1
|
Najibi AJ, Lane RS, Sobral MC, Bovone G, Kang S, Freedman BR, Gutierrez Estupinan J, Elosegui-Artola A, Tringides CM, Dellacherie MO, Williams K, Ijaz H, Müller S, Turley SJ, Mooney DJ. Durable lymph-node expansion is associated with the efficacy of therapeutic vaccination. Nat Biomed Eng 2024; 8:1226-1242. [PMID: 38710838 PMCID: PMC11485260 DOI: 10.1038/s41551-024-01209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
Following immunization, lymph nodes dynamically expand and contract. The mechanical and cellular changes enabling the early-stage expansion of lymph nodes have been characterized, yet the durability of such responses and their implications for adaptive immunity and vaccine efficacy are unknown. Here, by leveraging high-frequency ultrasound imaging of the lymph nodes of mice, we report more potent and persistent lymph-node expansion for animals immunized with a mesoporous silica vaccine incorporating a model antigen than for animals given bolus immunization or standard vaccine formulations such as alum, and that durable and robust lymph-node expansion was associated with vaccine efficacy and adaptive immunity for 100 days post-vaccination in a mouse model of melanoma. Immunization altered the mechanical and extracellular-matrix properties of the lymph nodes, drove antigen-dependent proliferation of immune and stromal cells, and altered the transcriptional features of dendritic cells and inflammatory monocytes. Strategies that robustly maintain lymph-node expansion may result in enhanced vaccination outcomes.
Collapse
Affiliation(s)
- Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Ryan S Lane
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Miguel C Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Giovanni Bovone
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Shawn Kang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Joel Gutierrez Estupinan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Alberto Elosegui-Artola
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Christina M Tringides
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Maxence O Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Katherine Williams
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Hamza Ijaz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Sören Müller
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
2
|
Jash R, Maparu K, Seksaria S, Das S. Decrypting the Pathological Pathways in IgA Nephropathy. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:43-56. [PMID: 37870060 DOI: 10.2174/0127722708275167231011102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023]
Abstract
IgAN is the most common form of glomerulonephritis affecting 2000000 people annually. The disease ultimately progresses to chronic renal failure and ESRD. In this article, we focused on a comprehensive understanding of the pathogenesis of the disease and thus identifying different target proteins that could be essential in therapeutic approaches in the management of the disease. Aberrantly glycosylated IgA1 produced by the suppression of the enzyme β-1, 3 galactosyltransferase ultimately triggered the formation of IgG autoantibodies which form complexes with Gd-IgA1. The complex gets circulated through the blood vessels through monocytes and ultimately gets deposited in the glomerular mesangial cells via CD71 receptors present locally. This complex triggers the inflammatory pathways activating the alternate complement system, various types of T Cells, toll-like receptors, cytokines, and chemokines ultimately recruiting the phagocytic cells to eliminate the Gd-IgA complex. The inflammatory proteins cause severe mesangial and podocyte damage in the kidney which ultimately initiates the repair process following chronic inflammation by an important protein named TGFβ1. TGF β1 is an important protein produced during chronic inflammation mediating the repair process via various downstream transduction proteins and ultimately producing fibrotic proteins which help in the repair process but permanently damage the glomerular cells.
Collapse
Affiliation(s)
- Rajiv Jash
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| | - Kousik Maparu
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Sanket Seksaria
- Department of Pharmacology, Sanaka Educational Trust's Group Of Institutions, Malandighi, Durgapur, 713212, West Bengal, India
| | - Saptarshi Das
- Department of Pharmacy, JIS University, Kolkata, 700109, West Bengal, India
| |
Collapse
|
3
|
Akbarzadeh R, Czyz C, Thomsen SY, Schilf P, Murthy S, Sadik CD, König P. Monocyte populations are involved in the pathogenesis of experimental epidermolysis bullosa acquisita. Front Immunol 2023; 14:1241461. [PMID: 38116004 PMCID: PMC10728641 DOI: 10.3389/fimmu.2023.1241461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Monocytes play a significant role in the pathogenesis of most inflammatory diseases, including autoimmune diseases. Herein, different subpopulations of monocytes often play differential, partially antagonistic roles, in the regulation of tissue populations. Pemphigoid diseases constitute a group of autoimmune blistering skin diseases featuring a marked infiltration of the dermis with immune cells, including monocytes. The monocyte subsets infiltrating the skin, however, have largely remained elusive. Monocyte adhesion and recruitment into the inflamed tissues are regulated by chemokine receptors, most prominently by CCR2 and CX3CR1. To delineate the involvement of monocyte populations in autoimmune blistering skin diseases, we spatiotemporally monitored the dynamic spectrum of monocyte populations that infiltrate the inflamed skin using multiphoton intravital imaging and reporter mice for chemokine receptors. Experimental epidermolysis bullosa acquisita (EBA) was induced by injection of anti-murine type VII collagen (amCOLVII) IgG into the Csf1rEGFP-reporter mice, where circulating myeloid cells, such as monocytes and neutrophils, express an EGFP. EGFP+ cells, including neutrophils and monocytes, were present in the skin, immediately after the deposition of the amCOLVII antibody at the dermal-epidermal junction. To investigate the recruitment and involvement of different monocyte-derived cell populations in the disease course further, EBA was induced in CCR2RFP/+-reporter and CX3CR1GFP/+-reporter mice. A comparable distribution of red fluorescent protein (RFP)+ or green fluorescent protein (GFP)+ was found in both diseased mice and their respective controls over time, indicating the similar recruitment of monocytes into the skin following the binding of autoantibodies. Experiments were extended to the CCR2RFP/RFP-deficient and CX3CR1GFP/GFP-deficient mice to determine whether monocyte recruitment and disease severity are compromised in the absence of the receptor. A comparable pattern was seen in the recruitment of monocytes into the skin in both reporter and deficient mice. However, in contrast to similar disease severity between CX3CR1-deficient and reporter mice, CCR2-deficient mice developed significantly less disease than CCR2-reporter mice, as indicated by the percentage of affected area of ears. Collectively, our observations indicate that while CCR2 and CX3CR1 receptors are not involved in the recruitment of monocytes into the skin, CCR2 deficiency is associated with improved disease outcomes in experimental EBA in mice.
Collapse
Affiliation(s)
- Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | - Sarah-Yasmin Thomsen
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Paul Schilf
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sripriya Murthy
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Christian D. Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Chen C, Wang J, Liu C, Hu J. Cardiac resident macrophages: key regulatory mediators in the aftermath of myocardial infarction. Front Immunol 2023; 14:1207100. [PMID: 37457720 PMCID: PMC10348646 DOI: 10.3389/fimmu.2023.1207100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Acute myocardial infarction (MI) is a prevalent and highly fatal global disease. Despite significant reduction in mortality rates with standard treatment regimens, the risk of heart failure (HF) remains high, necessitating innovative approaches to protect cardiac function and prevent HF progression. Cardiac resident macrophages (cMacs) have emerged as key regulators of the pathophysiology following MI. cMacs are a heterogeneous population composed of subsets with different lineage origins and gene expression profiles. Several critical aspects of post-MI pathophysiology have been shown to be regulated by cMacs, including recruitment of peripheral immune cells, clearance and replacement of damaged myocardial cells. Furthermore, cMacs play a crucial role in regulating cardiac fibrosis, risk of arrhythmia, energy metabolism, as well as vascular and lymphatic remodeling. Given the multifaceted roles of cMacs in post-MI pathophysiology, targeting cMacs represents a promising therapeutic strategy. Finally, we discuss novel treatment strategies, including using nanocarriers to deliver drugs to cMacs or using cell therapies to introduce exogenous protective cMacs into the heart.
