1
|
Welsh RA, Song N, Park CS, Peske JD, Sadegh-Nasseri S. H2-O deficiency promotes regulatory T cell differentiation and CD4 T cell hyperactivity. Front Immunol 2024; 14:1304798. [PMID: 38250071 PMCID: PMC10796743 DOI: 10.3389/fimmu.2023.1304798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Regulatory T cells (Treg) are crucial immune modulators, yet the exact mechanism of thymic Treg development remains controversial. Here, we present the first direct evidence for H2-O, an MHC class II peptide editing molecular chaperon, on selection of thymic Tregs. We identified that lack of H2-O in the thymic medulla promotes thymic Treg development and leads to an increased peripheral Treg frequency. Single-cell RNA-sequencing (scRNA-seq) analysis of splenic CD4 T cells revealed not only an enrichment of effector-like Tregs, but also activated CD4 T cells in the absence of H2-O. Our data support two concepts; a) lack of H2-O expression in the thymic medulla creates an environment permissive to Treg development and, b) that loss of H2-O drives increased basal auto-stimulation of CD4 T cells. These findings can help in better understanding of predispositions to autoimmunity and design of therapeutics for treatment of autoimmune diseases.
Collapse
|
2
|
Song N, Welsh RA, Sadegh-Nasseri S. Proper development of long-lived memory CD4 T cells requires HLA-DO function. Front Immunol 2023; 14:1277609. [PMID: 37908352 PMCID: PMC10613709 DOI: 10.3389/fimmu.2023.1277609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction HLA-DO (DO) is an accessory protein that binds DM for trafficking to MIIC and has peptide editing functions. DO is mainly expressed in thymic medulla and B cells. Using biochemical experiments, our lab has discovered that DO has differential effects on editing peptides of different sequences: DO increases binding of DM-resistant peptides and reduces the binding of DM-sensitive peptides to the HLA-DR1 molecules. In a separate line of work, we have established that appropriate densities of antigen presentation by B cells during the contraction phase of an infection, induces quiescence in antigen experienced CD4 T cells, as they differentiate into memory T cells. This quiescence phenotype helps memory CD4 T cell survival and promotes effective memory responses to secondary Ag challenge. Methods Based on our mechanistic understanding of DO function, it would be expected that if the immunodominant epitope of antigen is DM-resistant, presentation of decreased densities of pMHCII by B cells would lead to faulty development of memory CD4 T cells in the absence of DO. We explored the effects of DO on development of memory CD4 T cells and B cells utilizing two model antigens, H5N1-Flu Ag bearing DM-resistant, and OVA protein, which has a DM-sensitive immunodominant epitope and four mouse strains including two DO-deficient Tg mice. Using Tetramers and multiple antibodies against markers of memory CD4 T cells and B cells, we tracked memory development. Results We found that immunized DR1+DO-KO mice had fewer CD4 memory T cells and memory B cells as compared to the DR1+DO-WT counterpart and had compromised recall responses. Conversely, OVA specific memory responses elicited in HA immunized DR1+DO-KO mice were normal. Conclusion These results demonstrate that in the absence of DO, the presentation of cognate foreign antigens in the DO-KO mice is altered and can impact the proper development of memory cells. These findings provide new insights on vaccination design leading to better immune memory responses.
Collapse
|
3
|
Welsh RA, Song N, Park CS, Peske JD, Sadegh-Nasseri S. H2-O deficiency promotes regulatory T cell differentiation and CD4 T cell hyperactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553240. [PMID: 37645777 PMCID: PMC10462011 DOI: 10.1101/2023.08.14.553240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Regulatory T cells (Treg) are crucial immune modulators, yet the exact mechanism of thymic Treg development remains controversial. Here, we present the first direct evidence for H2-O, an MHC class II peptide editing molecular chaperon, on selection of thymic Tregs. We provide evidence that lack of H2-O in the thymic medulla promotes thymic Treg development and leads to an increased peripheral Treg frequency. Single-cell RNA-sequencing (scRNA-seq) analysis of splenic CD4 T cells revealed not only of an enrichment of effector-like Tregs but also of activated CD4 T cells in the absence of H2-O. Our data support two concepts; a) lack of H2-O expression in the thymic medulla creates an environment permissive to Treg development and, b) that loss of H2-O drives increased basal auto-stimulation of CD4 T cells. These findings can help in better understanding of predispositions to autoimmunity and design of therapeutics for treatment of autoimmune diseases.
Collapse
|
4
|
Olsson N, Jiang W, Adler LN, Mellins ED, Elias JE. Tuning DO:DM ratios modulates MHC class II immunopeptidomes. Mol Cell Proteomics 2022; 21:100204. [DOI: 10.1016/j.mcpro.2022.100204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022] Open
|
5
|
Bernhardt AL, Zeun J, Marecek M, Reimann H, Kretschmann S, Bausenwein J, van der Meijden ED, Karg MM, Haug T, Meintker L, Lutzny-Geier G, Mackensen A, Kremer AN. Influence of DM-sensitivity on immunogenicity of MHC class II restricted antigens. J Immunother Cancer 2021; 9:jitc-2021-002401. [PMID: 34266882 PMCID: PMC8286791 DOI: 10.1136/jitc-2021-002401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Graft-versus-host-disease (GvHD) is a major problem in allogeneic stem cell transplantation. We previously described two types of endogenous human leukocyte antigen (HLA)-II restricted antigens depending on their behavior towards HLA-DM. While DM-resistant antigens are presented in the presence of HLA-DM, DM-sensitive antigens rely on the expression of HLA-DO-the natural inhibitor of HLA-DM. Since expression of HLA-DO is not upregulated by inflammatory cytokines, DM-sensitive antigens cannot be presented on non-hematopoietic tissues even under inflammatory conditions. Therefore, usage of CD4+ T cells directed against DM-sensitive antigens might allow induction of graft-versus-leukemia effect without GvHD. As DM-sensitivity is likely linked to low affinity peptides, it remains elusive whether DM-sensitive antigens are inferior in their immunogenicity. METHODS We created an in vivo system using a DM-sensitive and a DM-resistant variant of the same antigen. First, we generated murine cell lines overexpressing either H2-M or H2-O (murine HLA-DM and HLA-DO) to assign the two model antigens ovalbumin (OVA) and DBY to their category. Further, we introduced mutations within the two T-cell epitopes and tested the effect on DM-sensitivity or DM-resistance. Furthermore, we vaccinated C57BL/6 mice with either variant of the epitope and measured expansion and reactivity of OVA-specific and DBY-specific CD4+ T cells. RESULTS By testing T-cell recognition of OVA and DBY on a murine B-cell line overexpressing H2-M and H2-O, respectively, we showed that OVA leads to a stronger T-cell activation in the presence of H2-O demonstrating its DM-sensitivity. In contrast, the DBY epitope does not rely on H2-O for T-cell activation indicating DM-resistance. By introducing mutations within the T-cell epitopes we could generate one further DM-sensitive variant of OVA and two DM-resistant counterparts. Likewise, we designed DM-resistant and DM-sensitive variants of DBY. On vaccination of C57BL/6 mice with either epitope variant we measured comparable expansion and reactivity of OVA-specific and DBY-specific T-cells both in vivo and ex vivo. By generating T-cell lines and clones of healthy human donors we showed that DM-sensitive antigens are targeted by the natural T-cell repertoire. CONCLUSION We successfully generated DM-sensitive and DM-resistant variants for two model antigens. Thereby, we demonstrated that DM-sensitive antigens are not inferior to their DM-resistant counterpart and are therefore interesting tools for immunotherapy after allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Anna Luise Bernhardt
