1
|
Yan Z, Gu R, Ma H, Chen N, Zhang T, Xu Y, Qiu S, Xing H, Tang K, Tian Z, Rao Q, Wang M, Wang J. A dual-targeting approach with anti-IL10R CAR-T cells engineered to release anti-CD33 bispecific antibody in enhancing killing effect on acute myeloid leukemia cells. Cell Oncol (Dordr) 2024; 47:1879-1895. [PMID: 39008193 DOI: 10.1007/s13402-024-00971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Immunotherapies, including chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs), encounter several challenges in the management of acute myeloid leukemia (AML), including limited persistence of these treatments, antigen loss and resistance of leukemia stem cells (LSCs) to therapy. METHODS Here, we proposed a novel dual-targeting approach utilizing engineered anti-IL10R CAR-T cells to secrete bispecific antibodies targeting CD33. This innovative strategy, rooted in our previous research which established a connection between IL-10 and the stemness of AML cells, designed to improve targeting efficiency and eradicate both LSCs and AML blasts. RESULTS We first demonstrated the superior efficacy of this synergistic approach in eliminating AML cell lines and primary cells expressing different levels of the target antigens, even in cases of low CD33 or IL10R expression. Furthermore, the IL10R CAR-T cells that secret anti-CD33 bsAbs (CAR.BsAb-T), exhibited an enhanced activation and induction of cytotoxicity not only in IL10R CAR-T cells but also in bystander T cells, thereby more effectively targeting CD33-positive tumor cells. Our in vivo experiments provided additional evidence that CAR.BsAb-T cells could efficiently redirect T cells, reduce tumor burden, and demonstrate no significant toxicity. Additionally, delivering bsAbs locally to the tumor sites through this strategy helps mitigate the pharmacokinetic challenges typically associated with the rapid clearance of prototypical bsAbs. CONCLUSIONS Overall, the engineering of a single-vector targeting IL10R CAR, which subsequently secretes CD33-targeted bsAb, addresses the issue of immune escape due to the heterogeneous expression of IL10R and CD33, and represents a promising progress in AML therapy aimed at improving treatment outcomes.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Sialic Acid Binding Ig-like Lectin 3/immunology
- Animals
- Cell Line, Tumor
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Interleukin-10/immunology
- Xenograft Model Antitumor Assays
- Mice
- Mice, Inbred NOD
- Cytotoxicity, Immunologic
Collapse
Affiliation(s)
- Zhifeng Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Haotian Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Nianci Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ting Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301617, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301617, China.
| |
Collapse
|
2
|
Díez-Alonso L, Falgas A, Arroyo-Ródenas J, Romencín PA, Martínez A, Gómez-Rosel M, Blanco B, Jiménez-Reinoso A, Mayado A, Pérez-Pons A, Aguilar-Sopeña Ó, Ramírez-Fernández Á, Segura-Tudela A, Perez-Amill L, Tapia-Galisteo A, Domínguez-Alonso C, Rubio-Pérez L, Jara M, Solé F, Hangiu O, Almagro L, Albitre Á, Penela P, Sanz L, Anguita E, Valeri A, García-Ortiz A, Río P, Juan M, Martínez-López J, Roda-Navarro P, Martín-Antonio B, Orfao A, Menéndez P, Bueno C, Álvarez-Vallina L. Engineered T cells secreting anti-BCMA T cell engagers control multiple myeloma and promote immune memory in vivo. Sci Transl Med 2024; 16:eadg7962. [PMID: 38354229 DOI: 10.1126/scitranslmed.adg7962] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024]
Abstract
Multiple myeloma is the second most common hematological malignancy in adults and remains an incurable disease. B cell maturation antigen (BCMA)-directed immunotherapy, including T cells bearing chimeric antigen receptors (CARs) and systemically injected bispecific T cell engagers (TCEs), has shown remarkable clinical activity, and several products have received market approval. However, despite promising results, most patients eventually become refractory and relapse, highlighting the need for alternative strategies. Engineered T cells secreting TCE antibodies (STAb) represent a promising strategy that combines the advantages of adoptive cell therapies and bispecific antibodies. Here, we undertook a comprehensive preclinical study comparing the therapeutic potential of T cells either expressing second-generation anti-BCMA CARs (CAR-T) or secreting BCMAxCD3 TCEs (STAb-T) in a T cell-limiting experimental setting mimicking the conditions found in patients with relapsed/refractory multiple myeloma. STAb-T cells recruited T cell activity at extremely low effector-to-target ratios and were resistant to inhibition mediated by soluble BCMA released from the cell surface, resulting in enhanced cytotoxic responses and prevention of immune escape of multiple myeloma cells in vitro. These advantages led to robust expansion and persistence of STAb-T cells in vivo, generating long-lived memory BCMA-specific responses that could control multiple myeloma progression in xenograft models, outperforming traditional CAR-T cells. These promising preclinical results encourage clinical testing of the BCMA-STAb-T cell approach in relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Aïda Falgas
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Arroyo-Ródenas
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Paola A Romencín
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
| | - Alba Martínez
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
| | - Marina Gómez-Rosel
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Andrea Mayado
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alba Pérez-Pons
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Lorena Perez-Amill
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | - Antonio Tapia-Galisteo
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Maria Jara
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Francesc Solé
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Laura Almagro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Ángela Albitre
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Petronila Penela
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, 28222 Madrid, Spain
| | - Eduardo Anguita
- Department of Medicine, Medical School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Hematology, IML, IdISSC, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Antonio Valeri
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 28029 Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Almudena García-Ortiz
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 28029 Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Paula Río
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Manel Juan
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain
- Servei d'Immunologia, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Plataforma Immunoterapia, Hospital Sant Joan de Deu, 08950 Barcelona, Spain
- Universitat de Barcelona, 08007 Barcelona, Spain
| | - Joaquín Martínez-López
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 28029 Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Diaz, (IIS-FJD), Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
3
|
Jiménez-Reinoso A, Tirado N, Martinez-Moreno A, Díaz VM, García-Peydró M, Hangiu O, Díez-Alonso L, Albitre Á, Penela P, Toribio ML, Menéndez P, Álvarez-Vallina L, Sánchez Martínez D. Efficient preclinical treatment of cortical T cell acute lymphoblastic leukemia with T lymphocytes secreting anti-CD1a T cell engagers. J Immunother Cancer 2022; 10:jitc-2022-005333. [PMID: 36564128 PMCID: PMC9791403 DOI: 10.1136/jitc-2022-005333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The dismal clinical outcome of relapsed/refractory (R/R) T cell acute lymphoblastic leukemia (T-ALL) highlights the need for innovative targeted therapies. Although chimeric antigen receptor (CAR)-engineered T cells have revolutionized the treatment of B cell malignancies, their clinical implementation in T-ALL is in its infancy. CD1a represents a safe target for cortical T-ALL (coT-ALL) patients, and fratricide-resistant CD1a-directed CAR T cells have been preclinically validated as an immunotherapeutic strategy for R/R coT-ALL. Nonetheless, T-ALL relapses are commonly very aggressive and hyperleukocytic, posing a challenge to recover sufficient non-leukemic effector T cells from leukapheresis in R/R T-ALL patients. METHODS We carried out a comprehensive study using robust in vitro and in vivo assays comparing the efficacy of engineered T cells either expressing a second-generation CD1a-CAR or secreting CD1a x CD3 T cell-engaging Antibodies (CD1a-STAb). RESULTS We show that CD1a-T cell engagers bind to cell surface expressed CD1a and CD3 and induce specific T cell activation. Recruitment of bystander T cells endows CD1a-STAbs with an enhanced in vitro cytotoxicity than CD1a-CAR T cells at lower effector:target ratios. CD1a-STAb T cells are as effective as CD1a-CAR T cells in cutting-edge in vivo T-ALL patient-derived xenograft models. CONCLUSIONS Our data suggest that CD1a-STAb T cells could be an alternative to CD1a-CAR T cells in coT-ALL patients with aggressive and hyperleukocytic relapses with limited numbers of non-leukemic effector T cells.