Collapse
|
5
|
Ozkan H, Di Francesco M, Willcockson H, Valdés-Fernández J, Di Francesco V, Granero-Moltó F, Prósper F, Decuzzi P, Longobardi L. Sustained inhibition of CC-chemokine receptor-2 via intraarticular deposition of polymeric microplates in post-traumatic osteoarthritis. Drug Deliv Transl Res 2023; 13:689-701. [PMID: 36109442 PMCID: PMC9794532 DOI: 10.1007/s13346-022-01235-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 12/31/2022]
Abstract
Posttraumatic osteoarthritis (PTOA) is mostly treated via corticosteroid administration, and total joint arthroplasty continues to be the sole effective intervention in severe conditions. To assess the therapeutic potential of CCR2 targeting in PTOA, we used biodegradable microplates (µPLs) to achieve a slow and sustained intraarticular release of the CCR2 inhibitor RS504393 into injured knees and followed joint damage during disease progression. RS504393-loaded µPLs (RS-µPLs) were fabricated via a template-replica molding technique. A mixture of poly(lactic-co-glycolic acid) (PLGA) and RS504393 was deposited into 20 × 10 μm (length × height) wells in a polyvinyl alcohol (PVA) square-patterned template. After physicochemical and toxicological characterizations, the RS504393 release profile from µPL was assessed in PBS buffer. C57BL/6 J male mice were subjected to destabilization of the medial meniscus (DMM)/sham surgery, and RS-µPLs (1 mg/kg) were administered intraarticularly 1 week postsurgery. Administrations were repeated at 4 and 7 weeks post-DMM. Drug free-µPLs (DF-µPLs) and saline injections were performed as controls. Mice were euthanized at 4 and 10 weeks post-DMM, corresponding to the early and severe PTOA stages, respectively. Knees were evaluated for cartilage structure score (ACS, H&E), matrix loss (safranin O score), osteophyte formation and maturation from cartilage to bone (cartilage quantification), and subchondral plate thickness. The RS-µPL architecture ensured the sustained release of CCR2 inhibitors over several weeks, with ~ 20% of RS504393 still available at 21 days. This prolonged release improved cartilage structure and reduced bone damage and synovial hyperplasia at both PTOA stages. Extracellular matrix loss was also attenuated, although with less efficacy. The results indicate that local sustained delivery is needed to optimize CCR2-targeted therapies.
Collapse
Affiliation(s)
- Huseyin Ozkan
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-, Chapel Hill, 3300 Thurston Bowels Bldg, Campus, Box 7280, Chapel Hill, NC 27599 USA
| | - Martina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano Di Tecnologia, Genoa, Italy
| | - Helen Willcockson
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-, Chapel Hill, 3300 Thurston Bowels Bldg, Campus, Box 7280, Chapel Hill, NC 27599 USA
| | - José Valdés-Fernández
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-, Chapel Hill, 3300 Thurston Bowels Bldg, Campus, Box 7280, Chapel Hill, NC 27599 USA ,Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Valentina Di Francesco
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano Di Tecnologia, Genoa, Italy
| | - Froilán Granero-Moltó
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain ,Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain ,Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain ,Instituto de Investigacion Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Felipe Prósper
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain ,Program of Regenerative Medicine, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain ,Instituto de Investigacion Sanitaria de Navarra (IdiSNA), Pamplona, Spain ,Department of Hematology, Clínica Universidad de Navarra, Pamplona, Spain ,Program of Hemato-Oncology, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano Di Tecnologia, Genoa, Italy
| | - Lara Longobardi
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-, Chapel Hill, 3300 Thurston Bowels Bldg, Campus, Box 7280, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Willcockson H, Ozkan H, Arbeeva L, Mucahit E, Musawwir L, Longobardi L. Early ablation of Ccr2 in aggrecan-expressing cells following knee injury ameliorates joint damage and pain during post-traumatic osteoarthritis. Osteoarthritis Cartilage 2022; 30:1616-1630. [PMID: 36075514 PMCID: PMC9671864 DOI: 10.1016/j.joca.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate whether Ccr2 inactivation in aggrecan-expressing cells induced before post-traumatic OA (PTOA) onset or during progression, improves joint structures, synovial thickness and pain. DESIGN We induced a Ccr2 deletion in aggrecan-expressing cells (CCR2-AggKO) in skeletally mature mice using a tamoxifen-inducible Ccr2 inactivation. We stimulated PTOA changes (destabilization of medial meniscus, DMM) in CCR2-AggKO and CCR2+/+ mice, inducing recombination before DMM or 4 wks after DMM (early-vs late-inactivation). Joint damage was evaluated 2, 4, 8, 12 wks post-DMM using multiple scores: articular-cartilage structure (ACS), Safranin-O, histomorphometry, osteophyte size/maturity, subchondral bone thickness and synovial hyperplasia. Spontaneous (incapacitance meter) and evoked pain (von-Frey filaments) were assessed up to 20 wks. RESULTS Early aggrecan-Ccr2 inactivation in CCR2-AggKO mice (N=8) resulted in improved ACS score (8-12wk, P=0.002), AC area (4-12wk, P<0.05) and Saf-O score (2wks P=0.004, 4wks P=0.02, 8-12wks P=0.002) compared to CCR2+/+. Increased subchondral bone thickness was delayed only at 2 wks and exclusively following early recombination. Osteophyte size was not affected, but osteophyte maturation (cartilage-to-bone) was delayed (4wks P=0.04; 8 wks P=0.03). Although late aggrecan-Ccr2 deletion led to some cartilage improvement, most data did not reach statistical significance; osteophyte maturity was delayed at 12wks. Early aggrecan-Ccr2 deletion led to improved pain measures of weight bearing compared to CCR2+/+ mice (N = 9, 12wks diff 0.13 [0.01, 0.26], 16wks diff 0.15 [0.05, 0.26], 20wks diff 0.23 [0.14, 0.31]). Improved mechanosensitivity in evoked pain, although less noticeable, was detected. CONCLUSIONS We demonstrated that deletion of Ccr2 in aggrecan expressing cells reduces the initiation but not progression of OA.
Collapse
Affiliation(s)
- H Willcockson
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - H Ozkan
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - L Arbeeva
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - E Mucahit
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - L Musawwir
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| | - L Longobardi
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina-Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Muscat S, Nichols AEC, Gira E, Loiselle AE. CCR2 is expressed by tendon resident macrophage and T cells, while CCR2 deficiency impairs tendon healing via blunted involvement of tendon-resident and circulating monocytes/macrophages. FASEB J 2022; 36:e22607. [PMID: 36250393 PMCID: PMC9593314 DOI: 10.1096/fj.202201162r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
During tendon healing, macrophages are thought to be a key mediator of scar tissue formation, which prevents successful functional restoration of the tendon. However, macrophages are critical for successful tendon healing as they aid in wound debridement, extracellular matrix deposition, and promote fibroblast proliferation. Recent work has sought to better define the multi-faceted functions of macrophages using depletion studies, while other studies have identified a tendon resident macrophage population. To begin to delineate the functions of tendon-resident versus circulation-derived macrophages, we examined the tendon healing phenotype in Chemokine Receptor 2 (CCR2) reporter (CCR2GFP/+ ), and knockout mice. CCR2 is a chemokine receptor primarily found on the surface of circulating bone marrow-derived monocytes, with CCR2 being an important mediator of macrophage recruitment to wound environments. Surprisingly, CCR2GFP/+ cells were present in the tendon during adult homeostasis, and single-cell RNA sequencing identified these cells as tendon-resident macrophages and T cells. During both homeostasis and healing, CCR2 knockout resulted in a substantial decrease in CCR2GFP+ cells and pan-macrophages. Additionally, loss of CCR2 resulted in reduced numbers of myofibroblasts and impeded functional recovery during late healing. This study highlights the heterogeneity of tendon-resident and recruited immune cells and their contributions following injury, and establishes an important role for CCR2 in modulating both the adult tendon cell environment and tendon healing process.