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Julia Zeun
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Miriam Marecek
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Hannah Reimann
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Sascha Kretschmann
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Judith Bausenwein
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Edith D van der Meijden
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Margarete M Karg
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany.,Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Tabea Haug
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Lisa Meintker
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Gloria Lutzny-Geier
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5 - Hematology and Internal Oncology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Bayern, Germany
| |
Collapse
|
6
|
Álvaro-Benito M, Freund C. Revisiting nonclassical HLA II functions in antigen presentation: Peptide editing and its modulation. HLA 2020; 96:415-429. [PMID: 32767512 DOI: 10.1111/tan.14007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
The nonclassical major histocompatibility complex of class II molecules (ncMHCII) HLA-DM (DM) and HLA-DO (DO) feature essential functions for the selection of the peptides that are displayed by classical MHCII proteins (MHCII) for CD4+ Th cell surveillance. Thus, although the binding groove of classical MHCII dictates the main features of the peptides displayed, ncMHCII function defines the preferential loading of peptides from specific cellular compartments and the extent to which they are presented. DM acts as a chaperone for classical MHCII molecules facilitating peptide exchange and thereby favoring the binding of peptide-MHCII complexes of high kinetic stability mostly in late endosomal compartments. DO on the other hand binds to DM blocking its peptide-editing function in B cells and thymic epithelial cells, limiting DM activity in these cellular subsets. DM and DO distinct expression patterns therefore define specific antigen presentation profiles that select unique peptide pools for each set of antigen presenting cell. We have come a long way understanding the mechanistic underpinnings of such distinct editing profiles and start to grasp the implications for ncMHCII biological function. DM acts as filter for the selection of immunodominant, pathogen-derived epitopes while DO blocks DM activity under certain physiological conditions to promote tolerance to self. Interestingly, recent findings have shown that the unexplored and neglected ncMHCII genetic diversity modulates retroviral infection in mouse, and affects human ncMHCII function. This review aims at highlighting the importance of ncMHCII function for CD4+ Th cell responses while integrating and evaluating what could be the impact of distinct editing profiles because of natural genetic variations.
Collapse
Affiliation(s)
- Miguel Álvaro-Benito
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute für Chemie und Biochemie, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
7
|
Synergy between B cell receptor/antigen uptake and MHCII peptide editing relies on HLA-DO tuning. Sci Rep 2019; 9:13877. [PMID: 31554902 PMCID: PMC6761166 DOI: 10.1038/s41598-019-50455-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
B cell receptors and surface-displayed peptide/MHCII complexes constitute two key components of the B-cell machinery to sense signals and communicate with other cell types during antigen-triggered activation. However, critical pathways synergizing antigen-BCR interaction and antigenic peptide-MHCII presentation remain elusive. Here, we report the discovery of factors involved in establishing such synergy. We applied a single-cell measure coupled with super-resolution microscopy to investigate the integrated function of two lysosomal regulators for peptide loading, HLA-DM and HLA-DO. In model cell lines and human tonsillar B cells, we found that tunable DM/DO stoichiometry governs DMfree activity for exchange of placeholder CLIP peptides with high affinity MHCII ligands. Compared to their naïve counterparts, memory B cells with less DMfree concentrate a higher proportion of CLIP/MHCII in lysosomal compartments. Upon activation mediated by high affinity BCR, DO tuning is synchronized with antigen internalization and rapidly potentiates DMfree activity to optimize antigen presentation for T-cell recruitment.
Collapse
|
8
|
Nanaware PP, Jurewicz MM, Leszyk JD, Shaffer SA, Stern LJ. HLA-DO Modulates the Diversity of the MHC-II Self-peptidome. Mol Cell Proteomics 2019; 18:490-503. [PMID: 30573663 PMCID: PMC6398211 DOI: 10.1074/mcp.ra118.000956] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/26/2018] [Indexed: 12/30/2022] Open
Abstract
Presentation of antigenic peptides on MHC-II molecules is essential for tolerance to self and for initiation of immune responses against foreign antigens. DO (HLA-DO in humans, H2-O in mice) is a nonclassical MHC-II protein that has been implicated in control of autoimmunity and regulation of neutralizing antibody responses to viruses. These effects likely are related to a role of DO in selecting MHC-II epitopes, but previous studies examining the effect of DO on presentation of selected CD4 T cell epitopes have been contradictory. To understand how DO modulates MHC-II antigen presentation, we characterized the full spectrum of peptides presented by MHC-II molecules expressed by DO-sufficient and DO-deficient antigen-presenting cells in vivo and in vitro using quantitative mass spectrometry approaches. We found that DO controlled the diversity of the presented peptide repertoire, with a subset of peptides presented only when DO was expressed. Antigen-presenting cells express another nonclassical MHC-II protein, DM, which acts as a peptide editor by preferentially catalyzing the exchange of less stable MHC-II peptide complexes, and which is inhibited when bound to DO. Peptides presented uniquely in the presence of DO were sensitive to DM-mediated exchange, suggesting that decreased DM editing was responsible for the increased diversity. DO-deficient mice mounted CD4 T cell responses against wild-type antigen-presenting cells, but not vice versa, indicating that DO-dependent alterations in the MHC-II peptidome could be recognized by circulating T cells. These data suggest that cell-specific and regulated expression of HLA-DO serves to fine-tune MHC-II peptidomes, in order to enhance self-tolerance to a wide spectrum of epitopes while allowing focused presentation of immunodominant epitopes during an immune response.
