1
|
Takashima Y, Hayashi S, Fukuda K, Maeda T, Tsubosaka M, Kamenaga T, Kikuchi K, Fujita M, Kuroda Y, Hashimoto S, Nakano N, Matsumoto T, Kuroda R. Susceptibility of cyclin-dependent kinase inhibitor 1-deficient mice to rheumatoid arthritis arising from interleukin-1β-induced inflammation. Sci Rep 2021; 11:12516. [PMID: 34131243 PMCID: PMC8206139 DOI: 10.1038/s41598-021-92055-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
We recently reported that cyclin-dependent kinase inhibitor 1 (p21) deficiency induces osteoarthritis susceptibility. Here, we determined the mechanism underlying the effect of p21 in synovial and cartilage tissues in RA. The knee joints of p21-knockout (p21-/-) (n = 16) and wild type C57BL/6 (p21+/+) mice (n = 16) served as in vivo models of collagen antibody-induced arthritis (CAIA). Arthritis severity was evaluated by immunological and histological analyses. The response of p21 small-interfering RNA (siRNA)-treated human RA FLSs (n = 5 per group) to interleukin (IL)-1β stimulation was determined in vitro. Arthritis scores were higher in p21-/- mice than in p21+/+ mice. More severe synovitis, earlier loss of Safranin-O staining, and cartilage destruction were observed in p21-/- mice compared to p21+/+ mice. p21-/- mice expressed higher levels of IL-1β, TNF-α, F4/80, CD86, p-IKKα/β, and matrix metalloproteinases (MMPs) in cartilage and synovial tissues via IL-1β-induced NF-kB signaling. IL-1β stimulation significantly increased IL-6, IL-8, and MMP expression, and enhanced IKKα/β and IκBα phosphorylation in human FLSs. p21-deficient CAIA mice are susceptible to RA phenotype alterations, including joint cartilage destruction and severe synovitis. Therefore, p21 may have a regulatory role in inflammatory cytokine production including IL-1β, IL-6, and TNF-α.
Collapse
Affiliation(s)
- Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Koji Fukuda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Masahiro Fujita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shingo Hashimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-chou, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
2
|
Siebert S, Pratt AG, Stocken DD, Morton M, Cranston A, Cole M, Frame S, Buckley CD, Ng WF, Filer A, McInnes IB, Isaacs JD. Targeting the rheumatoid arthritis synovial fibroblast via cyclin dependent kinase inhibition: An early phase trial. Medicine (Baltimore) 2020; 99:e20458. [PMID: 32590730 PMCID: PMC7328978 DOI: 10.1097/md.0000000000020458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Targeted biologic therapies demonstrate similar efficacies in rheumatoid arthritis despite distinct mechanisms of action. They also exhibit a ceiling effect, with 10% to 20% of patients achieving remission in clinical trials. None of these therapies target synovial fibroblasts, which drive and maintain synovitis. Seliciclib (R-roscovitine) is an orally available cyclin-dependent kinase inhibitor that suppresses fibroblast proliferation, and is efficacious in preclinical arthritis models. We aim to determine the toxicity and preliminary efficacy of seliciclib in combination with biologic therapies, to inform its potential as an adjunctive therapy in rheumatoid arthritis. METHODS AND ANALYSIS TRAFIC is a non-commercial, multi-center, rolling phase Ib/IIa trial investigating the safety, tolerability, and efficacy of seliciclib in patients with moderate to severe rheumatoid arthritis receiving biologic therapies. All participants receive seliciclib with no control arm. The primary objective of part 1 (phase Ib) is to determine the maximum tolerated dose and safety of seliciclib over 4 weeks of dosing. Part 1 uses a restricted 1-stage Bayesian continual reassessment method based on a target dose-limiting toxicity probability of 35%. Part 2 (phase IIa) assesses the potential efficacy of seliciclib, and is designed as a single arm, single stage early phase trial based on a Fleming-A'Hern design using the maximum tolerated dose recommended from part 1. The primary response outcome after 12 weeks of therapy is a composite of clinical, histological and magnetic resonance imaging scores. Secondary outcomes include adverse events, pharmacodynamic and pharmacokinetic parameters, autoantibodies, and fatigue. ETHICS AND DISSEMINATION The study has been reviewed and approved by the North East - Tyne & Wear South Research Ethics Committee (reference 14/NE/1075) and the Medicines and Healthcare Products Regulatory Agency (MHRA), United Kingdom. Results will be disseminated through publication in relevant peer-reviewed journals and presentation at national and international conferences. TRIALS REGISTRATION ISRCTN, ISRCTN36667085. Registered on September 26, 2014; http://www.isrctn.com/ISRCTN36667085Current protocol version: Protocol version 11.0 (March 21, 2019).
Collapse
Affiliation(s)
- Stefan Siebert
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow
| | - Arthur G. Pratt
- Translational and Experimental Medicine Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | | | - Miranda Morton
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne
| | - Amy Cranston
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne
| | - Michael Cole
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne
| | | | - Christopher D. Buckley
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Institute for Inflammation and Ageing, University of Birmingham, Birmingham
- Kennedy Institute of Rheumatology, Roosevelt Drive, Headington University of Oxford, Oxford, UK
| | - Wan-Fai Ng
- Translational and Experimental Medicine Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Andrew Filer
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and Institute for Inflammation and Ageing, University of Birmingham, Birmingham
| | - Iain B. McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow
| | - John D. Isaacs
- Translational and Experimental Medicine Institute, Newcastle University and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| |
Collapse
|
3
|
Seleznik GM, Reding T, Peter L, Gupta A, Steiner SG, Sonda S, Verbeke CS, Dejardin E, Khatkov I, Segerer S, Heikenwalder M, Graf R. Development of autoimmune pancreatitis is independent of CDKN1A/p21-mediated pancreatic inflammation. Gut 2018; 67:1663-1673. [PMID: 28774888 DOI: 10.1136/gutjnl-2016-313458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Chronic pancreatitis (CP) and autoimmune pancreatitis (AIP) are characterised by different inflammatory processes. If pancreatic inflammation is a prerequisite for autoimmunity is still unclear. AIP is considered mostly a T cell-mediated disease; however, in induction of CP, macrophages play a pivotal role. p21-a member of cyclin-dependent kinase inhibitors-can influence inflammatory processes, in particular can regulate T cell activation and promote macrophage development. We therefore examined the role of p21-mediated inflammation in AIP. DESIGN We intercrossed lymphotoxin (LT) overexpressing mice (Tg(Ela1-LTa,b))-a model to study AIP development-with p21-deficient mice. Furthermore, we characterised p21 expression in human AIP and non-AIP specimens. RESULTS p21 deficiency in LT mice (LTp21-/-) prevented early pancreatic injury and reduced inflammation. In acinar cells, diminished proliferation and abrogated activation of non-canonical nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) pathway was observed. In contrast, 12-month-old LT mice with and without p21 had similar inflammatory signatures and T-B cell infiltration. Interestingly, LT and LTp21-/- mice had comparable tertiary lymphoid organs (TLOs), autoantibodies and elevated IgG levels. However, acinar cell proliferation, acinar-to-ductal metaplasia and acinar non-canonical NF-κB pathway activation remained impaired in LTp21-/- pancreata. CONCLUSIONS Our findings indicate that p21 is crucial for pancreatic inflammation in LT-driven pancreatic injury. p21 is involved in early acinar secretion of inflammatory mediators that attract innate immune cells. However, p21 is not essential for humoral immune response, accountable for autoimmunity. Remarkably, p21 renders acinar cells less susceptible to proliferation and transdifferentiation. We therefore suggest that AIP can also develop independent of chronic inflammatory processes.
