has been shown that the aberrant regulation of RBPs leads to chronic inflammation and autoimmune diseases. Although it has been recognized since the time of Rudolf Virchow in the 19th century that cancer-associated inflammation contributes to tumor onset and progression, involvement of the disruption of the balance between anti-tumor immunity via the immune surveillance system and pro-tumor immunity by cancer-associated inflammation in the malignant transformation of cancer remains elusive. Recently, the dysregulated expression and activation of representative RBPs involved in regulation of the production of pro-inflammatory cytokines have been shown to be involved in tumor progression. In this review, we summarize the recent progress in our understanding of the functional roles of these RBPs in several types of immune responses, and the involvement of RBP dysregulation in the pathogenesis of immune diseases and cancer, and discuss possible therapeutic strategies against cancer by targeting RBPs, coupled with immunotherapy.
Collapse
|
11
|
Rosas Mejia O, Claeys TA, Williams A, Zafar A, Robinson RT. IL12RB1 allele bias in human T H cells is regulated by functional SNPs in its 3'UTR. Cytokine 2022; 158:155993. [PMID: 36007427 DOI: 10.1016/j.cyto.2022.155993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Allele bias is an epigenetic mechanism wherein only the maternal- or paternal-derived allele of a gene is preferentially expressed. Allele bias is used by T cells to regulate expression of numerous genes, including those which govern their development and response to cytokines. Here we demonstrate that human TH cell expression of the cytokine receptor gene IL12RB1 is subject to allele bias, and the extent to which this bias occurs is influenced by cells' differentiation status and two polymorphic sites in the IL12RB1 3'UTR. The single nucleotide polymorphisms (SNPs) at these sites, rs3746190 and rs404733, function to increase expression of their encoding allele. Modeling suggests this is due to a stabilizing effect of these SNPs on the predicted mRNA secondary structure. The SNP rs3746190 is also proximal to the predicted binding site of microRNA miR-1277, raising the possibility that miR-1277 cannot exert suppression in the presence of rs3746190. Functional experiments demonstrate, however, that miR-1277 suppression of IL12RB1 3'UTR expression-which itself has not been previously reported-is nevertheless independent of rs3746190. Collectively, these data demonstrate that rs3746190 and rs404733 are functional SNPs which regulate IL12RB1 allele bias in human TH cells.
Collapse
Affiliation(s)
- Oscar Rosas Mejia
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Tiffany A Claeys
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Amanda Williams
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Ayesha Zafar
- University of the Punjab, Lahore, Pakistan; University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard T Robinson
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Sobańska D, Komur AA, Chabowska-Kita A, Gumna J, Kumari P, Pachulska-Wieczorek K, Ciosk R. The silencing of ets-4 mRNA relies on the functional cooperation between REGE-1/Regnase-1 and RLE-1/Roquin-1. Nucleic Acids Res 2022; 50:8226-8239. [PMID: 35819231 PMCID: PMC9371910 DOI: 10.1093/nar/gkac609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Regnase-1 is an evolutionarily conserved endoribonuclease. It degrades diverse mRNAs important for many biological processes including immune homeostasis, development and cancer. There are two competing models of Regnase-1-mediated mRNA silencing. One model postulates that Regnase-1 works together with another RNA-binding protein, Roquin-1, which recruits Regnase-1 to specific mRNAs. The other model proposes that the two proteins function separately. Studying REGE-1, the Caenorhabditis elegans ortholog of Regnase-1, we have uncovered its functional relationship with RLE-1, the nematode counterpart of Roquin-1. While both proteins are essential for mRNA silencing, REGE-1 and RLE-1 appear to associate with target mRNA independently of each other. Thus, although the functional interdependence between REGE-1/Regnase-1 and RLE-1/Roquin-1 is conserved, the underlying mechanisms may display species-specific variation, providing a rare perspective on the evolution of this important post-transcriptional regulatory mechanism.
Collapse
Affiliation(s)
- Daria Sobańska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Alicja A Komur
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | | | - Julita Gumna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Pooja Kumari
- Department of Biosciences, University of Oslo, Oslo 0316, Norway
| | | | - Rafal Ciosk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland.,Department of Biosciences, University of Oslo, Oslo 0316, Norway
| |
Collapse
|
13
|
Tse KM, Vandenbon A, Cui X, Mino T, Uehata T, Yasuda K, Sato A, Tsujimura T, Hia F, Yoshinaga M, Kinoshita M, Okuno T, Takeuchi O. Enhancement of Regnase-1 expression with stem loop-targeting antisense oligonucleotides alleviates inflammatory diseases. Sci Transl Med 2022; 14:eabo2137. [PMID: 35544597 DOI: 10.1126/scitranslmed.abo2137] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Regnase-1 is an ribonuclease that plays essential roles in restricting inflammation through degrading messenger RNAs (mRNAs) involved in immune reactions via the recognition of stem-loop (SL) structures in the 3' untranslated regions (3'UTRs). Dysregulated expression of Regnase-1 is associated with the pathogenesis of inflammatory and autoimmune diseases in mice and humans. Here, we developed a therapeutic strategy to suppress inflammatory responses by blocking Regnase-1 self-regulation, which was mediated by the simultaneous use of two antisense phosphorodiamidate morpholino oligonucleotides (MOs) to alter the binding of Regnase-1 toward the SL structures in its 3'UTR. Regnase-1-targeting MOs not only enhanced Regnase-1 expression by stabilizing mRNAs but also effectively reduced the expression of multiple proinflammatory transcripts that were controlled by Regnase-1 in macrophages. Intratracheal administration of Regnase-1-targeting MOs ameliorated acute respiratory distress syndrome and chronic fibrosis through suppression of inflammatory cascades. In addition, intracranial treatment with Regnase-1-targeting MOs attenuated the development of experimental autoimmune encephalomyelitis by promoting the expansion of homeostatic microglia and regulatory T cell populations. Regnase-1 expression was inversely correlated with disease severity in patients with multiple sclerosis, and MOs targeting human Regnase-1 SL structures were effective in mitigating cytokine production in human immune cells. Collectively, MO-mediated disruption of the Regnase-1 self-regulation pathway is a potential therapeutic strategy to enhance Regnase-1 abundance, which, in turn, provides therapeutic benefits for treating inflammatory diseases by suppressing inflammation.