Collapse
Affiliation(s)
- Padma P Nanaware
- From the ‡Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Mollie M Jurewicz
- From the ‡Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - John D Leszyk
- §Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts 01545
| | - Scott A Shaffer
- §Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts 01545
- ¶Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Lawrence J Stern
- From the ‡Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
- ¶Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
9
|
Welsh R, Song N, Sadegh-Nasseri S. What to do with HLA-DO/H-2O two decades later? Immunogenetics 2019; 71:189-196. [PMID: 30683973 PMCID: PMC6377320 DOI: 10.1007/s00251-018-01097-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
The main objective of antigen processing is to orchestrate the selection of immunodominant epitopes for recognition by CD4 T cells. To achieve this, MHC class II molecules have evolved with a flexible peptide-binding groove in need of a bound peptide. Newly synthesized MHC-II molecules bind a class II invariant chain (Ii) upon synthesis and are shuttled to a specialized compartment, where they encounter exogenous antigens. Ii serves multiple functions, one of which is to maintain the shape of the MHC-II groove so that it can readily bind exogenous antigens upon dissociation of the Ii peptide in MHC- II compartment. MIIC contains processing enzymes, one or both accessory molecules, HLA-DM/H2-M (DM) and HLA-DO/H2-O (DO), and optimal denaturing conditions. In a process known as "editing," DM facilitates the dissociation of the invariant chain peptide, CLIP, for exchange with exogenous antigens. Despite the availability of mechanistic insights into DM functions, understanding how DO contributes to epitope selection has proven to be more challenging. The current dogma assumes that DO inhibits DM, whereas an opposing model suggests that DO fine-tunes the epitope selection process. Understanding which of these, or potentially other models of DO function is important, as DO variants have been linked to autoimmunity, cancer, and the generation of broadly neutralizing antibodies to viruses. This review therefore attempts to evaluate experimental evidence in support of these hypotheses, with an emphasis on the less discussed model, and to explore intriguing questions about the importance of DO in biology.
Collapse
Affiliation(s)
- Robin Welsh
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Nianbin Song
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology and Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 2018; 71:171-187. [PMID: 30421030 DOI: 10.1007/s00251-018-1095-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Presentation of peptide antigens by MHC-II proteins is prerequisite to effective CD4 T cell tolerance to self and to recognition of foreign antigens. Antigen uptake and processing pathways as well as expression of the peptide exchange factors HLA-DM and HLA-DO differ among the various professional and non-professional antigen-presenting cells and are modulated by cell developmental state and activation. Recent studies have highlighted the importance of these cell-specific factors in controlling the source and breadth of peptides presented by MHC-II under different conditions. During inflammation, increased presentation of selected self-peptides has implications for maintenance of peripheral tolerance and autoimmunity.
Collapse
|
11
|
Macmillan H, Strohman MJ, Ayyangar S, Jiang W, Rajasekaran N, Spura A, Hessell AJ, Madec AM, Mellins ED. The MHC class II cofactor HLA-DM interacts with Ig in B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:2641-2650. [PMID: 25098292 PMCID: PMC4157100 DOI: 10.4049/jimmunol.1400075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
B cells internalize extracellular Ag into endosomes using the Ig component of the BCR. In endosomes, Ag-derived peptides are loaded onto MHC class II proteins. How these pathways intersect remains unclear. We find that HLA-DM (DM), a catalyst for MHC class II peptide loading, coprecipitates with Ig in lysates from human tonsillar B cells and B cell lines. The molecules in the Ig/DM complexes have mature glycans, and the complexes colocalize with endosomal markers in intact cells. A larger fraction of Ig precipitates with DM after BCR crosslinking, implying that complexes can form when DM meets endocytosed Ig. In vitro, in the endosomal pH range, soluble DM directly binds the Ig Fab domain and increases levels of free Ag released from immune complexes. Taken together, these results argue that DM and Ig intersect in the endocytic pathway of B cells with potential functional consequences.
Collapse
Affiliation(s)
- Henriette Macmillan
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J. Strohman
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sashi Ayyangar
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wei Jiang
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Narendiran Rajasekaran
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Armin Spura
- Life Technologies, South San Francisco, CA 94080, USA
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | - Elizabeth D. Mellins
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Allan ERO, Tailor P, Balce DR, Pirzadeh P, McKenna NT, Renaux B, Warren AL, Jirik FR, Yates RM. NADPH Oxidase Modifies Patterns of MHC Class II–Restricted Epitopic Repertoires through Redox Control of Antigen Processing. THE JOURNAL OF IMMUNOLOGY 2014; 192:4989-5001. [DOI: 10.4049/jimmunol.1302896] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Mellins ED, Stern LJ. HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol 2013; 26:115-22. [PMID: 24463216 DOI: 10.1016/j.coi.2013.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/28/2022]
Abstract
Peptide loading of class II MHC molecules in endosomal compartments is regulated by HLA-DM. HLA-DO modulates HLA-DM function, with consequences for the spectrum of MHC-bound epitopes presented at the cell surface for interaction with T cells. Here, we summarize and discuss recent progress in investigating the molecular mechanisms of action of HLA-DM and HLA-DO and in understanding their roles in immune responses. Key findings are the long-awaited structures of HLA-DM in complex with its class II substrate and with HLA-DO, and observation of a novel phenotype--autoimmunity combined with immunodeficiency--in mice lacking HLA-DO. We also highlight several areas where gaps persist in our knowledge about this pair of proteins and their molecular biology and immunobiology.
