1
|
Bao S, Chen Z, Qin D, Xu H, Deng X, Zhang R, Ma J, Lu Z, Jiang S, Zhang X. Single-cell profiling reveals mechanisms of uncontrolled inflammation and glycolysis in decidual stromal cell subtypes in recurrent miscarriage. Hum Reprod 2023; 38:57-74. [PMID: 36355621 DOI: 10.1093/humrep/deac240] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/08/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Do distinct subpopulations of decidual stromal cells (DSCs) exist and if so, are given subpopulations enriched in recurrent miscarriage (RM)? SUMMARY ANSWER Three subpopulations of DSCs were identified from which inflammatory DSCs (iDSCs) and glycolytic DSCs (glyDSCs) are significantly enriched in RM, with implicated roles in driving decidual inflammation and immune dysregulation. WHAT IS KNOWN ALREADY DSCs play crucial roles in establishing and maintaining a successful pregnancy; dysfunction of DSCs has been considered as one of the key reasons for the development of RM. STUDY DESIGN, SIZE, DURATION We collected 15 early decidual samples from five healthy donors (HDs) and ten RM patients to perform single-cell RNA sequencing (scRNA-seq). A total of 43 RM patients and 37 HDs were enrolled in the validation cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS Non-immune cells and immune cells of decidual tissues were sorted by flow cytometry to perform scRNA-seq. We used tissue microarrays (TMA) to validate three distinct subpopulations of DSCs. The expression of inflammatory and glycolytic proteins by DSCs was validated by immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Different subsets of decidual NK (dNK) cells and macrophages were also validated by multicolor flow cytometry and mIHC. Cell ligand-receptor and spatial analyses between DSCs and immune cells were analyzed by mIHC. MAIN RESULTS AND THE ROLE OF CHANCE We classify the DSCs into three subtypes based on scRNA-seq data: myofibroblastic (myDSCs), inflammatory (iDSCs) and glycolytic (glyDSCs), with the latter two being significantly enriched in RM patients. The distribution patterns of DSC subtypes in the RM and HD groups were validated by mIHC. Single-cell analyses indicate that the differentiation of iDSCs and glyDSCs may be coupled with the degrees of hypoxia. Consequently, we propose a pathological model in which a vicious circle is formed and fueled by hypoxic stress, uncontrolled inflammation and aberrant glycolysis. Furthermore, our results show that the inflammatory SPP1+ macrophages and CD18+ dNK cells are preferentially increased in the decidua of RM patients. Cell ligand-receptor and mIHC spatial analyses uncovered close interactions between pathogenic DSCs and inflammatory SPP1+ macrophages and CD18+ NK cells in RM patients. LARGE SCALE DATA The raw single-cell sequence data reported in this paper were deposited at the National Omics Data Encyclopedia (www.biosino.org), under the accession number OEP002901. LIMITATIONS, REASONS FOR CAUTION The number of decidual samples for scRNA-seq was limited and in-depth functional studies on DSCs are warranted in future studies. WIDER IMPLICATIONS OF THE FINDINGS Identification of three DSC subpopulations opens new avenues for further investigation of their roles in RM patients. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Strategic Priority Research Program (No. XDB29030302), Frontier Science Key Research Project (QYZDB-SSW-SMC036), Chinese Academy of Sciences; National Key Research and Development Program of China (2021YFE0200600), National Natural Science Foundation of China (No. 31770960), Shanghai Municipal Science and Technology Major Project (No. 2019SHZDZX02, HS2021SHZX001), and Shanghai Committee of Science and Technology (17411967800). All authors report no conflict of interest.
Collapse
Affiliation(s)
- Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zechuan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihui Xu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruixiu Zhang
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqiang Ma
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Zhouping Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
2
|
Zhao H, Yu Y, Wang Y, Zhao L, Yang A, Hu Y, Pan Z, Wang Z, Yang J, Han Q, Tian Z, Zhang J. Cholesterol accumulation on dendritic cells reverses chronic hepatitis B virus infection-induced dysfunction. Cell Mol Immunol 2022; 19:1347-1360. [PMID: 36369367 PMCID: PMC9708651 DOI: 10.1038/s41423-022-00939-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/11/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic hepatitis B (CHB) infection remains a serious public health problem worldwide; however, the relationship between cholesterol levels and CHB remains unclear. We isolated peripheral blood mononuclear cells from healthy blood donors and CHB patients to analyze free cholesterol levels, lipid raft formation, and cholesterol metabolism-related pathways. Hepatitis B virus (HBV)-carrier mice were generated and used to confirm changes in cholesterol metabolism and cell-surface lipid raft formation in dendritic cells (DCs) in the context of CHB. Additionally, HBV-carrier mice were immunized with a recombinant HBV vaccine (rHBVvac) combined with lipophilic statins and evaluated for vaccine efficacy against HBV. Serum samples were analyzed for HBsAg, anti-HBs, and alanine aminotransferase levels, and liver samples were evaluated for HBV DNA and RNA and HBcAg. CHB reduced free cholesterol levels and suppressed lipid raft formation on DCs in patients with CHB and HBV-carrier mice, whereas administration of lipophilic statins promoted free cholesterol accumulation and restored lipid rafts on DCs accompanied by an enhanced antigen-presentation ability in vitro and in vivo. Cholesterol accumulation on DCs improved the rHBVvac-mediated elimination of serum HBV DNA and intrahepatic HBV DNA, HBV RNA, and HBcAg and promoted the rHBVvac-mediated generation and polyfunctionality of HBV-specific CD11ahi CD8αlo cells, induction of the development of memory responses against HBV reinfection, and seroconversion from HBsAg to anti-HBs. The results demonstrated the important role of cholesterol levels in DC dysfunction during CHB, suggesting that strategies to increase cholesterol accumulation on DCs might enhance therapeutic vaccine efficacy against HBV and support development toward clinical CHB treatment.
Collapse
Affiliation(s)
- Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yating Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yucan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lianhui Zhao
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ailu Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yifei Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoyi Pan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zixuan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jiarui Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zhigang Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, 230000, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Abstract
Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors used worldwide to manage dyslipidaemia and thus limit the development of atherosclerotic disease and its complications. These atheroprotective drugs are now known to exert pleiotropic actions outside of their cholesterol-lowering activity, including altering immune cell function. Macrophages are phagocytic leukocytes that play critical functional roles in the pathogenesis of atherosclerosis and are directly targeted by statins. Early studies documented the anti-inflammatory effects of statins on macrophages, but emerging evidence suggests that these drugs can also enhance pro-inflammatory macrophage responses, creating an unresolved paradox. This review comprehensively examines the in vitro, in vivo, and clinical literature to document the statin-induced changes in macrophage polarization and immunomodulatory functions, explore the underlying mechanisms involved, and offer potential explanations for this paradox. A better understanding of the immunomodulatory actions of statins on macrophages should pave the way for the development of novel therapeutic approaches to manage atherosclerosis and other chronic diseases and conditions characterised by unresolved inflammation.
Collapse
|
4
|
Statins and Bempedoic Acid: Different Actions of Cholesterol Inhibitors on Macrophage Activation. Int J Mol Sci 2021; 22:ijms222212480. [PMID: 34830364 PMCID: PMC8623589 DOI: 10.3390/ijms222212480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023] Open
Abstract
Statins represent the most prescribed class of drugs for the treatment of hypercholesterolemia. Effects that go beyond lipid-lowering actions have been suggested to contribute to their beneficial pharmacological properties. Whether and how statins act on macrophages has been a matter of debate. In the present study, we aimed at characterizing the impact of statins on macrophage polarization and comparing these to the effects of bempedoic acid, a recently registered drug for the treatment of hypercholesterolemia, which has been suggested to have a similar beneficial profile but fewer side effects. Treatment of primary murine macrophages with two different statins, i.e., simvastatin and cerivastatin, impaired phagocytotic activity and, concurrently, enhanced pro-inflammatory responses upon short-term lipopolysaccharide challenge, as characterized by an induction of tumor necrosis factor (TNF), interleukin (IL) 1β, and IL6. In contrast, no differences were observed under long-term inflammatory (M1) or anti-inflammatory (M2) conditions, and neither inducible NO synthase (iNOS) expression nor nitric oxide production was altered. Statin treatment led to extracellular-signal regulated kinase (ERK) activation, and the pro-inflammatory statin effects were abolished by ERK inhibition. Bempedoic acid only had a negligible impact on macrophage responses when compared with statins. Taken together, our data point toward an immunomodulatory effect of statins on macrophage polarization, which is absent upon bempedoic acid treatment.
Collapse
|
5
|
Komatsu T, Ayaori M, Uto-Kondo H, Hayashi K, Tamura K, Sato H, Sasaki M, Nishida T, Takiguchi S, Yakushiji E, Nakaya K, Ikewaki K. Atorvastatin Reduces Circulating S100A12 Levels in Patients with Carotid Atherosclerotic Plaques - A Link with Plaque Inflammation. J Atheroscler Thromb 2021; 29:775-784. [PMID: 33952812 PMCID: PMC9135643 DOI: 10.5551/jat.61630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims: Inflammation is involved in various processes of atherosclerosis development. Serum C-reactive protein (CRP) levels, a predictor for cardiovascular risk, are reportedly reduced by statins. However, several studies have demonstrated that CRP is a bystander during atherogenesis. While S100A12 has been focused on as an inflammatory molecule, it remains unclear whether statins affect circulating S100A12 levels. Here, we investigated whether atorvastatin treatment affected S100A12 and which biomarkers were correlated with changes in arterial inflammation.
Methods: We performed a prospective, randomized open-labeled trial on whether atorvastatin affected arterial (carotid and thoracic aorta) inflammation using18fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) and inflammatory markers. Thirty-one statin-naïve patients with carotid atherosclerotic plaques were randomized to either a group receiving dietary management (n=15) or one receiving atorvastatin (10mg/day,n=16) for 12weeks.18F-FDG-PET/CT and flow-mediated vasodilation (FMD) were performed, the latter to evaluate endothelial function.
Results: Atorvastatin, but not the diet-only treatment, significantly reduced LDL-cholesterol (LDL-C, -43%), serum CRP (-37%) and S100A12 levels (-28%) and improved FMD (+38%).18F-FDG-PET/CT demonstrated that atorvastatin, but not the diet-only treatment, significantly reduced accumulation of18F-FDG in the carotid artery and thoracic aorta. A multivariate analysis revealed that reduction in CRP, S100A12, LDL-C, oxidized-LDL, and increase in FMD were significantly associated with reduced arterial inflammation in the thoracic aorta, but not in the carotid artery.