Collapse
Affiliation(s)
- Ka Man Tse
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Alexis Vandenbon
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Xiaotong Cui
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Keiko Yasuda
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Fabian Hia
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Wang Y, Huang B, Jin T, Ocansey DKW, Jiang J, Mao F. Intestinal Fibrosis in Inflammatory Bowel Disease and the Prospects of Mesenchymal Stem Cell Therapy. Front Immunol 2022; 13:835005. [PMID: 35370998 PMCID: PMC8971815 DOI: 10.3389/fimmu.2022.835005] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal fibrosis is an important complication of inflammatory bowel disease (IBD). In the course of the development of fibrosis, certain parts of the intestine become narrowed, significantly destroying the structure and function of the intestine and affecting the quality of life of patients. Chronic inflammation is an important initiating factor of fibrosis. Unfortunately, the existing anti-inflammatory drugs cannot effectively prevent and alleviate fibrosis, and there is no effective anti-fibrotic drug, which makes surgical treatment the mainstream treatment for intestinal fibrosis and stenosis. Mesenchymal stem cells (MSCs) are capable of tissue regeneration and repair through their self-differentiation, secretion of cytokines, and secretion of extracellular vesicles. MSCs have been shown to play an important therapeutic role in the fibrosis of many organs. However, the role of MSC in intestinal fibrosis largely remained unexplored. This review summarizes the mechanism of intestinal fibrosis, including the role of immune cells, TGF-β, and the gut microbiome and metabolites. Available treatment options for fibrosis, particularly, MSCs are also discussed.
Collapse
Affiliation(s)
- Yifei Wang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Bin Huang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- General Surgery Department, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| | - Fei Mao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Jiajia Jiang, ; Fei Mao,
| |
Collapse
|
15
|
Behrens G, Heissmeyer V. Cooperation of RNA-Binding Proteins – a Focus on Roquin Function in T Cells. Front Immunol 2022; 13:839762. [PMID: 35251035 PMCID: PMC8894612 DOI: 10.3389/fimmu.2022.839762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional gene regulation by RNA-binding proteins (RBPs) is important in the prevention of inflammatory and autoimmune diseases. With respect to T cell activation and differentiation, the RBPs Roquin-1/2 and Regnase-1 play pivotal roles by inducing degradation and/or translational silencing of target mRNAs. These targets encode important proinflammatory mediators and thus Roquin and Regnase-1 functions dampen cellular programs that can lead to inflammation and autoimmune disease. Recent findings demonstrate direct physical interaction of both RBPs. Here, we propose that cooperativity of trans-acting factors may be more generally used to reinforce the regulatory impact on selected targets and promote specific cell fate decisions. We develop this concept for Roquin and Regnase-1 function in resting and activated T cells and discuss the involvement in autoimmunity as well as how the therapeutic potential can be used in anti-tumor therapies.
Collapse
Affiliation(s)
- Gesine Behrens
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
- *Correspondence: Vigo Heissmeyer,
| |
Collapse
|
16
|
Behrens G, Edelmann SL, Raj T, Kronbeck N, Monecke T, Davydova E, Wong EH, Kifinger L, Giesert F, Kirmaier ME, Hohn C, de Jonge LS, Pisfil MG, Fu M, Theurich S, Feske S, Kawakami N, Wurst W, Niessing D, Heissmeyer V. Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. Nat Immunol 2021; 22:1563-1576. [PMID: 34811541 PMCID: PMC8996344 DOI: 10.1038/s41590-021-01064-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Roquin and Regnase-1 proteins bind and post-transcriptionally regulate proinflammatory target messenger RNAs to maintain immune homeostasis. Either the sanroque mutation in Roquin-1 or loss of Regnase-1 cause systemic lupus erythematosus-like phenotypes. Analyzing mice with T cells that lack expression of Roquin-1, its paralog Roquin-2 and Regnase-1 proteins, we detect overlapping or unique phenotypes by comparing individual and combined inactivation. These comprised spontaneous activation, metabolic reprogramming and persistence of T cells leading to autoimmunity. Here, we define an interaction surface in Roquin-1 for binding to Regnase-1 that included the sanroque residue. Mutations in Roquin-1 impairing this interaction and cooperative regulation of targets induced T follicular helper cells, germinal center B cells and autoantibody formation. These mutations also improved the functionality of tumor-specific T cells by promoting their accumulation in the tumor and reducing expression of exhaustion markers. Our data reveal the physical interaction of Roquin-1 with Regnase-1 as a hub to control self-reactivity and effector functions in immune cell therapies.
Collapse
Affiliation(s)
- Gesine Behrens
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Stephanie L Edelmann
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Timsse Raj
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Nina Kronbeck
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Elena Davydova
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elaine H Wong
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Lisa Kifinger
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin E Kirmaier
- Cancer and Immunometabolism Research Group at the Gene Center, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Christine Hohn
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Laura S de Jonge
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Mariano Gonzalez Pisfil
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine at the Biomedical Center, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Mingui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sebastian Theurich
- Cancer and Immunometabolism Research Group at the Gene Center, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
- Technische Universität München, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Munich, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany.