Collapse
Affiliation(s)
- Anaïs Jiménez-Reinoso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Néstor Tirado
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain
| | | | | | | | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Ángela Albitre
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Petronila Penela
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Maria L Toribio
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Catalonia, Spain,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029-RD21; RD21/0017/0030), Madrid, Spain,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain,School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain,Red Española de Terapias Avanzadas (TERAV) - Instituto de Salud Carlos III (ISCII) (RICORS, RD21/0017/0029-RD21; RD21/0017/0030), Madrid, Spain
| | | |
Collapse
|
4
|
Xu G, Luo Y, Wang H, Wang Y, Liu B, Wei J. Therapeutic bispecific antibodies against intracellular tumor antigens. Cancer Lett 2022; 538:215699. [PMID: 35487312 DOI: 10.1016/j.canlet.2022.215699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
Bispecific antibodies (BsAbs)-based therapeutics have been identified to be one of the most promising immunotherapy strategies. However, their target repertoire is mainly restricted to cell surface antigens rather than intracellular antigens, resulting in a relatively limited scope of applications. Intracellular tumor antigens are identified to account for a large proportion of tumor antigen profiles. Recently, bsAbs that target intracellular oncoproteins have raised much attention, broadening the targeting scope of tumor antigens and improving the efficacy of traditional antibody-based therapeutics. Consequently, this review will focus on this emerging field and discuss related research advances. We introduce the classification, characteristics, and clinical applications of bsAbs, the theoretical basis for targeting intracellular antigens, delivery systems of bsAbs, and the latest preclinical and clinical advances of bsAbs targeting several intracellular oncotargets, including those of cancer-testis antigens, differentiation antigens, neoantigens, and other antigens. Moreover, we summarize the limitations of current bsAbs, and propose several potential strategies against immune escape and T cell exhaustion as well as some future perspectives.
Collapse
Affiliation(s)
- Guanghui Xu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yuting Luo
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Hanbing Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
5
|
Blanco B, Ramírez-Fernández Á, Bueno C, Argemí-Muntadas L, Fuentes P, Aguilar-Sopeña Ó, Gutierrez-Agüera F, Zanetti SR, Tapia-Galisteo A, Díez-Alonso L, Segura-Tudela A, Castellà M, Marzal B, Betriu S, Harwood SL, Compte M, Lykkemark S, Erce-Llamazares A, Rubio-Pérez L, Jiménez-Reinoso A, Domínguez-Alonso C, Neves M, Morales P, Paz-Artal E, Guedan S, Sanz L, Toribio ML, Roda-Navarro P, Juan M, Menéndez P, Álvarez-Vallina L. Overcoming CAR-Mediated CD19 Downmodulation and Leukemia Relapse with T Lymphocytes Secreting Anti-CD19 T-cell Engagers. Cancer Immunol Res 2022; 10:498-511. [PMID: 35362043 DOI: 10.1158/2326-6066.cir-21-0853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/06/2021] [Accepted: 02/09/2022] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptor (CAR)-modified T cells have revolutionized the treatment of CD19-positive hematologic malignancies. Although anti-CD19 CAR-engineered autologous T cells can induce remission in patients with B-cell acute lymphoblastic leukemia, a large subset relapse, most of them with CD19-positive disease. Therefore, new therapeutic strategies are clearly needed. Here, we report a comprehensive study comparing engineered T cells either expressing a second-generation anti-CD19 CAR (CAR-T19) or secreting a CD19/CD3-targeting bispecific T-cell engager antibody (STAb-T19). We found that STAb-T19 cells are more effective than CAR-T19 cells at inducing cytotoxicity, avoiding leukemia escape in vitro, and preventing relapse in vivo. We observed that leukemia escape in vitro is associated with rapid and drastic CAR-induced internalization of CD19 that is coupled with lysosome-mediated degradation, leading to the emergence of transiently CD19-negative leukemic cells that evade the immune response of engineered CAR-T19 cells. In contrast, engineered STAb-T19 cells induce the formation of canonical immunologic synapses and prevent the CD19 downmodulation observed in anti-CD19 CAR-mediated interactions. Although both strategies show similar efficacy in short-term mouse models, there is a significant difference in a long-term patient-derived xenograft mouse model, where STAb-T19 cells efficiently eradicated leukemia cells, but leukemia relapsed after CAR-T19 therapy. Our findings suggest that the absence of CD19 downmodulation in the STAb-T19 strategy, coupled with the continued antibody secretion, allows an efficient recruitment of the endogenous T-cell pool, resulting in fast and effective elimination of cancer cells that may prevent CD19-positive relapses frequently associated with CAR-T19 therapies.
Collapse
Affiliation(s)
- Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.,Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III (RICORS, RD21/0017/0029), Madrid, Spain
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Clara Bueno
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III (RICORS, RD21/0017/0029), Madrid, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Argemí-Muntadas
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Patricia Fuentes
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain.,Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Francisco Gutierrez-Agüera
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III (RICORS, RD21/0017/0029), Madrid, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | | | - Antonio Tapia-Galisteo
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Maria Castellà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Berta Marzal
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Sergi Betriu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Seandean L Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Simon Lykkemark
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Ainhoa Erce-Llamazares
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.,Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Maria Neves
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain
| | - Pablo Morales
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Sonia Guedan
- Department of Hematology and Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - María L Toribio
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, Madrid, Spain.,Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Manel Juan
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain.,Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain.,Plataforma Immunoteràpia Hospital Sant Joan de Déu, Barcelona, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Pablo Menéndez
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III (RICORS, RD21/0017/0029), Madrid, Spain.,Josep Carreras Leukemia Research Institute, Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.,Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III (RICORS, RD21/0017/0029), Madrid, Spain.,Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Sanz L, Álvarez-Vallina L. Engineered mRNA and the Rise of Next-Generation Antibodies. Antibodies (Basel) 2021; 10:antib10040037. [PMID: 34698057 PMCID: PMC8544192 DOI: 10.3390/antib10040037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies are widely used as therapeutic agents in medicine. However, clinical-grade proteins require sophisticated technologies and are extremely expensive to produce, resulting in long lead times and high costs. The use of gene transfer methods for in vivo secretion of therapeutic antibodies could circumvent problems related to large-scale production and purification and offer additional benefits by achieving sustained concentrations of therapeutic antibodies, which is particularly relevant to short-lived antibody fragments and next-generation, Fc-free, multispecific antibodies. In recent years, the use of engineered mRNA-based gene delivery has significantly increased in different therapeutic areas because of the advantages it possesses over traditional gene delivery platforms. The application of synthetic mRNA will allow for the avoidance of manufacturing problems associated with recombinant proteins and could be instrumental in consolidating regulatory approvals for next-generation therapeutic antibodies.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, 28220 Madrid, Spain
- Correspondence: (L.S.); (L.Á.-V.)