Collapse
Affiliation(s)
- Gitta M Seleznik
- Department of Visceral and Transplantation Surgery, Swiss HPB Centre, University Hospital Zurich, Zurich, Switzerland
| | - Theresia Reding
- Department of Visceral and Transplantation Surgery, Swiss HPB Centre, University Hospital Zurich, Zurich, Switzerland
| | - Lukas Peter
- Department of Visceral and Transplantation Surgery, Swiss HPB Centre, University Hospital Zurich, Zurich, Switzerland
| | - Anurag Gupta
- Department of Visceral and Transplantation Surgery, Swiss HPB Centre, University Hospital Zurich, Zurich, Switzerland
| | - Sabrina G Steiner
- Department of Visceral and Transplantation Surgery, Swiss HPB Centre, University Hospital Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Department of Visceral and Transplantation Surgery, Swiss HPB Centre, University Hospital Zurich, Zurich, Switzerland
| | - Caroline S Verbeke
- Department of Pathology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - Igor Khatkov
- Department of Medicine and Dentistry, Moscow State University, Moscow, Russia
| | - Stephan Segerer
- Division of Nephrology, University Hospital, Zurich, Switzerland.,Division of Nephrology, Dialysis and Transplantation, Kantonsspital Aarau, Aarau, Switzerland
| | - Mathias Heikenwalder
- School of Medicine, Institute of Virology, TUM-Helmholtz Zentrum Munich, Munich, Germany.,Department of Chronic Inflammation and Cancer, German Cancer Center (DKFZ), Heidelberg, Germany
| | - Rolf Graf
- Department of Visceral and Transplantation Surgery, Swiss HPB Centre, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Bell R, Barraclough R, Vasieva O. Gene Expression Meta-Analysis of Potential Metastatic Breast Cancer Markers. Curr Mol Med 2018; 17:200-210. [PMID: 28782484 PMCID: PMC5748874 DOI: 10.2174/1566524017666170807144946] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/20/2017] [Accepted: 07/30/2017] [Indexed: 12/15/2022]
Abstract
Background: Breast cancer metastasis is a highly prevalent cause of death for European females. DNA microarray analysis has established that primary tumors, which remain localized, differ in gene expression from those that metastasize. Cross-analysis of these studies allow to revile the differences that may be used as predictive in the disease prognosis and therapy. Objective: The aim of the project was to validate suggested prognostic and therapeutic markers using meta-analysis of data on gene expression in metastatic and primary breast cancer tumors. Method: Data on relative gene expression values from 12 studies on primary breast cancer and breast cancer metastasis were retrieved from Genevestigator (Nebion) database. The results of the data meta-analysis were compared with results of literature mining for suggested metastatic breast cancer markers and vectors and consistency of their reported differential expression. Results: Our analysis suggested that transcriptional expression of the COX2 gene is significantly downregulated in metastatic tissue compared to normal breast tissue, but is not downregulated in primary tumors compared with normal breast tissue and may be used as a differential marker in metastatic breast cancer diagnostics. RRM2 gene expression decreases in metastases when compared to primary breast cancer and could be suggested as a marker to trace breast cancer evolution. Our study also supports MMP1, VCAM1, FZD3, VEGFC, FOXM1 and MUC1 as breast cancer onset markers, as these genes demonstrate significant differential expression in breast neoplasms compared with normal breast tissue. Conclusion: COX2 and RRM2 are suggested to be prominent markers for breast cancer metastasis. The crosstalk between upstream regulators of genes differentially expressed in primary breast tumors and metastasis also suggests pathways involving p53, ER1, ERB-B2, TNF and WNT, as the most promising regulators that may be considered for new complex drug therapeutic interventions in breast cancer metastatic progression.
Collapse
Affiliation(s)
- R Bell
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB. United Kingdom
| | - R Barraclough
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB. United Kingdom
| | - O Vasieva
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB. United Kingdom
| |
Collapse
|
5
|
Nepomnyashchikh TS, Antonets DV, Shchelkunov SN. Gene therapy of arthritis. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Abstract
PURPOSE OF REVIEW Synovial fibroblasts continue to grow in prominence both as the subjects of research into the pathogenesis of rheumatoid arthritis and as novel therapeutic targets. This timely review aims to integrate the most recent findings with existing paradigms of fibroblast-related mechanisms of disease. RECENT FINDINGS Linking the role of synovial fibroblasts as innate sentinels expressing pattern recognition receptors such as toll-like receptors to their effector roles in joint damage and interactions with leukocyte subpopulations has continued to advance. Understanding of the mechanisms underlying increased fibroblast survival in the inflamed synovium has led to therapeutic strategies such as cyclin-dependent kinase inhibition. Major advances have taken place in understanding of the interactions between epigenetic and micro-RNA regulation of transcription in synovial fibroblasts, improving our understanding of the unique pathological phenotype of these cells. Finally, the impact of new markers for fibroblast subpopulations is beginning to become apparent, offering the potential for targeting of pathological cells as the roles of different populations become clearer. SUMMARY Over the past 2 years, major advances have continued to emerge in understanding of the relationship between synovial fibroblasts and the regulation of inflammatory pathways in the rheumatoid arthritis synovium.