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
17
|
Zandhuis ND, Nicolet BP, Wolkers MC. RNA-Binding Protein Expression Alters Upon Differentiation of Human B Cells and T Cells. Front Immunol 2021; 12:717324. [PMID: 34867946 PMCID: PMC8635512 DOI: 10.3389/fimmu.2021.717324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022] Open
Abstract
B cells and T cells are key players in the defence against infections and malignancies. To exert their function, B cells and T cells differentiate into effector and memory cells. Tight regulation of these differentiation processes is key to prevent their malfunction, which can result in life-threatening disease. Lymphocyte differentiation relies on the appropriate timing and dosage of regulatory molecules, and post-transcriptional gene regulation (PTR) is a key player herein. PTR includes the regulation through RNA-binding proteins (RBPs), which control the fate of RNA and its translation into proteins. To date, a comprehensive overview of the RBP expression throughout lymphocyte differentiation is lacking. Using transcriptome and proteome analyses, we here catalogued the RBP expression for human B cells and T cells. We observed that even though the overall RBP expression is conserved, the relative RBP expression is distinct between B cells and T cells. Differentiation into effector and memory cells alters the RBP expression, resulting into preferential expression of different classes of RBPs. For instance, whereas naive T cells express high levels of translation-regulating RBPs, effector T cells preferentially express RBPs that modulate mRNA stability. Lastly, we found that cytotoxic CD8+ and CD4+ T cells express a common RBP repertoire. Combined, our study reveals a cell type-specific and differentiation-dependent RBP expression landscape in human lymphocytes, which will help unravel the role of RBPs in lymphocyte function.
Collapse
Affiliation(s)
- Nordin D. Zandhuis
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Benoit P. Nicolet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Monika C. Wolkers
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
18
|
Morris C, Cluet D, Ricci EP. Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1658. [PMID: 33949788 PMCID: PMC8519046 DOI: 10.1002/wrna.1658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/01/2022]
Abstract
Eukaryotic gene expression is closely regulated by translation and turnover of mRNAs. Recent advances highlight the importance of translation in the control of mRNA degradation, both for aberrant and apparently normal mRNAs. During translation, the information contained in mRNAs is decoded by ribosomes, one codon at a time, and tRNAs, by specifically recognizing codons, translate the nucleotide code into amino acids. Such a decoding step does not process regularly, with various obstacles that can hinder ribosome progression, then leading to ribosome stalling or collisions. The progression of ribosomes is constantly monitored by the cell which has evolved several translation-dependent mRNA surveillance pathways, including nonsense-mediated decay (NMD), no-go decay (NGD), and non-stop decay (NSD), to degrade certain problematic mRNAs and the incomplete protein products. Recent progress in sequencing and ribosome profiling has made it possible to discover new mechanisms controlling ribosome dynamics, with numerous crosstalks between translation and mRNA decay. We discuss here various translation features critical for mRNA decay, with particular focus on current insights from the complexity of the genetic code and also the emerging role for the ribosome as a regulatory hub orchestrating mRNA decay, quality control, and stress signaling. Even if the interplay between mRNA translation and degradation is no longer to be demonstrated, a better understanding of their precise coordination is worthy of further investigation. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Christelle Morris
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - David Cluet
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - Emiliano P. Ricci
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| |
Collapse
|
19
|
Nicolet BP, Zandhuis ND, Lattanzio VM, Wolkers MC. Sequence determinants as key regulators in gene expression of T cells. Immunol Rev 2021; 304:10-29. [PMID: 34486113 PMCID: PMC9292449 DOI: 10.1111/imr.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
T cell homeostasis, T cell differentiation, and T cell effector function rely on the constant fine-tuning of gene expression. To alter the T cell state, substantial remodeling of the proteome is required. This remodeling depends on the intricate interplay of regulatory mechanisms, including post-transcriptional gene regulation. In this review, we discuss how the sequence of a transcript influences these post-transcriptional events. In particular, we review how sequence determinants such as sequence conservation, GC content, and chemical modifications define the levels of the mRNA and the protein in a T cell. We describe the effect of different forms of alternative splicing on mRNA expression and protein production, and their effect on subcellular localization. In addition, we discuss the role of sequences and structures as binding hubs for miRNAs and RNA-binding proteins in T cells. The review thus highlights how the intimate interplay of post-transcriptional mechanisms dictate cellular fate decisions in T cells.
Collapse
Affiliation(s)
- Benoit P. Nicolet
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Nordin D. Zandhuis
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - V. Maria Lattanzio
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- Department of HematopoiesisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
20
|
Jin Z, Zheng E, Sareli C, Kolattukudy PE, Niu J. Monocyte Chemotactic Protein-Induced Protein 1 (MCPIP-1): A Key Player of Host Defense and Immune Regulation. Front Immunol 2021; 12:727861. [PMID: 34659213 PMCID: PMC8519509 DOI: 10.3389/fimmu.2021.727861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory response is a host-protective mechanism against tissue injury or infections, but also has the potential to cause extensive immunopathology and tissue damage, as seen in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other infectious diseases with public health concerns, such as Coronavirus Disease 2019 (COVID-19), if failure to resolve in a timely manner. Recent studies have uncovered a superfamily of endogenous chemical molecules that tend to resolve inflammatory responses and re-establish homeostasis without causing excessive damage to healthy cells and tissues. Among these, the monocyte chemoattractant protein-induced protein (MCPIP) family consisting of four members (MCPIP-1, -2, -3, and -4) has emerged as a group of evolutionarily conserved molecules participating in the resolution of inflammation. The focus of this review highlights the biological functions of MCPIP-1 (also known as Regnase-1), the best-studied member of this family, in the resolution of inflammatory response. As outlined in this review, MCPIP-1 acts on specific signaling pathways, in particular NFκB, to blunt production of inflammatory mediators, while also acts as an endonuclease controlling the stability of mRNA and microRNA (miRNA), leading to the resolution of inflammation, clearance of virus and dead cells, and promotion of tissue regeneration via its pleiotropic effects. Evidence from transgenic and knock-out mouse models revealed an involvement of MCPIP-1 expression in immune functions and in the physiology of the cardiovascular system, indicating that MCPIP-1 is a key endogenous molecule that governs normal resolution of acute inflammation and infection. In this review, we also discuss the current evidence underlying the roles of other members of the MCPIP family in the regulation of inflammatory processes. Further understanding of the proteins from this family will provide new insights into the identification of novel targets for both host effectors and microbial factors and will lead to new therapeutic treatments for infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Zhuqing Jin
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - En Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Candice Sareli
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| | - Jianli Niu
- Office of Human Research, Memorial Healthcare System, Hollywood, FL, United States.,Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, United States
| |
Collapse
|
21
|
Mino T, Takeuchi O. Regnase-1-related endoribonucleases in health and immunological diseases. Immunol Rev 2021; 304:97-110. [PMID: 34514623 DOI: 10.1111/imr.13023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Dynamic changes in gene expression are key factors in the development and activation of immune cells. RNA metabolism is one of the critical steps for the control of gene expression. Together with transcriptional regulation, mRNA decay by specific ribonucleases (RNases) plays a vital role in shaping gene expression. In addition to the canonical exoribonuclease-mediated mRNA degradation through the recognition of cis-elements in mRNA 3' untranslated regions by RNA-binding proteins (RBPs), endoribonucleases are involved in the control of mRNAs in immune cells. In this review, we gleam insights on how Regnase-1, an endoribonuclease necessary for regulating immune cell activation and maintenance of immune homeostasis, degrades RNAs involved in immune cell activation. Additionally, we provide insights on recent studies which uncover the role of Regnase-1-related RNases, including Regnase-2, Regnase-3, and Regnase-4, as well as N4BP1 and KHNYN, in immune regulation and antiviral immunity. As the dysregulation of immune mRNA decay leads to pathologies such as autoimmune diseases or impaired activation of immune responses, RNases are deemed as essential components of regulatory feedback mechanisms that modulate inflammation. Given the critical role of RNases in autoimmunity, RNases can be perceived as emerging targets in the development of novel therapeutics.