Conclusions: Atorvastatin treatment reduced S100A12/CRP levels, and the changes in these circulating markers mirrored the improvement in arterial inflammation. Our observations suggest that S100A12 may be an emerging therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Tomohiro Komatsu
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Makoto Ayaori
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College.,Tokorozawa Heart Center
| | - Harumi Uto-Kondo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | | | | | - Hiroki Sato
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Makoto Sasaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Takafumi Nishida
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Shunichi Takiguchi
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Emi Yakushiji
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Kazuhiro Nakaya
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| |
Collapse
|
6
|
Ruleva NY, Radyukhina NV, Zubkova ES, Filatova AY, Aref'eva TI. Inhibitors of 3-Hydroxy-3-Methylglutaryl Coenzyme a Reductase (Statins) Suppress Differentiation and Reduce LPS/IFNγ-Induced Cytokine Production in Human Monocyte/Macrophage Culture. Bull Exp Biol Med 2020; 170:236-240. [PMID: 33263856 DOI: 10.1007/s10517-020-05042-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 10/22/2022]
Abstract
We examined the effects of 72-h exposure to atorvastatin and rosuvastatin in concentrations of 2-10 nM on the cytokine expression in LPS/IFNγ-activated monocyte/macrophages derived from peripheral blood monocytes of healthy donors by culturing in the presence of GM-CSF. Pretreatment with statins was found to inhibit cytokine production in monocytes/macrophages after activation, while the level of cytokine mRNA in cells did not decrease. The number of cells containing active caspase-3 decreased in the culture. Culturing of monocytes/macrophages with statins was accompanied by changes in cell morphology and deceleration of cell growth. Cellular effects of "lipophilic" atorvastastin were observed at lower concentration compared to "hydrophilic" rosuvastatin.
Collapse
Affiliation(s)
- N Yu Ruleva
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - N V Radyukhina
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E S Zubkova
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Yu Filatova
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - T I Aref'eva
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
7
|
Parihar SP, Guler R, Brombacher F. Statins: a viable candidate for host-directed therapy against infectious diseases. Nat Rev Immunol 2019; 19:104-117. [PMID: 30487528 DOI: 10.1038/s41577-018-0094-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Statins were first identified over 40 years ago as lipid-lowering drugs and have been remarkably effective in treating cardiovascular diseases. As research advanced, the protective effects of statins were additionally attributed to their anti-inflammatory, antioxidative, anti-thrombotic and immunomodulatory functions rather than lipid-lowering abilities alone. By promoting host defence mechanisms and inhibiting pathological inflammation, statins increase survival in human infectious diseases. At the cellular level, statins inhibit the intermediates of the host mevalonate pathway, thus compromising the immune evasion strategies of pathogens and their survival. Here, we discuss the potential use of statins as an inexpensive and practical alternative or adjunctive host-directed therapy for infectious diseases caused by intracellular pathogens, such as viruses, protozoa, fungi and bacteria.
Collapse
Affiliation(s)
- Suraj P Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa. .,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, Cape Town, South Africa. .,Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC), Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Kamal AHM, Aloor JJ, Fessler MB, Chowdhury SM. Cross-linking Proteomics Indicates Effects of Simvastatin on the TLR2 Interactome and Reveals ACTR1A as a Novel Regulator of the TLR2 Signal Cascade. Mol Cell Proteomics 2019; 18:1732-1744. [PMID: 31221720 PMCID: PMC6731082 DOI: 10.1074/mcp.ra119.001377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/25/2019] [Indexed: 01/23/2023] Open
Abstract
Toll-like receptor 2 (TLR2) is a pattern recognition receptor that, upon ligation by microbial molecules, interacts with other proteins to initiate pro-inflammatory responses by the cell. Statins (hydroxymethylglutaryl coenzyme A reductase inhibitors), drugs widely prescribed to reduce hypercholesterolemia, are reported to have both pro- and anti-inflammatory effects upon cells. Some of these responses are presumed to be driven by effects on signaling proteins at the plasma membrane, but the underlying mechanisms remain obscure. We reasoned that profiling the effect of statins on the repertoire of TLR2-interacting proteins might provide novel insights into the mechanisms by which statins impact inflammation. In order to study the TLR2 interactome, we designed a coimmunoprecipitation (IP)-based cross-linking proteomics study. A hemagglutinin (HA)-tagged-TLR2 transfected HEK293 cell line was used to precipitate the TLR2 interactome upon cell exposure to the TLR2 agonist Pam3CSK4 and simvastatin, singly and in combination. To stabilize protein interactors, we used two different chemical cross-linkers with different spacer chain lengths. Proteomic analysis revealed important combinatorial effects of simvastatin and Pam3CSK4 on the TLR2 interactome. After stringent data filtering, we identified alpha-centractin (ACTR1A), an actin-related protein and subunit of the dynactin complex, as a potential interactor of TLR2. The interaction was validated using biochemical methods. RNA interference studies revealed an important role for ACTR1A in induction of pro-inflammatory cytokines. Taken together, we report that statins remodel the TLR2 interactome, and we identify ACTR1A, a part of the dynactin complex, as a novel regulator of TLR2-mediated immune signaling pathways.
Collapse
Affiliation(s)
- Abu Hena Mostafa Kamal
- ‡Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas 76019
| | - Jim J Aloor
- §Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Michael B Fessler
- §Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Saiful M Chowdhury
- ‡Department of Chemistry and Biochemistry, University of Texas at Arlington, Texas 76019.
| |
Collapse
|
9
|
Hussein HM, Al-Khoury DK, Abdelnoor AM, Rahal EA. Atorvastatin increases the production of proinflammatory cytokines and decreases the survival of Escherichia coli-infected mice. Sci Rep 2019; 9:11717. [PMID: 31406240 PMCID: PMC6690901 DOI: 10.1038/s41598-019-48282-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
To assess whether the immunosuppressive effects of atorvastatin outweigh its antibacterial ones in an infection, mice were infected with Escherichia coli and administered atorvastatin; survival rates were then monitored. Mice treated with atorvastatin post-infection showed a remarkable decrease in their survival rate. On the other hand, the higher the level of serum IFN-γ in the infected mice treated with atorvastatin, the lower was the survival rate. Levels of IL-4 were markedly depressed in all groups infected with E. coli and treated with atorvastatin. Since atorvastatin inhibits IFN-γ expression in the absence of bacterial infection, we examined whether bacterial lipopolysaccharide (LPS) was the element capable of overriding this inhibition. Mouse peripheral blood mononuclear cells were treated with atorvastatin and lipopolysaccharide ex vivo then proinflammatory (IFN-γ, TNFα, IL-6) and prohumoral/regulatory (IL-4, IL-13, IL-10) cytokine levels were analyzed in culture supernatants. While proinflammatory cytokine levels were decreased upon treatment with atorvastatin alone, their levels were markedly elevated by treatment with LPS, bacterial lysate or bacterial culture supernatant. On the other hand, atorvastatin exerted an inhibitory effect on production of the prohumoral/regulatory cytokines. Our data indicates that any consideration for statins as antimicrobial treatment should assess the possible adverse outcomes.
Collapse
Affiliation(s)
- Hadi M Hussein
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Diva Kalash Al-Khoury
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Alexander M Abdelnoor
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon. .,Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
10
|
Hannemann N, Cao S, Eriksson D, Schnelzer A, Jordan J, Eberhardt M, Schleicher U, Rech J, Ramming A, Uebe S, Ekici A, Cañete JD, Chen X, Bäuerle T, Vera J, Bogdan C, Schett G, Bozec A. Transcription factor Fra-1 targets arginase-1 to enhance macrophage-mediated inflammation in arthritis. J Clin Invest 2019; 129:2669-2684. [PMID: 30990796 DOI: 10.1172/jci96832] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The polarization of macrophages is regulated by transcription factors such as nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1). In this manuscript, we delineated the role of the transcription factor Fos-related antigen 1 (Fra-1) during macrophage activation and development of arthritis. Network level interaction analysis of microarray data derived from Fra-1- or Fra-2-deficient macrophages revealed a central role of Fra-1, but not of Fra-2 in orchestrating the expression of genes related to wound response, toll-like receptor activation and interleukin signaling. Chromatin-immunoprecipitation (ChIP)-sequencing and standard ChIP analyses of macrophages identified arginase 1 (Arg1) as a target of Fra-1. Luciferase reporter assays revealed that Fra-1 down-regulated Arg1 expression by direct binding to the promoter region. Using macrophage-specific Fra-1- or Fra-2- deficient mice, we observed an enhanced expression and activity of Arg1 and a reduction of arthritis in the absence of Fra-1, but not of Fra-2. This phenotype was reversed by treatment with the arginase inhibitor Nω-hydroxy-nor-L-arginine, while ʟ-arginine supplementation increased arginase activity and alleviated arthritis, supporting the notion that reduced arthritis in macrophage-specific Fra-1-deficient mice resulted from enhanced Arg1 expression and activity. Moreover, patients with active RA showed increased Fra-1 expression in the peripheral blood and elevated Fra-1 protein in synovial macrophages compared to RA patients in remission. In addition, the Fra-1/ARG1 ratio in synovial macrophages was related to RA disease activity. In conclusion, these data suggest that Fra-1 orchestrates the inflammatory state of macrophages by inhibition of Arg1 expression and thereby impedes the resolution of inflammation.
Collapse
Affiliation(s)
| | - Shan Cao
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Daniel Eriksson
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Anne Schnelzer
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Jutta Jordan
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE)
| | - Martin Eberhardt
- Laboratory of Systems Tumor Immunology, Department of Dermatology
| | - Ulrike Schleicher
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, and
| | - Jürgen Rech
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Steffen Uebe
- Institute of Human Genetics, FAU and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, FAU and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Juan D Cañete
- Departamento de Reumatología, Hospital Clínic de Barcelona e IDIBAPS, Barcelona, Spain
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tobias Bäuerle
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE)
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology
| | - Christian Bogdan
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, and
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology
| |
Collapse
|
11
|
Perucha E, Melchiotti R, Bibby JA, Wu W, Frederiksen KS, Roberts CA, Hall Z, LeFriec G, Robertson KA, Lavender P, Gerwien JG, Taams LS, Griffin JL, de Rinaldis E, van Baarsen LGM, Kemper C, Ghazal P, Cope AP. The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells. Nat Commun 2019; 10:498. [PMID: 30700717 PMCID: PMC6353904 DOI: 10.1038/s41467-019-08332-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/18/2018] [Indexed: 02/02/2023] Open
Abstract
The mechanisms controlling CD4+ T cell switching from an effector to an anti-inflammatory (IL-10+) phenotype play an important role in the persistence of chronic inflammatory diseases. Here, we identify the cholesterol biosynthesis pathway as a key regulator of this process. Pathway analysis of cultured cytokine-producing human T cells reveals a significant association between IL-10 and cholesterol metabolism gene expression. Inhibition of the cholesterol biosynthesis pathway with atorvastatin or 25-hydroxycholesterol during switching from IFNγ+ to IL-10+ shows a specific block in immune resolution, defined as a significant decrease in IL-10 expression. Mechanistically, the master transcriptional regulator of IL10 in T cells, c-Maf, is significantly decreased by physiological levels of 25-hydroxycholesterol. Strikingly, progression to rheumatoid arthritis is associated with altered expression of cholesterol biosynthesis genes in synovial biopsies of predisposed individuals. Our data reveal a link between sterol metabolism and the regulation of the anti-inflammatory response in human CD4+ T cells.