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
- Correspondence: (L.S.); (L.Á.-V.)
| |
Collapse
|
7
|
Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021; 13:287. [PMID: 33466732 PMCID: PMC7829968 DOI: 10.3390/cancers13020287] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kristel Kemper
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Patrick Engelberts
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Aran F. Labrijn
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Janine Schuurman
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
8
|
Blanco B, Ramírez-Fernández Á, Alvarez-Vallina L. Engineering Immune Cells for in vivo Secretion of Tumor-Specific T Cell-Redirecting Bispecific Antibodies. Front Immunol 2020; 11:1792. [PMID: 32903593 PMCID: PMC7438551 DOI: 10.3389/fimmu.2020.01792] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapeutic approaches based on the redirection of T cell activity toward tumor cells are actively being investigated. The impressive clinical success of the continuously intravenously infused T cell-redirecting bispecific antibody (T-bsAb) blinatumomab (anti-CD19 x anti-CD3), and of engineered T cells expressing anti-CD19 chimeric antigen receptors (CAR-T cells) in hematological malignancies, has led to renewed interest in a novel cancer immunotherapy strategy that combines features of antibody- and cell-based therapies. This emerging approach is based on the endogenous secretion of T-bsAbs by engineered T cells (STAb-T cells). Adoptive transfer of genetically modified STAb-T cells has demonstrated potent anti-tumor activity in both solid tumor and hematologic preclinical xenograft models. We review here the potential benefits of the STAb-T strategy over similar approaches currently being used in clinic, and we discuss the potential combination of this promising strategy with the well-established CAR-T cell approach.
Collapse
Affiliation(s)
- Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
9
|
Ahamadi-Fesharaki R, Fateh A, Vaziri F, Solgi G, Siadat SD, Mahboudi F, Rahimi-Jamnani F. Single-Chain Variable Fragment-Based Bispecific Antibodies: Hitting Two Targets with One Sophisticated Arrow. Mol Ther Oncolytics 2019; 14:38-56. [PMID: 31011631 PMCID: PMC6463744 DOI: 10.1016/j.omto.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite the success of monoclonal antibodies (mAbs) to treat some disorders, the monospecific molecular entity of mAbs as well as the presence of multiple factors and pathways involved in the pathogenesis of disorders, such as various malignancies, infectious diseases, and autoimmune disorders, and resistance to therapy have restricted the therapeutic efficacy of mAbs in clinical use. Bispecific antibodies (bsAbs), by concurrently recognizing two targets, can partly circumvent these problems. Serial killing of tumor cells by bsAb-redirected T cells, simultaneous blocking of two antigens involved in the HIV-1 infection, and concurrent targeting of the activating and inhibitory receptors on B cells to modulate autoimmunity are part of the capabilities of bsAbs. After designing and developing a large number of bsAbs for years, catumaxomab, a full-length bsAb targeting EpCAM and CD3, was approved in 2009 to treat EpCAM-positive carcinomas besides blinatumomab, a bispecific T cell engager antibody targeting CD19 and CD3, which was approved in 2014 to treat relapsed or refractory acute lymphoblastic leukemia. Furthermore, approximately 60 bsAbs are under investigation in clinical trials. The current review aims at portraying different formats of the single-chain variable fragment (scFv)-based bsAbs and shedding light on the scFv-based bsAbs in preclinical development, different phases of clinical trials, and the market.
Collapse
Affiliation(s)
- Raoufeh Ahamadi-Fesharaki
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Blanco B, Compte M, Lykkemark S, Sanz L, Alvarez-Vallina L. T Cell-Redirecting Strategies to ‘STAb’ Tumors: Beyond CARs and Bispecific Antibodies. Trends Immunol 2019; 40:243-257. [DOI: 10.1016/j.it.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
|
11
|
Mølgaard K, Harwood SL, Compte M, Merino N, Bonet J, Alvarez-Cienfuegos A, Mikkelsen K, Nuñez-Prado N, Alvarez-Mendez A, Sanz L, Blanco FJ, Alvarez-Vallina L. Bispecific light T-cell engagers for gene-based immunotherapy of epidermal growth factor receptor (EGFR)-positive malignancies. Cancer Immunol Immunother 2018; 67:1251-1260. [PMID: 29869168 PMCID: PMC11028287 DOI: 10.1007/s00262-018-2181-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
The recruitment of T-cells by bispecific antibodies secreted from adoptively transferred, gene-modified autologous cells has shown satisfactory results in preclinical cancer models. Even so, the approach's translation into the clinic will require incremental improvements to its efficacy and reduction of its toxicity. Here, we characterized a tandem T-cell recruiting bispecific antibody intended to benefit gene-based immunotherapy approaches, which we call the light T-cell engager (LiTE), consisting of an EGFR-specific single-domain VHH antibody fused to a CD3-specific scFv. We generated two LiTEs with the anti-EGFR VHH and the anti-CD3 scFv arranged in both possible orders. Both constructs were well expressed in mammalian cells as highly homogenous monomers in solution with molecular weights of 43 and 41 kDa, respectively. In situ secreted LiTEs bound the cognate antigens of both parental antibodies and triggered the specific cytolysis of EGFR-expressing cancer cells without inducing T-cell activation and cytotoxicity spontaneously or against EGFR-negative cells. Light T-cell engagers are, therefore, suitable for future applications in gene-based immunotherapy approaches.
Collapse
Affiliation(s)
- Kasper Mølgaard
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Seandean L Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160, Derio, Spain
| | - Jaume Bonet
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne, Station 19, 1015, Lausanne, Switzerland
| | - Ana Alvarez-Cienfuegos
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Kasper Mikkelsen
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Natalia Nuñez-Prado
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark
| | - Ana Alvarez-Mendez
- Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222, Madrid, Spain
| | - Francisco J Blanco
- CIC bioGUNE, Parque Tecnológico de Bizkaia 800, 48160, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Gustav Wieds Vej 10, 8000 C, Aarhus, Denmark.
| |
Collapse
|
12
|
Abstract
Harnessing the power of the human immune system to treat cancer is the essence of immunotherapy. Monoclonal antibodies engage the innate immune system to destroy targeted cells. For the last 30years, antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity have been the main mechanisms of anti-tumor action of unconjugated antibody drugs. Efforts to exploit the potentials of other immune cells, in particular T cells, culminated in the recent approval of two T cell engaging bispecific antibody (T-BsAb) drugs, thereby stimulating new efforts to accelerate similar platforms through preclinical and clinical trials. In this review, we have compiled the worldwide effort in exploring T cell engaging bispecific antibodies. Our special emphasis is on the lessons learned, with the hope to derive insights in this fast evolving field with tremendous clinical potential.
Collapse
Affiliation(s)
- Z Wu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - N V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
13
|
Mølgaard K, Compte M, Nuñez-Prado N, Harwood SL, Sanz L, Alvarez-Vallina L. Balanced secretion of anti-CEA × anti-CD3 diabody chains using the 2A self-cleaving peptide maximizes diabody assembly and tumor-specific cytotoxicity. Gene Ther 2017; 24:208-214. [PMID: 28075428 PMCID: PMC5404205 DOI: 10.1038/gt.2017.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 12/21/2022]
Abstract
Adoptive transfer of genetically engineered human cells secreting bispecific T-cell engagers has shown encouraging therapeutic effects in preclinical models of cancer. However, reducing the toxicity and improving the effectiveness of this emerging immunotherapeutic strategy will be critical to its successful application. We have demonstrated that for gene-based bispecific antibody strategies, two-chain diabodies have a better safety profile than single-chain tandem scFvs (single-chain variable fragments), because their reduced tendency to form aggregates reduces the risk of inducing antigen-independent T-cell activation. Here, we demonstrate that the incorporation of a 2A self-processing peptide derived from foot-and-mouth disease virus conveying co-translational cleavage into a two-chain anti-CD3 × anti-CEA diabody gene enables near-equimolar expression of diabody chains 1 and 2, and thus increases the final amount of assembled diabody. This was found to maximize diabody-mediated T-cell activation and cytotoxicity against carcinoembryonic antigen-positive tumor cells.