Collapse
Affiliation(s)
- Samantha Muscat
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Anne E C Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Emma Gira
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
8
|
Na HS, Lee SY, Lee DH, Woo JS, Choi SY, Cho KH, Kim SA, Go EJ, Lee AR, Choi JW, Kim SJ, Cho ML. Soluble CCR2 gene therapy controls joint inflammation, cartilage damage, and the progression of osteoarthritis by targeting MCP-1 in a monosodium iodoacetate (MIA)-induced OA rat model. J Transl Med 2022; 20:428. [PMID: 36138477 PMCID: PMC9503236 DOI: 10.1186/s12967-022-03515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Osteoarthritis (OA) is the most common type of degenerative arthritis and affects the entire joint, causing pain, joint inflammation, and cartilage damage. Various risk factors are implicated in causing OA, and in recent years, a lot of research and interest have been directed toward chronic low-grade inflammation in OA. Monocyte chemoattractant protein-1 (MCP-1; also called CCL2) acts through C–C chemokine receptor type 2 (CCR2) in monocytes and is a chemotactic factor of monocytes that plays an important role in the initiation of inflammation. The targeting of CCL2–CCR2 is being studied as part of various topics including the treatment of OA. Methods In this study, we evaluated the potential therapeutic effects the sCCR2 E3 gene may exert on OA. The effects of sCCR2 E3 were investigated in animal experiments consisting of intra-articular injection of sCCR2 E3 in a monosodium iodoacetate (MIA)-induced OA rat model. The effects after intra-articular injection of sCCR2 E3 (fusion protein encoding 20 amino acids of the E3 domain of the CCL2 receptor) in a monosodium iodoacetate-induced OA rat model were compared to those in rats treated with empty vector (mock treatment) and full-length sCCR2. Results Pain improved with expression of the sCCR2 gene. Improved bone resorption upon sCCR2 E3 gene activation was confirmed via bone analyses using micro-computed tomography. Histologic analyses showed that the sCCR2 E3 gene exerted protective effects against cartilage damage and anti-inflammatory effects on joints and the intestine. Conclusions These results show that sCCR2 E3 therapy is effective in reducing pain severity, inhibiting cartilage destruction, and suppressing intestinal damage and inflammation. Thus, sCCR2 E3 may be a potential therapy for OA.
Collapse
Affiliation(s)
- Hyun Sik Na
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dong Hwan Lee
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Jin Seok Woo
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Si-Young Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keun-Hyung Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seon Ae Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Eun Jeong Go
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jeong-Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea.
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
9
|
Kotschenreuther K, Yan S, Kofler DM. Migration and homeostasis of regulatory T cells in rheumatoid arthritis. Front Immunol 2022; 13:947636. [PMID: 36016949 PMCID: PMC9398455 DOI: 10.3389/fimmu.2022.947636] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 12/17/2022] Open
Abstract
Regulatory T (Treg) cells are garnering increased attention in research related to autoimmune diseases, including rheumatoid arthritis (RA). They play an essential role in the maintenance of immune homeostasis by restricting effector T cell activity. Reduced functions and frequencies of Treg cells contribute to the pathogenesis of RA, a common autoimmune disease which leads to systemic inflammation and erosive joint destruction. Treg cells from patients with RA are characterized by impaired functions and by an altered phenotype. They show increased plasticity towards Th17 cells and a reduced suppressive capacity. Besides the suppressive function of Treg cells, their effectiveness is determined by their ability to migrate into inflamed tissues. In the past years, new mechanisms involved in Treg cell migration have been identified. One example of such a mechanism is the phosphorylation of vasodilator-stimulated phosphoprotein (VASP). Efficient migration of Treg cells requires the presence of VASP. IL-6, a cytokine which is abundantly present in the peripheral blood and in the synovial tissue of RA patients, induces posttranslational modifications of VASP. Recently, it has been shown in mice with collagen-induced arthritis (CIA) that this IL-6 mediated posttranslational modification leads to reduced Treg cell trafficking. Another protein which facilitates Treg cell migration is G-protein-signaling modulator 2 (GPSM2). It modulates G-protein coupled receptor functioning, thereby altering the cellular activity initiated by cell surface receptors in response to extracellular signals. The almost complete lack of GPSM2 in Treg cells from RA patients contributes to their reduced ability to migrate towards inflammatory sites. In this review article, we highlight the newly identified mechanisms of Treg cell migration and review the current knowledge about impaired Treg cell homeostasis in RA.
Collapse
Affiliation(s)
- Konstantin Kotschenreuther
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Shuaifeng Yan
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David M. Kofler
- Laboratory of Molecular Immunology, Division of Rheumatology and Clinical Immunology, Department I of Internal Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- *Correspondence: David M. Kofler,
| |
Collapse
|
10
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Xu J, Ganguly A, Zhao J, Ivey M, Lopez R, Osterholzer JJ, Cho CS, Olszewski MA. CCR2 Signaling Promotes Brain Infiltration of Inflammatory Monocytes and Contributes to Neuropathology during Cryptococcal Meningoencephalitis. mBio 2021; 12:e0107621. [PMID: 34311579 PMCID: PMC8406332 DOI: 10.1128/mbio.01076-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Cryptococcal meningoencephalitis (CM) is a leading cause of central nervous system (CNS) infection-related mortality worldwide, with surviving patients often developing neurological deficiencies. While CNS inflammation has been implicated in the pathogenesis of CM, little is known about the relative contribution of the specific inflammatory/immune pathways to CNS pathology versus fungal clearance. Increased cerebrospinal fluid level of C-C chemokine receptor 2 (CCR2) ligand CCL2 is associated with disease deterioration in patients with CM. Using a murine model, we investigated the role of the CCR2 pathway in the development of CNS inflammation and pathology during CM. We found that CCR2-deficient mice exhibited improved 28-day survival and alleviated neurological disease scores despite a brain fungal burden higher than that of the WT mice. Reduced CM pathology in CCR2-deficient mice was accompanied by markedly decreased neuronal cell death around cryptococcal microcysts and restored expression of genes involved in neurotransmission, connectivity, and neuronal cell structure in the brains. Results show that CCR2 axis is the major pathway recruiting CD45hiCD11b+Ly6C+ inflammatory monocyte to the brain and indirectly modulates the accumulation of CD4+ T cells and CD8+ T cells. In particular, CCR2 axis promotes recruitment of interferon gamma (IFN-γ)-producing CD4+ T cells and classical activation of myeloid cells. In this context, CCR2 deletion limits the immune network dysregulation we see in CM and attenuates neuropathology. Thus, the CCR2 axis is a potential target for interventions aimed to limit inflammatory CNS pathology in CM patients. IMPORTANCE Cryptococcal meningoencephalitis (CM) causes nearly 200,000 deaths worldwide each year, and survivors frequently develop long-lasting neurological sequelae. The high rate of mortality and neurologic sequelae in CM patients indicate that antifungal therapies alone are often insufficient to control disease progression. Here, we reveal that CM disease progression in mice is accompanied by inflammatory monocytes infiltration at the periphery of the infected foci that overlap locally perturbed neuronal function and death. Importantly, we identified that CCR2 signaling is a critical pathway driving neuroinflammation, especially inflammatory monocyte recruitment, as well as CNS pathology and mortality in CM mice. Our results imply that targeting the CCR2 pathway may be beneficial as a therapy complementary to antifungal drug treatment, helping to reduce CNS damage and mortality in CM patients.