Collapse
Affiliation(s)
- Esperanza Perucha
- Academic Department of Rheumatology, King's College London, London, SE1 1UL, UK.
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 1UL, UK.
| | - Rossella Melchiotti
- National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Jack A Bibby
- Academic Department of Rheumatology, King's College London, London, SE1 1UL, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 1UL, UK
| | - Wing Wu
- Academic Department of Rheumatology, King's College London, London, SE1 1UL, UK
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 1UL, UK
| | | | - Ceri A Roberts
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 1UL, UK
- Cellular and Molecular Therapy, NHS Blood and Transplant, Bristol, BS34 7QH, UK
| | - Zoe Hall
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Gaelle LeFriec
- MRC Centre for Transplantation, King's College London, London, SE1 9RT, UK
| | - Kevin A Robertson
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Paul Lavender
- School of Immunology and Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jens Gammeltoft Gerwien
- Global Drug Discovery, Novo Nordisk A/S, 2880, Bagsvaerd, Denmark
- Rheumatology NEC, Eli Lilly, 2730, Copenhagen, Denmark
| | - Leonie S Taams
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 1UL, UK
| | - Julian L Griffin
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Emanuele de Rinaldis
- National Institute for Health Research Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, SE1 9RT, UK
| | - Lisa G M van Baarsen
- Amsterdam Rheumatology and immunology Center (ARC), Department of Rheumatology and Clinical Immunology, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, Netherlands
| | - Claudia Kemper
- MRC Centre for Transplantation, King's College London, London, SE1 9RT, UK
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- Institute for Systemic Inflammation Research, University of Lübeck, 23562, Lübeck, Germany
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Systems Immunity Research Institute, Medical School, University of Cardiff, Cardiff, CF14 4XN, UK
| | - Andrew P Cope
- Academic Department of Rheumatology, King's College London, London, SE1 1UL, UK.
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
12
|
Zhang M, He J, Jiang C, Zhang W, Yang Y, Wang Z, Liu J. Plaque-hyaluronidase-responsive high-density-lipoprotein-mimetic nanoparticles for multistage intimal-macrophage-targeted drug delivery and enhanced anti-atherosclerotic therapy. Int J Nanomedicine 2017; 12:533-558. [PMID: 28144137 PMCID: PMC5245982 DOI: 10.2147/ijn.s124252] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence has highlighted the pivotal role that intimal macrophage (iMΦ) plays in the pathophysiology of atherosclerotic plaques, which represents an attractive target for atherosclerosis treatment. In this work, to address the insufficient specificity of conventional reconstituted high-density lipoprotein (rHDL) for iMΦ and its limited cholesterol efflux ability, we designed a hyaluronan (HA)-anchored core-shell rHDL. This nanoparticle achieved efficient iMΦ-targeted drug delivery via a multistage-targeting approach, and excellent cellular cholesterol removal. It contained a biodegradable poly (lactic-co-glycolic acid) (PLGA) core within a lipid bilayer, and apolipoprotein A-I (apoA-I) absorbing on the lipid bilayer was covalently decorated with HA. The covalent HA coating with superior stability and greater shielding was favorable for not only minimizing the liver uptake but also facilitating the accumulation of nanoparticles at leaky endothelium overexpressing CD44 receptors in atherosclerotic plaques. The ultimate iMΦ homing was achieved via apoA-I after HA coating degraded by hyaluronidase (HAase) (abundant in atherosclerotic plaque). The multistage-targeting mechanism was revealed on the established injured endothelium-macrophage co-culture dynamic system. Upon treatment with HAase in vitro, the nanoparticle HA-(C)-PLGA-rHDL exhibited a greater cholesterol efflux capacity compared with conventional rHDL (2.43-fold). Better targeting efficiency toward iMΦ and attenuated liver accumulation were further proved by results from ex vivo imaging and iMΦ-specific fluorescence localization. Ultimately, HA-(C)-PLGA-rHDL loaded with simvastatin realized the most potent anti-atherogenic efficacies in model animals over other preparations. Thus, the HAase-responsive HDL-mimetic nanoparticle was shown in this study to be a promising nanocarrier for anti-atherogenic therapy, in the light of efficient iMΦ-targeted drug delivery and excellent function of mediating cellular cholesterol efflux.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Cuiping Jiang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yun Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Zhiyu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
13
|
Gabor KA, Fessler MB. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Curr Mol Pharmacol 2017; 10:27-45. [PMID: 26758950 PMCID: PMC6026538 DOI: 10.2174/1874467209666160112123603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/01/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
Abstract
The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, Maildrop D2-01, Research Triangle Park, NC 27709, United States
| |
Collapse
|
14
|
Fu ZJ, Zhong XZ, Ma WH, Zhang WD, Shi CY. Lipophilic but not hydrophilic statin functionally inhibit volume-activated chloride channels by inhibiting NADPH oxidase in monocytes. Biochem Biophys Res Commun 2016; 481:117-124. [PMID: 27818195 DOI: 10.1016/j.bbrc.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/02/2016] [Indexed: 11/27/2022]
Abstract
Volume-activated Cl- channels (VACCs) can be activated by hypotonic solutions and have been identified in many cell types. Here, we investigated the effects of different statins on VACCs in monocytes. Whole-cell patch clamp recordings demonstrated that a hypotonic solution induced 5-nitro-2- (3-phenylpropylamino) benzoic acid (NPPB)- and 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS)-sensitive VACC currents in human peripheral monocytes and RAW 264.7 cells. The VACC currents were inhibited by the lipophilic statin (simvastatin) but not by the hydrophilic simvastatin acid and pravastatin. A low-molecular-weight superoxide anion scavenger (tiron, 1 mM) and inhibitor of NADPH oxidase (DPI 10 μM) was able to abolish the VACC currents. A hypotonic solution increased the reactive oxygen species (ROS) detected by the fluorescence of dichlorodihydrofluorescein (DCF), which was abolished by tiron and DPI. NPPB, DIDS, and simvastatin but not pravastatin decreased the fluorescence of DCF. Simvastatin could not further decrease VACC currents when pretreated with tiron or DPI, whereas exogenous H2O2 (100 μM), increased the VACC currents and overcame the blockade of VACC currents by simvastatin. Functionally, hypotonic solution increased the TNF-α mRNA expression, which could be decreased by tiron, DPI, NPPB, DIDS and simvastatin but not pravastatin. However, simvastatin could not decrease the TNF-α expression further when pretreatment with tiron, DPI, NPPB or DIDS. We conclude that lipophilic (simvastatin) rather than hydrophilic statin inhibit VACCs and decrease hyposmolality induced inflammation in monocytes by inhibiting NADPH oxidase.
Collapse
Affiliation(s)
- Zhi-Jie Fu
- Department of Otorhinolaryngology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, China
| | - Xue-Zhen Zhong
- Department of Cardiovascular Disease, Jinan Central Hospital Affiliated to Shandong University, Shandong, Jinan 250013, China
| | - Wei-Hong Ma
- Department of Cardiology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Wen-Dong Zhang
- Department of Pharmacy, QiLu Hospital, Shandong University, Jinan 250012, China.
| | - Cheng-Yao Shi
- Department of Pharmacy, QiLu Hospital, Shandong University, Jinan 250012, China
| |
Collapse
|
15
|
Walton GM, Stockley JA, Griffiths D, Sadhra CS, Purvis T, Sapey E. Repurposing Treatments to Enhance Innate Immunity. Can Statins Improve Neutrophil Functions and Clinical Outcomes in COPD? J Clin Med 2016; 5:jcm5100089. [PMID: 27727158 PMCID: PMC5086591 DOI: 10.3390/jcm5100089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023] Open
Abstract
Drug classes used in the treatment of Chronic Obstructive Pulmonary Disease (COPD) have not changed for many years, and none to date have shown disease-modifying activity. Statins are used to help reduce cardiovascular risk, which is high in many patients with COPD. Their use has been associated with improvements in some respiratory manifestations of disease and reduction in all-cause mortality, with greatest reductions seen in patients with the highest inflammatory burden. The mechanism for these effects is poorly understood. Neutrophils are key effector cells in COPD, and correlate with disease severity and inflammation. Recent in vitro studies have shown neutrophil functions are dysregulated in COPD and this is thought to contribute both to the destruction of lung parenchyma and to the poor responses seen in infective exacerbations. In this article, we will discuss the potential utility of statins in COPD, with a particular emphasis on their immune-modulatory effects as well as presenting new data regarding the effects of statins on neutrophil function in vitro.
Collapse
Affiliation(s)
- Georgia M Walton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - James A Stockley
- Lung Function and Sleep, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TT, UK.
| | - Diane Griffiths
- Respiratory Research, Research and Development, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TT, UK.
| | - Charandeep S Sadhra
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Thomas Purvis
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
16
|
Luo XL, Liu SY, Wang LJ, Zhang QY, Xu P, Pan LL, Hu JF. A tetramethoxychalcone from Chloranthus henryi suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia. Eur J Pharmacol 2016; 774:135-43. [PMID: 26852953 DOI: 10.1016/j.ejphar.2016.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/01/2023]
Abstract
Neuroinflammation underlies the pathogenesis and progression of neurodegenerative diseases. 2׳-hydroxy-4,3׳,4׳,6׳-tetramethoxychalcone (HTMC) is a known chalcone derivative isolated from Chloranthus henryi with anti-inflammatory activities in BV2 macrophages. However, its pharmacological effects on microglial cells have not been demonstrated. To this end, we examined the effects of HTMC on lipopolysaccharide (LPS)-induced inflammatory responses in BV2 microglial cells. HTMC concentration-dependently inhibited LPS-induced expression of inflammatory enzymes including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nitric oxide (NO) production, and the secretion of inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. In addition, HTMC inhibited reactive oxygen species (ROS) production by reducing NADPH oxidase (Nox) 2 and Nox4 expression. In addition, HTMC interfered LPS-induced c-Jun N-terminal kinase 1/2 (JNK) phosphorylation in a time- and concentration-dependent manner. By inhibiting phosphorylation and nuclear translocation of Jun, HTMC suppressed LPS-induced activator protein-1 (AP-1) activation. Taken together, our data indicate that HTMC suppresses inflammatory responses in LPS-stimulated BV2 microglial cells by modulating JNK-AP-1 and NADPH oxidases-ROS pathways. HTMC represents a promising therapeutic agent for neurodegenerative and related aging-associated diseases.