Collapse
Affiliation(s)
- Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Jurgens AP, Popović B, Wolkers MC. T cells at work: How post-transcriptional mechanisms control T cell homeostasis and activation. Eur J Immunol 2021; 51:2178-2187. [PMID: 34180545 PMCID: PMC8457102 DOI: 10.1002/eji.202049055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/07/2021] [Indexed: 12/19/2022]
Abstract
T cells are central players of the adaptive immune system by protecting us from recurring infections and by killing malignant cells. Protective T cell responses rely on the concerted production of effector molecules such as cytolytic mediators, granzymes, and perforins, as well as pro-inflammatory cytokines and chemokines. Once activated, T cells drastically change their gene expression and rapidly respond to insults by producing ample amounts of effector molecules. In the absence of antigen, T cells remain in a quiescent state and survey our body for possible pathogenic insults. Resting T cells are, however, not inert, but continuously regulate their protein production to survive and to be prepared for possible re-infections. Here, we review our current knowledge on the regulation of gene expression in activated and quiescent T cells. We specifically focus on post-transcriptional mechanisms that define the protein output and that allow dormant cells to undergo active signaling and selective translation, keeping them poised for activation. Finally, we discuss which signals drive T cell survival and their preparedness to respond to insults and which mechanisms are involved in these processes.
Collapse
Affiliation(s)
- Anouk P. Jurgens
- Department of HematopoiesisSanquin ResearchLandsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamOncode InstituteUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Branka Popović
- Department of HematopoiesisSanquin ResearchLandsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamOncode InstituteUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| | - Monika C. Wolkers
- Department of HematopoiesisSanquin ResearchLandsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamOncode InstituteUtrechtThe Netherlands
- Oncode InstituteUtrechtThe Netherlands
| |
Collapse
|
23
|
Uehata T, Takeuchi O. Post-transcriptional regulation of immunological responses by Regnase-1-related RNases. Int Immunol 2021; 33:859-865. [PMID: 34320195 DOI: 10.1093/intimm/dxab048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Regulation of messenger RNA (mRNA) decay plays a crucial role in the control of gene expression. Canonical mRNA decay pathways are initiated by deadenylation and decapping, and are followed by exonucleolytic degradation. However, recent studies revealed that endoribonucleolytic cleavage also mediates mRNA decay, and both exoribonucleolytic and endoribonucleolytic decay pathways are important for the regulation of immune responses. Regnase-1 functions as an endoribonuclease to control immunity by damping mRNAs. Particularly, Regnase-1 controls cytokines and other inflammatory mediators by recognizing their mRNAs via stem-loop structures present in the 3' untranslated regions. Regnase-1 was found to be critical for human inflammatory diseases such as ulcerative colitis and idiopathic pulmonary fibrosis. Furthermore, a set of Regnase-1-related RNases contribute to immune regulation as well as antiviral host defense. In this review, we provide an overview of recent findings as to immune-related RNA-binding proteins (RBPs) with an emphasis on stem-loop-mediated mRNA decay via Regnase-1 and related RNases and discuss how the function of these RBPs is regulated and contributes to inflammatory disorders.