Collapse
Affiliation(s)
- Jintao Xu
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Anutosh Ganguly
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Hepatopancreatobiliary and Advanced Gastrointestinal Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica Zhao
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Michel Ivey
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - Rafael Lopez
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
| | - John J. Osterholzer
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Clifford S. Cho
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Hepatopancreatobiliary and Advanced Gastrointestinal Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Michal A. Olszewski
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Pedragosa J, Miró-Mur F, Otxoa-de-Amezaga A, Justicia C, Ruíz-Jaén F, Ponsaerts P, Pasparakis M, Planas AM. CCR2 deficiency in monocytes impairs angiogenesis and functional recovery after ischemic stroke in mice. J Cereb Blood Flow Metab 2020; 40:S98-S116. [PMID: 32151226 PMCID: PMC7687030 DOI: 10.1177/0271678x20909055] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory Ly6ChiCCR2+ monocytes infiltrate the brain after stroke but their functions are not entirely clear. We report that CCR2+ monocytes and CCR2+ lymphocytes infiltrate the brain after permanent ischemia. To underscore the role of CCR2+ monocytes, we generated mice with selective CCR2 deletion in monocytes. One day post-ischemia, these mice showed less infiltrating monocytes and reduced expression of pro-inflammatory cytokines, markers of alternatively macrophage activation, and angiogenesis. Accordingly, Ly6Chi monocytes sorted from the brain of wild type mice 24 h post-ischemia expressed pro-inflammatory genes, M2 genes, and pro-angiogenic genes. Flow cytometry showed heterogeneous phenotypes within the infiltrating Ly6ChiCCR2+ monocytes, including a subgroup of Arginase-1+ cells. Mice with CCR2-deficient monocytes displayed a delayed inflammatory rebound 15 days post-ischemia that was not found in wild type mice. Furthermore, they showed reduced angiogenesis and worse behavioral performance. Administration of CCR2+/+ bone-marrow monocytes to mice with CCR2-deficient monocytes did not improve the behavioral performance suggesting that immature bone-marrow monocytes lack pro-reparative functions. The results show that CCR2+ monocytes contribute to acute post-ischemic inflammation and participate in functional recovery. The study unravels heterogeneity in the population of CCR2+ monocytes infiltrating the ischemic brain and suggests that pro-reparative monocyte subsets promote functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jordi Pedragosa
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Miró-Mur
- Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Fundació Clínic, Barcelona, Spain
| | - Amaia Otxoa-de-Amezaga
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Justicia
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francisca Ruíz-Jaén
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Manolis Pasparakis
- CECAD Research Center, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Area of Neurociences, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
13
|
Trzebanski S, Jung S. Plasticity of monocyte development and monocyte fates. Immunol Lett 2020; 227:66-78. [PMID: 32814154 DOI: 10.1016/j.imlet.2020.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/01/2023]
Abstract
Monocytes are circulating myeloid immune precursor cells that are generated in the bone marrow. Mature monocytes are released into the circulation and, in case of need, recruited to peripheral sites of inflammation to differentiate into monocyte-derived effector cells. In absence of overt inflammation, monocytes also extravasate into selected tissues, where they complement tissue-resident macrophage compartments. Adjustment of these homeostatic monocyte infiltrates to local environment is critical to maintain health, as best established for the intestine. Defined gene expression changes that differ between gut segments presumably help strike the fine balance between the crucial function of these monocyte-derived macrophages as tissue rheostats and their detrimental hyperactivation. Environmental factors that dictate local monocyte differentiation remain incompletely understood. Definition of the latter could aid our general understanding of in vivo monocyte functions and their relation to inflammatory disorders. In this review, we summarize recent advances in our understanding of monocyte subsets, their differentiation into tissue macrophages, and selected contributions of monocyte-derived cells to steady-state physiology. Moreover, we will discuss emerging evidence for an intriguing bifurcation of monocyte development in the bone marrow and potential functional implications. Emphasis will be given to points of controversies, but we will largely focus on the healthy organism. For a discussion of monocyte and macrophage contributions to inflammatory conditions, we refer the reader to other dedicated reviews.
Collapse
Affiliation(s)
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Gordan S, Albert H, Danzer H, Lux A, Biburger M, Nimmerjahn F. The Immunological Organ Environment Dictates the Molecular and Cellular Pathways of Cytotoxic Antibody Activity. Cell Rep 2020; 29:3033-3046.e4. [PMID: 31801071 DOI: 10.1016/j.celrep.2019.10.111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic immunoglobulin G antibodies are an essential component of therapeutic approaches aimed at depleting self-reactive or malignant cells. More recent evidence suggests that the tissue in which the target cell resides influences the underlying molecular and cellular pathways responsible for cytotoxic antibody activity. By studying cytotoxic IgG activity directed against natural killer cells in primary and secondary immunological organs, we show that distinct organ-specific effector pathways are responsible for target cell depletion. While in the bone marrow, the classical complement pathway and the high-affinity Fcγ-receptor I expressed on organ-resident macrophages were both involved in removing opsonized target cells; in the spleen and blood, all activating FcγRs but not the classical complement pathway were critical for target cell killing. Our study suggests that future strategies aimed at optimizing overall cytotoxic antibody activity may need to consider organ-specific pathways to achieve a maximal therapeutic effect.
Collapse
Affiliation(s)
- Sina Gordan
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Heike Albert
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Heike Danzer
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Anja Lux
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Markus Biburger
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erwin-Rommelstr. 3, 91058 Erlangen, Germany.
| |
Collapse
|
15
|
Guo T, Zou L, Ni J, Zhou Y, Ye L, Yang X, Zhu Z. Regulatory T Cells: An Emerging Player in Radiation-Induced Lung Injury. Front Immunol 2020; 11:1769. [PMID: 32849634 PMCID: PMC7417370 DOI: 10.3389/fimmu.2020.01769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Regulatory T cells (Tregs), which have long been recognized as essential regulators of both inflammation and autoimmunity, also impede effective antitumor immune response due to their immunosuppressive properties. Combined radiotherapy and immunotherapeutic interventions focusing on the removal of Tregs have recently garnered interest as a promising strategy to reverse immunosuppression. Meanwhile, Tregs are emerging as a key player in the pathogenesis of radiation-induced lung injury (RILI), a frequent and potentially life-threatening complication of thoracic radiotherapy. Recognition of the critical role of Tregs in RILI raises the important question of whether radiotherapy combined with Treg-targeting immunotherapy offers any beneficial effects in the protection of normal lung tissue. This present review focuses on the contributions of Tregs to RILI, with particular emphasis on the suspected differential role of Tregs in the pneumonitic phase and fibrotic phase of RILI. We also introduce recent progress on the potential mechanisms by which Tregs modulate RILI and the crosstalk among Tregs, other infiltrating T cells, fibrocytes, and resident epithelial cells driving disease pathogenesis. Finally, we discuss whether Tregs also hold promise as a potential target for immunotherapeutic interventions for RILI.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luxi Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Liu Y, Jarjour W, Olsen N, Zheng SG. Traitor or warrior-Treg cells sneaking into the lesions of psoriatic arthritis. Clin Immunol 2020; 215:108425. [PMID: 32305454 DOI: 10.1016/j.clim.2020.108425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
Abstract
Regulatory T (Treg) cells have been recognized to maintain immune tolerance, which contributes to prevention of autoimmune diseases. However, recent evidence has demonstrated different characteristics of these cells between those that are in circulation compared to those in various local tissues. In addition, the ability of Treg cells to have plasticity in certain disease settings and in inflammatory lesions has been increasingly recognized. Herein we summarize updated knowledge of Treg biology and discuss the current understanding of tissue-resident Treg cells in psoriatic arthritis (PsA), attempting to provide new insights into precise role of Treg cells in the immune response and as a possible therapeutic intervention in patients with PsA.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510620, China
| | - Wael Jarjour
- Department of Internal Medicine, The Ohio State University College of Medicine, Wexner Medical Center, Columbus 43210, USA
| | - Nancy Olsen
- Department of Medicine, The Penn State Hershey College of Medicine, Hershey 17031, USA
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine, Wexner Medical Center, Columbus 43210, USA.