Collapse
Affiliation(s)
- Xiao-Ling Luo
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Si-Yu Liu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li-Jun Wang
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qiu-Yan Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Peng Xu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li-Long Pan
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Jin-Feng Hu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
17
|
Statin Adverse Events in Primary Prevention: Between Randomized Trials and Observational Studies. Am J Med Sci 2015; 350:330-7. [PMID: 26181083 DOI: 10.1097/maj.0000000000000527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable debate exists regarding who might benefit from statins for primary prevention. Statins have wide pleotropic effects, which contribute to their efficacy in lowering cardiovascular disease but may also result in adverse events (AEs). Caveats in identifying AEs in randomized controlled trials (RCTs) include the lack of a standardized definition of statin-associated AEs, the differences in properties of different statins, the selectivity of RCTs in choosing their participants, the presence of high rate of nonadherence/withdrawal from trials and other concerns related to study design and conflict of interest. Caveats in identifying or overestimating AEs in observational studies include failure to identify baseline confounders, ascertainment bias, confounding by indication and healthy user bias. Statin use in observational studies may be a surrogate marker for higher socioeconomic standards, access to health care or use of other preventive services. Integrating evidence from both RCTs and observational studies is of paramount importance for appropriate patient-centered decision.
Collapse
|
18
|
Wang D, Nie H, Ozhegov E, Wang L, Zhou A, Li Y, Sun XL. Globally profiling sialylation status of macrophages upon statin treatment. Glycobiology 2015; 25:1007-15. [PMID: 26033937 DOI: 10.1093/glycob/cwv038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/26/2015] [Indexed: 12/22/2022] Open
Abstract
Sialic acids (SAs) are widely expressed on immune cells and their levels and linkages named as sialylation status vary upon cellular environment changes related to both physiological and pathological processes. In this study, we performed a global profiling of the sialylation status of macrophages and their release of SAs in the cell culture medium by using flow cytometry, confocal microscopy and liquid chromatography tandem mass spectrometry (LC-MS/MS). Both flow cytometry and confocal microscopy results showed that cell surface α-2,3-linked SAs were predominant in the normal culture condition and changed slightly upon treatment with atorvastatin for 24 h, whereas α-2,6-linked SAs were negligible in the normal culture condition but significantly increased after treatment. Meanwhile, the amount of total cellular SAs increased about three times (from 369 ± 29 to 1080 ± 50 ng/mL) upon treatment as determined by the LC-MS/MS method. On the other hand, there was no significant change for secreted free SAs and conjugated SAs in the medium. These results indicated that the cell surface α-2,6 sialylation status of macrophages changes distinctly upon atorvastatin stimulation, which may reflect on the biological functions of the cells.
Collapse
Affiliation(s)
- Dan Wang
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, People's Republic of China
| | - Evgeny Ozhegov
- Department of Biological, Geological, and Environmental Sciences (BGES), Cleveland State University, Cleveland, OH 44115, USA
| | - Lin Wang
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Aimin Zhou
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150000, People's Republic of China
| | - Xue-Long Sun
- Department of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation of Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| |
Collapse
|
19
|
Lipidome and transcriptome profiling of pneumolysin intoxication identifies networks involved in statin-conferred protection of airway epithelial cells. Sci Rep 2015; 5:10624. [PMID: 26023727 PMCID: PMC4448502 DOI: 10.1038/srep10624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
Pneumonia remains one of the leading causes of death in both adults and children worldwide. Despite the adoption of a wide variety of therapeutics, the mortality from community-acquired pneumonia has remained relatively constant. Although viral and fungal acute airway infections can result in pneumonia, bacteria are the most common cause of community-acquired pneumonia, with Streptococcus pneumoniae isolated in nearly 50% of cases. Pneumolysin is a cholesterol-dependent cytolysin or pore-forming toxin produced by Streptococcus pneumonia and has been shown to play a critical role in bacterial pathogenesis. Airway epithelium is the initial site of many bacterial contacts and its barrier and mucosal immunity functions are central to infectious lung diseases. In our studies, we have shown that the prior exposure to statins confers significant resistance of airway epithelial cells to the cytotoxicity of pneumolysin. We decided to take this study one step further, assessing changes in both the transcriptome and lipidome of human airway epithelial cells exposed to toxin, statin or both. Our current work provides the first global view in human airway epithelial cells of both the transcriptome and the lipid interactions that result in cellular protection from pneumolysin.
Collapse
|
20
|
Cimato TR, Palka BA. Effects of statins on TH1 modulating cytokines in human subjects. PeerJ 2015; 3:e764. [PMID: 25699211 PMCID: PMC4327442 DOI: 10.7717/peerj.764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/22/2015] [Indexed: 01/05/2023] Open
Abstract
Background. Activation of the innate immune system by cholesterol accelerates atherosclerosis. High levels or modified forms of cholesterol stimulate release of the inflammatory cytokines IL-12 and IL-18 that synergistically stimulate T lymphocytes to produce the atherogenic cytokine interferon-γ. While activation of the innate immune system by cholesterol is well-described in animal models and human subjects with high cholesterol levels or known atherosclerotic disease, the interaction of cholesterol and lipoproteins with the innate immune system in human subjects without known atherosclerosis is less well-described. The goal of our study was to assess the TH1 modulating cytokines IL-12 p40 and IL-18, and their counter regulatory cytokines IL-18 binding protein and IL-27, to determine if their levels are linked to cholesterol levels or other factors. Methods. We performed a blinded, randomized hypothesis-generating study in human subjects without known atherosclerotic disease. We measured serum lipids, lipoprotein levels, and collected plasma samples at baseline. Subjects were randomized to two weeks of therapy with atorvastatin, pravastatin, or rosuvastatin. Lipids and cytokine levels were measured after two weeks of statin treatment. Subjects were given a four-week statin-free period. At the end of the four-week statin-free period, venous blood was sampled again to determine if serum lipids returned to within 5% of their pre-statin levels. When lipid levels returned to baseline, subjects were again treated with the next statin in the randomization scheme. IL-12, IL-18, IL-18 binding protein, and IL-27 were measured at baseline and after each statin treatment to determine effects of statin treatment on their blood levels, and identify correlations with lipids and lipoproteins. Results. Therapy with statins revealed no significant change in the levels of IL-12, IL-18, IL-18 binding protein or IL-27 levels. We found that IL-18 levels positively correlate with total cholesterol levels (r2 = 0.15, p < 0.03), but not HDL or LDL cholesterol. In contrast, IL-12 p40 levels inversely correlated with total cholesterol (r2 = −0.17, p < 0.008), HDL cholesterol (r2 = −0.22, p < 0.002), and apolipoprotein A1 (r2 = −0.21, p < 0.002). Similarly, IL-18 binding protein levels inversely correlated with apolipoprotein A1 levels (r2 = −0.13, p < 0.02). Conclusions. Our findings suggest that total cholesterol levels positively regulate IL-18, while HDL cholesterol and apolipoprotein A1 may reduce IL-12 p40 and IL-18 binding protein levels. Additional studies in a larger patient population are needed to confirm these findings, and verify mechanistically whether HDL cholesterol can directly suppress IL-12 p40 and IL-18 binding protein levels in human subjects.
Collapse
Affiliation(s)
- Thomas R Cimato
- Department of Medicine, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Clinical and Translational Research Center , Buffalo, NY , USA
| | - Beth A Palka
- Department of Medicine, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Clinical and Translational Research Center , Buffalo, NY , USA
| |
Collapse
|
21
|
Sabe AA, Elmadhun NY, Sadek AA, Dalal RS, Chu LM, Bianchi C, Sellke FW. Atorvastatin regulates apoptosis in chronically ischemic myocardium. J Card Surg 2014; 30:218-23. [PMID: 25511504 DOI: 10.1111/jocs.12488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND We previously demonstrated that atorvastatin upregulates proangiogenic proteins and increases arteriolar density in ischemic myocardium. Despite this, there was a lack of collateral-dependent perfusion, possibly related to apoptosis. We utilized a swine model of metabolic syndrome and chronic myocardial ischemia to investigate the effects of atorvastatin on apoptosis. MATERIALS AND METHODS Sixteen Ossabaw miniswine were fed a high-cholesterol diet for 14 weeks then underwent surgical placement of an ameroid constrictor to their circumflex artery inducing chronic ischemia. Eight pigs additionally received supplemental atorvastatin (1.5 mg/kg daily). Myocardium was harvested six months later for western blotting and TUNEL staining. RESULTS Animals supplemented with atorvastatin had significant increases in markers associated with apoptosis including p-38, BAX, and caspase 3 (p < 0.05). Atorvastatin supplementation also resulted in significant increases in expression of cell survival proteins Bcl-2 and P-ERK and an overall decrease in apoptosis demonstrated by TUNEL staining (p < 0.05). CONCLUSIONS Atorvastatin acts on multiple pathways and its effects on angiogenesis remain unclear. Although there is increased expression in several markers of apoptosis, key anti-apoptotic proteins were also upregulated with an overall decrease in apoptosis. Further investigation of these pathways may provide insight into the role of statins on myocardial protection after ischemia.
Collapse
Affiliation(s)
- Ashraf A Sabe
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
| | | | | | | | | | | | | |
Collapse
|
22
|
Mehl A, Harthug S, Lydersen S, Paulsen J, Åsvold BO, Solligård E, Damås JK, Edna TH. Prior statin use and 90-day mortality in Gram-negative and Gram-positive bloodstream infection: a prospective observational study. Eur J Clin Microbiol Infect Dis 2014; 34:609-17. [PMID: 25373530 PMCID: PMC4356896 DOI: 10.1007/s10096-014-2269-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/20/2014] [Indexed: 01/31/2023]
Abstract
In several studies on patients with bloodstream infection (BSI), prior use of statins has been associated with improved survival. Gram-positive and Gram-negative bacteria alert the innate immune system in different ways. We, therefore, studied whether the relation between prior statin use and 90-day total mortality differed between Gram-positive and Gram-negative BSI. We conducted a prospective observational cohort study of 1,408 adults with BSI admitted to Levanger Hospital between January 1, 2002, and December 31, 2011. Data on the use of statins and other medications at admission, comorbidities, functional status, treatment, and outcome were obtained from the patients’ hospital records. The relation of statin use with 90-day mortality differed between Gram-negative and Gram-positive BSI (p-value for interaction 0.01). Among patients with Gram-negative BSI, statin users had significantly lower 90-day total mortality [odds ratio (OR) 0.42, 95 % confidence interval (CI) 0.23–0.75, p = 0.003]. The association remained essentially unchanged after adjusting for the effect of sex, age, functional status before the infection, and underlying diseases that were considered confounders (adjusted OR 0.38, 95 % CI 0.20–0.72, p = 0.003). A similar analysis of patients with Gram-positive BSI showed no association of statin use with mortality (adjusted OR 1.22, 95 % CI 0.69–2.17, p = 0.49). The present study suggests that prior statin use is associated with a lower 90-day total mortality in Gram-negative BSI, but not in Gram-positive BSI.