Collapse
|
7
|
Inhibition of smoothened decreases proliferation of synoviocytes in rheumatoid arthritis. Cell Mol Immunol 2015; 14:214-222. [PMID: 26189371 DOI: 10.1038/cmi.2015.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 12/16/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) contribute to synovial hyperplasia in rheumatoid arthritis (RA). Smoothened (Smo) is a key component of sonic hedgehog (Shh) signaling and contributes to tumor cell proliferation. The objective of this study was to investigate the role of Smo in RA synoviocyte proliferation. FLSs were isolated from RA synovium. Shh signaling was studied using a Smo antagonist (GDC-0449) and small interfering RNA (siRNA) targeting the Smo gene in FLSs. Cell proliferation was quantified by using kit-8 assay and cell cycle distribution and apoptosis were evaluated by flow cytometry. Cell cycle-related genes and proteins were detected by real-time PCR and western blot. FLSs treated with GDC-0449 or Smo-siRNA showed significantly decreased proliferation compared to controls (P < 0.05). Incubation with GDC-0449 or transfection with Smo-siRNA resulted in a significant increase of G1 phase cells compared to controls (P < 0.05). Cell cycle arrest was validated by the significant increase in cyclin D1 and E1 mRNA expression, decrease in cyclin-dependent kinase p21 mRNA expression in Smo-siRNA transfected cells (P < 0.05). Protein expression of cyclin D1 was also downregulated after Smo gene knockdown (P < 0.05). The results suggest that Shh signaling plays an important role in RA-FLSs proliferation in a Smo-dependent manner and may contribute to synovial hyperplasia. Targeting Shh signaling may help control joint damage in patients with RA.
Collapse
|
8
|
Patel R, Filer A, Barone F, Buckley CD. Stroma: fertile soil for inflammation. Best Pract Res Clin Rheumatol 2014; 28:565-76. [PMID: 25481550 DOI: 10.1016/j.berh.2014.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Biological therapies for the management of immune mediated inflammatory diseases such as rheumatoid arthritis have proven to be extremely successful in recent years. Despite these successes, even the most effective of therapies do not lead to cure. Why chronic inflammation persists indefinitely within the rheumatoid synovium despite an absence of continuous stimulation, and why some patients with early synovitis progress to persistent disease whilst others do not, has remained unexplained. In contrast to the paradigm that stromal cells are biochemically active but immunologically passive, there is now growing evidence that stromal components from the rheumatoid synovium play a crucial part in the immunopathology of rheumatoid arthritis. Stromal cells play a central role in the transformation of an acute, resolving to a chronic inflammatory process, and to the persistence of synovial inflammation and joint destruction through a variety of immune mechanisms. Therapeutic manipulation of the stroma is a largely unexplored, yet potentially vital area of research. Targeting pathogenic stromal cells has the potential to provide a cure for chronic inflammatory disorders such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Rikesh Patel
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Andrew Filer
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Francesca Barone
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher D Buckley
- Rheumatology Research Group, Center for Translational Inflammation Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
9
|
Julovi SM, Shen K, Mckelvey K, Minhas N, March L, Jackson CJ. Activated protein C inhibits proliferation and tumor necrosis factor α-stimulated activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in rheumatoid synovial fibroblasts. Mol Med 2013; 19:324-31. [PMID: 24096826 DOI: 10.2119/molmed.2013.00034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/19/2013] [Indexed: 11/06/2022] Open
Abstract
Synovial fibroblast proliferation is a hallmark of the invasive pannus in the rheumatoid joint. Activated protein C (APC) is a natural anticoagulant that exerts antiinflammatory and cyto-protective effects in various diseases via endothelial protein C receptor (EPCR) and proteinase-activated receptor (PAR)-mediated pathways. In this study, we investigated the effect and the underlying cellular signaling mechanisms of APC on proliferation of human rheumatoid synovial fibroblasts (RSFs). We found that APC stimulated proliferation of mouse dermal fibroblasts (MDFs) and normal human dermal fibroblasts (HDFs) by up to 60%, but robustly downregulated proliferation of RSFs. APC induced the phosphorylation of extracellular signal-regulated protein kinase (ERK) and enhanced expression of p21 and p27 in a dose-dependent manner in RSFs. The latter effect was inhibited by pre-treatment with the ERK inhibitors PD98059 and U0126 but not by p38 inhibitor SB203580. In addition, APC significantly downregulated tumor necrosis factor (TNF)α-stimulated cell proliferation and activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in RSFs. These results provide the first evidence that APC selectively inhibits proliferation and the inflammatory signaling pathways of RSFs. Thus, APC may reduce synovial hyperplasia and pannus invasion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Sohel M Julovi
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia.,Department of Surgery, Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Kaitlin Shen
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Kelly Mckelvey
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Nikita Minhas
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Sydney Medical School, The University of Sydney at Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
10
|
Audo R, Combe B, Hahne M, Morel J. The two directions of TNF-related apoptosis-inducing ligand in rheumatoid arthritis. Cytokine 2013; 63:81-90. [DOI: 10.1016/j.cyto.2013.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023]
|
11
|
The fibroblast as a therapeutic target in rheumatoid arthritis. Curr Opin Pharmacol 2013; 13:413-9. [PMID: 23562164 DOI: 10.1016/j.coph.2013.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 02/24/2013] [Indexed: 01/08/2023]
Abstract
Significant advances have been made in the last 5 years that have finally allowed investigators to start targeting stromal cells such as fibroblasts in inflammatory disease. Rheumatoid arthritis is a prototype inflammatory disease, in which fibroblasts maintain the persistence of inflammation in the joint underpinned by a unique pathological phenotype driven by multiple epigenetic modifications. The step changes that are enabling the development of such therapies are an improved understanding of the mechanisms by which fibroblasts mediate persistence and the discovery of new markers that identify discrete functional subsets of fibroblast cells that have potential as disease-specific therapeutic targets.