Collapse
Affiliation(s)
- K Mølgaard
- Immunotherapy and Cell Engineering, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - M Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - N Nuñez-Prado
- Immunotherapy and Cell Engineering, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - S L Harwood
- Immunotherapy and Cell Engineering, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - L Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - L Alvarez-Vallina
- Immunotherapy and Cell Engineering, Department of Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Liu X, Barrett DM, Jiang S, Fang C, Kalos M, Grupp SA, June CH, Zhao Y. Improved anti-leukemia activities of adoptively transferred T cells expressing bispecific T-cell engager in mice. Blood Cancer J 2016; 6:e430. [PMID: 27258611 PMCID: PMC5141353 DOI: 10.1038/bcj.2016.38] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 04/28/2016] [Indexed: 12/29/2022] Open
Abstract
Despite the impressive clinical efficacy of T cells engineered to express chimeric antigen receptors (CAR-Ts), the current applications of CAR-T cell therapy are limited by major treatment-related toxicity. Thus, safer yet effective alternative approaches must be developed. In this study, we compared CD19 bispecific T-cell engager (BiTE)-transferred T cells that had been transfected by RNA electroporation with CD19 CAR RNA-transferred T cells both in vitro and in an aggressive Nalm6 leukemia mouse model. BiTEs were secreted from the transferred T cells and enabled both the transferred and bystander T cells to specifically recognize CD19+ cell lines, with increased tumor killing ability, prolonged functional persistence, increased cytokine production and potent proliferation compared with the CAR-T cells. More interestingly, in comparison with CD3/CD28 bead-stimulated T cells, T cells that were expanded by a rapid T-cell expansion protocol (REP) showed enhanced anti-tumor activities for both CAR and BiTE RNA-electroporated T cells both in vitro and in a Nalm6 mouse model (P<0.01). Furthermore, the REP T cells with BiTE RNAs showed greater efficacy in the Nalm6 leukemia model compared with REP T cells with CAR RNA (P<0.05) and resulted in complete leukemia remission.
Collapse
Affiliation(s)
- X Liu
- Center for Cellular Immunotherapies, University of Pennsylvania Cancer Center, Philadelphia, PA, USA
| | - D M Barrett
- Division of Oncology, Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - S Jiang
- Center for Cellular Immunotherapies, University of Pennsylvania Cancer Center, Philadelphia, PA, USA
| | - C Fang
- Center for Cellular Immunotherapies, University of Pennsylvania Cancer Center, Philadelphia, PA, USA
| | - M Kalos
- Center for Cellular Immunotherapies, University of Pennsylvania Cancer Center, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S A Grupp
- Division of Oncology, Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - C H June
- Center for Cellular Immunotherapies, University of Pennsylvania Cancer Center, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Zhao
- Center for Cellular Immunotherapies, University of Pennsylvania Cancer Center, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
In vivo secretion of anti-CD3 × anti-tumor bispecific antibodies by gene-modified cells: over a decade of T-cell engagement. Mol Ther 2015; 23:612-3. [PMID: 25849422 DOI: 10.1038/mt.2015.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Saenz del Burgo L, Compte M, Aceves M, Hernández RM, Sanz L, Álvarez-Vallina L, Pedraz JL. Microencapsulation of therapeutic bispecific antibodies producing cells: immunotherapeutic organoids for cancer management. J Drug Target 2014; 23:170-9. [DOI: 10.3109/1061186x.2014.971327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Compte M, Alvarez-Cienfuegos A, Nuñez-Prado N, Sainz-Pastor N, Blanco-Toribio A, Pescador N, Sanz L, Alvarez-Vallina L. Functional comparison of single-chain and two-chain anti-CD3-based bispecific antibodies in gene immunotherapy applications. Oncoimmunology 2014; 3:e28810. [PMID: 25057445 PMCID: PMC4091452 DOI: 10.4161/onci.28810] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Gene therapy to achieve in vivo secretion of recombinant anti-CD3 x anti-tumor bispecific antibodies in cancer patients is being explored as a strategy to counterbalance rapid renal elimination, thereby sustaining levels of bispecific antibodies in the therapeutic range. Here, we performed a comparative analysis between single- and two-chain configurations for anti-CD3 x anti-CEA (carcinoembryonic antigen) bispecific antibodies secreted by genetically-modified human cells. We demonstrate that tandem single-chain variable fragment (scFv) antibodies and two-chain diabodies are expressed as soluble secreted proteins with similar yields. However, we found significant differences in their biological functionality (i.e., antigen binding) and in their ability to induce non-specific T cell activation. Whereas single-chain tandem scFvs induced human T cell activation and proliferation in an antigen-independent manner, secreted two-chain diabodies exerted almost no proliferative stimulus when human T cells were cultured alone or in co-cultures with CEA negative cells. Thus, our data suggest that two-chain diabodies are preferable to single-chain tandem scFvs for immunotherapeutic strategies comprising in vivo secretion of bispecific antibodies aiming to recruit and activate anticancer specific lymphocytic effector T cells.
Collapse
Affiliation(s)
- Marta Compte
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro; Madrid, Spain
| | | | - Natalia Nuñez-Prado
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro; Madrid, Spain
| | - Noelia Sainz-Pastor
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro; Madrid, Spain
| | - Ana Blanco-Toribio
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro; Madrid, Spain
| | - Nuria Pescador
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro; Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro; Madrid, Spain
| | - Luis Alvarez-Vallina
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro; Madrid, Spain ; BCE Protein Engineering; Department of Engineering; Aarhus University; Aarhus, Denmark
| |
Collapse
|
18
|
|
19
|
In Vivo Secretion of Bispecific Antibodies Recruiting Lymphocytic Effector Cells. Antibodies (Basel) 2013. [DOI: 10.3390/antib2030415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
Compte M, Nuñez-Prado N, Sanz L, Alvarez-Vallina L. Immunotherapeutic organoids: a new approach to cancer treatment. BIOMATTER 2013; 3:23897. [PMID: 23507921 PMCID: PMC3732323 DOI: 10.4161/biom.23897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Therapeutic monoclonal antibodies have revolutionized the treatment of cancer and other diseases. However, several limitations of antibody-based treatments, such as the cost of therapy and the achievement of sustained plasma levels, should be still addressed for their widespread use as therapeutics. The use of cell and gene transfer methods offers additional benefits by producing a continuous release of the antibody with syngenic glycosylation patterns, which makes the antibody potentially less immunogenic. In vivo secretion of therapeutic antibodies by viral vector delivery or ex vivo gene modified long-lived autologous or allogeneic human mesenchymal stem cells may advantageously replace repeated injection of clinical-grade antibodies. Gene-modified autologous mesenchymal stem cells can be delivered subcutaneously embedded in a non-immunogenic synthetic extracellular matrix-based scaffold that guarantees the survival of the cell inoculum. The scaffold would keep cells at the implantation site, with the therapeutic protein acting at distance (immunotherapeutic organoid), and could be retrieved once the therapeutic effect is fulfilled. In the present review we highlight the practical importance of living cell factories for in vivo secretion of recombinant antibodies.