Collapse
Affiliation(s)
- Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA 94305, United States
| | - Lawrence J Stern
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|
14
|
Poluektov YO, Kim A, Sadegh-Nasseri S. HLA-DO and Its Role in MHC Class II Antigen Presentation. Front Immunol 2013; 4:260. [PMID: 24009612 PMCID: PMC3756479 DOI: 10.3389/fimmu.2013.00260] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/15/2013] [Indexed: 11/25/2022] Open
Abstract
Helper T cells are stimulated to fight infections or diseases upon recognition of peptides from antigens that are processed and presented by the proteins of Major Histocompatibility Complex (MHC) Class II molecules. Degradation of a full protein into small peptide fragments is a lengthy process consisting of many steps and chaperones. Malfunctions during any step of antigen processing could lead to the development of self-reactive T cells or defective immune response to pathogens. Although much has been accomplished regarding how antigens are processed and presented to T cells, many questions still remain unanswered, preventing the design of therapeutics for direct intervention with antigen processing. Here, we review published work on the discovery and function of a MHC class II molecular chaperone, HLA-DO, in human, and its mouse analog H2-O, herein called DO. While DO was originally discovered decades ago, elucidating its function has proven challenging. DO was discovered in association with another chaperone HLA-DM (DM) but unlike DM, its distribution is more tissue specific, and its function more subtle.
Collapse
Affiliation(s)
- Yuri O Poluektov
- Graduate Program in Immunology, Johns Hopkins University , Baltimore, MD , USA
| | | | | |
Collapse
|
15
|
Poluektov YO, Kim A, Hartman IZ, Sadegh-Nasseri S. HLA-DO as the optimizer of epitope selection for MHC class II antigen presentation. PLoS One 2013; 8:e71228. [PMID: 23951115 PMCID: PMC3738515 DOI: 10.1371/journal.pone.0071228] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
Processing of antigens for presentation to helper T cells by MHC class II involves HLA-DM (DM) and HLA-DO (DO) accessory molecules. A mechanistic understanding of DO in this process has been missing. The leading model on its function proposes that DO inhibits the effects of DM. To directly study DO functions, we designed a recombinant soluble DO and expressed it in insect cells. The kinetics of binding and dissociation of several peptides to HLA-DR1 (DR1) molecules in the presence of DM and DO were measured. We found that DO reduced binding of DR1 to some peptides, and enhanced the binding of some other peptides to DR1. Interestingly, these enhancing and reducing effects were observed in the presence, or absence, of DM. We found that peptides that were negatively affected by DO were DM-sensitive, whereas peptides that were enhanced by DO were DM-resistant. The positive and negative effects of DO could only be measured on binding kinetics as peptide dissociation kinetics were not affected by DO. Using Surface Plasmon Resonance, we demonstrate direct binding of DO to a peptide-receptive, but not a closed conformation of DR1. We propose that DO imposes another layer of control on epitope selection during antigen processing.
Collapse
Affiliation(s)
- Yuri O. Poluektov
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - AeRyon Kim
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Isamu Z. Hartman
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Scheherazade Sadegh-Nasseri
- Graduate Program in Immunology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Painter CA, Stern LJ. Conformational variation in structures of classical and non-classical MHCII proteins and functional implications. Immunol Rev 2013; 250:144-57. [PMID: 23046127 DOI: 10.1111/imr.12003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent structural characterizations of classical and non-classical major histocompatibility complex class II (MHCII) proteins have provided a view into the dynamic nature of the MHCII-peptide binding groove and the role that structural changes play in peptide loading processes. Although there have been numerous reports of crystal structures for MHCII-peptide complexes, a detailed analysis comparing all the structures has not been reported, and subtle conformational variations present in these structures may not have been fully appreciated. We compared the 91 MHCII crystal structures reported in the PDB to date, including an HLA-DR mutant particularly susceptible to DM-mediated peptide exchange, and reviewed experimental and computational studies of the effect of peptide binding on MHCII structure. These studies provide evidence for conformational lability in and around the α-subunit 3-10 helix at residues α48-51, a region known to be critical for HLA-DM-mediated peptide exchange. A biophysical study of MHC-peptide hydrogen bond strengths and a recent structure of the non-classical MHCII protein HLA-DO reveal changes in the same region. Conformational variability was observed also in the vicinity of a kink in the β-subunit helical region near residue β66 and in the orientation and loop conformation in the β2 Ig domain. Here, we provide an overview of the regions within classical and non-classical MHCII proteins that display conformational changes and the potential role that these changes may have in the peptide loading/exchange process.
Collapse
Affiliation(s)
- Corrie A Painter
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, USA
| | | |
Collapse
|
17
|
HLA-DO acts as a substrate mimic to inhibit HLA-DM by a competitive mechanism. Nat Struct Mol Biol 2012; 20:90-8. [PMID: 23222639 PMCID: PMC3537886 DOI: 10.1038/nsmb.2460] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 10/25/2012] [Indexed: 12/03/2022]
Abstract
MHCII proteins bind peptide antigens in endosomal compartments of antigen-presenting cells. The non-classical MHCII protein HLA-DM chaperones peptide-free MHCII against inactivation and catalyzes peptide exchange on loaded MHCII. Another non-classical MHCII protein, HLA-DO, binds HLA-DM and influences the repertoire of peptides presented by MHCII proteins. However, the mechanism by which HLA-DO functions is unclear. Here we use x-ray crystallography, enzyme kinetics and mutagenesis approaches to investigate human HLA-DO structure and function. In complex with HLA-DM, HLA-DO adopts a classical MHCII structure, with alterations near the alpha subunit 310 helix. HLA-DO binds to HLA-DM at the same sites implicated in MHCII interaction, and kinetic analysis demonstrates that HLA-DO acts as a competitive inhibitor. These results show that HLA-DO inhibits HLA-DM function by acting as a substrate mimic and place constraints on possible functional roles for HLA-DO in antigen presentation.
Collapse
|
18
|
Gu Y, Jensen PE, Chen X. Immunodeficiency and autoimmunity in H2-O-deficient mice. THE JOURNAL OF IMMUNOLOGY 2012; 190:126-37. [PMID: 23209323 DOI: 10.4049/jimmunol.1200993] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HLA-DO/H2-O is a highly conserved, nonpolymorphic MHC class II-like molecule expressed in association with H2-M in thymic epithelial cells, B lymphocytes, and primary dendritic cells. The physiological function of DO remains unknown. The finding of cell maturation-dependent DO expression in B lymphocytes and dendritic cells suggests the possibility that H2-O functions to promote the presentation of exogenous Ag by attenuating presentation of endogenous self-peptides. In the current study, we report that H2-O(-/-) mice spontaneously develop high titers of IgG2a/c antinuclear Abs (ANAs) with specificity for dsDNA, ssDNA, and histones. Reconstitution of RAG1(-)(/)(-) mice with T and B cells from H2-O(-)(/)(-) or wild-type mice demonstrated that production of ANAs requires participation of CD4(+) T cells from H2-O(-)(/)(-) mice. Bone marrow chimeras demonstrated that loss of H2-O expression in thymic epithelial cells did not induce ANAs, and that lack of H2-O expression in bone marrow-derived cells was sufficient to induce the autoimmune phenotype. Despite production of high titers of autoantibodies, H2-O(-/-) mice exhibit a delayed generation of humoral immunity to model Ags (OVA and keyhole limpet hemocyanin), affecting all major T-dependent Ig classes, including IgG2a/c. Ag presentation experiments demonstrated that presentation of exogenous Ag by H2-O(-/-) APC was inefficient as compared with wild-type APC. Thus, H2-O promotes immunity toward exogenous Ags while inhibiting autoimmunity. We suggest that H2-O, through spatially or temporally inhibiting H2-M, may enhance presentation of exogenous Ag by limiting newly generated MHC class II molecules from forming stable complexes with endogenous self-peptides.