Collapse
|
12
|
Saito T, Nishida K, Furumatsu T, Yoshida A, Ozawa M, Ozaki T. Histone deacetylase inhibitors suppress mechanical stress-induced expression of RUNX-2 and ADAMTS-5 through the inhibition of the MAPK signaling pathway in cultured human chondrocytes. Osteoarthritis Cartilage 2013; 21:165-74. [PMID: 23017871 DOI: 10.1016/j.joca.2012.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/18/2012] [Accepted: 09/19/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the inhibitory effects and the regulatory mechanisms of histone deacetylase (HDAC) inhibitors on mechanical stress-induced gene expression of runt-related transcription factor (RUNX)-2 and adisintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5 in human chondrocytes. METHODS Human chondrocytes were seeded in stretch chambers at a concentration of 5 × 10(4)cells/chamber. Cells were pre-incubated with or without HDAC inhibitors (MS-275 or trichostatin A; TSA) for 12h, followed by uniaxial cyclic tensile strain (CTS) (0.5Hz, 10% elongation), which was applied for 30 min using the ST-140-10 system (STREX, Osaka, Japan). Total RNA was extracted and the expression of RUNX-2, ADAMTS-5, matrix metalloproteinase (MMP)-3, and MMP-13 at the mRNA and protein levels were examined by real-time polymerase chain reaction (PCR) and immunocytochemistry, respectively. The activation of diverse mitogen-activated protein kinase (MAPK) pathways with or without HDAC inhibitors during CTS was examined by western blotting. RESULTS HDAC inhibitors (TSA: 10 nM, MS-275: 100 nM) suppressed CTS-induced expression of RUNX-2, ADAMTS-5, and MMP-3 at both the mRNA and protein levels within 1h. CTS-induced activation of p38 MAPK (p38), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) MAPKs was downregulated by both HDAC inhibitors. CONCLUSION The CTS-induced expression of RUNX-2 and ADAMTS-5 was suppressed by HDAC inhibitors via the inhibition of the MAPK pathway activation in human chondrocytes. The results of the current study suggested a novel therapeutic role for HDAC inhibitors against degenerative joint disease such as osteoarthritis.
Collapse
Affiliation(s)
- T Saito
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama City, Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Shoemaker JE, Fukuyama S, Eisfeld AJ, Muramoto Y, Watanabe S, Watanabe T, Matsuoka Y, Kitano H, Kawaoka Y. Integrated network analysis reveals a novel role for the cell cycle in 2009 pandemic influenza virus-induced inflammation in macaque lungs. BMC SYSTEMS BIOLOGY 2012; 6:117. [PMID: 22937776 PMCID: PMC3481363 DOI: 10.1186/1752-0509-6-117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/18/2012] [Indexed: 12/17/2022]
Abstract
Background Annually, influenza A viruses circulate the world causing wide-spread sickness, economic loss, and death. One way to better defend against influenza virus-induced disease may be to develop novel host-based therapies, targeted at mitigating viral pathogenesis through the management of virus-dysregulated host functions. However, mechanisms that govern aberrant host responses to influenza virus infection remain incompletely understood. We previously showed that the pandemic H1N1 virus influenza A/California/04/2009 (H1N1; CA04) has enhanced pathogenicity in the lungs of cynomolgus macaques relative to a seasonal influenza virus isolate (A/Kawasaki/UTK-4/2009 (H1N1; KUTK4)). Results Here, we used microarrays to identify host gene sequences that were highly differentially expressed (DE) in CA04-infected macaque lungs, and we employed a novel strategy – combining functional and pathway enrichment analyses, transcription factor binding site enrichment analysis and protein-protein interaction data – to create a CA04 differentially regulated host response network. This network describes enhanced viral RNA sensing, immune cell signaling and cell cycle arrest in CA04-infected lungs, and highlights a novel, putative role for the MYC-associated zinc finger (MAZ) transcription factor in regulating these processes. Conclusions Our findings suggest that the enhanced pathology is the result of a prolonged immune response, despite successful virus clearance. Most interesting, we identify a mechanism which normally suppresses immune cell signaling and inflammation is ineffective in the pH1N1 virus infection; a dyregulatory event also associated with arthritis. This dysregulation offers several opportunities for developing strain-independent, immunomodulatory therapies to protect against future pandemics.
Collapse
Affiliation(s)
- Jason E Shoemaker
- ERATO Infection-Induced Host Responses Project, Saitama, 332-0012, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mavers M, Cuda CM, Misharin AV, Gierut AK, Agrawal H, Weber E, Novack DV, Haines GK, Balomenos D, Perlman H. Cyclin-dependent kinase inhibitor p21, via its C-terminal domain, is essential for resolution of murine inflammatory arthritis. ACTA ACUST UNITED AC 2012; 64:141-52. [PMID: 21898359 DOI: 10.1002/art.33311] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The mechanism responsible for persistent synovial inflammation in rheumatoid arthritis (RA) is unknown. Previously, we demonstrated that expression of the cyclin-dependent kinase inhibitor p21 is reduced in synovial tissue from RA patients compared to osteoarthritis patients and that p21 is a novel suppressor of the inflammatory response in macrophages. The present study was undertaken to investigate the role and mechanism of p21-mediated suppression of experimental inflammatory arthritis. METHODS Experimental arthritis was induced in wild-type or p21-/- (C57BL/6) mice, using the K/BxN serum-transfer model. Mice were administered p21 peptide mimetics as a prophylactic for arthritis development. Lipopolysaccharide-induced cytokine and signal transduction pathways in macrophages that were treated with p21 peptide mimetics were examined by Luminex-based assay, flow cytometry, or enzyme-linked immunosorbent assay. RESULTS Enhanced and sustained development of experimental inflammatory arthritis, associated with markedly increased numbers of macrophages and severe articular destruction, was observed in p21-/- mice. Administration of a p21 peptide mimetic suppressed activation of macrophages and reduced the severity of experimental arthritis in p21-intact mice only. Mechanistically, treatment with the p21 peptide mimetic led to activation of the serine/threonine kinase Akt and subsequent reduction of the activated isoform of p38 MAPK in macrophages. CONCLUSION These are the first reported data to reveal that p21 has a key role in limiting the activation response of macrophages in an inflammatory disease such as RA. Thus, targeting p21 in macrophages may be crucial for suppressing the development and persistence of RA.
Collapse
Affiliation(s)
- Melissa Mavers
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang XH, Jiang SM, Sun QW. Effects of berberine on human rheumatoid arthritis fibroblast-like synoviocytes. Exp Biol Med (Maywood) 2011; 236:859-66. [DOI: 10.1258/ebm.2011.010366] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activated rheumatoid arthritis fibroblast-like synoviocytes (RAFLSs) play an important role in the initiation and progression of rheumatoid arthritis (RA). Rapid proliferation and defective apoptosis of RAFLSs are two main mechanisms contributing to synovial hyperplasia. Berberine, the major constituent of Coptidis Rhizoma, has been widely used as an antitumor and anti-inflammation agent. Here we show that berberine significantly inhibited cell proliferation of serum-starved human RAFLSs in a dose-dependent manner. Cell cycle analysis of berberine-treated RAFLSs indicated a cell cycle arrest at the G0/G1 phase. The inhibitory effects of berberine correlated with an induction of cyclin-dependent kinase (CDK) inhibitors Cip1/p21 and Kip1/p27 and a reduction of CDK2, CDK4 and CDK6, and cyclins D1, D2 and E. Furthermore, an apoptosis assay showed that berberine treatment increased apoptotic death of RAFLSs, which was associated with an increased expression of proapoptotic protein Bax and decreased expression of antiapoptotic proteins Bcl-2 and Bcl-xl, disruption of mitochondrial membrane potential, and activation of caspase-3, caspase-9 and poly (ADP-ribose) polymerase. Taken together, these results demonstrate that berberine exerts antiproliferative effects against RAFLSs, likely through deregulation of numerous cell cycle and apoptosis regulators, thus having potential therapeutic implications in the treatment of RA.