Collapse
Affiliation(s)
- Takuya Uehata
- Laboratory of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Osamu Takeuchi
- Laboratory of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
WITHDRAWN: Inhibition of Malt1 protease induces apoptosis and cell death in cardiomyocytes. BBA ADVANCES 2021. [DOI: 10.1016/j.bbadva.2021.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Nakatsuka Y, Yaku A, Handa T, Vandenbon A, Hikichi Y, Motomura Y, Sato A, Yoshinaga M, Tanizawa K, Watanabe K, Hirai T, Chin K, Suzuki Y, Uehata T, Mino T, Tsujimura T, Moro K, Takeuchi O. Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1. Eur Respir J 2021; 57:13993003.00018-2020. [PMID: 32978308 DOI: 10.1183/13993003.00018-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
Regnase-1 is an RNase critical for post-transcriptional control of pulmonary immune homeostasis in mice by degrading immune-related mRNAs. However, little is known about the cell types Regnase-1 controls in the lung, and its relevance to human pulmonary diseases.Regnase-1-dependent changes in lung immune cell types were examined by a competitive bone marrow transfer mouse model, and group 2 innate lymphoid cells (ILC2s) were identified. Then the associations between Regnase-1 in ILC2s and human diseases were investigated by transcriptome analysis and a bleomycin-induced pulmonary fibrosis mouse model. The clinical significance of Regnase-1 in ILC2s was further assessed using patient-derived cells.Regnase-1-deficiency resulted in the spontaneous proliferation and activation of ILC2s in the lung. Intriguingly, genes associated with pulmonary fibrosis were highly upregulated in Regnase-1-deficient ILC2s compared with wild-type, and supplementation of Regnase-1-deficient ILC2s augmented bleomycin-induced pulmonary fibrosis in mice. Regnase-1 suppresses mRNAs encoding transcription factors Gata3 and Egr1, which are potent to regulate fibrosis-associated genes. Clinically, Regnase-1 protein levels in ILC2 negatively correlated with the ILC2 population in bronchoalveolar lavage fluid. Furthermore, idiopathic pulmonary fibrosis (IPF) patients with ILC2s >1500 cells·mL-1 peripheral blood exhibited poorer prognosis than patients with lower numbers, implying the contribution of Regnase-1 in ILC2s for the progression of IPF.Collectively, Regnase-1 was identified as a critical post-transcriptional regulator of the profibrotic function of ILC2s both in mouse and human, suggesting that Regnase-1 may be a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Yoshinari Nakatsuka
- Dept of Respiratory Care and Sleep Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ai Yaku
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Dept of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiro Handa
- Dept of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Alexis Vandenbon
- Laboratory of Systems Virology, Dept of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuki Hikichi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yasutaka Motomura
- Dept of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ayuko Sato
- Dept of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | - Masanori Yoshinaga
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiminobu Tanizawa
- Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kizuku Watanabe
- Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyohiro Hirai
- Dept of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Chin
- Dept of Respiratory Care and Sleep Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yutaka Suzuki
- Laboratory of Functional Genomics, Dept of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takuya Uehata
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.,Dept of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Osamu Takeuchi
- Dept of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
27
|
Džafo E, Bianchi N, Monticelli S. Cell-intrinsic mechanisms to restrain inflammatory responses in T lymphocytes. Immunol Rev 2021; 300:181-193. [PMID: 33507562 DOI: 10.1111/imr.12932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022]
Abstract
A mechanistic understanding of the regulatory circuits that control the effector responses of memory T helper lymphocytes, and in particular their ability to produce pro-inflammatory cytokines, may lead to effective therapeutic interventions in all immune-related diseases. Activation of T lymphocytes induces robust immune responses that in most cases lead to the complete eradication of invading pathogens or tumor cells. At the same time, however, such responses must be both highly controlled in magnitude and limited in time to avoid unnecessary damage. To achieve such sophisticated level of control, T lymphocytes have at their disposal an array of transcriptional and post-transcriptional regulatory mechanisms that ensure the acquisition of a phenotype that is tailored to the incoming stimulus while restraining unwarranted activation, eventually leading to the resolution of the inflammatory response. Here, we will discuss some of these cell-intrinsic mechanisms that control T cell responses and involve transcription factors, microRNAs, and RNA-binding proteins. We will also explore how the same mechanisms can be involved both in anti-tumor responses and in autoimmunity.
Collapse
Affiliation(s)
- Emina Džafo
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Niccolò Bianchi
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Silvia Monticelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana (USI), Bellinzona, Switzerland
| |
Collapse
|
28
|
Kang S, Narazaki M, Metwally H, Kishimoto T. Historical overview of the interleukin-6 family cytokine. J Exp Med 2020; 217:151633. [PMID: 32267936 PMCID: PMC7201933 DOI: 10.1084/jem.20190347] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/20/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-6 (IL-6) has been identified as a 26-kD secreted protein that stimulates B cells to produce antibodies. Later, IL-6 was revealed to have various functions that overlap with other IL-6 family cytokines and use the common IL-6 signal transducer gp130. IL-6 stimulates cells through multiple pathways, using both membrane and soluble IL-6 receptors. As indicated by the expanding market for IL-6 inhibitors, it has become a primary therapeutic target among IL-6 family cytokines. Here, we revisit the discovery of IL-6; discuss insights regarding the roles of this family of cytokines; and highlight recent advances in our understanding of regulation of IL-6 expression.
Collapse
Affiliation(s)
- Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masashi Narazaki
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hozaifa Metwally
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tadamitsu Kishimoto
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
29
|
Xiaoming A, Wenbo J, Jinyi W, Bin W, Chunyang H, Qi C, Lianbao K. Macrophage Regnase-1 Deletion Deteriorates Liver Ischemia/Reperfusion Injury Through Regulation of Macrophage Polarization. Front Physiol 2020; 11:582347. [PMID: 33192591 PMCID: PMC7658104 DOI: 10.3389/fphys.2020.582347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background Regnase-1 (MCPIP) has been identified as an anti-inflammatory agent, but little is known about its influence on liver ischemia/reperfusion (I/R) injury. Macrophages can evolve biphasic responses and differentiate into remarkable polarizations, contributing greatly to the uncontrolled inflammatory cascades during liver I/R injury. Therefore, the aim of this study was to explore whether regnase-1 participated in liver I/R via manipulating macrophage polarization. Materials and methods C57BL/6 mice were randomly divided into five groups: Sham, I/R, Clodronate, Clo + BMDM, and Clo + LV MCPIP BMDM. A liver I/R model was established, and histopathological and immunostaining examinations were performed for the liver specimens; double immunofluorescence staining was used to localize MCPIP in the liver. Primary hepatocytes were isolated to simulate a hypoxia and reoxygenation (H/R) model in vitro. Bone marrow-derived macrophages (BMDM) were extracted and subjected to lentiviral transduction to knockdown MCPIP expression. BMDM with or without MCPIP deletion were exposed to H/R supernatants, and the polarized states were measured by flow cytometry. RT-PCR analysis and Western blot were also conducted. Results Compared to those in the Sham group, liver functions and Suzuki’s scores were deteriorated in the I/R group, which were reversed in the Clodronate group. The increased expression of regnase-1 in the I/R group diminished with pretreatment of clodronate liposomes. Subsequent double immunofluorescence staining established the localization of regnase-1 in macrophages in the liver. The insulted lesions in the Clodronate group became progressively aggravated with adoptive transfer of BMDM in the Clo + BMDM group, and they were further exacerbated with the transfusion of BMDM with MCPIP knockdown in the Clo + LV MCPIP BMDM group. Gene expressions of M1 and M2 markers were detected by RT-PCR, suggesting that MCPIP knockdown tended to favor the M1 transformation. Subsequently, ex vivo flow cytometrical detection showed that, upon stimulation by H/R supernatants, LV-MCPIP BMDM posed a higher ratio of M1/M2 than BMDM. Finally, we found that MCPIP participated in macrophage M1/M2 polarization through the NF-κB, C/EBPβ, and PPARγ signaling pathways during liver I/R. Conclusion Our study confirms that regnase-1 plays a critical role in liver I/R via regulation of macrophage polarization and, thus, might offer a potential therapeutic target.