Collapse
Affiliation(s)
- Yapeng Gu
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
19
|
Endogenous HLA class II epitopes that are immunogenic in vivo show distinct behavior toward HLA-DM and its natural inhibitor HLA-DO. Blood 2012; 120:3246-55. [DOI: 10.1182/blood-2011-12-399311] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
CD4+ T cells play a central role in adaptive immunity. The acknowledgment of their cytolytic effector function and the finding that endogenous antigens can enter the HLA class II processing pathway make CD4+ T cells promising tools for immunotherapy. Expression of HLA class II and endogenous antigen, however, does not always correlate with T-cell recognition. We therefore investigated processing and presentation of endogenous HLA class II epitopes that induced CD4+ T cells during in vivo immune responses. We demonstrate that the peptide editor HLA-DM allowed antigen presentation of some (DM-resistant antigens) but abolished surface expression of other natural HLA class II epitopes (DM-sensitive antigens). DM sensitivity was shown to be epitope specific, mediated via interaction between HLA-DM and the HLA-DR restriction molecule, and reversible by HLA-DO. Because of the restricted expression of HLA-DO, presentation of DM-sensitive antigens was limited to professional antigen-presenting cells, whereas DM-resistant epitopes were expressed on all HLA class II–expressing cells. In conclusion, our data provide novel insights into the presentation of endogenous HLA class II epitopes and identify intracellular antigen processing and presentation as a critical factor for CD4+ T-cell recognition. This opens perspectives to exploit selective processing capacities as a new approach for targeted immunotherapy.
Collapse
|
20
|
Li Y, Li S, Hoshino M, Ishikawa R, Kajiwara C, Gao X, Zhao Y, Ishido S, Udono H, Wang JY. HSP90α deficiency does not affect immunoglobulin gene hypermutation and class switch but causes enhanced MHC class II antigen presentation. Int Immunol 2012; 24:751-8. [PMID: 22855849 DOI: 10.1093/intimm/dxs076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone required for efficient antigen presentation and cross-presentation. In addition, HSP90 was recently reported to interact with and stabilize the activation-induced cytidine deaminase (AID) and plays a critical role in immunoglobulin gene hypermutation and class switch recombination. In mice and humans, there are two HSP90 isoforms, HSP90α and HSP90β, but the in vivo role of each isoform remains largely unknown. Here we have analyzed humoral immune responses in HSP90α-deficient mice. We found that HSP90α deficiency did not affect AID protein expression. B cell development and maturation, as well as immunoglobulin gene hypermuation and class switch, occurred normally in HSP90α-deficient mice. However, antibody production to a T-dependent antigen was elevated in the mutant mice and this was associated with enhanced MHC class II antigen presentation to T helper cells by dendritic cells. Our results reveal a previously unidentified inhibitory role for HSP90α isoform in MHC class II antigen presentation and the humoral immune response. Along with our recent finding that HSP90α is required for antigen cross-presentation, these results suggest that HSP90α controls the balance of humoral and cellular immunity by dictating the fate of presentation of exogenous antigen.
Collapse
Affiliation(s)
- Yingqian Li
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University Nanjing 210061, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wilson CL, Hine DW, Pradipta A, Pearson JP, van Eden W, Robinson JH, Knight AM. Presentation of the candidate rheumatoid arthritis autoantigen aggrecan by antigen-specific B cells induces enhanced CD4(+) T helper type 1 subset differentiation. Immunology 2012; 135:344-54. [PMID: 22182481 DOI: 10.1111/j.1365-2567.2011.03548.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Effective immune responses require antigen uptake by antigen-presenting cells (APC), followed by controlled endocytic proteolysis resulting in the generation of antigen-derived peptide fragments that associate with intracellular MHC class II molecules. The resultant peptide-MHC class II complexes then move to the APC surface where they activate CD4(+) T cells. Dendritic cells (DC), macrophages and B cells act as efficient APC. In many settings, including the T helper type 1 (Th1) -dependent, proteoglycan-induced arthritis model of rheumatoid arthritis, accumulating evidence demonstrates that antigen presentation by B cells is required for optimal CD4(+) T cell activation. The reasons behind this however, remain unclear. In this study we have compared the activation of CD4(+) T cells specific for the proteoglycan aggrecan following antigen presentation by DC, macrophages and B cells. We show that aggrecan-specific B cells are equally efficient APC as DC and macrophages and use similar intracellular antigen-processing pathways. Importantly, we also show that antigen presentation by aggrecan-specific B cells to TCR transgenic CD4(+) T cells results in enhanced CD4(+) T cell interferon-γ production and Th1 effector sub-set differentiation compared with that seen with DC. We conclude that preferential CD4(+) Th1 differentiation may define the requirement for B cell APC function in both proteoglycan-induced arthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Caroline L Wilson
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
H2-O, a MHC class II-like protein, sets a threshold for B-cell entry into germinal centers. Proc Natl Acad Sci U S A 2010; 107:16607-12. [PMID: 20807742 DOI: 10.1073/pnas.1004664107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upon antigen (Ag) encounter, B cells require T-cell help to enter the germinal center (GC). They obtain this help by presenting Ag-derived peptides on MHC class II (MHCII) for recognition by the T-cell receptor (TCR) of CD4(+) T cells. Peptides are loaded onto MHCII in endosomal compartments in a process catalyzed by the MHCII-like protein H2-M (HLA-DM in humans). This process is modulated by another MHCII-like protein, H2-O (HLA-DO in humans). H2-O is a biochemical inhibitor of peptide loading onto MHCII; however, on the cellular level, it has been shown to have varying effects on Ag presentation. Thus, the function of H2-O in the adaptive immune response remains unclear. Here, we examine the effect of H2-O expression on the ability of Ag-specific B cells to enter the GC. We show that when Ag specific WT and H2-O(-/-) B cells are placed in direct competition, H2-O(-/-) B cells preferentially populate the GC. This advantage is confined to Ag-specific B cells and is due to their superior ability to obtain Ag-specific T-cell help when T-cell help is limiting. Overall, our work shows that H2-O expression reduces the ability of B cells to gain T-cell help and participate in the GC reaction.