Collapse
Affiliation(s)
- Xiu-hua Wang
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong
| | - Song-min Jiang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qing-wen Sun
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Ji JD, Kim TH, Lee B, Choi SJ, Lee YH, Song GG. Study of the Gene Expressions in Rheumatoid Arthritis Synovial Macrophages Using Network Analysis. JOURNAL OF RHEUMATIC DISEASES 2011. [DOI: 10.4078/jrd.2011.18.2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jong Dae Ji
- Department of Rheumatology, College of Medicine, Korea University University, Seoul, Korea
| | - Tae-Hwan Kim
- The Hospital for Rheumatic Diseases, College of Medicine, Hanyang University, Seoul, Korea
| | - Bitnara Lee
- The Hospital for Rheumatic Diseases, College of Medicine, Hanyang University, Seoul, Korea
| | - Sung Jae Choi
- Department of Rheumatology, College of Medicine, Korea University University, Seoul, Korea
| | - Young Ho Lee
- Department of Rheumatology, College of Medicine, Korea University University, Seoul, Korea
| | - Gwan Gyu Song
- Department of Rheumatology, College of Medicine, Korea University University, Seoul, Korea
| |
Collapse
|
17
|
Choo QY, Ho PC, Tanaka Y, Lin HS. Histone deacetylase inhibitors MS-275 and SAHA induced growth arrest and suppressed lipopolysaccharide-stimulated NF-kappaB p65 nuclear accumulation in human rheumatoid arthritis synovial fibroblastic E11 cells. Rheumatology (Oxford) 2010; 49:1447-60. [PMID: 20421217 DOI: 10.1093/rheumatology/keq108] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES MS-275 and suberoylanilide hydroxamic acid (SAHA) are histone deacetylase (HDAC) inhibitors currently tested in oncology trials. They have also been found to display potent anti-rheumatic activities in rodent models for RA. However, the anti-rheumatic mechanisms of action remain unknown. The study was carried out with the intent of determining the anti-inflammatory and anti-rheumatic mechanisms of the HDAC inhibitors. METHODS In this study, the anti-rheumatic mechanisms of MS-275 and SAHA were investigated in several cell culture models. RESULTS MS-275 and SAHA inhibited human RA synovial fibroblastic E11 cell proliferation in a non-cytotoxic manner. The anti-proliferative activities were associated with G(0)/G(1) phase arrest and induction of cyclin-dependent kinase inhibitor p21. In addition, MS-275 and SAHA suppressed lipopolysaccharide (LPS)-induced NF-kappaB p65 nuclear accumulation, IL-6, IL-18 and nitric oxide (NO) secretion as well as down-regulated pro-angiogenic VEGF and MMP-2 and MMP-9 production in E11 cells at sub-micromolar levels. At similar concentrations, MS-275 and SAHA suppressed LPS-induced NF-kappaB p65 nuclear accumulation and IL-1beta, IL-6, IL-18 and TNF-alpha secretion in THP-1 monocytic cells. Moreover, NO secretion in RAW264.7 macrophage cells was also inhibited. CONCLUSIONS In summary, MS-275 and SAHA exhibited their anti-rheumatic activities by growth arrest in RA synovial fibroblasts, inhibition of pro-inflammatory cytokines and NO, as well as down-regulation in angiogenesis and MMPs. Their anti-rheumatic activities may be mediated through induction of p21 and suppression of NF-kappaB nuclear accumulation.
Collapse
Affiliation(s)
- Qiu-Yi Choo
- Department of Pharmacy, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | | | | | |
Collapse
|
18
|
Bastos AP, Piontek K, Silva AM, Martini D, Menezes LF, Fonseca JM, Fonseca II, Germino GG, Onuchic LF. Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J Am Soc Nephrol 2009; 20:2389-402. [PMID: 19833899 DOI: 10.1681/asn.2008040435] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations in PKD1 cause the majority of cases of autosomal dominant polycystic kidney disease (ADPKD). Because polycystin 1 modulates cell proliferation, cell differentiation, and apoptosis, its lower biologic activity observed in ADPKD might influence the degree of injury after renal ischemia/reperfusion. We induced renal ischemia/reperfusion in 10- to 12-wk-old male noncystic Pkd1(+/-) and wild-type mice. Compared with wild-type mice, heterozygous mice had higher fractional excretions of sodium and potassium and higher serum creatinine after 48 h. In addition, in heterozygous mice, also cortical damage, rates of apoptosis, and inflammatory infiltration into the interstitium at time points out to 14 d after injury all increased, as well as cell proliferation at 48 h and 7 d. The mRNA and protein expression of p21 was lower in heterozygous mice than wild-type mice at 48 h. After 6 wk, we observed dilated tubules, microcysts, and increased renal fibrosis in heterozygotes. The early mortality of heterozygotes was significantly higher than that of wild-type mice when we extended the duration of ischemia from 32 to 35 min. In conclusion, ischemia/reperfusion induces a more severe injury in kidneys of Pkd1-haploinsufficient mice, a process that apparently depends on a relative deficiency of p21 activity, tubular dilation, and microcyst formation. These data suggest the possibility that humans with ADPKD from PKD1 mutations may be at greater risk for damage from renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ana P Bastos
- Department of Medicine, Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Leitch AE, Haslett C, Rossi AG. Cyclin-dependent kinase inhibitor drugs as potential novel anti-inflammatory and pro-resolution agents. Br J Pharmacol 2009; 158:1004-16. [PMID: 19775281 DOI: 10.1111/j.1476-5381.2009.00402.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The cyclin-dependent kinase inhibitor (CDKi) drugs such as R-roscovitine have emerged as potential anti-inflammatory, pharmacological agents that can influence the resolution of inflammation. Usually, once an inciting inflammatory stimulus has been eliminated, resolution proceeds by prompt, safe removal of dominant inflammatory cells. This is accomplished by programmed cell death (apoptosis) of prominent effector, inflammatory cells typified by the neutrophil. Apoptosis of neutrophils ensures that toxic neutrophil granule contents are securely packaged in apoptotic bodies and expedites phagocytosis by professional phagocytes such as macrophages. A panel of CDKi drugs have been shown to promote neutrophil apoptosis in a concentration- and time-dependent manner and the archetypal CDKi drug, R-roscovitine, overrides the anti-apoptotic effects of powerful survival factors [including lipopolysaccharide (LPS) and granulocyte macrophage-colony stimulating factor (GM-CSF)]. Inflammatory cell longevity and survival signalling is integral to the inflammatory process and any putative anti-inflammatory agent must unravel a complex web of redundancy in order to be effective. CDKi drugs have also been demonstrated to have significant effects on other cell types including lymphocytes and fibroblasts indicating that they may have pleiotropic anti-inflammatory, pro-resolution activity. In keeping with this, CDKi drugs like R-roscovitine have been reported to be efficacious in resolving established animal models of neutrophil-dominant and lymphocyte-driven inflammation. However, the mechanism of action behind these powerful effects has not yet been fully elucidated. CDKs play an integral role in the regulation of the cell cycle but are also recognized as participants in processes such as apoptosis and transcriptional regulation. Neutrophils have functional CDKs, are transcriptionally active and demonstrate augmented apoptosis in response to CDKi drugs, while lymphocyte proliferation and secretory function are inhibited. This review will discuss current understanding of the processes of inflammation and resolution but will focus on CDKis and their potential mechanisms of action.