Collapse
Affiliation(s)
- Ai Xiaoming
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Jia Wenbo
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wang Jinyi
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wu Bin
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Chunyang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Qi
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kong Lianbao
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Fischer M, Weinberger T, Schulz C. The immunomodulatory role of Regnase family RNA-binding proteins. RNA Biol 2020; 17:1721-1726. [PMID: 32752923 DOI: 10.1080/15476286.2020.1795584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RNA-binding proteins regulate RNA fate and govern post-transcriptional gene regulation. A new family of RNA-binding proteins is represented by regulatory RNases (Regnase, also known as Zc3h12 or MCPIP), which have emerged as important players in immune homoeostasis. Four members, Regnase1-4, have been identified to date. Here we summarize recent findings on the role of Regnase in the regulation of RNA biology and its consequences for cell functions and inflammatory processes.
Collapse
Affiliation(s)
- Maximilian Fischer
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universitaet , Munich, Germany.,German Center for Cardiovascular Research (DZHK) , Munich, Germany
| | - Tobias Weinberger
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universitaet , Munich, Germany.,German Center for Cardiovascular Research (DZHK) , Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universitaet , Munich, Germany.,German Center for Cardiovascular Research (DZHK) , Munich, Germany
| |
Collapse
|
31
|
Nemunaitis J, Stanbery L, Senzer N. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection: let the virus be its own demise. Future Virol 2020. [PMCID: PMC7249572 DOI: 10.2217/fvl-2020-0068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a collaborative global effort to construct novel therapeutic and prophylactic approaches to SARS-CoV-2 management. Although vaccine development is crucial, acute management of newly infected patients, especially those with severe acute respiratory distress syndrome, is a priority. Herein we describe the rationale and potential of repurposing a dual plasmid, Vigil (pbi-shRNAfurin-GM-CSF), now in Phase III cancer trials, for the treatment of and, in certain circumstances, enhancement of the immune response to SARS-CoV-2.
Collapse
|
32
|
Tanaka S, Imaeda A, Matsumoto K, Maeda M, Obana M, Fujio Y. β2-adrenergic stimulation induces interleukin-6 by increasing Arid5a, a stabilizer of mRNA, through cAMP/PKA/CREB pathway in cardiac fibroblasts. Pharmacol Res Perspect 2020; 8:e00590. [PMID: 32302067 PMCID: PMC7164407 DOI: 10.1002/prp2.590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE In cardiovascular diseases, cardiac fibroblasts (CFs) participate in the myocardial inflammation by producing pro-inflammatory cytokines, worsening the prognosis. β2-adrenergic receptor (AR) and β3AR are expressed in CFs, and β-adrenergic stimulation promotes CFs to produce pro-inflammatory cytokines. However, the mechanism of the expression of pro-inflammatory cytokines in response to β-adrenergic stimulation remains to be fully elucidated. EXPERIMENTAL APPROACH CFs were isolated from adult wild-type or AT-rich interactive domain-containing protein 5A (Arid5a) knockout mice. The expression of mRNA was measured by real-time RT-PCR. Interleukin (IL)-6 protein was measured by ELISA. The activity of nuclear factor-κB (NF-κB) and cyclic AMP (cAMP) response element binding protein (CREB) was assessed by ELISA-like assay or Western blotting. KEY RESULTS The β-adrenergic stimulation remarkably induced IL-6 mRNA and protein through β2AR in CFs. The activation of adenylate cyclase and the enhancement of intracellular cAMP resulted in the upregulation of IL-6 mRNA expression. The induction of IL-6 transcript by β2AR signaling was independent of NF-κB. Concomitant with IL-6, the expression of Arid5a, an IL-6 mRNA stabilizing factor, was enhanced by β2-adrenergic stimulation and by cAMP increase. Importantly, β2AR signaling-mediated IL-6 induction was suppressed in Arid5a knockout CFs. Finally, β2AR stimulation phosphorylated CREB via PKA pathway, and the activation of CREB was essential for the induction of Arid5a and IL-6 mRNA. CONCLUSION AND IMPLICATIONS β2-adrenergic stimulation post-transcriptionally upregulates the expression of IL-6 by the induction of Arid5a through cAMP/PKA/CREB pathway in adult CFs. β2AR/Arid5a/IL-6 axis could be a therapeutic target against cardiac inflammation.