| |
Collapse
|
17
|
Chen B, Brickshawana A, Frangogiannis NG. The Functional Heterogeneity of Resident Cardiac Macrophages in Myocardial Injury CCR2+ Cells Promote Inflammation, Whereas CCR2- Cells Protect. Circ Res 2019; 124:183-185. [PMID: 30653429 DOI: 10.1161/circresaha.118.314357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bijun Chen
- From the Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Adipong Brickshawana
- From the Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Nikolaos G Frangogiannis
- From the Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
18
|
Chorro L, Suzuki M, Chin SS, Williams TM, Snapp EL, Odagiu L, Labrecque N, Lauvau G. Interleukin 2 modulates thymic-derived regulatory T cell epigenetic landscape. Nat Commun 2018; 9:5368. [PMID: 30560927 PMCID: PMC6299086 DOI: 10.1038/s41467-018-07806-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Foxp3+CD4+ regulatory T (Treg) cells are essential for preventing fatal autoimmunity and safeguard immune homeostasis in vivo. While expression of the transcription factor Foxp3 and IL-2 signals are both required for the development and function of Treg cells, the commitment to the Treg cell lineage occurs during thymic selection upon T cell receptor (TCR) triggering, and precedes the expression of Foxp3. Whether signals beside TCR contribute to establish Treg cell epigenetic and functional identity is still unknown. Here, using a mouse model with reduced IL-2 signaling, we show that IL-2 regulates the positioning of the pioneer factor SATB1 in CD4+ thymocytes and controls genome wide chromatin accessibility of thymic-derived Treg cells. We also show that Treg cells receiving only low IL-2 signals can suppress endogenous but not WT autoreactive T cell responses in vitro and in vivo. Our findings have broad implications for potential therapeutic strategies to reprogram Treg cells in vivo.
Collapse
Affiliation(s)
- Laurent Chorro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Shu Shien Chin
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Tere M Williams
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Erik L Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Livia Odagiu
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine and Microbiology, Immunology and Infectiology, University of Montreal, 5345 Boulevard de l'Assomption, Montréal, QC, H1T 4B3, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Center and Department of Medicine and Microbiology, Immunology and Infectiology, University of Montreal, 5345 Boulevard de l'Assomption, Montréal, QC, H1T 4B3, Canada
| | - Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
19
|
Zhan Y, Wang N, Vasanthakumar A, Zhang Y, Chopin M, Nutt SL, Kallies A, Lew AM. CCR2 enhances CD25 expression by FoxP3 + regulatory T cells and regulates their abundance independently of chemotaxis and CCR2 + myeloid cells. Cell Mol Immunol 2018; 17:123-132. [PMID: 30538272 DOI: 10.1038/s41423-018-0187-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023] Open
Abstract
A wide array of chemokine receptors, including CCR2, are known to control Treg migration. Here, we report that CCR2 regulates Tregs beyond chemotaxis. We found that CCR2 deficiency reduced CD25 expression by FoxP3+ Treg cells. Such a change was also consistently present in irradiation chimeras reconstituted with mixed bone marrow from wild-type (WT) and CCR2-/- strains. Thus, CCR2 deficiency resulted in profound loss of CD25hi FoxP3+ Tregs in secondary lymphoid organs as well as in peripheral tissues. CCR2-/- Treg cells were also functionally inferior to WT cells. Interestingly, these changes to Treg cells did not depend on CCR2+ monocytes/moDCs (the cells where CCR2 receptors are most abundant). Rather, we demonstrated that CCR2 was required for TLR-stimulated, but not TCR- or IL-2-stimulated, CD25 upregulation on Treg cells. Thus, we propose that CCR2 signaling can increase the fitness of FoxP3+ Treg cells and provide negative feedback to counter the proinflammatory effects of CCR2 on myeloid cells.
Collapse
Affiliation(s)
- Yifan Zhan
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia. .,Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, Guangdong, China.
| | - Nancy Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ajithkumar Vasanthakumar
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yuxia Zhang
- Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, 510623, Guangzhou, Guangdong, China
| | - Michael Chopin
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephen L Nutt
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Axel Kallies
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew M Lew
- The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
20
|
Ortiz Zacarías NV, van Veldhoven JPD, Portner L, van Spronsen E, Ullo S, Veenhuizen M, van der Velden WJC, Zweemer AJM, Kreekel RM, Oenema K, Lenselink EB, Heitman LH, IJzerman AP. Pyrrolone Derivatives as Intracellular Allosteric Modulators for Chemokine Receptors: Selective and Dual-Targeting Inhibitors of CC Chemokine Receptors 1 and 2. J Med Chem 2018; 61:9146-9161. [PMID: 30256641 PMCID: PMC6328288 DOI: 10.1021/acs.jmedchem.8b00605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The
recent crystal structures of CC chemokine receptors 2 and 9
(CCR2 and CCR9) have provided structural evidence for an allosteric,
intracellular binding site. The high conservation of residues involved
in this site suggests its presence in most chemokine receptors, including
the close homologue CCR1. By using [3H]CCR2-RA-[R], a high-affinity, CCR2 intracellular ligand, we report
an intracellular binding site in CCR1, where this radioligand also
binds with high affinity. In addition, we report the synthesis and
biological characterization of a series of pyrrolone derivatives for
CCR1 and CCR2, which allowed us to identify several high-affinity
intracellular ligands, including selective and potential multitarget
antagonists. Evaluation of selected compounds in a functional [35S]GTPγS assay revealed that they act as inverse agonists
in CCR1, providing a new manner of pharmacological modulation. Thus,
this intracellular binding site enables the design of selective and
multitarget inhibitors as a novel therapeutic approach.