Collapse
Affiliation(s)
- A E Leitch
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Medical School, 47 Little France Crescent, Edinburgh, UK
| | | | | |
Collapse
|
20
|
Sekine C, Sugihara T, Miyake S, Hirai H, Yoshida M, Miyasaka N, Kohsaka H. Successful treatment of animal models of rheumatoid arthritis with small-molecule cyclin-dependent kinase inhibitors. THE JOURNAL OF IMMUNOLOGY 2008; 180:1954-61. [PMID: 18209094 DOI: 10.4049/jimmunol.180.3.1954] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intraarticular gene transfer of cyclin-dependent kinase (CDK) inhibitors to suppress synovial cell cycling has shown efficacy in treating animal models of rheumatoid arthritis. Endogenous CDK inhibitors also modulate immune function via a CDK-independent pathway. Accordingly, systemic administration of small molecules that inhibit CDK may or may not ameliorate arthritis. To address this issue, alvocidib (flavopiridol), known to be tolerated clinically for treating cancers, and a newly synthesized CDK4/6-selective inhibitor were tested for antiarthritic effects. In vitro, they inhibited proliferation of human and mouse synovial fibroblasts without inducing apoptosis. In vivo, treatment of collagen-induced arthritis mice with alvocidib suppressed synovial hyperplasia and joint destruction, whereas serum concentrations of anti-collagen type II (CII) Abs and proliferative responses to CII were maintained. Treatment was effective even when therapeutically administered. Treated mice developed arthritis after termination of treatment. Thus, immune responses to CII were unimpaired. The same treatment ameliorated arthritis induced by K/BxN serum transfer to lymphocyte-deficient mice. Similarly, the CDK4/6-selective inhibitor suppressed collagen-induced arthritis. Both small-molecule CDK inhibitors were effective in treating animal models of rheumatoid arthritis not by suppressing lymphocyte function. Thus, the two small-molecule CDK inhibitors ameliorated arthritis models in a distinctive way, compared with other immunosuppressive drugs.
Collapse
Affiliation(s)
- Chiyoko Sekine
- Clinical Immunology, RIKEN Research Center of Allergy and Immunology, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Woods JM, Klosowska K, Spoden DJ, Stumbo NG, Paige DJ, Scatizzi JC, Volin MV, Rao MS, Perlman H. A cell-cycle independent role for p21 in regulating synovial fibroblast migration in rheumatoid arthritis. Arthritis Res Ther 2007; 8:R113. [PMID: 16846525 PMCID: PMC1779389 DOI: 10.1186/ar1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 06/02/2006] [Accepted: 06/27/2006] [Indexed: 12/27/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and destruction of cartilage and bone. The fibroblast-like synoviocyte (FLS) population is central to the development of pannus by migrating into cartilage and bone. We demonstrated previously that expression of the cell cycle inhibitor p21 is significantly reduced in RA synovial lining, particularly in the FLS. The aim of this study was to determine whether reduced expression of p21 in FLS could alter the migratory behavior of these cells. FLS were isolated from mice deficient in p21 (p21(-/-)) and were examined with respect to growth and migration. p21(-/-) and wild-type (WT) FLS were compared with respect to migration towards chemoattractants found in RA synovial fluid in the presence and absence of cell cycle inhibitors. Restoration of p21 expression was accomplished using adenoviral infection. As anticipated from the loss of a cell cycle inhibitor, p21(-/-) FLS grow more rapidly than WT FLS. In examining migration towards biologically relevant RA synovial fluid, p21(-/-) FLS display a marked increase (3.1-fold; p < 0.05) in migration compared to WT cells. Moreover, this effect is independent of the cell cycle since chemical inhibitors that block the cell cycle have no effect on migration. In contrast, p21 is required to repress migration as restoration of p21 expression in p21(-/-) FLS reverses this effect. Taken together, these data suggest that p21 plays a novel role in normal FLS, namely to repress migration. Loss of p21 expression that occurs in RA FLS may contribute to excessive invasion and subsequent joint destruction.