Collapse
Affiliation(s)
- Marta Compte
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro Majadahonda; Madrid, Spain
| | - Natalia Nuñez-Prado
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro Majadahonda; Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro Majadahonda; Madrid, Spain
| | - Luís Alvarez-Vallina
- Molecular Immunology Unit; Hospital Universitario Puerta de Hierro Majadahonda; Madrid, Spain
| |
Collapse
|
21
|
Cancer Immunotherapy by Retargeting of Immune Effector Cells via Recombinant Bispecific Antibody Constructs. Antibodies (Basel) 2012. [DOI: 10.3390/antib1020172] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
22
|
Generation of single-chain bispecific green fluorescent protein fusion antibodies for imaging of antibody-induced T cell synapses. Anal Biochem 2012; 423:261-8. [PMID: 22274538 DOI: 10.1016/j.ab.2011.12.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 11/07/2011] [Accepted: 12/28/2011] [Indexed: 01/09/2023]
Abstract
There is growing interest in the development of novel single-chain bispecific antibodies for retargeting of immune effector T cells to tumor cells. Until today, functional fusion constructs consisting of a single-chain bispecific antibody and a fluorescent protein were not reported. Such molecules could be useful for an in vivo visualization of this retargeting process. Recently, we established two novel single-chain bispecific antibodies. One is capable of retargeting T cells to CD33, and the other is capable of retargeting T cells to the prostate stem cell antigen (PSCA). CD33 is an attractive immunotarget on the surface of tumor cells from patients with acute myeloid leukemia (AML). The PSCA is a potential target on prostate cancer cells. Flanking the reading frame encoding the green fluorescent protein (GFP) with a recently described novel helical linker element allowed us to establish novel single-chain bispecific fusion antibodies. These fluorescent fusion antibodies were useful to efficiently retarget T cells to the respective tumor cells and visualize the formation of immune synapses between effector and target cells.
Collapse
|
23
|
Stamova S, Cartellieri M, Feldmann A, Arndt C, Koristka S, Bartsch H, Bippes CC, Wehner R, Schmitz M, von Bonin M, Bornhäuser M, Ehninger G, Bachmann M. Unexpected recombinations in single chain bispecific anti-CD3-anti-CD33 antibodies can be avoided by a novel linker module. Mol Immunol 2011; 49:474-82. [PMID: 22014687 DOI: 10.1016/j.molimm.2011.09.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/30/2011] [Accepted: 09/24/2011] [Indexed: 10/16/2022]
Abstract
CD33 is an attractive immunotarget on the surface of tumor cells from patients with acute myeloid leukemia (AML). In a first attempt for immunotargeting of AML blasts we constructed two bispecific antibodies in the single chain bispecific diabody (scBsDb) format by fusing the variable domains of monoclonal antibodies directed against CD3 and CD33. Unfortunately, protein expression of both scBsDbs resulted in varying mixtures of fragmented and full length proteins. As the non-functional fragments competed with the functional full length antibodies we tried to understand the reason for the fragmentation. We found that the anti-CD3 and anti-CD33 antibody genes show striking sequence homologies: during B cell development the same V(h) J558 heavy and V(l) kk4 light chain genes were selected. Moreover, the closely related D genes DSP2 (9 and 11) were combined with the same JH4 gene. And finally, during VJ recombination of the light chain the same JK5 element was selected. These homologies between the two monoclonal antibodies were the reason for recombinations in the cell lines generated for expression of the scBsDbs. Finally, we solved this problem by (i) rearranging the order of the heavy and light chains of the anti-CD3 and anti-CD33 domains, and (ii) a replacement of one of the commonly used glycine serine linkers with a novel linker domain. The resulting bispecific antibody in a single chain bispecific tandem format (scBsTaFv) was stable and capable of redirecting T cells to CD33-positive tumor cells including AML blasts of patients.
Collapse
Affiliation(s)
- Slava Stamova
- Institute of Immunology, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Feldmann A, Stamova S, Bippes CC, Bartsch H, Wehner R, Schmitz M, Temme A, Cartellieri M, Bachmann M. Retargeting of T cells to prostate stem cell antigen expressing tumor cells: comparison of different antibody formats. Prostate 2011; 71:998-1011. [PMID: 21541976 DOI: 10.1002/pros.21315] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/08/2010] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignant disease in men. Novel treatment options are needed for patients after development of metastatic, hormone-refractory disease or for those who have failed a local treatment. The prostate stem cell antigen (PSCA) is expressed in >80% of primary PCa samples and bone metastases. Its expression is increased both in androgen-dependent and independent prostate tumors, particularly in carcinomas of high stages and Gleason scores. Therefore, PSCA is an attractive target for immunotherapy of PCa by retargeting of T cells to tumor cells. METHODS A series of different bispecific antibody formats for retargeting of T cells to tumor cells were described but, only very limited data obtained by side by side comparison of the different antibody formats are available. We established two novel bispecific antibodies in different formats. The functionality of both constructs was analyzed by FACS and chromium release assays. In parallel, the release of pro-inflammatory cytokines was determined by ELISA. RESULTS AND CONCLUSIONS Irrespective of the underlying antibody format, both novel bispecific antibodies cause an efficient killing of PSCA-positive tumor cells by pre- and non-pre-activated T cells. Killing and release of pro-inflammatory cytokines requires an antigen specific cross-linkage of the T cells with the target cells.
Collapse
Affiliation(s)
- Anja Feldmann
- Medical Faculty Carl Gustav Carus, Institute of Immunology, Technical University Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mucosal immune environment in colonic carcinogenesis: CD80 up-regulation in colonic dysplasia in ulcerative colitis. Eur J Cancer 2010; 47:611-9. [PMID: 21067914 DOI: 10.1016/j.ejca.2010.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/11/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND In patients with ulcerative colitis (UC) the inconsistency between the rate of dysplasia and actual cancer incidence suggests the presence of an immunosurveillance mechanism. The aim of our study was to analyse the expression of CD80 and CD86 during the different stages of UC-associated and in non-inflammatory carcinogenesis. PATIENTS AND METHODS Sixty-two patients affected with UC, UC with colonic dysplasia, UC and cancer, colonic adenoma, or colonic cancer and 11 healthy subjects were enrolled in our study. Tissue samples were taken from surgical specimens during colonic resection or during colonoscopy. Mucosal mRNA expression of CD80 and CD86 was quantified with real time polymerase chain reaction (RT-PCR). CD80, CD86 and p53 expressions and lamina propria mononuclear cell populations (CD3, CD20 and CD68) were analysed by immunohistochemistry. Mucosal levels of IL-1β, IL-2 and IFN-γ were measured with immunometric assays. RESULTS Among UC patients, CD80 protein expression was higher in those with dysplasia (p=0.017). In non-inflammatory carcinogenesis pathway CD80 protein and mRNA expressions were lower compared to the corresponding steps in the UC pathway. CD80 expression was directly correlated with the lamina propria mononuclear cell populations (T and B lymphocytes and monocytes). CD80 protein, but not CD80 mRNA, expression was significantly and directly correlated with IL-2 expression. CONCLUSION CD80 resulted to be up-regulated in UC with dysplasia, while it was down-regulated in cancer. CD80 mucosal levels correlate with lamina propria T-cell and with IL-2 expression suggesting that it may elicit an active role in the immunosurveillance mechanism.