Collapse
Affiliation(s)
- A Mehl
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Post Box 333, 7601, Levanger, Norway,
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zanin V, Marcuzzi A, Kleiner G, Piscianz E, Monasta L, Zacchigna S, Crovella S, Zauli G. Lovastatin dose-dependently potentiates the pro-inflammatory activity of lipopolysaccharide both in vitro and in vivo. J Cardiovasc Transl Res 2014; 6:981-8. [PMID: 23959762 PMCID: PMC3838599 DOI: 10.1007/s12265-013-9506-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/06/2013] [Indexed: 01/13/2023]
Abstract
Since contradictory findings have been reported on potential effects of statins in modulating the inflammatory response, we have analysed the biological activity of lovastatin both in vitro using the Raw 264.7 murine macrophagic cell line and in vivo using BALB/c mice. When added to Raw 264.7 cells in combination with lipopolysaccharide, lovastatin significantly potentiated the release of interleukin-1β, interleukin-6 and interleukin-12 with respect to lipopolysaccharide alone and showed an additive effect on the release of nitric oxide. Similarly, when lovastatin was intraperitoneally administrated to BALB/c mice, it did not induce any pro-inflammatory effect when used alone, but it significantly potentiated the pro-inflammatory activity of lipopolysaccharide, in terms of number of intraperitoneal cells and serum levels of serum amyloid A, interleukin-1β, interleukin-6 and interleukin-12. A potential clinical implication of our study is that lovastatin might exert a pro-inflammatory activity in subjects affected by inflammatory processes, with clinically evident or subclinical infections.
Collapse
Affiliation(s)
- Valentina Zanin
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, via dell’Istria 65/1, 34137 Trieste, Italy
| | - Annalisa Marcuzzi
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, via dell’Istria 65/1, 34137 Trieste, Italy
| | - Giulio Kleiner
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, via dell’Istria 65/1, 34137 Trieste, Italy
| | - Elisa Piscianz
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, via dell’Istria 65/1, 34137 Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, via dell’Istria 65/1, 34137 Trieste, Italy
| | - Serena Zacchigna
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Sergio Crovella
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, via dell’Istria 65/1, 34137 Trieste, Italy
- University of Trieste, Piazzale Europa 1, 34128 Trieste, Italy
| | - Giorgio Zauli
- Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, via dell’Istria 65/1, 34137 Trieste, Italy
| |
Collapse
|
24
|
Ciurleo R, Bramanti P, Marino S. Role of statins in the treatment of multiple sclerosis. Pharmacol Res 2014; 87:133-43. [PMID: 24657241 DOI: 10.1016/j.phrs.2014.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/22/2023]
Abstract
Statins as inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase are widely prescribed for hypercholesterolemia treatment. In the last years, statins have also been shown to exert immunomodulatory and anti-inflammatory effects which appear to be related to inhibition of isoprenylation of small GTP-binding proteins and, at least in part, independent of their cholesterol-lowering effects. These "pleiotropic" effects make statins an attractive treatment option for immune-mediated disorders such as multiple sclerosis. Studies in vitro and in experimental autoimmune encephalomyelitis animal model seem to support not only the efficacy of statins as immunomodulatory agents but also their potential neuroprotective properties, although the exact mechanism with which statins exert these effects has not yet been fully understood. The immunomodulatory, anti-inflammatory and neuroprotective properties of statins provided the incentive for several clinical trials in multiple sclerosis, in which they were tested not only as mono-therapy but also in combination with interferon-β. However, the attempt to translate the results of animal model studies in humans produced conflicting results. Further large, prospective, randomized, double-blind, placebo-controlled trials, designed to evaluate the long-term effects of statins alone or in add-on to other disease-modifying therapies, are needed to support their routine clinical use in multiple sclerosis.
Collapse
Affiliation(s)
| | | | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy; Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Neuhaus O, Hartung HP. Evaluation of atorvastatin and simvastatin for treatment of multiple sclerosis. Expert Rev Neurother 2014; 7:547-56. [PMID: 17492904 DOI: 10.1586/14737175.7.5.547] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Atorvastatin and simvastatin (members of the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor family) are widely prescribed as cholesterol-lowering agents. As they have been shown to exhibit potent immunomodulatory effects, they may become a future treatment option for autoimmune disease in general and multiple sclerosis (MS) in particular. Several recent reports have demonstrated that statins prevent and reverse chronic and relapsing experimental autoimmune encephalomyelitis, an animal model of MS. An open-label clinical trial assessing simvastatin in MS revealed a significant decrease in the number and volume of new MRI lesions and a favorable safety profile. The results of a large multicenter, placebo-controlled clinical trial assessing atorvastatin in patients with clinically isolated syndrome (a disease that predisposes to development MS) are expected soon. However, prospective placebo-controlled trials of atorvastatin or simvastatin in definite MS are difficult to perform due to ethical and financial objections. In this review, we discuss the backgrounds, mechanisms of action and future perspectives of atorvastatin and simvastatin as putative future treatment options in MS.
Collapse
Affiliation(s)
- Oliver Neuhaus
- Heinrich Heine University, Department of Neurology, Düsseldorf, Germany.
| | | |
Collapse
|
26
|
Parihar SP, Guler R, Lang DM, Suzuki H, Marais AD, Brombacher F. Simvastatin enhances protection against Listeria monocytogenes infection in mice by counteracting Listeria-induced phagosomal escape. PLoS One 2013; 8:e75490. [PMID: 24086542 PMCID: PMC3782446 DOI: 10.1371/journal.pone.0075490] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022] Open
Abstract
Statins are well-known cholesterol lowering drugs targeting HMG-CoA-reductase, reducing the risk of coronary disorders and hypercholesterolemia. Statins are also involved in immunomodulation, which might influence the outcome of bacterial infection. Hence, a possible effect of statin treatment on Listeriosis was explored in mice. Statin treatment prior to subsequent L. monocytogenes infection strikingly reduced bacterial burden in liver and spleen (up to 100-fold) and reduced histopathological lesions. Statin-treatment in infected macrophages resulted in increased IL-12p40 and TNF-α and up to 4-fold reduced bacterial burden within 6 hours post infection, demonstrating a direct effect of statins on limiting bacterial growth in macrophages. Bacterial uptake was normal investigated in microbeads and GFP-expressing Listeria experiments by confocal microscopy. However, intracellular membrane-bound cholesterol level was decreased, as analyzed by cholesterol-dependent filipin staining and cellular lipid extraction. Mevalonate supplementation restored statin-inhibited cholesterol biosynthesis and reverted bacterial growth in Listeria monocytogenes but not in listeriolysin O (LLO)-deficient Listeria. Together, these results suggest that statin pretreatment increases protection against L. monocytogenes infection by reducing membrane cholesterol in macrophages and thereby preventing effectivity of the cholesterol-dependent LLO-mediated phagosomal escape of bacteria.
Collapse
Affiliation(s)
- Suraj P. Parihar
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk M. Lang
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Harukazu Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - A. David Marais
- Division of Chemical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering & Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
27
|
Lin YT, Verma A, Hodgkinson CP. Toll-like receptors and human disease: lessons from single nucleotide polymorphisms. Curr Genomics 2013; 13:633-45. [PMID: 23730203 PMCID: PMC3492803 DOI: 10.2174/138920212803759712] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs), a large group of proteins which recognize various pathogen-associated molecular patterns, are critical for the normal function of the innate immune system. Following their discovery many single nucleotide polymorphisms within TLRs and components of their signaling machinery have been discovered and subsequently implicated in a wide range of human diseases including atherosclerosis, sepsis, asthma, and immunodeficiency. This review discusses the effect of genetic variation on TLR function and how they may precipitate disease.
Collapse
Affiliation(s)
- Yi-Tzu Lin
- Department of Medicine, Duke University Medical Center & Mandel Center for Hypertension and Atherosclerosis Research, Durham, NC 27710, USA
| | | | | |
Collapse
|
28
|
Abstract
INTRODUCTION Several medical journals published viewpoints and counter-viewpoints supporting or opposing a wider utilization of statins for primary prevention. The objective of this article is not to weigh in the benefits versus risks of statin use, but to discuss various aspects of this controversy. AREAS COVERED This review discusses the challenges in examining the pleotropic effects/adverse events of statins. It also discusses the pitfalls in assessment of adverse events in randomized controlled trials and observational studies. EXPERT OPINION The challenges in solving this controversy include that the pleotropic effect of statins results in an extremely wide spectrum of reported benefits or adverse events, the reported harms/benefits are contradictory, there is basic research ground supporting both sides of the controversy, it is difficult to separate if adverse events are due to statins or due to lower cholesterol, and that there is a lack of standardized definition of statin-associated adverse events and their methods of ascertainment. Both randomized controlled trials and observational studies have pitfalls and caveats in assessment of adverse events. Understanding the points of debate is of paramount significance to enable clinicians to individualize patient care.