Collapse
|
23
|
Yi W, Seth NP, Martillotti T, Wucherpfennig KW, Sant'Angelo DB, Denzin LK. Targeted regulation of self-peptide presentation prevents type I diabetes in mice without disrupting general immunocompetence. J Clin Invest 2010; 120:1324-36. [PMID: 20200448 DOI: 10.1172/jci40220] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 01/06/2010] [Indexed: 01/06/2023] Open
Abstract
Peptide loading of MHC class II (MHCII) molecules is directly catalyzed by the MHCII-like molecule HLA-DM (DM). Another MHCII-like molecule, HLA-DO (DO), associates with DM, thereby modulating DM function. The biological role of DO-mediated regulation of DM activity in vivo remains unknown; however, it has been postulated that DO expression dampens presentation of self antigens, thereby preventing inappropriate T cell activation that ultimately leads to autoimmunity. To test the idea that DO modulation of the MHCII self-peptide repertoire mediates self tolerance, we generated NOD mice that constitutively overexpressed DO in DCs (referred to herein as NOD.DO mice). NOD mice are a mouse model for type 1 diabetes, an autoimmune disease mediated by the destruction of insulin-secreting pancreatic beta cells. Our studies showed that diabetes development was completely blocked in NOD.DO mice. Similar to NOD mice, NOD.DO animals selected a diabetogenic T cell repertoire, and the numbers and function of Tregs were normal. Indeed, immune system function in NOD.DO mice was equivalent to that in NOD mice. NOD.DO DCs, however, presented an altered MHCII-bound self-peptide repertoire, thereby preventing the activation of diabetogenic T cells and subsequent diabetes development. These studies show that DO expression can shape the overall MHCII self-peptide repertoire to promote T cell tolerance.
Collapse
Affiliation(s)
- Woelsung Yi
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
24
|
MHC class II antigen presentation and immunological abnormalities due to deficiency of MHC class II and its associated genes. Exp Mol Pathol 2008; 85:40-4. [PMID: 18547561 DOI: 10.1016/j.yexmp.2008.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 03/02/2008] [Indexed: 11/24/2022]
Abstract
Antigen presentation by Major Histocompatibility Complex (MHC) class II molecules plays an important role in controlling immunity and autoimmunity. Multiple co-factors including the invariant chain (Ii), HLA-DM and HLA-DO are involved in this process. While the role for Ii and DM has been well defined, the biological function of DO remains obscure. Our data indicate that DO inhibits presentation of endogenous self-antigens and that developmentally-regulated DO expression enables antigen presenting cells to preferentially present different sources of peptide antigens at different stages of development. Disruption of this regulatory mechanism can result in not only immunodeficiency but also autoimmunity. Despite the fact that deletion of each of the three genes in experimental animals is associated with profound immunological abnormalities, no corresponding human diseases have been reported. This discrepancy suggests the possibility that primary immunodeficiencies due to a genetic defect of Ii, DM and DO in humans are under diagnosed or diagnosed as "common variable immunodeficiency", a category of immunodeficiency of heterogeneous or undefined etiology. Clinical tests for any of these potential genetic defects are not yet available. We propose the use of multi-color flow cytometry in conjunction with intracellular staining to detect expression of Ii, DM, DO in peripheral blood B cells as a convenient reliable screening test to identify individuals with defects in antigen presentation.
Collapse
|
25
|
Fallas JL, Yi W, Draghi NA, O'Rourke HM, Denzin LK. Expression Patterns of H2-O in Mouse B Cells and Dendritic Cells Correlate with Cell Function. THE JOURNAL OF IMMUNOLOGY 2007; 178:1488-97. [PMID: 17237397 DOI: 10.4049/jimmunol.178.3.1488] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the endosomes of APCs, the MHC class II-like molecule H2-M catalyzes the exchange of class II-associated invariant chain peptides (CLIP) for antigenic peptides. H2-O is another class II-like molecule that modulates the peptide exchange activity of H2-M. Although the expression pattern of H2-O in mice has not been fully evaluated, H2-O is expressed by thymic epithelial cells, B cells, and dendritic cells (DCs). In this study, we investigated H2-O, H2-M, and I-A(b)-CLIP expression patterns in B cell subsets during B cell development and activation. H2-O was first detected in the transitional 1 B cell subset and high levels were maintained in marginal zone and follicular B cells. H2-O levels were down-regulated specifically in germinal center B cells. Unexpectedly, we found that mouse B cells may have a pool of H2-O that is not associated with H2-M. Additionally, we further evaluate H2-O and H2-M interactions in mouse DCs, as well as H2-O expression in bone marrow-derived DCs. We also evaluated H2-O, H2-M, I-A(b), and I-A(b)-CLIP expression in splenic DC subsets, in which H2-O expression levels varied among the splenic DC subsets. Although it has previously been shown that H2-O modifies the peptide repertoire, H2-O expression did not alter DC presentation of a number of endogenous and exogenous Ags. Our further characterization of H2-O expression in DCs, as well as the identification of a potential free pool of H2-O in mouse splenic B cells, suggest that H2-O may have a yet to be elucidated role in immune responses.