Collapse
|
26
|
Asano R, Ikoma K, Sone Y, Kawaguchi H, Taki S, Hayashi H, Nakanishi T, Umetsu M, Katayose Y, Unno M, Kudo T, Kumagai I. Highly enhanced cytotoxicity of a dimeric bispecific diabody, the hEx3 tetrabody. J Biol Chem 2010; 285:20844-9. [PMID: 20444691 DOI: 10.1074/jbc.m110.120444] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported the utility for cancer immunotherapy of a humanized bispecific diabody (hEx3) that targets epidermal growth factor receptor and CD3. Here, we used dynamic and static light scattering measurements to show that the multimer fraction observed in hEx3 in solution is a monodisperse tetramer. The multimerization into tetramers increased the inhibition of cancer cell growth by the hEx3 diabody. Furthermore, 1:2 stoichiometric binding for both antigens was observed in a thermodynamic analysis, indicating that the tetramer has bivalent binding activity for each target, and the structure may be in a circular configuration, as is the case for the single-chain Fv tetrabody. In addition to enhanced cytotoxicity, the functional affinity and stability of the hEx3 tetrabody were superior to those of the hEx3 diabody. The increase in molecular weight is also expected to improve the pharmacokinetics of the bispecific diabody, making the hEx3 tetrabody attractive as a therapeutic antibody fragment for cancer immunotherapy.
Collapse
Affiliation(s)
- Ryutaro Asano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Factory neovessels: engineered human blood vessels secreting therapeutic proteins as a new drug delivery system. Gene Ther 2010; 17:745-51. [PMID: 20336155 DOI: 10.1038/gt.2010.33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several works have shown the feasibility of engineering functional blood vessels in vivo using human endothelial cells (ECs). Going further, we explored the therapeutic potential of neovessels after gene-modifying the ECs for the secretion of a therapeutic protein. Given that these vessels are connected with the host vascular bed, we hypothesized that systemic release of the expressed protein is immediate. As a proof of principle, we used primary human ECs transduced with a lentiviral vector for the expression of a recombinant bispecific alphaCEA/alphaCD3 antibody. These ECs, along with mesenchymal stem cells as a source of mural cells, were embedded in Matrigel and subcutaneously implanted in nude mice. High antibody levels were detected in plasma for 1 month. Furthermore, the antibody exerted a therapeutic effect in mice bearing distant carcinoembryonic-antigen (CEA)-positive tumors after inoculation of human T cells. In summary, we show for the first time the therapeutic effect of a protein locally secreted by engineered human neovessels.
Collapse
|
29
|
Compte M, Cuesta ÁM, Sánchez-Martín D, Alonso-Camino V, Vicario JL, Sanz L, Álvarez-Vallina L. Tumor immunotherapy using gene-modified human mesenchymal stem cells loaded into synthetic extracellular matrix scaffolds. Stem Cells 2009; 27:753-60. [PMID: 19096041 PMCID: PMC2729675 DOI: 10.1634/stemcells.2008-0831] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) are appealing as gene therapy cell vehicles given their ease of expansion and transduction. However, MSCs exhibit immunomodulatory and proangiogenic properties that may pose a risk in their use in anticancer therapy. For this reason, we looked for a strategy to confine MSCs to a determined location, compatible with a clinical application. Human MSCs genetically modified to express luciferase (MSCluc), seeded in a synthetic extracellular matrix (sECM) scaffold (sentinel scaffold) and injected subcutaneously in immunodeficient mice, persisted for more than 40 days, as assessed by bioluminescence imaging in vivo. MSCs modified to express a bispecific α-carcinoembryonic antigen (αCEA)/αCD3 diabody (MSCdAb) and seeded in an sECM scaffold (therapeutic scaffolds) supported the release of functional diabody into the bloodstream at detectable levels for at least 6 weeks after implantation. Furthermore, when therapeutic scaffolds were implanted into CEA-positive human colon cancer xenograft-bearing mice and human T lymphocytes were subsequently transferred, circulating αCEA/αCD3 diabody activated T cells and promoted tumor cell lysis. Reduction of tumor growth in MSCdAb-treated mice was statistically significant compared with animals that only received MSCluc. In summary, we report here for the first time that human MSCs genetically engineered to secrete a bispecific diabody, seeded in an sECM scaffold and implanted in a location distant from the primary tumor, induce an effective antitumor response and tumor regression.
Collapse
Affiliation(s)
- Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de HierroMadrid, Spain
| | - Ángel M Cuesta
- Molecular Immunology Unit, Hospital Universitario Puerta de HierroMadrid, Spain
| | | | | | | | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de HierroMadrid, Spain
| | | |
Collapse
|
30
|
Cuesta ÁM, Sánchez-Martín D, Sanz L, Bonet J, Compte M, Kremer L, Blanco FJ, Oliva B, Álvarez-Vallina L. In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences. PLoS One 2009; 4:e5381. [PMID: 19401768 PMCID: PMC2670539 DOI: 10.1371/journal.pone.0005381] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 03/27/2009] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need to develop new and effective agents for cancer targeting. In this work, a multivalent antibody is characterized in vivo in living animals. The antibody, termed "trimerbody", comprises a single-chain antibody (scFv) fragment connected to the N-terminal trimerization subdomain of collagen XVIII NC1 by a flexible linker. As indicated by computer graphic modeling, the trimerbody has a tripod-shaped structure with three highly flexible scFv heads radially outward oriented. Trimerbodies are trimeric in solution and exhibited multivalent binding, which provides them with at least a 100-fold increase in functional affinity than the monovalent scFv. Our results also demonstrate the feasibility of producing functional bispecific trimerbodies, which concurrently bind two different ligands. A trimerbody specific for the carcinoembryonic antigen (CEA), a classic tumor-associated antigen, showed efficient tumor targeting after systemic administration in mice bearing CEA-positive tumors. Importantly, a trimerbody that recognizes an angiogenesis-associated laminin epitope, showed excellent tumor localization in several cancer types, including fibrosarcomas and carcinomas. These results illustrate the potential of this new antibody format for imaging and therapeutic applications, and suggest that some laminin epitopes might be universal targets for cancer targeting.
Collapse
Affiliation(s)
- Ángel M. Cuesta
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - David Sánchez-Martín
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Jaume Bonet
- Structural Bioinformatics' Lab, Biomedical Informatics Research Unit, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Leonor Kremer
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francisco J. Blanco
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bizkaia, Spain
| | - Baldomero Oliva
- Structural Bioinformatics' Lab, Biomedical Informatics Research Unit, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Luis Álvarez-Vallina
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain
- * E-mail:
| |
Collapse
|
31
|
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-20. [PMID: 19374944 DOI: 10.1016/j.biotechadv.2009.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/03/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
Antibodies (Abs) are some of the most powerful tools in therapy and diagnostics and are currently one of the fastest growing classes of therapeutic molecules. Recombinant antibody (rAb) fragments are becoming popular therapeutic alternatives to full length monoclonal Abs since they are smaller, possess different properties that are advantageous in certain medical applications, can be produced more economically and are easily amendable to genetic manipulation. Single-chain variable fragment (scFv) Abs are one of the most popular rAb format as they have been engineered into larger, multivalent, bi-specific and conjugated forms for many clinical applications. This review will show the tremendous versatility and importance of scFv fragments as they provide the basic antigen binding unit for a multitude of engineered Abs for use as human therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | |
Collapse
|
32
|
Abstract
Costimulation is an essential step in T-cell activation and hence, represents an important aspect in cancer immunotherapy. 4-1BB, a member of the tumor necrosis factor receptor family, has gained particular interest as a costimulatory molecule. Here, we investigated the potential of a targeted activation of 4-1BB-mediated costimulation at the tumor site by generating a recombinant antibody-cytokine fusion protein composed of a single-chain antibody fragment (scFv36) specific for the tumor stromal antigen fibroblast activation protein (FAP) and the extracellular domain of the 4-1BB ligand (4-1BBL). The scFv36-4-1BBL fusion protein is a homotrimeric molecule that binds specifically to FAP and the receptor 4-1BB. T-cell costimulation was demonstrated by interferon-gamma release of peripheral blood mononuclear cells cocultured with FAP-expressing HT1080 cells upon T-cell receptor triggering by monoclonal anti-CD3 antibody. Costimulatory activity of the scFv36-4-1BBL fusion protein was concentration dependent, ligand-specific, and substantially constrained to FAP-expressing target cell binding. Furthermore, scFv36-4-1BBL enhanced T-cell activation when the bispecific antibody scDb33CD3 (specific for FAP and CD3) was used as primary stimulus. Thus, target cell-dependent costimulation with scFv36-4-1BBL constitutes a new option to enhance T-cell activation by bispecific antibodies or antigen-dependent T-cell receptor triggering and should be useful to improve T cell-mediated antitumor responses.