Collapse
Affiliation(s)
- Ishak Mansi
- San Antonio Military Medical Center, 3551 Roger Brooke Drive, San Antonio, TX 78234-6200, USA.
| | | |
Collapse
|
29
|
Upregulation of iHsp70 by mild heat shock protects rabbit myogenic stem cells: involvement of JNK signalling and c-Jun. Cell Biol Int 2012; 36:1089-96. [DOI: 10.1042/cbi20120143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Odiari EA, Mulla MJ, Sfakianaki AK, Paidas MJ, Stanwood NL, Gariepy A, Brosens JJ, Chamley LW, Abrahams VM. Pravastatin does not prevent antiphospholipid antibody-mediated changes in human first trimester trophoblast function. Hum Reprod 2012; 27:2933-40. [DOI: 10.1093/humrep/des288] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Dong M, Zhong L, Chen WQ, Ji XP, Zhang M, Zhao YX, Li L, Yao GH, Zhang PF, Zhang C, Zhang L, Zhang Y. Doxycycline stabilizes vulnerable plaque via inhibiting matrix metalloproteinases and attenuating inflammation in rabbits. PLoS One 2012; 7:e39695. [PMID: 22737253 PMCID: PMC3380900 DOI: 10.1371/journal.pone.0039695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 05/29/2012] [Indexed: 12/21/2022] Open
Abstract
Enhanced matrix metalloproteinases (MMPs) activity is implicated in the process of atherosclerotic plaque instability. We hypothesized that doxycycline, a broad MMPs inhibitor, was as effective as simvastatin in reducing the incidence of plaque disruption. Thirty rabbits underwent aortic balloon injury and were fed a high-fat diet for 20 weeks. At the end of week 8, the rabbits were divided into three groups for 12-week treatment: a doxycycline-treated group that received oral doxycycline at a dose of 10 mg/kg/d, a simvastatin-treated group that received oral simvastatin at a dose of 5 mg/kg/d, and a control group that received no treatment. At the end of week 20, pharmacological triggering was performed to induce plaque rupture. Biochemical, ultrasonographic, pathologic, immunohistochemical and mRNA expression studies were performed. The results showed that oral administration of doxycycline resulted in a significant increase in the thickness of the fibrous cap of the aortic plaque whereas there was a substantial reduction of MMPs expression, local and systemic inflammation, and aortic plaque vulnerability. The incidence of plaque rupture with either treatment (0% for both) was significantly lower than that for controls (56.0%, P<0.05). There was no significant difference between doxycycline-treated group and simvastatin-treated group in any serological, ultrasonographic, pathologic, immunohistochemical and mRNA expression measurement except for the serum lipid levels that were higher with doxycycline than with simvastatin treatment. In conclusion, doxycycline at a common antimicrobial dose stabilizes atherosclerotic lesions via inhibiting matrix metalloproteinases and attenuating inflammation in a rabbit model of vulnerable plaque. These effects were similar to a large dose of simvastatin and independent of serum lipid levels.
Collapse
Affiliation(s)
- Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Lin Zhong
- Yu Huang Ding Hospital, Yantai, Shandong, China
| | - Wen Qiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Xiao Ping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Mei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Yu Xia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Li Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Gui Hua Yao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Peng Fei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- * E-mail: (LZ); (CZ); (YZ)
| | - Lei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- * E-mail: (LZ); (CZ); (YZ)
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China
- * E-mail: (LZ); (CZ); (YZ)
| |
Collapse
|
32
|
Vaz M, Reddy NM, Rajasekaran S, Reddy SP. Genetic disruption of Fra-1 decreases susceptibility to endotoxin-induced acute lung injury and mortality in mice. Am J Respir Cell Mol Biol 2012; 46:55-62. [PMID: 21816965 DOI: 10.1165/rcmb.2011-0169oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The activator protein-1 (AP-1) transcription factor, comprising Jun and Fos family proteins, distinctly regulates various cellular processes, including those involved in inflammation. FOS like antigen 1 (Fra-1), a member of the Fos family, dimerizes with members of the Jun family and regulates gene expression in a context-dependent manner. Although respiratory toxicants are known to stimulate the expression of Fra-1 in the lung, whether Fra-1 promotes or decreases susceptibility to the development and progression of toxicant-induced lung disease in vivo is not well established. To determine the role of Fra-1 in LPS-induced acute lung injury and mortality, we administered LPS either intraperitoneally or intratracheally to Fra-1-sufficient (Fra-11(+/+)) and Fra-1-deficient (Fra-1(Δ/Δ)) mice. LPS-induced mortality, lung injury, inflammation, cytokine measurements, and AP-1 and NF-κB activities were then assessed in these mice. Fra-1(Δ/Δ) mice showed a greater resistance to LPS-induced mortality than did their Fra-1(+/+) counterparts. Consistent with this result, LPS-induced lung injury and inflammatory responses were markedly lower in Fra-1(Δ/Δ) mice than in Fra-1(+/+) mice. Compared with Fra-1(+/+) mice, Fra-1(Δ/Δ) mice showed a reduced influx of neutrophils into the lungs, accompanied by a decreased expression of proinflammatory cytokines in response to treatment with LPS. The decreased inflammatory responses in Fra-1(Δ/Δ) mice coincided with diminished and increased levels of NF-κB and c-Jun/AP-1 binding, respectively. These results demonstrate that Fra-1/AP-1 plays a key role in promoting LPS-induced injury and mortality in mice, and they suggest that targeting (i.e., inhibiting) this transcription factor may be a useful approach to dampening the adverse effects of exposure to endotoxins.
Collapse
Affiliation(s)
- Michelle Vaz
- Department of Pediatrics, University of Illinois at Chicago, 60612, USA
| | | | | | | |
Collapse
|
33
|
Small interfering RNA against transcription factor STAT6 leads to increased cholesterol synthesis in lung cancer cell lines. PLoS One 2011; 6:e28509. [PMID: 22162773 PMCID: PMC3230611 DOI: 10.1371/journal.pone.0028509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/09/2011] [Indexed: 01/31/2023] Open
Abstract
STAT6 transcription factor has become a potential molecule for therapeutic intervention because it regulates broad range of cellular processes in a large variety of cell types. Although some target genes and interacting partners of STAT6 have been identified, its exact mechanism of action needs to be elucidated. In this study, we sought to further characterize the molecular interactions, networks, and functions of STAT6 by profiling the mRNA expression of STAT6 silenced human lung cells (NCI-H460) using microarrays. Our analysis revealed 273 differentially expressed genes after STAT6 silencing. Analysis of the gene expression data with Ingenuity Pathway Analysis (IPA) software revealed Gene expression, Cell death, Lipid metabolism as the functions associated with highest rated network. Cholesterol biosynthesis was among the most enriched pathways in IPA as well as in PANTHER analysis. These results have been validated by real-time PCR and cholesterol assay using scrambled siRNA as a negative control. Similar findings were also observed with human type II pulmonary alveolar epithelial cells, A549. In the present study we have, for the first time, shown the inverse relationship of STAT6 with the cholesterol biosynthesis in lung cancer cells. The present findings are potentially significant to advance the understanding and design of therapeutics for the pathological conditions where both STAT6 and cholesterol biosynthesis are implicated viz. asthma, atherosclerosis etc.
Collapse
|
34
|
Domínguez PM, López-Bravo M, Kalinke U, Ardavín C. Statins inhibit iNOS-mediated microbicidal potential of activated monocyte-derived dendritic cells by an IFN-β-dependent mechanism. Eur J Immunol 2011; 41:3330-9. [PMID: 21874649 DOI: 10.1002/eji.201141674] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/21/2011] [Accepted: 08/12/2011] [Indexed: 01/06/2023]
Abstract
Statins are prescribed to 25 million people worldwide for treating hypercholesterolemia and reducing the risk of cardiovascular diseases. However, the side effects of statins on immunity, and particularly on DC immunobiology, have not been analyzed in-depth. Here, we have investigated the impact of lovastatin treatment during monocyte differentiation into DCs on the responsiveness of the resulting monocyte-derived DCs (moDCs) to TLR-mediated activation. Lovastatin positively regulated TLR4 signaling in LPS-stimulated moDCs, leading to strong activation of p38 MAP-kinase paralleled by increased proinflammatory cytokine and IFN-β production. In contrast, lovastatin promoted negative regulation of IFN-β-mediated autocrine signaling through the IFN-αβ receptor, paralleled by low expression of the transcription factor IRF-1, leading to the inhibition of the enzymes iNOS and HO-1. Defective activation of iNOS/HO-1 resulted in limited cytoprotective capacity against ROS and reduced microbicidal potential. These data were validated using an in vivo model of Listeria monocytogenes infection, which revealed that iNOS activation by splenic inflammatory moDCs, specialized in NO and TNF-α production, was strongly reduced in lovastatin-treated, Listeria-infected mice. Statin treatment could have severe implications in immunity against pathogens due to defective iNOS/HO-1 metabolism activation in inflammatory moDCs that might lead to immune failure.
Collapse
Affiliation(s)
- Pilar M Domínguez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Van Der Putten C, Kuipers HF, Zuiderwijk-Sick EA, Van Straalen L, Kondova I, Van Den Elsen PJ, Bajramovic JJ. Statins amplify TLR-induced responses in microglia via inhibition of cholesterol biosynthesis. Glia 2011; 60:43-52. [PMID: 21964955 DOI: 10.1002/glia.21245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/29/2011] [Indexed: 02/06/2023]
Abstract
Statins inhibit the endogenous intracellular mevalonate pathway and exposure to statins affects innate and adaptive immune responses. Different statins are currently under evaluation as (co)therapy in neuro-inflammatory diseases like multiple sclerosis. However, there are important discrepancies in the reported effects of statins on innate immune responses in different cell types. Studies to characterize such responses in clinically relevant primary cells are currently lacking. In this study, we investigated the effect of statins on Toll-like receptor (TLR)-induced responses of microglia, the resident macrophages of the central nervous system (CNS). Exposure of primary microglia from adult rhesus monkeys to different statins strongly amplified pro-inflammatory cytokine protein and mRNA levels in response to myeloid differentiation primary response gene 88-dependent TLR activation in particular. Rather than affecting nuclear facor-κB activation levels, statin exposure affected stress-activated protein/Jun-amino-terminal and p38 kinase signaling pathways. Mechanistic studies using specific pathway inhibitors and rescue experiments show that statin-induced inhibition of cholesterol biosynthesis, rather than inhibition of isoprenylation, was mainly responsible for the amplified TLR responses. Additionally, microglia were more sensitive to statin-mediated effects than bone marrow-derived macrophages of the same donor. This correlated to lower intrinsic microglial expression levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the enzyme targeted by statins. Amplification of TLR-induced responses in microglia by statin exposure might contribute to the generation of a more pro-inflammatory CNS microenvironment which can be of relevance for the pathogenesis of neuroinflammatory disorders.
Collapse
|
36
|
Differentially expressed genes in human peripheral blood as potential markers for statin response. J Mol Med (Berl) 2011; 90:201-11. [PMID: 21947165 DOI: 10.1007/s00109-011-0818-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/25/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
There is a considerable inter-individual variation in response to statin therapy and one third of patients do not meet their treatment goals. We aimed to identify differentially expressed genes that might be involved in the effects of statin treatment and to suggest potential markers to guide statin therapy. Forty-six healthy Korean subjects received atorvastatin; their whole-genome expression profiles in peripheral blood were analyzed before and after atorvastatin administration in relation with changes in lipid profiles. The expression patterns of the differentially expressed genes were also compared with the data of familial hypercholesterolemia (FH) patients and controls. Pairwise comparison analyses revealed differentially expressed genes involved in diverse biological processes and molecular functions related with immune responses. Atorvastain mainly affected antigen binding, immune or inflammatory response including interleukin pathways. Similar expression patterns of the genes were observed in patients with FH and controls. The Charcol-Leyden crystal (CLC), CCR2, CX3CR1, LRRN3, FOS, LDLR, HLA-DRB1, ERMN, and TCN1 genes were significantly associated with cholesterol levels or statin response. Interestingly, the CLC gene, which was significantly altered by atorvastatin administration and differentially expressed between FH patients and controls, showed much bigger change in high-responsive group than in low-responsive group. We identified differentially expressed genes that might be involved in mechanisms underlying the known pleiotropic effects of atorvastatin, baseline cholesterol levels, and drug response. Our findings suggest CLC as a new candidate marker for statin response, and further validation is needed.