Collapse
Affiliation(s)
- Jennifer L Fallas
- Cell Biology and Genetics Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
26
|
Shih FF, Racz J, Allen PM. Differential MHC class II presentation of a pathogenic autoantigen during health and disease. THE JOURNAL OF IMMUNOLOGY 2006; 176:3438-48. [PMID: 16517712 DOI: 10.4049/jimmunol.176.6.3438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucose-6-phosphate isomerase (GPI) is the target autoantigen recognized by KRN T cells in the K/BxN model of rheumatoid arthritis. T cell reactivity to this ubiquitous Ag results in the recruitment of anti-GPI B cells and subsequent immune complex-mediated arthritis. Because all APCs have the capacity to process and present this autoantigen, it is unclear why systemic autoimmunity with polyclonal B cell activation does not ensue. To this end, we examined how GPI is presented by B cells relative to other immunologically relevant APCs such as dendritic cells (DCs) and macrophages in the steady state, during different phases of arthritis development, and after TLR stimulation. Although all APCs can process and present the GPI:I-A(g7) complex, they do so with different efficiencies. DCs are the most potent at baseline and become progressively more potent with disease development correlating with immune complex uptake. Interestingly, in vivo and in vitro maturation of DCs did not enhance GPI presentation, suggesting that DCs use mechanisms to regulate the presentation of self-peptides. Non-GPI-specific B cells are the weakest APCs (100-fold less potent than DCs) and fail to productively engage KRN T cells at steady state and during arthritis. However, the ability to stimulate KRN T cells is strongly enhanced in B cells after TLR ligation and provides a mechanism whereby polyclonal B cells may be activated in the wake of an acute infection.
Collapse
Affiliation(s)
- Fei F Shih
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
27
|
Chen X, Reed-Loisel LM, Karlsson L, Jensen PE. H2-O Expression in Primary Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2006; 176:3548-56. [PMID: 16517723 DOI: 10.4049/jimmunol.176.6.3548] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
H2-O is a nonpolymorphic class II molecule whose biological role remains to be determined. H2-O modulates H2-M function, and it has been generally believed to be expressed only in B lymphocytes and thymic medullary epithelial cells, but not in dendritic cells (DCs). In this study, we report identification of H2-O expression in primary murine DCs. Similar to B cells, H2-O is associated with H2-M in DCs, and its expression is differentially regulated in DC subsets as well as during cell maturation and activation. Primary bone marrow DCs and plasmacytoid DCs in the spleen and lymph nodes express MHC class II and H2-M, but not the inhibitor H2-O. In contrast, myeloid DCs in secondary lymphoid organs express both H2-M and H2-O. In CD8alphaalpha(+) DCs, the ratio of H2-O to H2-M is higher than in CD8alphaalpha(-) DCs. In DCs generated from GM-CSF- and IL-4-conditioned bone marrow cultures, H2-O expression is not detected regardless of the maturation status of the cells. Administration of LPS induces in vivo activation of myeloid DCs, and this activation is associated with down-regulation of H2-O expression. Primary splenic DCs from H2-O(-/-) and H2-O(+/+) mice present exogenous protein Ags to T cell hybridomas similarly well, but H2-O(-/-) DCs induce stronger allogeneic CD4 T cell response than the H2-O(+/+) DCs in mixed leukocyte reactions. Our results suggest that H2-O has a broader role than previously appreciated in regulating Ag presentation.
Collapse
Affiliation(s)
- Xinjian Chen
- Department of Pathology, School of Medicine, University of Utah, 5C124, 30 North 1900 East, Salt Lake City, UT 84132, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Peptide loading of major histocompatibility class II molecules is catalyzed in late endosomal and lysosomal compartments of cells by the catalytic action of human leukocyte antigen (HLA)-DM (H-2M in mice). In B cells, dendritic cells and thymic epithelial cells, the peptide loading of class II molecules is modified by the expression of the non-classical class II molecule, HLA-DO (H-2O in mice). Collectively, studies to date support that DO/H-2O expression inhibits the presentation of antigens acquired by cells via fluid phase endocytosis. However, in B cells, the expression of H-2O promotes the presentation of antigens internalized by the B-cell receptor. In this review, we summarize the literature pertaining to DO assembly, transport, and function, with an emphasis on the function of DO/H-2O.
Collapse
Affiliation(s)
- Lisa K Denzin
- Sloan-Kettering Institute, Immunology Program, Memorial Sloan-Kettering Cancer Center, NY 10021, USA.
| | | | | | | |
Collapse
|
29
|
Deshaies F, Brunet A, Diallo DA, Denzin LK, Samaan A, Thibodeau J. A point mutation in the groove of HLA-DO allows egress from the endoplasmic reticulum independent of HLA-DM. Proc Natl Acad Sci U S A 2005; 102:6443-8. [PMID: 15849268 PMCID: PMC1088373 DOI: 10.1073/pnas.0500853102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B lymphocytes express the nonclassical class II molecule HLA-DO, which modulates the peptide loading activity of HLA-DM in the endocytic pathway. Binding to HLA-DM is required for HLA-DO to egress from the endoplasmic reticulum (ER). To gain insights into the mode of action of DO and on the role of DM in ER release, we sought to identify DM-binding residues on DO. Our results show that DOalpha encompasses the binding site for HLA-DM. More specifically, mutation of residue DOalpha41 on an exposed lateral loop of the alpha1 domain affects the binding to DM, ER egress, and activity of DO. Using a series of chimeric DR/DO molecules, we confirmed the role of the alpha chain and established that a second DM-binding region is located C-terminal to the DOalpha80 residue, most probably in the alpha2 domain. Interestingly, after mutation of a buried proline (alpha11) on the floor of the putative peptide-binding groove, HLA-DO remained functional but became independent of HLA-DM for ER egress and intracellular trafficking. Collectively, these results suggest that the binding of HLA-DM to DOalpha allows the complex to egress from the ER by stabilizing intramolecular contacts between the N-terminal antiparallel beta-strands of the DOalphabeta heterodimer.