Collapse
Affiliation(s)
- Natalia V Ortiz Zacarías
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Jacobus P D van Veldhoven
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Laura Portner
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Eric van Spronsen
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Salviana Ullo
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Margo Veenhuizen
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Wijnand J C van der Velden
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Annelien J M Zweemer
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Roy M Kreekel
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Kenny Oenema
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Eelke B Lenselink
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety , Leiden Academic Centre for Drug Research, Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
21
|
Cecchi I, Arias de la Rosa I, Menegatti E, Roccatello D, Collantes-Estevez E, Lopez-Pedrera C, Barbarroja N. Neutrophils: Novel key players in Rheumatoid Arthritis. Current and future therapeutic targets. Autoimmun Rev 2018; 17:1138-1149. [PMID: 30217550 DOI: 10.1016/j.autrev.2018.06.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Rheumatoid Arthritis (RA) is a complex systemic autoimmune disease in which various cell types are involved. Among them, neutrophils have been recognized as important players in the onset and the progression of RA. The pathogenic role of neutrophils in RA lies in the alteration of several processes, including increased cell survival and migratory capacity, abnormal inflammatory activity, elevated oxidative stress and an exacerbated release of neutrophil extracellular traps. Through these mechanisms, neutrophils can activate other immune cells, thus perpetuating inflammation and leading to the destruction of the cartilage and bone of the affected joint. Given the considerable contribution of neutrophils to the pathophysiology of RA, several studies have attempted to clarify the effects of various therapeutic agents on this subtype of leukocyte. To date, recent studies have envisaged the role of new molecules on the pathogenic profile of neutrophils in RA, which could represent novel targets in future therapies. In this review, we aim to review the pathogenic role of neutrophils in RA, the effect of conventional treatments and biologic therapies, and the new, potential targets of neutrophil-derived molecules for the treatment of RA.
Collapse
Affiliation(s)
- Irene Cecchi
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases - Coordinating Center of Piemonte and Valle d'Aosta Network for Rare Diseases, Turin, Italy
| | - Ivan Arias de la Rosa
- Rheumatology Service, Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMBIC), University of Cordoba, Cordoba, Spain
| | - Elisa Menegatti
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases - Coordinating Center of Piemonte and Valle d'Aosta Network for Rare Diseases, Turin, Italy
| | - Dario Roccatello
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases - Coordinating Center of Piemonte and Valle d'Aosta Network for Rare Diseases, Turin, Italy
| | - Eduardo Collantes-Estevez
- Rheumatology Service, Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMBIC), University of Cordoba, Cordoba, Spain
| | - Chary Lopez-Pedrera
- Rheumatology Service, Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMBIC), University of Cordoba, Cordoba, Spain
| | - Nuria Barbarroja
- Rheumatology Service, Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMBIC), University of Cordoba, Cordoba, Spain.
| |
Collapse
|
22
|
Affiliation(s)
| | - Nikolaos G. Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
23
|
Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci 2017; 18:ijms18102088. [PMID: 28974038 PMCID: PMC5666770 DOI: 10.3390/ijms18102088] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/30/2017] [Accepted: 09/26/2017] [Indexed: 01/04/2023] Open
Abstract
Chemokines are a family of small, highly conserved cytokines that mediate various biological processes, including chemotaxis, hematopoiesis, and angiogenesis, and that function by interacting with cell surface G-Protein Coupled Receptors (GPCRs). Because of their significant involvement in various biological functions and pathologies, chemokines and their receptors have been the focus of therapeutic discovery for clinical intervention. There are several sub-families of chemokines (e.g., CXC, CC, C, and CX3C) defined by the positions of sequentially conserved cysteine residues. Even though all chemokines also have a highly conserved, three-stranded β-sheet/α-helix tertiary structural fold, their quarternary structures vary significantly with their sub-family. Moreover, their conserved tertiary structures allow for subunit swapping within and between sub-family members, thus promoting the concept of a “chemokine interactome”. This review is focused on structural aspects of CXC and CC chemokines, their functional synergy and ability to form heterodimers within the chemokine interactome, and some recent developments in structure-based chemokine-targeted drug discovery.
Collapse
Affiliation(s)
- Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Milger K, Yu Y, Brudy E, Irmler M, Skapenko A, Mayinger M, Lehmann M, Beckers J, Reichenberger F, Behr J, Eickelberg O, Königshoff M, Krauss-Etschmann S. Pulmonary CCR2 +CD4 + T cells are immune regulatory and attenuate lung fibrosis development. Thorax 2017; 72:1007-1020. [PMID: 28780502 DOI: 10.1136/thoraxjnl-2016-208423] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Animal models have suggested that CCR2-dependent signalling contributes to the pathogenesis of pulmonary fibrosis, but global blockade of CCL2 failed to improve the clinical course of patients with lung fibrosis. However, as levels of CCR2+CD4+ T cells in paediatric lung fibrosis had previously been found to be increased, correlating with clinical symptoms, we hypothesised that distinct CCR2+ cell populations might either increase or decrease disease pathogenesis depending on their subtype. OBJECTIVE To investigate the role of CCR2+CD4+ T cells in experimental lung fibrosis and in patients with idiopathic pulmonary fibrosis and other fibrosis. METHODS Pulmonary CCR2+CD4+ T cells were analysed using flow cytometry and mRNA profiling, followed by in silico pathway analysis, in vitro assays and adoptive transfer experiments. RESULTS Frequencies of CCR2+CD4+ T cells were increased in experimental fibrosis-specifically the CD62L-CD44+ effector memory T cell phenotype, displaying a distinct chemokine receptor profile. mRNA profiling of isolated CCR2+CD4+ T cells from fibrotic lungs suggested immune regulatory functions, a finding that was confirmed in vitro using suppressor assays. Importantly, adoptive transfer of CCR2+CD4+ T cells attenuated fibrosis development. The results were partly corroborated in patients with lung fibrosis, by showing higher percentages of Foxp3+ CD25+ cells within bronchoalveolar lavage fluid CCR2+CD4+ T cells as compared with CCR2-CD4+ T cells. CONCLUSION Pulmonary CCR2+CD4+ T cells are immunosuppressive, and could attenuate lung inflammation and fibrosis. Therapeutic strategies completely abrogating CCR2-dependent signalling will therefore also eliminate cell populations with protective roles in fibrotic lung disease. This emphasises the need for a detailed understanding of the functions of immune cell subsets in fibrotic lung disease.