Collapse
|
37
|
Coen PM, Flynn MG, Markofski MM, Pence BD, Hannemann RE. Adding exercise to rosuvastatin treatment: influence on C-reactive protein, monocyte toll-like receptor 4 expression, and inflammatory monocyte (CD14+CD16+) population. Metabolism 2010; 59:1775-83. [PMID: 20580035 DOI: 10.1016/j.metabol.2010.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 04/25/2010] [Accepted: 05/03/2010] [Indexed: 11/19/2022]
Abstract
Statin treatment and exercise training can reduce markers of inflammation when administered separately. The purpose of this study was to determine the effect of rosuvastatin treatment and the addition of exercise training on circulating markers of inflammation including C-reactive protein (CRP), monocyte toll-like receptor 4 (TLR4) expression, and CD14+CD16+ monocyte population size. Thirty-three hypercholesterolemic and physically inactive subjects were randomly assigned to rosuvastatin (R) or rosuvastatin/exercise (RE) groups. A third group of physically active hypercholesterolemic subjects served as a control (AC). The R and RE groups received rosuvastatin treatment (10 mg/d) for 20 weeks. From week 10 to week 20, the RE group also participated in an exercise training program (3d/wk). Measurements were made at baseline (Pre), week 10 (Mid), and week 20 (Post), and included TLR4 expression on CD14+ monocytes and CD14+CD16+ monocyte population size as determined by 3-color flow cytometry. Serum CRP was quantified by enzyme-linked immunosorbent assay. TLR4 expression on CD14+ monocytes was higher in the R group at week 20. When treatment groups (R and RE) were combined, serum CRP was lower across time. Furthermore, serum CRP and inflammatory monocyte population size were lower in the RE group compared with the R group at the Post time point. When all groups (R, RE, and AC) were combined, TLR4 expression was greater on inflammatory monocytes (CD14+CD16+) compared with classic monocytes (CD14+CD16⁻) at all time points. In conclusion, rosuvastatin may influence monocyte inflammatory response by increasing TLR4 expression on circulating monocytes. The addition of exercise training to rosuvastatin treatment further lowered CRP and reduced the size of the inflammatory monocyte population, suggesting an additive anti-inflammatory effect of exercise.
Collapse
Affiliation(s)
- Paul M Coen
- Wastl Human Performance Laboratory, Purdue University, West Lafayette, IN, USA.
| | | | | | | | | |
Collapse
|
38
|
Schettler V, Völker K, Schulz EG, Wieland E. Impact of Lipid Apheresis on Egr-1, c-Jun, c-Fos, and Hsp70 Gene Expression in White Blood Cells. Ther Apher Dial 2010; 15:105-12. [DOI: 10.1111/j.1744-9987.2010.00861.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Kim SH, Lee ES, Lee JY, Lee ES, Lee BS, Park JE, Moon DW. Multiplex coherent anti-stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids. Circ Res 2010; 106:1332-41. [PMID: 20299664 DOI: 10.1161/circresaha.109.208678] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Lipids are a key component of atherogenesis. However, their physiological role on the progression of atherosclerosis including plaque vulnerability has not been clearly understood, because of the lack of appropriate tools for chemical assessment. OBJECTIVE We aimed to develop a label-free chemical imaging platform based on multiplex coherent anti-Stokes Raman scattering (CARS) for the correlative study of the morphology and chemical profile of atherosclerotic lipids. METHODS AND RESULTS Whole aortas from atherosclerotic apolipoprotein E knock-out mice were en face examined by multiplex CARS imaging and 4 distinctive morphologies of the lipids (intra/extracellular lipid droplets and needle-/plate-shaped lipid crystals) were classified. The chemical profiles of atherosclerotic lipids depending on morphologies were firstly identified from intact atheromatous tissue by multiplex CARS. We demonstrated that needle-/plate-shaped lipid crystals in advanced plaques had undergone a phase shift to the solid state with increased protein contents, implying that lipid modification had occurred beforehand. The validity of lipid-selective multiplex CARS imaging was supported by comparative results from oil red O staining and whole-mount immunohistochemistry. By spatial CARS analysis of atherosclerosis progression, we found greater accumulation of lipid crystals in both the lesser curvature of the aortic arch and the innominate artery. Furthermore, multiplex CARS measurement successfully demonstrated the effect of a drug, statin, on atherosclerotic lipids by showing the change of their chemical profiles. CONCLUSIONS Multiplex CARS imaging directly provides intact morphologies of atherosclerotic lipids with correlative chemical information, thereby suggesting its potential applications in the investigation of lipid-associated disorders and the preclinical drug screening.
Collapse
Affiliation(s)
- Se-Hwa Kim
- Center for Nano-Bio Technology, Korea Research Institute of Standards and Science, 1 Doryong-Dong, Yuseong-Gu, Daejeon 305-340, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Takada Y, Ray N, Ikeda E, Kawaguchi T, Kuwahara M, Wagner EF, Matsuo K. Fos proteins suppress dextran sulfate sodium-induced colitis through inhibition of NF-kappaB. THE JOURNAL OF IMMUNOLOGY 2009; 184:1014-21. [PMID: 20018614 DOI: 10.4049/jimmunol.0901196] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Fos family proteins, c-Fos and Fra-1, are components of the dimeric transcription factor AP-1, which is typically composed of Fos and Jun family proteins. We have previously shown that mice lacking c-Fos (Fos(-/-) mice) respond more strongly to LPS injection than do wild-type (wt) controls. We then examined the sensitivity of Fos(-/-) mice to acute inflammatory stress in a dextran sulfate sodium (DSS)-induced colitis model. We found that Fos(-/-) mice exhibited more severe weight loss, bleeding, diarrhea, and colon shortening than did wt mice, in association with higher TNF-alpha production and NF-kappaB activity in colon segments of DSS-treated Fos(-/-) mice. Furthermore, NF-kappaB inhibition suppressed severe DSS-induced colitis in Fos(-/-) mice. In contrast, Fra-1 transgenic (Tg) mice responded poorly to LPS injection, and Fra-1-overexpressing macrophages and fibroblasts showed reduced production of proinflammatory cytokines, NO, and NF-kappaB activity. Remarkably, in the DSS-induced colitis model, Fra-1 Tg mice showed less severe clinical scores of colitis than did wt mice. Consistently, proinflammatory cytokine production and NF-kappaB activity in colon segments of DSS-treated Fra-1 Tg mice were lower than in wt controls. These findings reveal that the absence of c-Fos and overexpression of Fra-1 respectively enhance and suppress the activation of NF-kappaB in DSS-induced inflammatory stress. In this paper, we propose that AP-1 transcription factors containing c-Fos or Fra-1 are negative regulators of NF-kappaB-mediated stress responses.
Collapse
Affiliation(s)
- Yasunari Takada
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Chow SC. Immunomodulation by statins: mechanisms and potential impact on autoimmune diseases. Arch Immunol Ther Exp (Warsz) 2009; 57:243-51. [PMID: 19578811 DOI: 10.1007/s00005-009-0038-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 03/30/2009] [Indexed: 01/27/2023]
Abstract
Statins are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) and they are the most effective agents for lowering cholesterol in clinical practice for the treatment of cardiovascular diseases. However, it has become clear that statins also have pleiotropic immunomodulatory effects in addition to their lipid-lowering properties. As a result, much attention has been focused on their potential as therapeutic agents for the treatment of inflammatory autoimmune diseases. In this review the effect of statins on the expression and function of a variety of immune-relevant molecules will be discussed alongside the underlying mechanisms that contribute to the immunomodulatory effects of statins.
Collapse
Affiliation(s)
- Sek C Chow
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
42
|
Morishita H, Saito F, Kayama H, Atarashi K, Kuwata H, Yamamoto M, Takeda K. Fra-1 negatively regulates lipopolysaccharide-mediated inflammatory responses. Int Immunol 2009; 21:457-65. [DOI: 10.1093/intimm/dxp015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
43
|
Lamon BD, Summers BD, Gotto AM, Hajjar DP. Pitavastatin suppresses mitogen activated protein kinase-mediated Erg-1 induction in human vascular smooth muscle cells. Eur J Pharmacol 2009; 606:72-6. [PMID: 19374880 DOI: 10.1016/j.ejphar.2008.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 11/27/2008] [Accepted: 12/18/2008] [Indexed: 01/22/2023]
Abstract
Statins have been demonstrated to elicit a broad range of cellular events resulting in an attenuation of the inflammatory response and enhanced protection to the components of the vessel wall. The present study was designed to examine the effect of pitavastatin on pathways associated with the proinflammatory gene, early growth response (Egr)-1, in human vascular smooth muscle cells. Pretreatment with pitavastatin resulted in a dose-dependent reduction in Egr-1 protein and suppressed Egr-1 mRNA expression in response to phorbol 12-myristate 13-acetate (PMA). A reduction in Egr-1 expression reduced the activation of NGFI-A binding protein (NAB)-2, an Egr-1-dependent gene. Furthermore, these events appeared to be dependent on the ability of pitavastatin to attenuate signaling cascades associated with extracellular regulated kinase (ERK) 1/2, but not p38 and c-Jun N-terminal kinase (JNK).
Collapse
Affiliation(s)
- Brian D Lamon
- Department of Pathology and Laboratory Medicine, Center of Vascular Biology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
44
|
Shi CY, Wang R, Liu CX, Jiang H, Ma ZY, Li L, Zhang W. Simvastatin inhibits acidic extracellular pH-activated, outward rectifying chloride currents in RAW264.7 monocytic-macrophage and human peripheral monocytes. Int Immunopharmacol 2008; 9:247-52. [PMID: 19084616 DOI: 10.1016/j.intimp.2008.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 11/17/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Extracellular acidic pH activated chloride channels (I(Cl,acid)) have been characterized in HEK 293 cells and mammalian cardiac myocytes. This study was designed to evaluate the expression of I(Cl,acid) in RAW264.7 monocytic-macrophage and human peripheral monocytes and to investigate the effect of simvastatin on I(Cl,acid). In two kinds of cells, the activation and deactivation of the current rapidly and repeatedly followed the change of the extracellular solution to pH=4.3. Compared with the outward current (pA/pF) activated at pH 4.3, the currents inhibited by simvastatin at concentrations of 0.1 microM were all decreased a little, however the currents at concentrations of 1 microM and 10 microM simvastatin were decreased significantly. The IC(50) for simvastatin inhibiting I(Cl,acid) of RAW264.7 was 13.77 microM. In summary, we report for the first time that simvastatin inhibits the I(Cl,acid) of RAW264.7 monocytic-macrophage and human peripheral monocytes in a concentration-dependent manner.