Collapse
Affiliation(s)
- Francis Deshaies
- Département de Microbiologie et Immunologie, Université de Montréal, CP 6128 Succursale Centre Ville, Montréal, QC, Canada H3T 1J4
| | | | | | | | | | | |
Collapse
|
30
|
Peters NC, Hamilton DH, Bretscher PA. Analysis of cytokine-producing Th cells from hen egg lysozyme-immunized mice reveals large numbers specific for "cryptic" peptides and different repertoires among different Th populations. Eur J Immunol 2005; 35:56-65. [PMID: 15597327 DOI: 10.1002/eji.200425581] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We employed an optimized ex vivo enzyme-linked immunospot assay for enumerating and defining the peptide specificity of all the hen egg lysozyme (HEL)-specific Th cells producing IL-2, IFN-gamma, or IL-4, in different lymphoid organs of HEL-immunized BALB/c and CBA mice. Previous studies, employing T cell proliferation assays, demonstrated that lymph node cells from BALB/c mice immunized with HEL emulsified in complete Freund's adjuvant (CFA) are specific for HEL(105-120). In contrast, we found that the spleens of BALB/c mice immunized with HEL/CFA, or with heat-aggregated HEL on aluminum hydroxide adjuvant, contain IL-4-producing T cells specific for other HEL peptides, previously characterized as "cryptic", with consistent responses to HEL(11-25). The Th repertoire expressed in different lymphoid organs of the same immunized mouse can be different, as can the repertoire of Th cells producing different cytokines and present in one lymphoid organ. In addition, we found that the repertoire of Th cells generated depends upon the adjuvant employed. Lastly, the summation of responses elicited by a panel of non-overlapping HEL peptides is equal to that elicited by HEL. This high-resolution study thus illustrates that the Th repertoire generated upon HEL immunization depends upon diverse parameters, and that the natural processing of HEL gives rise to more diverse peptides then previously evident from studies employing T cell proliferation assays.
Collapse
Affiliation(s)
- Nathan C Peters
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada.
| | | | | |
Collapse
|
31
|
Abstract
The presentation of antigenic peptides by MHC class II molecules is essential for activation of CD4+ T cells. The formation of most peptide-MHC-class-II complexes is influenced by the actions of two specialized accessory proteins--DM and DO--located in the endosomal/lysosomal system where peptide loading occurs. DM removes class-II-associated invariant-chain peptide (CLIP) from newly synthesized class II molecules, but by now it is clearly established that this is only a special case of the general peptide-editing function of DM. Recent data have begun to explain the molecular basis for the editing activity. The other accessory protein, DO, modulates DM activity in vitro, but the physiological importance of DO is unclear. New evidence from several laboratories has provided clues that may soon change this.
Collapse
Affiliation(s)
- Lars Karlsson
- Johnson & Johnson Pharmaceutical Research and Development, 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
32
|
Abstract
HLA-DO (H2-O in mice) is a nonpolymorphic transmembrane alphabeta heterodimer encoded in the class II region of the major histocompatibility complex (MHC). It is expressed selectively in B lymphocytes and thymic medullary epithelial cells. DO forms a stable complex with the peptide-loading catalyst HLA-DM in the endoplasmic reticulum (ER); in the absence of DM, DO is unstable. During intracellular transport and distribution in the endosomal compartments, the ratio of DO to DM changes. In primary B cells, only approx 50% of DM molecules are associated with DO. DO appears to regulate the peptide-loading function of DM in the MHC class II antigen-presentation pathway. Although certain discrepancies are present, results from most studies indicate that DO (as well as H2-O) inhibits DM (H2-M) function; this inhibition is pH-dependent. As a consequence, DO restrains presentation of exogenous antigens delivered through nonreceptor-mediated mechanisms; in addition, DO alters the peptide repertoire that is associated with cell-surface class II molecules. The biological function of DO remains obscure, partially because of the lack of striking phenotypes in the H2-O knockout mice. Results from recent studies indicate that DO expression in B cells is dynamic, and highly regulated during B-cell development and B-cell activation, suggesting that the physiological role of DO is to tailor the antigen presentation function of the B-lineage cells to meet their primary function at each stage of B-cell development and maturation. Further investigations are needed in this direction.
Collapse
Affiliation(s)
- Xinjian Chen
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | |
Collapse
|
33
|
Fallas JL, Tobin HM, Lou O, Guo D, Sant'Angelo DB, Denzin LK. Ectopic expression of HLA-DO in mouse dendritic cells diminishes MHC class II antigen presentation. THE JOURNAL OF IMMUNOLOGY 2004; 173:1549-60. [PMID: 15265882 DOI: 10.4049/jimmunol.173.3.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC class II-like molecule HLA-DM (DM) (H-2M in mice) catalyzes the exchange of CLIP for antigenic peptides in the endosomes of APCs. HLA-DO (DO) (H-2O in mice) is another class II-like molecule that is expressed in B cells, but not in other APCs. Studies have shown that DO impairs or modifies the peptide exchange activity of DM. To further evaluate the role of DO in Ag processing and presentation, we generated transgenic mice that expressed the human HLA-DOA and HLA-DOB genes under the control of a dendritic cell (DC)-specific promoter. Our analyses of DCs from these mice showed that as DO levels increased, cell surface levels of A(b)-CLIP also increased while class II-peptide levels decreased. The presentation of some, but not all, exogenous Ags to T cells or T hybridomas was significantly inhibited by DO. Surprisingly, H-2M accumulated in DO-expressing DCs and B cells, suggesting that H-2O/DO prolongs the half-life of H-2M. Overall, our studies showed that DO expression impaired H-2M function, resulting in Ag-specific down-modulation of class II Ag processing and presentation.
Collapse
Affiliation(s)
- Jennifer L Fallas
- Cell Biology and Genetics Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The loading of class II MHC molecules with antigenic peptides is largely confined to the endocytic vesicles of specialized antigen-presenting cells (APCs), such as B cells, macrophages and dendritic cells. At first glance, the pathway utilized by each of these professional APCs to generate class II-peptide complexes on their surface appears to be indistinguishable. All three types of APC rely on the chaperone Ii for correct class II assembly and transport to the endocytic pathway, they all depend on the action of specific cysteine proteases to remove Ii from the class II-Ii complex, and they all utilize the class II-like molecule DM to facilitate peptide loading. A closer look, however, reveals subtle yet important differences in the class II maturation pathway between each of these APCs, which befit the unique roles these individual cells play in eliciting CD4(+) T-cell responses.
Collapse
Affiliation(s)
- Paula Bryant
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
35
|
Watts C. The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat Immunol 2004; 5:685-92. [PMID: 15224094 DOI: 10.1038/ni1088] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The endosomes and lysosomes of antigen-presenting cells host the processing and assembly reactions that result in the display of peptides on major histocompatibility complex (MHC) class II molecules and lipid-linked products on CD1 molecules. This environment is potentially hostile for T cell epitope and MHC class II survival, and the influence of regulators of protease activity and specialized chaperones that assist MHC class II assembly is crucial. At present, evidence indicates that individual proteases make both constructive and destructive contributions to antigen processing for MHC class II presentation to CD4 T cells. Some features of CD1 antigen capture within the endocytic pathway are also discussed.
Collapse
Affiliation(s)
- Colin Watts
- Division of Cell Biology and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|