Collapse
Affiliation(s)
- James M Woods
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Karolina Klosowska
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Darrin J Spoden
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Nataliya G Stumbo
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Douglas J Paige
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - John C Scatizzi
- Department of Molecular Microbiology-Immunology, Saint Louis University, School of Medicine, St Louis, MO 63104, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Malathi S Rao
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| | - Harris Perlman
- Department of Molecular Microbiology-Immunology, Saint Louis University, School of Medicine, St Louis, MO 63104, USA
| |
Collapse
|
22
|
Nonomura Y, Nagasaka K, Hagiyama H, Sekine C, Nanki T, Tamamori-Adachi M, Miyasaka N, Kohsaka H. Direct modulation of rheumatoid inflammatory mediator expression in retinoblastoma protein-dependent and -independent pathways by cyclin-dependent kinase 4/6. ACTA ACUST UNITED AC 2006; 54:2074-83. [PMID: 16802342 DOI: 10.1002/art.21927] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE It is known that the cyclin-dependent kinase inhibitor (CDKI) gene p21(Cip1) suppresses rheumatoid inflammation by down-modulating type I interleukin-1 receptor (IL-1RI) expression and inhibiting JNK activity. The purpose of this study was to determine whether CDK activity directly modulates the production of inflammatory molecules in patients with rheumatoid arthritis (RA). METHODS Genes for the CDKIs p16(INK4a) and p18(INK4c), a constitutively active form of retinoblastoma (RB) gene product, cyclin D1, and CDK-4, were transferred into RA synovial fibroblasts (RASFs). RASFs were also treated with a synthetic CDK-4/6 inhibitor (CDK4I). Levels of matrix metalloproteinase 3 (MMP-3), monocyte chemoattractant protein 1 (MCP-1), and IL-1RI expression were determined by Northern blotting, real-time polymerase chain reaction analysis, and enzyme-linked immunosorbent assay. CDKIs were immunoprecipitated to reveal their association with JNK. RESULTS Transfer of the p16(INK4a) and p18(INK4c) genes and CDK4I suppressed the production of MMP-3 and MCP-1. Unlike p21(Cip1), neither CDKI gene inhibited IL-1RI or JNK. The expression of MMP-3 was up-regulated when CDK-4 activity was augmented. This regulation functioned at the messenger RNA (mRNA) level in MMP-3, but not in MCP-1. Transfer of active RB suppressed the production of MMP-3 and MCP-1 without changing their mRNA levels. CONCLUSION CDK-4/6 modulated the production of MMP-3 and MCP-1. MMP-3 production was regulated primarily at the mRNA level in an RB-independent manner, whereas MCP-1 production was controlled posttranscriptionally by RB. These results show that cell cycle proteins are associated with control of mediators of inflammation through multiple pathways.
Collapse
|
23
|
Scatizzi JC, Hutcheson J, Bickel E, Woods JM, Klosowska K, Moore TL, Haines GK, Perlman H. p21Cip1 is required for the development of monocytes and their response to serum transfer-induced arthritis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1531-41. [PMID: 16651620 PMCID: PMC1606593 DOI: 10.2353/ajpath.2006.050555] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the central functions of cyclin-dependent kinase inhibitors, such as p21, p27, or p16, is to prevent entry into the cell cycle. However, the question remains as to whether they have other functions in the cell. We previously demonstrated that overexpression of p21 in fibroblasts isolated from patients with rheumatoid arthritis decreases the production of pro-inflammatory molecules. Overexpression of p21 has been also shown to reduce the development of experimental arthritis in mice and rats. To explore the role of endogenous p21 in the development of arthritis, we induced arthritis in p21(-/-) mice using the K/BxN serum transfer model of arthritis. Mice deficient in p21 were more resistant to serum transfer-induced arthritis (K/BxN) than wild-type (wt) control mice. Fewer macrophages were detected in p21(-/-) as compared to wt joints following transfer of K/BxN serum. Chemotaxis assays of bone marrow-derived macrophages from p21(-/-) and wt mice revealed no difference in migration. However, there was a substantial decrease in inflammatory monocytes circulating in peripheral blood and in monocyte precursors in bone marrow of p21(-/-) mice as compared to wt mice. Adoptive transfer of wt bone marrow-derived macrophages into p21(-/-) mice restored the sensitivity to serum transfer-induced arthritis. These data suggest a novel role for p21 in regulating the development and/or differentiation of monocytic populations that are crucial for the induction of inflammatory arthritis.
Collapse
Affiliation(s)
- John C Scatizzi
- Department of Molecular Microbiology and Immunology, Division of Rheumatology, School of Medicine, St. Louis University, St. Louis, Missouri 63104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Takahashi Tohyama C, Yamakawa M, Murasawa A, Nakazono K, Ishikawa H. Local cell proliferation in rheumatoid synovial tissue: analysis by cyclin expression. Clin Rheumatol 2006; 25:801-6. [PMID: 16518573 DOI: 10.1007/s10067-005-0189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/17/2005] [Accepted: 10/23/2005] [Indexed: 11/30/2022]
Abstract
The immunohistochemical staining of cyclins was done to evaluate the proliferating cells in synovial tissue of rheumatoid arthritis (RA). Synovial specimens obtained from 18 patients with RA, 12 with osteoarthritis (OA), and 8 with traumatic arthritis (TA) were used for immunostaining of cyclins A and B1 and proliferating cell nuclear antigen (PCNA). The positive cells in lining layer (synoviocytes) and sublining layer (lymphoid and nonlymphoid cells) were counted. Moreover, the relationship between the frequency of their positive cells and clinical data of RA patients was analyzed statistically. In general, cyclin-A-, cyclin-B1-, and PCNA-positive cells in RA were more frequently observed as compared with those in OA and TA. Significant differences were found between RA and OA or TA in cyclin-A-, cyclin-B1-, and PCNA-positive sublining lymphoid cells, between RA and OA or TA in cyclin-B1- and PCNA-positive sublining nonlymphoid cells, and between RA and OA in cyclin-B1-positive synoviocytes. The ratio of cyclin-A- or cyclin-B1-positive cells per PCNA-positive cells was significantly higher in sublining lymphoid cells in RA than TA and in sublining lymphoid and nonlymphoid cells of RA than OA or TA. Moreover, a better relationship was observed between the frequency of cyclin-A-positive synoviocytes and age and between cyclin-A-positive sublining nonlymphoid cells and duration of the disease in RA patients. Our data demonstrated clearly that synoviocytes, as well as sublining lymphoid and nonlymphoid cells, could divide in situ, and more frequent cell division and a higher ratio of cyclin-A- or cyclin-B1-positive/PCNA-positive sublining cells could occur in RA than OA and TA.