Collapse
Affiliation(s)
- Shota Tanaka
- Laboratory of Clinical Science and BiomedicineGraduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Atsuki Imaeda
- Laboratory of Clinical Science and BiomedicineGraduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Kotaro Matsumoto
- Laboratory of Clinical Science and BiomedicineGraduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Makiko Maeda
- Project of Clinical Pharmacology and TherapeuticsGraduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Masanori Obana
- Laboratory of Clinical Science and BiomedicineGraduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
| | - Yasushi Fujio
- Laboratory of Clinical Science and BiomedicineGraduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
- Project of Clinical Pharmacology and TherapeuticsGraduate School of Pharmaceutical SciencesOsaka UniversitySuita CityOsakaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research InitiativesOsaka UniversitySuita CityOsakaJapan
| |
Collapse
|
33
|
Braun E, Sauter D. Furin-mediated protein processing in infectious diseases and cancer. Clin Transl Immunology 2019; 8:e1073. [PMID: 31406574 PMCID: PMC6682551 DOI: 10.1002/cti2.1073] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
Abstract
Proteolytic cleavage regulates numerous processes in health and disease. One key player is the ubiquitously expressed serine protease furin, which cleaves a plethora of proteins at polybasic recognition motifs. Mammalian substrates of furin include cytokines, hormones, growth factors and receptors. Thus, it is not surprising that aberrant furin activity is associated with a variety of disorders including cancer. Furthermore, the enzymatic activity of furin is exploited by numerous viral and bacterial pathogens, thereby enhancing their virulence and spread. In this review, we describe the physiological and pathophysiological substrates of furin and discuss how dysregulation of a simple proteolytic cleavage event may promote infectious diseases and cancer. One major focus is the role of furin in viral glycoprotein maturation and pathogenicity. We also outline cellular mechanisms regulating the expression and activation of furin and summarise current approaches that target this protease for therapeutic intervention.
Collapse
Affiliation(s)
- Elisabeth Braun
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| | - Daniel Sauter
- Institute of Molecular VirologyUlm University Medical CenterUlmGermany
| |
Collapse
|
34
|
Braun J, Fischer S, Xu ZZ, Sun H, Ghoneim DH, Gimbel AT, Plessmann U, Urlaub H, Mathews DH, Weigand JE. Identification of new high affinity targets for Roquin based on structural conservation. Nucleic Acids Res 2019; 46:12109-12125. [PMID: 30295819 PMCID: PMC6294493 DOI: 10.1093/nar/gky908] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
Post-transcriptional gene regulation controls the amount of protein produced from a specific mRNA by altering both its decay and translation rates. Such regulation is primarily achieved by the interaction of trans-acting factors with cis-regulatory elements in the untranslated regions (UTRs) of mRNAs. These interactions are guided either by sequence- or structure-based recognition. Similar to sequence conservation, the evolutionary conservation of a UTR’s structure thus reflects its functional importance. We used such structural conservation to identify previously unknown cis-regulatory elements. Using the RNA folding program Dynalign, we scanned all UTRs of humans and mice for conserved structures. Characterizing a subset of putative conserved structures revealed a binding site of the RNA-binding protein Roquin. Detailed functional characterization in vivo enabled us to redefine the binding preferences of Roquin and identify new target genes. Many of these new targets are unrelated to the established role of Roquin in inflammation and immune responses and thus highlight additional, unstudied cellular functions of this important repressor. Moreover, the expression of several Roquin targets is highly cell-type-specific. In consequence, these targets are difficult to detect using methods dependent on mRNA abundance, yet easily detectable with our unbiased strategy.
Collapse
Affiliation(s)
- Johannes Braun
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Sandra Fischer
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Zhenjiang Z Xu
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hongying Sun
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dalia H Ghoneim
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anna T Gimbel
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Uwe Plessmann
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Henning Urlaub
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center, 37073 Göttingen, Germany
| | - David H Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Julia E Weigand
- Department of Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| |
Collapse
|
35
|
Yoshinaga M, Takeuchi O. Post-transcriptional control of immune responses and its potential application. Clin Transl Immunology 2019; 8:e1063. [PMID: 31236273 DOI: 10.1002/cti2.1063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the host response against stresses such as infection. Although the inflammation process is required for the elimination of pathogens, uncontrolled inflammation leads to tissue destruction and inflammatory diseases. To avoid this, the inflammatory response is tightly controlled by multiple layers of regulation. Post-transcriptional control of inflammatory mRNAs is increasingly understood to perform critical roles in this process. This is mediated primarily by a set of RNA binding proteins (RBPs) including tristetraprolin, Roquin and Regnase-1, and RNA methylases. These key regulators coordinate the inflammatory response by modulating mRNA pools in both immune and local nonimmune cells. In this review, we provide an overview of the post-transcriptional coordination of immune responses in various tissues and discuss how RBP-mediated regulation of inflammation may be harnessed as a potential class of treatments for inflammatory diseases.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry Graduate School of Medicine Kyoto University Kyoto Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry Graduate School of Medicine Kyoto University Kyoto Japan
| |
Collapse
|
36
|
Cardiovascular inflammation: RNA takes the lead. J Mol Cell Cardiol 2019; 129:247-256. [PMID: 30880251 DOI: 10.1016/j.yjmcc.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
Inflammation has recently gained tremendous attention as a key contributor in several chronic diseases. While physiological inflammation is essential to counter a wide variety of damaging stimuli and to improve wound healing, dysregulated inflammation such as in the myocardium and vasculature can promote cardiovascular diseases. Given the high severity, prevalence, and economic burden of these diseases, understanding the factors involved in the regulation of physiological inflammation is essential. Like other complex biological phenomena, RNA-based processes are emerging as major regulators of inflammatory responses. Among such processes are cis-regulatory elements in the mRNA of inflammatory genes, noncoding RNAs directing the production or localization of inflammatory cytokines/chemokines, or pathogenic RNA driving inflammatory responses. In this review, we describe several specific RNA-based molecular mechanisms by which physiological inflammation pertaining to cardiovascular diseases is regulated. These include the role of AU-rich element-containing mRNAs, long non-coding RNAs, microRNAs, and viral RNAs.