Collapse
Affiliation(s)
- Katrin Milger
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Internal Medicine V, University of Munich, Munich, Germany
| | - Yingyan Yu
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dr von Hauner Children Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Eva Brudy
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany
| | - Alla Skapenko
- Division of Rheumatology, Department of Internal Medicine IV, University of Munich, Germany, Munich, Germany
| | - Michael Mayinger
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, Munich, Germany.,Chair of Experimental Genetics, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Jürgen Behr
- Department of Internal Medicine V, University of Munich, Munich, Germany.,Asklepios Clinic Gauting, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Susanne Krauss-Etschmann
- Comprehensive Pneumology Center, Helmholtz Center Munich Germany, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dr von Hauner Children Hospital, Ludwig Maximilians University of Munich, Munich, Germany.,Asklepios Clinic Gauting, Munich, Germany.,Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany., Borstel, Germany.,Institute of Experimental Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
25
|
Song CJ, Zimmerman KA, Henke SJ, Yoder BK. Inflammation and Fibrosis in Polycystic Kidney Disease. Results Probl Cell Differ 2017; 60:323-344. [PMID: 28409351 PMCID: PMC7875307 DOI: 10.1007/978-3-319-51436-9_12] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polycystic kidney disease (PKD) is a commonly inherited disorder characterized by cyst formation and fibrosis (Wilson, N Engl J Med 350:151-164, 2004) and is caused by mutations in cilia or cilia-related proteins, such as polycystin 1 or 2 (Oh and Katsanis, Development 139:443-448, 2012; Kotsis et al., Nephrol Dial Transplant 28:518-526, 2013). A major pathological feature of PKD is the development of interstitial inflammation and fibrosis with an associated accumulation of inflammatory cells (Grantham, N Engl J Med 359:1477-1485, 2008; Zeier et al., Kidney Int 42:1259-1265, 1992; Ibrahim, Sci World J 7:1757-1767, 2007). It is unclear whether inflammation is a driving force for cyst formation or a consequence of the pathology (Ta et al., Nephrology 18:317-330, 2013) as in some murine models cysts are present prior to the increase in inflammatory cells (Phillips et al., Kidney Blood Press Res 30:129-144, 2007; Takahashi et al., J Am Soc Nephrol JASN 1:980-989, 1991), while in other models the increase in inflammatory cells is present prior to or coincident with cyst initiation (Cowley et al., Kidney Int 43:522-534, 1993, Kidney Int 60:2087-2096, 2001). Additional support for inflammation as an important contributor to cystic kidney disease is the increased expression of many pro-inflammatory cytokines in murine models and human patients with cystic kidney disease (Karihaloo et al., J Am Soc Nephrol JASN 22:1809-1814, 2011; Swenson-Fields et al., Kidney Int, 2013; Li et al., Nat Med 14:863-868, 2008a). Based on these data, an emerging model in the field is that disruption of primary cilia on tubule epithelial cells leads to abnormal cytokine cross talk between the epithelium and the inflammatory cells contributing to cyst growth and fibrosis (Ta et al., Nephrology 18:317-330, 2013). These cytokines are produced by interstitial fibroblasts, inflammatory cells, and tubule epithelial cells and activate multiple pathways including the JAK-STAT and NF-κB signaling (Qin et al., J Am Soc Nephrol JASN 23:1309-1318, 2012; Park et al., Am J Nephrol 32:169-178, 2010; Bhunia et al., Cell 109:157-168, 2002). Indeed, inflammatory cells are responsible for producing several of the pro-fibrotic growth factors observed in PKD patients with fibrosis (Nakamura et al., Am J Nephrol 20:32-36, 2000; Wilson et al., J Cell Physiol 150:360-369, 1992; Song et al., Hum Mol Genet 18:2328-2343, 2009; Schieren et al., Nephrol Dial Transplant 21:1816-1824, 2006). These growth factors trigger epithelial cell proliferation and myofibroblast activation that stimulate the production of extracellular matrix (ECM) genes including collagen types 1 and 3 and fibronectin, leading to reduced glomerular function with approximately 50% of ADPKD patients progressing to end-stage renal disease (ESRD). Therefore, treatments designed to reduce inflammation and slow the rate of fibrosis are becoming important targets that hold promise to improve patient life span and quality of life. In fact, recent studies in several PKD mouse models indicate that depletion of macrophages reduces cyst severity. In this chapter, we review the potential mechanisms of interstitial inflammation in PKD with a focus on ADPKD and discuss the role of interstitial inflammation in progression to fibrosis and ESRD.
Collapse
Affiliation(s)
- Cheng Jack Song
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kurt A Zimmerman
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott J Henke
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bradley K Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Sun X, Zhang M, El-Zataari M, Huffnagle GB, Kao JY. CCR2 mediates Helicobacter pylori-induced immune tolerance and contributes to mucosal homeostasis. Helicobacter 2017; 22:10.1111/hel.12366. [PMID: 27933701 PMCID: PMC5352485 DOI: 10.1111/hel.12366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND We previously demonstrated that H. pylori infection leads to increased induction of regulatory T cells in local and systemic immune compartments. Here, we investigate the role of CCR2 in the tolerogenic programing of dendritic cells in a mouse model of H. pylori infection. MATERIALS AND METHODS CCR2 deficient (CCR2KO) mice and wild-type (Wt) mice infected with H. pylori SS1 strain were analyzed by qPCR and FACS analysis. In vitro, bone marrow-derived DC on day 6 from CCR2KO and Wt mice cocultured with or without H. pylori were examined to determine the impact of CCR2 signaling on dendritic cells function by qPCR, ELISA, and FACS analyses. RESULTS Acute H. pylori infection was associated with a threefold increase in CCR2 mRNA expression in the gastric mucosa. H. pylori-infected CCR2KO mice exhibited a higher degree of mucosal inflammation, that is, increased gastritis scores and pro-inflammatory cytokine mRNA levels, but lower degree of H. pylori gastric colonization compared to infected Wt mice. Peripheral H. pylori-specific immune response measured in the CCR2KO spleen was characterized by a higher Th17 response and a lower Treg response. In vitro, CCR2KO bone marrow-derived DC was less mature and shown a lower Treg/Th17 ratio. Moreover, blockade of CCR2 signaling by MCP-1 neutralizing antibody inhibited H. pylori-stimulated bone marrow-derived DC maturation. CONCLUSIONS Our results indicate that CCR2 plays an essential role in H. pylori-induced immune tolerance and shed light on a novel mechanism of CCR2-dependent DC Treg induction, which appears to be important in maintaining mucosal homeostasis during H. pylori infection.
Collapse
Affiliation(s)
- Xia Sun
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong, 250012, China,Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States,Corresponding authors: John Y. Kao, M.D, 6520A MSRB I, SPC 5682, 1150 West Medical Center Drive, Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States. Tel: (734) 647-2964, Fax: (734)-763-2535, ; Xia Sun, Ph.D., Room 8308, Building 8, School of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, China. Tel: +86 (531) 88382605, Fax: +86 (531) 88382502,
| | - Min Zhang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States
| | - Mohamad El-Zataari
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States
| | - Gray B. Huffnagle
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States
| | - John Y. Kao
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States,Corresponding authors: John Y. Kao, M.D, 6520A MSRB I, SPC 5682, 1150 West Medical Center Drive, Department of Internal Medicine, Division of Gastroenterology, University of Michigan Health System, Ann Arbor, Michigan, 48109, United States. Tel: (734) 647-2964, Fax: (734)-763-2535, ; Xia Sun, Ph.D., Room 8308, Building 8, School of Medicine, Shandong University, 44 Wen Hua Xi Road, Jinan, Shandong, 250012, China. Tel: +86 (531) 88382605, Fax: +86 (531) 88382502,
| |
Collapse
|
27
|
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that primarily affects the joints. Self-reactive B and T lymphocytes cooperate to promote antibody responses against self proteins and are major drivers of disease. T lymphocytes also promote RA independently of B lymphocytes mainly through the production of key inflammatory cytokines, such as IL-17, that promote pathology. While the innate signals that initiate self-reactive adaptive immune responses are poorly understood, the disease is predominantly caused by inflammatory cellular infiltration and accumulation in articular tissues, and by bone erosions driven by bone-resorbing osteoclasts. Osteoclasts are giant multinucleated cells formed by the fusion of multiple myeloid cells that require short-range signals, such as the cytokines MCSF and RANKL, for undergoing differentiation. The recruitment and positioning of osteoclast precursors to sites of osteoclast differentiation by chemoattractants is an important point of control for osteoclastogenesis and bone resorption. Recently, the GPCR EBI2 and its oxysterol ligand 7a, 25 dihydroxycholesterol, were identified as important regulators of osteoclast precursor positioning in proximity to bone surfaces and of osteoclast differentiation under homeostasis. In chronic inflammatory diseases like RA, osteoclast differentiation is also driven by inflammatory cytokines such as TNFa and IL-1, and can occur independently of RANKL. Finally, there is growing evidence that the chemotactic signals guiding osteoclast precursors to inflamed articular sites contribute to disease and are of great interest. Furthering our understanding of the complex osteoimmune cell interactions should provide new avenues of therapeutic intervention for RA.