Collapse
Affiliation(s)
- Chikako Takahashi Tohyama
- Department of Orthopedic Surgery, Rheumatic Center, Niigata Prefectural Senami Hospital, 2-4-15, Senami-Onsen, Murakami, 958-8555, Niigata, Japan.
| | | | | | | | | |
Collapse
|
25
|
Mitoma H, Horiuchi T, Hatta N, Tsukamoto H, Harashima SI, Kikuchi Y, Otsuka J, Okamura S, Fujita S, Harada M. Infliximab induces potent anti-inflammatory responses by outside-to-inside signals through transmembrane TNF-alpha. Gastroenterology 2005; 128:376-92. [PMID: 15685549 DOI: 10.1053/j.gastro.2004.11.060] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND AIMS Both infliximab (chimeric anti-tumor necrosis factor [TNF]-alpha antibody) and etanercept (p75 TNF-alpha receptor/immunoglobulin G fusion protein) are effective against rheumatoid arthritis, but only infliximab induces clinical remission in Crohn's disease. To clarify this difference in clinical efficacy, we investigated reverse signaling through transmembrane TNF-alpha (mTNF) by these 2 anti-TNF agents. METHODS We stably transfected wild-type and cytoplasmic serine-replaced mutant forms of mTNF in human Jurkat T cells. Cells were stimulated with infliximab and etanercept and then analyzed for E-selectin expression, reactive oxygen species accumulation, apoptosis, and cell cycle distribution by flow cytometry. Interleukin-10 and interferon-gamma were measured by enzyme-linked immunosorbent assay. Phospho-c-Jun NH2-terminal kinase, Bax, Bak, p21(WAF1/CIP1), caspase-8, and caspase-3 were examined by immunoblotting. RESULTS Both anti-TNF agents induced E-selectin expression, but only infliximab induced interleukin-10 production, apoptosis, and G0/G1 cell cycle arrest. Apoptosis and cell cycle arrest were abolished by substitution of all 3 cytoplasmic serine residues of mTNF by alanine residues. Infliximab induced accumulation of reactive oxygen species and up-regulation of Bax, Bak, and p21(WAF1/CIP1) proteins, suggesting the involvement of p53 activation. Moreover, phosphorylation of c-Jun NH2-terminal kinase was necessary for infliximab-induced apoptosis and cell cycle arrest. CONCLUSIONS We revealed the mTNF motifs and the downstream intracellular molecular events essential for reverse signaling through mTNF. The biologic effects of mTNF elicited by infliximab should be important action mechanisms of this potent anti-inflammatory agent in addition to the neutralization of soluble TNF-alpha. These observations will provide insight into the novel role of mTNF in inflammation.
Collapse
Affiliation(s)
- Hiroki Mitoma
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Almost all current therapeutic concepts in autoimmune diseases are based on the systemic suppression of immune functions and are not curative. The recent introduction of biologicals such as tumour necrosis factor blocking antibodies or receptors has added greater specificity to efficient management of disease by targeted suppression of rheumatic inflammation. It is evident, however, that only the elimination of the cells secreting inflammatory mediators, rather than the blockade of secreted molecules, will offer real specific therapeutic advantages in the future. Merely the elimination of such cells and also cells controlling the secreting effector cells could be curative and induce true long term remissions. We review here the state of the art and future therapeutic concepts that are based on the specific modulation of pathogenic cells that induce and sustain autoimmune inflammation. This sounds visionary, however, a variety of basic tools are at hand now. Thus, direct and specific cell therapy of rheumatic diseases will become a true alternative to conventional therapies.
Collapse
Affiliation(s)
- A Radbruch
- German Rheumatism Research Centre Berlin, Schumannstr. 21/22, 10117 Berlin, Germany.
| | | |
Collapse
|
27
|
Nishida K, Komiyama T, Miyazawa SI, Shen ZN, Furumatsu T, Doi H, Yoshida A, Yamana J, Yamamura M, Ninomiya Y, Inoue H, Asahara H. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. ACTA ACUST UNITED AC 2004; 50:3365-76. [PMID: 15476220 DOI: 10.1002/art.20709] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To examine whether depsipeptide (FK228), a histone deacetylase (HDA) inhibitor, has inhibitory effects on the proliferation of synovial fibroblasts from rheumatoid arthritis (RA) patients, and to examine the effects of systemic administration of FK228 in an animal model of arthritis. METHODS Autoantibody-mediated arthritis (AMA) was induced in 19 male DBA/1 mice (6-7 weeks old); 10 of them were treated by intravenous administration of FK228 (2.5 mg/kg), and 9 were used as controls. The effects of FK228 were examined by radiographic, histologic, and immunohistochemical analyses and arthritis scores. RA synovial fibroblasts (RASFs) were obtained at the time of joint replacement surgery. In vitro effects of FK228 on cell proliferation were assessed by MTT assay. Cell morphology was examined by light and transmission electron microscopy. The effects on the expression of the cell cycle regulators p16INK4a and p21(WAF1/Cip1) were examined by real-time polymerase chain reaction and Western blot analysis. The acetylation status of the promoter regions of p16INK4a and p21(WAF1/Cip1) were determined by chromatin immunoprecipitation assay. RESULTS A single intravenous injection of FK228 (2.5 mg/ml) successfully inhibited joint swelling, synovial inflammation, and subsequent bone and cartilage destruction in mice with AMA. FK228 treatment induced histone hyperacetylation in the synovial cells and decreased the levels of tumor necrosis factor alpha and interleukin-1beta in the synovial tissues of mice with AMA. FK228 inhibited the in vitro proliferation of RASFs in a dose-dependent manner. Treatment of cells with FK228 induced the expression of p16INK4a and up-regulated the expression of p21(WAF1/Cip1). These effects of FK228 on p16INK4a and p21(WAF1/Cip1) were related to the acetylation of the promoter region of the genes. CONCLUSION Our findings strongly suggest that systemic administration of HDA inhibitors may represent a novel therapeutic target in RA by means of cell cycle arrest in RASFs via induction of p16INK4a expression and increase in p21(WAF1/Cip1) expression.
Collapse
Affiliation(s)
- Keiichiro Nishida
- Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
van de Loo FAJ, Smeets RL, van den Berg WB. Gene therapy in animal models of rheumatoid arthritis: are we ready for the patients? Arthritis Res Ther 2004; 6:183-96. [PMID: 15380032 PMCID: PMC546285 DOI: 10.1186/ar1214] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/21/2004] [Accepted: 06/21/2004] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints, with progressive destruction of cartilage and bone. Anti-tumour necrosis factor-α therapies (e.g. soluble tumour necrosis factor receptors) ameliorate disease in 60–70% of patients with RA. However, the need for repeated systemic administration of relatively high doses in order to achieve constant therapeutic levels in the joints, and the reported side effects are downsides to this systemic approach. Several gene therapeutic approaches have been developed to ameliorate disease in animal models of arthritis either by restoring the cytokine balance or by genetic synovectomy. In this review we summarize strategies to improve transduction of synovial cells, to achieve stable transgene expression using integrating viruses such as adeno-associated viruses, and to achieve transcriptionally regulated expression so that drug release can meet the variable demands imposed by the intermittent course of RA. Evidence from animal models convincingly supports the application of gene therapy in RA, and the feasibility of gene therapy was recently demonstrated in phase I clinical trials.
Collapse
Affiliation(s)
- Fons A J van de Loo
- Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, University Medical Center Nijmegen, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands.
| | | | | |
Collapse
|