Collapse
|
37
|
Baumjohann D, Heissmeyer V. Posttranscriptional Gene Regulation of T Follicular Helper Cells by RNA-Binding Proteins and microRNAs. Front Immunol 2018; 9:1794. [PMID: 30108596 PMCID: PMC6079247 DOI: 10.3389/fimmu.2018.01794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
T follicular helper (Tfh) cells are critically involved in the establishment of potent antibody responses against infectious pathogens, such as viruses and bacteria, but their dysregulation may also result in aberrant antibody responses that frequently coincide with autoimmune diseases or allergies. The fate and identity of Tfh cells is tightly controlled by gene regulation on the transcriptional and posttranscriptional level. Here, we provide deeper insights into the posttranscriptional mechanisms that regulate Tfh cell differentiation, function, and plasticity through the actions of RNA-binding proteins (RBPs) and small endogenously expressed regulatory RNAs called microRNAs (miRNAs). The Roquin family of RBPs has been shown to dampen spontaneous activation and differentiation of naïve CD4+ T cells into Tfh cells, since CD4+ T cells with Roquin mutations accumulate as Tfh cells and provide inappropriate B cell help in the production of autoantibodies. Moreover, Regnase-1, an endoribonuclease that regulates a set of targets, which strongly overlaps with that of Roquin, is crucial for the prevention of autoantibody production. Interestingly, both Roquin and Regnase-1 proteins are cleaved and inactivated after TCR stimulation by the paracaspase MALT1. miRNAs are expressed in naïve CD4+ T cells and help preventing spontaneous differentiation into effector cells. While most miRNAs are downregulated upon T cell activation, several miRNAs have been shown to regulate the fate of these cells by either promoting (e.g., miR-17-92 and miR-155) or inhibiting (e.g., miR-146a) Tfh cell differentiation. Together, these different aspects highlight a complex and dynamic regulatory network of posttranscriptional gene regulation in Tfh cells that may also be active in other T helper cell populations, including Th1, Th2, Th17, and Treg.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
38
|
Regulatory Role of CD4 + T Cells in Myocarditis. J Immunol Res 2018; 2018:4396351. [PMID: 30035131 PMCID: PMC6032977 DOI: 10.1155/2018/4396351] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Myocarditis is an important cause of heart failure in young patients. Autoreactive, most often, infection-triggered CD4+ T cells were confirmed to be critical for myocarditis induction. Due to a defect in clonal deletion of heart-reactive CD4+ T cells in the thymus of mice and humans, significant numbers of heart-specific autoreactive CD4+ T cells circulate in the blood. Normally, regulatory T cells maintain peripheral tolerance and prevent spontaneous myocarditis development. In the presence of tissue damage and innate immune activation, however, activated self-antigen-loaded dendritic cells promote CD4+ effector T cell expansion and myocarditis. So far, a direct pathogenic role has been described for both activated Th17 and Th1 effector CD4+ T cell subsets, though Th1 effector T cell-derived interferon-gamma was shown to limit myocarditis severity and prevent transition to inflammatory dilated cardiomyopathy. Interestingly, recent observations point out that various CD4+ T cell subsets demonstrate high plasticity in maintaining immune homeostasis and modulating disease phenotypes in myocarditis. These subsets include Th1 and Th17 effector cells and regulatory T cells, despite the fact that there are still sparse and controversial data on the specific role of FOXP3-expressing Treg in myocarditis. Understanding the specific roles of these T cell populations at different stages of the disease progression might provide a key for the development of successful therapeutic strategies.
Collapse
|
39
|
Hoefig KP, Heissmeyer V. Posttranscriptional regulation of T helper cell fate decisions. J Cell Biol 2018; 217:2615-2631. [PMID: 29685903 PMCID: PMC6080923 DOI: 10.1083/jcb.201708075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/19/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Hoefig and Heissmeyer review how microRNAs, long noncoding RNAs, RNA-binding proteins, and ubiquitin-modifying enzymes regulate T helper cell differentiation downstream of transcription. T helper cell subsets orchestrate context- and pathogen-specific responses of the immune system. They mostly do so by secreting specific cytokines that attract or induce activation and differentiation of other immune or nonimmune cells. The differentiation of T helper 1 (Th1), Th2, T follicular helper, Th17, and induced regulatory T cell subsets from naive T cells depends on the activation of intracellular signal transduction cascades. These cascades originate from T cell receptor and costimulatory receptor engagement and also receive critical input from cytokine receptors that sample the cytokine milieu within secondary lymphoid organs. Signal transduction then leads to the expression of subset-specifying transcription factors that, in concert with other transcription factors, up-regulate downstream signature genes. Although regulation of transcription is important, recent research has shown that posttranscriptional and posttranslational regulation can critically shape or even determine the outcome of Th cell differentiation. In this review, we describe how specific microRNAs, long noncoding RNAs, RNA-binding proteins, and ubiquitin-modifying enzymes regulate their targets to skew cell fate decisions.
Collapse
Affiliation(s)
- Kai P Hoefig
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany .,Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
40
|
MINO T, TAKEUCHI O. Post-transcriptional regulation of immune responses by RNA binding proteins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:248-258. [PMID: 29887569 PMCID: PMC6085518 DOI: 10.2183/pjab.94.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cytokines are critical mediators of inflammation and host immune defense. Cytokine production is regulated at both transcriptional and post-transcriptional levels. Post-transcriptional damping of inflammatory mRNAs is mediated by a set of RNA binding proteins (RBPs) interacting with cis-elements, such as AU-rich elements (ARE) and stem-loop structures. Whereas ARE-binding proteins such as tristetraprolin and a stem-loop recognizing protein, Roquin, downregulate cytokine mRNA abundance by recruiting a CCR4-NOT deadenylase complex, another stem-loop RBP, Regnase-1, acts as an endoribonuclease, directly degrading target cytokine mRNAs. These RBPs control translation-active or -inactive mRNAs in distinct intracellular locations. The presence of various RBPs regulating mRNAs in distinct locations enables elaborate control of cytokines under inflammatory conditions. Dysregulation of cytokine mRNA decay leads to pathologies such as the development of autoimmune diseases or impaired activation of immune responses. Here we review current knowledge about the post-transcriptional regulation of immune responses by RBPs and the importance of their alteration during inflammatory pathology and autoimmunity.
Collapse
Affiliation(s)
- Takashi MINO
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Osamu TAKEUCHI
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Correspondence should be addressed: O. Takeuchi, Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan (e-mail: )
| |
Collapse
|