Collapse
|
33
|
Abstract
Use of cells as therapeutic carriers has increased in the past few years and has developed as a distinct concept and delivery method. Cell-based vehicles are particularly attractive for delivery of biotherapeutic agents that are difficult to synthesize, have reduced half-lives, limited tissue penetrance or are rapidly inactivated upon direct in vivo introduction. Initial studies using cell-based approaches served to identify some of the key factors for the success of this type of therapeutic delivery. These factors include the efficiency of cell loading with a therapeutic payload, the means of cell loading and the nature of therapeutics that cells can carry. However, one important aspect of cell-based delivery yet to be fully investigated is the process of actual delivery of the cell payload in vivo. In this regard, the potential ability of cell carriers to provide site-specific or targeted delivery of therapeutics deserves special attention. The present review focuses on a variety of targeting approaches that may be utilized to improve cell-based therapeutic delivery strategies. The different aspects of targeting that can be applied to cell vehicles will be discussed, including physical methods for directing cell distribution, intrinsic cell-mediated homing mechanisms and the feasibility of engineering cells with novel targeting mechanisms. Development of cell targeting strategies will further advance cell vehicle applications, broaden the applicability of this delivery approach and potentiate therapeutic outcomes.
Collapse
Affiliation(s)
- J C Roth
- Department of Medicine, Division of Human Gene Therapy, The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA.
| | | | | |
Collapse
|
34
|
Asano R, Sone Y, Makabe K, Tsumoto K, Hayashi H, Katayose Y, Unno M, Kudo T, Kumagai I. Humanization of the bispecific epidermal growth factor receptor x CD3 diabody and its efficacy as a potential clinical reagent. Clin Cancer Res 2007; 12:4036-42. [PMID: 16818703 DOI: 10.1158/1078-0432.ccr-06-0059] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Bispecific antibodies (BsAb) have been exploited as both cancer immunodiagnostics and cancer therapeutics and show promise in clinical trials of cancer imaging and therapy. For development of BsAbs as clinical reagents, we have focused on construction of small recombinant BsAbs, called bispecific diabodies. Here, we constructed and characterized a humanized bispecific diabody. EXPERIMENTAL DESIGN We have reported significant antitumor activity of an anti-epidermal growth factor receptor (EGFR) x anti-CD3 bispecific diabody (Ex3) in in vitro cytotoxicity assays and in vivo. We humanized the Ex3 diabody (hEx3) by grafting the complementarity-determining region and compared its biological properties with those of Ex3. We also tested its physiologic stability and ability to alter survival in xenografted mice. RESULTS The final yield of hEx3 was 10 times that of Ex3, and refolded hEx3 and Ex3 showed identical binding profiles in EGFR-positive cell lines and EGFR-transfected Chinese hamster ovary cells. hEx3 showed dose-dependent cytotoxicity to EGFR-positive cell lines, which could be specifically inhibited by parental monoclonal antibody IgGs against EGFR or CD3 antigens. The heterodimeric structure was retained in PBS for 6 months, and growth inhibition was maintained after incubation under physiologic conditions. Coadministration of hEx3 with T-LAK cells and interleukin-2 prolonged the survival of nude mice with human colon carcinoma. CONCLUSIONS The humanized diabody hEx3 is an attractive molecule for cancer therapy and may provide important insights into the development of EGFR-based cancer-targeting reagents.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- Antigen-Antibody Reactions
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- CD3 Complex/immunology
- CHO Cells
- Carcinoma/drug therapy
- Carcinoma/immunology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cloning, Molecular
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Cricetinae
- Cricetulus
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- ErbB Receptors/immunology
- Flow Cytometry
- Humans
- Mice
- Mice, Nude
- Protein Binding
- Transplantation, Heterologous
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ryutaro Asano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Müller D, Karle A, Meissburger B, Höfig I, Stork R, Kontermann RE. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J Biol Chem 2007; 282:12650-60. [PMID: 17347147 DOI: 10.1074/jbc.m700820200] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant bispecific antibodies such as tandem scFv molecules (taFv), diabodies (Db), or single chain diabodies (scDb) have shown to be able to retarget T lymphocytes to tumor cells, leading to their destruction. However, therapeutic efficacy is hampered by a short serum half-life of these small molecules having molecule masses of 50-60 kDa. Thus, improvement of the pharmacokinetic properties of small bispecific antibody formats is required to enhance efficacy in vivo. In this study, we generated several recombinant bispecific antibody-albumin fusion proteins and analyzed these molecules for biological activity and pharmacokinetic properties. Three recombinant antibody formats were produced by fusing two different scFv molecules, bispecific scDb or taFv molecules, respectively, to human serum albumin (HSA). These constructs (scFv(2)-HSA, scDb-HSA, taFv-HSA), directed against the tumor antigen carcinoembryonic antigen (CEA) and the T cell receptor complex molecule CD3, retained full binding capacity to both antigens compared with unfused scFv, scDb, and taFv molecules. Tumor antigen-specific retargeting and activation of T cells as monitored by interleukin-2 release was observed for scDb, scDb-HSA, taFv-HSA, and to a lesser extent for scFv(2)-HSA. T cell activation could be further enhanced by a target cell-specific costimulatory signal provided by a B7-DbCEA fusion protein. Furthermore, we could demonstrate that fusion to serum albumin strongly increases circulation time of recombinant bispecific antibodies. In addition, our comparative study indicates that single chain diabody-albumin fusion proteins seem to be the most promising format for further studying cytotoxic activities in vitro and in vivo.
Collapse
Affiliation(s)
- Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Compte M, Blanco B, Serrano F, Cuesta AM, Sanz L, Bernad A, Holliger P, Alvarez-Vallina L. Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA x anti-CD3 diabodies from lentivirally transduced human lymphocytes. Cancer Gene Ther 2007; 14:380-8. [PMID: 17218946 DOI: 10.1038/sj.cgt.7701021] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Infiltrating T lymphocytes are found in many malignancies, but they appear to be mostly anergic and do not attack the tumor, presumably because of defective T-cell activation events. Recently, we described a strategy for the tumor-specific polyclonal activation of tumor-resident T lymphocytes based on the in situ production of recombinant bispecific antibodies (bsAbs) by transfected nonhematological cell lines. Here, we have constructed a novel HIV-1-based lentiviral vector for efficient gene transduction into various human hematopoietic cell types. Several myelomonocytic and lymphocytic cell lines secreted the anti-carcinoembryonic antigen (CEA) x anti-CD3 diabody in a functionally active form with CD3(+) T-cell lines being the most efficient secretors. Furthermore, primary human peripheral blood lymphocytes (PBLs) were also efficiently transduced and secreted high levels of functional diabody. Importantly gene-modified PBLs significantly reduced in vivo tumor growth rates in xenograft studies. These results demonstrate, for the first time, the utility of lentiviral vectors for sustained expression of recombinant bsAbs in human T lymphocytes. Such T lymphocytes, transduced ex vivo to secrete the activating diabody in autocrine fashion, may provide a promising route for a gene therapy strategy for solid human tumors.