Collapse
Affiliation(s)
- Cheng-Yao Shi
- Department of Pharmacy, QiLu Hospital, Shandong University, Jinan 250012, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Statins inhibit toll-like receptor 4-mediated lipopolysaccharide signaling and cytokine expression. Pharmacogenet Genomics 2008; 18:803-13. [PMID: 18698233 DOI: 10.1097/fpc.0b013e3283050aff] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Toll-like receptor 4 (TLR4) is the main receptor for Lipopolysaccharide (LPS). Two relatively common variants of the TLR4 gene are present, resulting in changes from aspartic acid (D) to glycine (G) at residue 299 and from threonine (T) to isoleucine (I) at residue 399, respectively. It has been shown that statins have a greater effect on lowering risk of cardiovascular events in individuals carrying the 299G allele than in those not carrying this allele. We investigated possible mechanisms underlying this synergy of statin treatment and TLR4 genotype. METHODS AND RESULTS In cells expressing the 299D-399T TLR4, LPS activated the transcription factor NFkappaB and increased the expression of interleukin-6 and tumor necrosis factor-alpha, and these effects were reduced by pretreatment of the cells with pravastatin or simvastatin. LPS-induced NFkappaB activation and interleukin-6 and tumor necrosis factor-alpha expression were substantially reduced in cell expressing the 299G-399T or 299D-399I variant, and undetectable in cells expressing the 299G-399I TLR4. The 3-hydroxy-3-methylglutaryl coenzyme A pathway inhibitors, Y27632 and GGTI-286, exhibited a similar effect to statins, suggesting that the inhibitory effect of statins was mediated by the 3-hydroxy-3-methylglutaryl coenzyme A pathway. CONCLUSION The results of this study indicate that the TLR4 variations and statins have an additive inhibitory effect on TLR4-mediated inflammatory response, providing a potential explanation for the finding that the beneficial effect of statins on cardiovascular risk is dependent on TLR4 genotype.
Collapse
|
46
|
Sundararaj KP, Samuvel DJ, Li Y, Nareika A, Slate EH, Sanders JJ, Lopes-Virella MF, Huang Y. Simvastatin suppresses LPS-induced MMP-1 expression in U937 mononuclear cells by inhibiting protein isoprenylation-mediated ERK activation. J Leukoc Biol 2008; 84:1120-9. [PMID: 18625914 PMCID: PMC2538599 DOI: 10.1189/jlb.0108064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 06/13/2008] [Accepted: 06/18/2008] [Indexed: 02/02/2023] Open
Abstract
Matrix metalloproteinase (MMP) plays a crucial role in periodontal disease and is up-regulated by oral Gram-negative, pathogen-derived LPS. In this study, we reported that simvastatin, a 3-hydroxyl-3-methylglutaryl-CoA reductase inhibitor, effectively inhibited LPS-stimulated MMP-1 as well as MMP-8 and MMP-9 expression by U937 mononuclear cells. Our studies showed that the geranylgeranyl transferase inhibitor inhibited LPS-stimulated MMP-1 expression, and addition of isoprenoid intermediate geranylgeranyl pyrophosphate (GGPP) reduced the inhibitory effect of simvastatin on LPS-stimulated MMP-1 expression. We also demonstrated that simvastatin inhibited the activation of Ras and Rac, and the inhibition was abolished by addition of GGPP. The above results indicate that protein isoprenylation is involved in the regulation of MMP-1 expression by LPS and simvastatin. Moreover, we showed that simvastatin inhibited LPS-stimulated nuclear AP-1, but not NF-kappaB activity, and the inhibition was reversed by addition of GGPP. Simvastatin also inhibited LPS-stimulated ERK but not p38 MAPK and JNK. Finally, we showed that the inhibition of LPS-stimulated ERK activation by simvastatin was reversed by GGPP. Taken together, this study showed that simvastatin suppresses LPS-induced MMP-1 expression in U937 mononuclear cells by targeting protein isoprenylation-mediated ERK activation.
Collapse
Affiliation(s)
- Kamala P Sundararaj
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kroening PR, Barnes TW, Pease L, Limper A, Kita H, Vassallo R. Cigarette smoke-induced oxidative stress suppresses generation of dendritic cell IL-12 and IL-23 through ERK-dependent pathways. THE JOURNAL OF IMMUNOLOGY 2008; 181:1536-47. [PMID: 18606709 DOI: 10.4049/jimmunol.181.2.1536] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IL-12p70, a heterodimer composed of p35 and p40 subunits, is a key polarizing cytokine produced by maturing dendritic cells (DCs). We report that cigarette smoke extract (CSE), an extract of soluble cigarette smoke components, suppresses both p35 and p40 production by LPS or CD40L-matured DCs. Suppression of IL-12p70 production from maturing DCs was not observed in the presence of nicotine concentrations achievable in CSE or in the circulation of smokers. The suppressed IL-12p70 protein production by CSE-conditioned DCs was restored by pretreatment of DCs or CSE with the antioxidants N-acetylcysteine and catalase. Inhibition of DC IL-12p70 by CSE required activation of ERK-dependent pathways, since inhibition of ERK abrogated the suppressive effect of CSE on IL-12 secretion. Oxidative stress and sustained ERK phosphorylation by CSE enhanced nuclear levels of the p40 transcriptional repressor c-fos in both immature and maturing DCs. Suppression of the p40 subunit by CSE also resulted in diminished production of IL-23 protein by maturing DCs. Using a murine model of chronic cigarette smoke exposure, we observed that systemic and lung DCs from mice "smokers" produced significantly less IL-12p70 and p40 protein upon maturation. This inhibitory effect was selective, since production of TNF-alpha during DC maturation was enhanced in the smokers. These data imply that oxidative stress generated by cigarette smoke exposure suppresses the generation of key cytokines by maturing DCs through the activation of ERK-dependent pathways. Some of the cigarette smoke-induced inhibitory effects on DC function may be mitigated by antioxidants.
Collapse
Affiliation(s)
- Paula R Kroening
- Department of Internal Medicine, Thoracic Diseases Research Unit, Division of Pulmonary Critical Care, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
48
|
Sun Y, Jia L, Williams MT, Zamzow M, Ran H, Quinn B, Aronow BJ, Vorhees CV, Witte DP, Grabowski GA. Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice. BMC Neurosci 2008; 9:76. [PMID: 18673548 PMCID: PMC2518924 DOI: 10.1186/1471-2202-9-76] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/01/2008] [Indexed: 12/21/2022] Open
Abstract
Background Prosaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipid (GSL) hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. Results Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/-) and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA). Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD) was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport. Conclusion These results show that: 1) Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2) Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3) CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 4006, Cincinnati, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Takahashi S, Nakamura H, Seki M, Shiraishi Y, Yamamoto M, Furuuchi M, Nakajima T, Tsujimura S, Shirahata T, Nakamura M, Minematsu N, Yamasaki M, Tateno H, Ishizaka A. Reversal of elastase-induced pulmonary emphysema and promotion of alveolar epithelial cell proliferation by simvastatin in mice. Am J Physiol Lung Cell Mol Physiol 2008; 294:L882-90. [PMID: 18310229 DOI: 10.1152/ajplung.00238.2007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Besides lowering cholesterol, statins exert multiple effects, such as anti-inflammatory activity and improvement of endothelial cell function. We examined whether simvastatin (SS) protects against the development of elastase-induced pulmonary emphysema in mice by using mean linear intercepts of alveoli (Lm) as a morphometric parameter of emphysema. After injection of intratracheal elastase on day 0, C57BL/6 mice were treated daily with SS (SS+ group) or PBS (SS- group) for 2 wk. A 21% decrease in Lm on day 7 was observed in the SS+ group vs. the SS- group. Anti-inflammatory effects of SS were observed as a decrease in percentage of neutrophils up to day 3, and in hydroxyproline concentration on day 3, in bronchoalveolar lavage fluid (BALF). SS also increased the number of proliferating cell nuclear antigen (PCNA)-positive alveolar epithelial cells between days 3 and 14. To confirm the role of statins in promoting proliferation of alveolar cells, mice were treated with SS (SS+) vs. PBS (SS-) for 12 days, starting 3 wk after elastase administration. After SS treatment, Lm decreased by 52% and PCNA-positive alveolar epithelial cells increased compared with the SS- group. Concentrations of vascular endothelial growth factor in BALF and endothelial nitric oxide synthase protein expression in pulmonary vessels tended to be higher in the SS+ group vs. the SS- group in this protocol. In conclusion, SS inhibited the development of elastase-induced pulmonary emphysema in mice. This therapeutic effect was due not only to anti-inflammation but also to the promotion of alveolar epithelial cell regeneration, partly mediated by restoring endothelial cell functions.
Collapse
Affiliation(s)
- Saeko Takahashi
- Dept. of Medicine, Tokyo Electric Power Company Hospital, 9-2 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Frey T, De Maio A. Increased expression of CD14 in macrophages after inhibition of the cholesterol biosynthetic pathway by lovastatin. Mol Med 2008; 13:592-604. [PMID: 17932552 DOI: 10.2119/2007-00054.frey] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023] Open
Abstract
Sepsis, which is the product of a poorly controlled inflammatory response, is a major health problem. Adequate therapies for sepsis are unavailable, and patient care is mainly supportive. Statins, widely used for the treatment of hypercholesterolemia, have been found to be antiinflammatory, but the mechanisms responsible for this alteration in the inflammatory response are not well understood. We investigated the effect of statins on CD14 expression, the major binding site for bacterial lipopolysaccharide (LPS) on the macrophage surface. CD14 is found in both a membrane-bound form on the cell surface (mCD14) and in a soluble variant in circulation (sCD14). Treatment of RAW 264.7 macrophages with lovastatin resulted in elevated mCD14 levels and decreased sCD14 levels after LPS stimulation. The increase in mCD14 was dependent on depletion of geranylgeranyl pyrophosphate (GGPP) and subsequent inhibition of Rho GTPases, whereas the effect of lovastatin on sCD14 was independent of this pathway. The increase in mCD14 expression correlated with an enhanced response to LPS, at least at the level of tumor necrosis factor (TNF)-alpha secretion. These results suggest that statin treatment can modulate macrophage functon, which may have an impact on inflammation and the outcome from sepsis.
Collapse
Affiliation(s)
- Tiffany Frey
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|