Collapse
Affiliation(s)
- M Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sánchez-Arévalo Lobo VJ, Cuesta AM, Sanz L, Compte M, García P, Prieto J, Blanco FJ, Alvarez-Vallina L. Enhanced antiangiogenic therapy with antibody-collagen XVIII NC1 domain fusion proteins engineered to exploit matrix remodeling events. Int J Cancer 2006; 119:455-62. [PMID: 16477626 DOI: 10.1002/ijc.21851] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antiangiogenic therapy is nowadays one of the most active fields in cancer research. The first strategies, aimed at inhibiting tumor vascularization, included upregulation of endogenous inhibitors and blocking of the signals delivered by angiogenic factors. But interaction between endothelial cells and their surrounding extracellular matrix also plays a critical role in the modulation of the angiogenic process. This study introduces a new concept to enhance the efficacy of antibody-based antiangiogenic cancer therapy strategies, taking advantage of a key molecular event occurring in the tumor context: the proteolysis of collagen XVIII, which releases the endogenous angiogenesis inhibitor endostatin. By fusing the collagen XVIII NC1 domain to an antiangiogenic single-chain antibody, a multispecific agent was generated, which was efficiently processed by tumor-associated proteinases to produce monomeric endostatin and fully functional trimeric antibody fragments. It was demonstrated that the combined production in the tumor area of complementary antiangiogenic agents from a single molecular entity secreted by gene-modified cells resulted in enhanced antitumor effects. These results indicate that tailoring recombinant antibodies with extracellular matrix-derived scaffolds is an effective approach to convert tumor progression associated processes into molecular clues for improving antibody-based therapies.
Collapse
|
38
|
Abstract
With 18 monoclonal antibody (mAb) products currently on the market and more than 100 in clinical trials, it is clear that engineered antibodies have come of age as biopharmaceuticals. In fact, by 2008, engineered antibodies are predicted to account for >30% of all revenues in the biotechnology market. Smaller recombinant antibody fragments (for example, classic monovalent antibody fragments (Fab, scFv)) and engineered variants (diabodies, triabodies, minibodies and single-domain antibodies) are now emerging as credible alternatives. These fragments retain the targeting specificity of whole mAbs but can be produced more economically and possess other unique and superior properties for a range of diagnostic and therapeutic applications. Antibody fragments have been forged into multivalent and multi-specific reagents, linked to therapeutic payloads (such as radionuclides, toxins, enzymes, liposomes and viruses) and engineered for enhanced therapeutic efficacy. Recently, single antibody domains have been engineered and selected as targeting reagents against hitherto immunosilent cavities in enzymes, receptors and infectious agents. Single-domain antibodies are anticipated to significantly expand the repertoire of antibody-based reagents against the vast range of novel biomarkers being discovered through proteomics. As this review aims to show, there is tremendous potential for all antibody fragments either as robust diagnostic reagents (for example in biosensors), or as nonimmunogenic in vivo biopharmaceuticals with superior biodistribution and blood clearance properties.
Collapse
Affiliation(s)
- Philipp Holliger
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
39
|
Abstract
Antibody-based therapeutics are beginning to realize the promise enclosed in their early denomination as magic bullets. Initial disappointment has turned into clinical and commercial success, and engineered antibodies currently represent over 30% of biopharmaceuticals in clinical trials. Recent structural and functional data have allowed the design of a new generation of therapeutic antibodies, with strategies ranging from complement-mediated and antibody-dependant cellular cytotoxicity enhancement to improved cytotoxic payloads using toxins, drugs, radionucleids and viral delivery. This review considers the structure of different types of recombinant antibodies, their mechanism of action and how their efficacy has been increased using a broad array of approaches. We will also focus on the additional benefits offered by the use of gene therapy methods for the in vivo production of therapeutic antibodies.
Collapse
Affiliation(s)
- Laura Sanz
- Servicio de Inmunologia, Hospital Universitario Puerta de Hierro, Madrid, Spain.
| | | | | | | |
Collapse
|
40
|
Abstract
Bispecific antibodies can serve as mediators to retarget effector mechanisms to disease-associated sites. Studies over the past two decades have revealed the potentials but also the limitations of conventional bispecific antibodies. The development of recombinant antibody formats has opened up the possibility of generating bispecific molecules with improved properties. This review summarizes recent developments in the field of recombinant bispecific antibodies and discusses further requirements for clinical development.
Collapse
Affiliation(s)
- Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
41
|
Sanz L, Blanco B, Alvarez-Vallina L. Antibodies and gene therapy: teaching old ‘magic bullets’ new tricks. Trends Immunol 2004; 25:85-91. [PMID: 15102367 DOI: 10.1016/j.it.2003.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The emergence of recombinant technologies has revolutionized the selection and production of monoclonal antibodies, allowing the design of fully human antibodies of any specificity and for diverse purposes. Recombinant antibodies can be engineered with optimized properties, such as antigen-binding affinity, molecular architecture and dimerization state, and fused with a vast array of effector moieties to enhance their tumor-targeting ability and potency. The use of gene therapy methods offers additional benefits by achieving sustained and effective concentrations of therapeutic antibodies directly at points of target intervention. This compensates for the rapid blood clearance of antibody fragments and could make the antibody less immunogenic and better tolerated. Furthermore, genetic approaches provide antibody molecules with new functions in unexpected scenarios: expression of antibody domains in precise intracellular locations and grafting of new binding activities to engineered cells. The relevance of these and other emerging concepts for antibody-based cancer therapy is discussed.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Medicine Program, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA
| | | | | |
Collapse
|
42
|
Kuroki M, Kuroki M, Shibaguchi H, Badran A, Hachimine K, Zhang J, Kinugasa T. Strategies to Endow Cytotoxic T Lymphocytes or Natural Killer Cells with Antibody Activity against Carcinoembryonic Antigen. Tumour Biol 2004; 25:208-16. [PMID: 15557759 DOI: 10.1159/000081104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 04/06/2004] [Indexed: 11/19/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are main effecter cells in cellular immunity against tumor cells. T-cell immunotherapy is based on the assumption that tumor(-associated) antigen (TA) peptides are correctly presented by HLA class I molecules on target tumor cells, and NK cell immunotherapy is based on the hypothesis that cell surface TAs or ligands for NK receptors are widely expressed in tumor cells. However, human tumor cells often lose HLA class I molecules, and target cell ligands for NK receptors are not always expressed in human tumor cells. These altered HLA class I phenotypes and non-ubiquitous expression of NK receptor ligands constitute the major tumor escape mechanism facing tumor-specific CTL and/or NK cell mediated responses. These facts also indicate that it is not easy to eliminate the target tumors only by activating tumor-specific CTLs or NK cells with cancer vaccine treatments. On the other hand, it is easily confirmed by immunohistochemistry whether or not antibody-recognized TAs exist on the cell surface of target tumor cells. Therefore, endowing CTLs or NK cells with antigen-binding specificity of anti-TA antibody is a promising approach for re-targeting the activities of these effector cells to tumor cells in an HLA-independent manner. This review summarizes the following four new strategies for re-targeting CTLs or NK cells to carcinoembryonic-antigen-expressing tumor cells: (1) bispecific antibody technology; (2) antibody-cytokine fusion protein technology; (3) chimeric immune receptor technology, and (4) antibody-HLA/peptide complex technology.
Collapse
Affiliation(s)
- Masahide Kuroki
- Department of Biochemistry, Fukuoka University School of Medicine, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|