Collapse
|
28
|
Shu J, Zhang F, Zhang L, Wei W. G protein coupled receptors signaling pathways implicate in inflammatory and immune response of rheumatoid arthritis. Inflamm Res 2016; 66:379-387. [DOI: 10.1007/s00011-016-1011-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 11/15/2016] [Indexed: 02/07/2023] Open
|
29
|
Li S, Zhou B, Liu B, Zhou Y, Zhang H, Li T, Zuo X. Activation of the cholinergic anti-inflammatory system by nicotine attenuates arthritis via suppression of macrophage migration. Mol Med Rep 2016; 14:5057-5064. [PMID: 27840928 PMCID: PMC5355730 DOI: 10.3892/mmr.2016.5904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/13/2016] [Indexed: 12/20/2022] Open
Abstract
Activation of the cholinergic anti-inflammatory pathway (CAP), which relies on the alpha-7 nicotinic acetylcholine receptor, has been reported to reduce proinflammatory cytokine levels in experimental arthritis. To gain more insight regarding the role of the CAP in the pathogenesis of arthritis, the present study focused on the modulation of macrophage infiltration. In a mouse model of collagen‑induced arthritis (CIA), nicotine and vagotomy were used to stimulate and inhibit the CAP, respectively. Subsequently, arthritic scores were measured and histopathological assessment of joint sections was conducted. Cluster of differentiation (CD)11b‑positive macrophages in the synovium were studied by immunofluorescence histochemistry. The serum levels of chemokines, including macrophage inflammatory protein (MIP)‑1α, monocyte chemoattractant protein (MCP)‑1 and MIP‑2 were evaluated by ELISA. Furthermore, the expression levels of C‑C chemokine receptor (CCR)2 and intercellular adhesion molecule (ICAM)‑1 in the synovium were evaluated by immunohistochemical staining. The results indicated that treatment with nicotine significantly attenuated the clinical and histopathological changes associated with arthritis, reduced CD11b‑positive macrophages in the synovium, and downregulated the serum expression levels of MIP‑1α and MCP‑1. Conversely, vagotomy aggravated arthritis and upregulated the expression levels of MCP‑1. However, MIP‑2 expression did not differ among the control, CIA, vagotomy and nicotine groups. In addition, the expression levels of CCR2 were reduced in the nicotine group; however, they were increased in the vagotomy group compared with in the untreated CIA group. The expression levels of ICAM‑1 in the synovium were also influenced by activation of the CAP. Taken together, the present results indicated that nicotine‑induced activation of the CAP in mice with CIA may reduce the number of macrophages in the synovium, which may serve a role in alleviating arthritis in mice.
Collapse
Affiliation(s)
- Sha Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bin Zhou
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ben Liu
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yaou Zhou
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tong Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
30
|
Loyher PL, Rochefort J, Baudesson de Chanville C, Hamon P, Lescaille G, Bertolus C, Guillot-Delost M, Krummel MF, Lemoine FM, Combadière C, Boissonnas A. CCR2 Influences T Regulatory Cell Migration to Tumors and Serves as a Biomarker of Cyclophosphamide Sensitivity. Cancer Res 2016; 76:6483-6494. [PMID: 27680685 DOI: 10.1158/0008-5472.can-16-0984] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
The CCL2 chemokine receptor CCR2 drives cancer by mediating the recruitment of monocytes and myeloid-derived suppressor cells to the tumor microenvironment. In this study, we extend the significance of CCR2 in this setting by identifying a new role for it in mediating recruitment of CD4+ T regulatory cells (Treg). Following tumor initiation, an expanded population of CCR2+ Tregs required CCR2 expression to traffic between draining lymph nodes (dLN) and the tumor. This Treg subset was enriched in the fraction of tumor antigen-specific cells in the dLN, where they displayed an activated immunosuppressive phenotype. Notably, in mouse models, low-dose cyclophosphamide treatment preferentially depleted CCR2+ Treg, enhancing priming of tumor-specific CD8+ T cells. In the MMTV-PyMT transgenic mouse model of breast cancer and in oral squamous cell carcinoma patients, tumor development was associated with decreased blood frequency and inversely increased tumor frequency of CCR2+ Tregs. Our results define a novel subset of CCR2+ Treg involved in tumoral immune escape, and they offer evidence that this Treg subset may be preferentially eradicated by low-dose cyclophosphamide treatment. Cancer Res; 76(22); 6483-94. ©2016 AACR.
Collapse
Affiliation(s)
- Pierre-Louis Loyher
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Juliette Rochefort
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Camille Baudesson de Chanville
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Pauline Hamon
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Géraldine Lescaille
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Chloé Bertolus
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France.,Department of Maxillofacial Surgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Maude Guillot-Delost
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California
| | - François M Lemoine
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Christophe Combadière
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Universités, UPMC Université Paris 06 UMR_S1135, Institut Universitaire de Cancérologie (IUC), Inserm U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France.
| |
Collapse
|
31
|
Hepatic immunophenotyping for streptozotocin-induced hyperglycemia in mice. Sci Rep 2016; 6:30656. [PMID: 27464894 PMCID: PMC4964583 DOI: 10.1038/srep30656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence revealed that diabetes induces abnormal immune responses that result in serious complications in organs. However, the effect of hyperglycemia on hepatic immunity remains obscure. We evaluated the population and function of hepatic immune cells in streptozotocin (STZ)-induced hyperglycemic mice. CC chemokine receptor 2 (CCR2)-knockout mice and mice with a depletion of regulatory T cells (DEREG) were used to investigate the migration and role of regulatory T cells (Tregs) in hyperglycemic mice. The inflammatory cytokines and hepatic transaminase levels were significantly increased in the hyperglycemic mice. The population and number of infiltrating monocytes, granulocytes, and Tregs were enhanced in the livers of the hyperglycemic mice. Hepatic monocytes other than macrophages showed the increased expression of inflammatory cytokines and chemokines in the hyperglycemic mice. The CCR2 knockout and DEREG chimeric mice exhibited increased populations of activated T cells and neutrophils compared to the WT chimeric mice, which promoted hepatic inflammation in the hyperglycemic mice. The migration of CCR2 knockout Tregs into the liver was significantly reduced compared to the WT Tregs. We demonstrated that hyperglycemia contributes to increase in infiltrating monocytes and Tregs, which are associated with hepatic immune dysfunction in mice. CCR2-mediated migration of Tregs regulates hyperglycemia-induced hepatic inflammation.
Collapse
|
32
|
Gall BJ, Wilson A, Schroer AB, Gross JD, Stoilov P, Setola V, Watkins CM, Siderovski DP. Genetic variations in GPSM3 associated with protection from rheumatoid arthritis affect its transcript abundance. Genes Immun 2016; 17:139-47. [PMID: 26821282 PMCID: PMC4777669 DOI: 10.1038/gene.2016.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
G protein signaling modulator 3 (GPSM3) is a regulator of G protein-coupled receptor signaling, with expression restricted to leukocytes and lymphoid organs. Previous genome-wide association studies have highlighted single-nucleotide polymorphisms (SNPs; rs204989 and rs204991) in a region upstream of the GPSM3 transcription start site as being inversely correlated to the prevalence of rheumatoid arthritis (RA)-this association is supported by the protection afforded to Gpsm3-deficient mice in models of inflammatory arthritis. Here, we assessed the functional consequences of these polymorphisms. We collected biospecimens from 50 volunteers with RA diagnoses, 50 RA-free volunteers matched to the aforementioned group and 100 unmatched healthy young volunteers. We genotyped these individuals for GPSM3 (rs204989, rs204991), CCL21 (rs2812378) and HLA gene region (rs6457620) polymorphisms, and found no significant differences in minor allele frequencies between the RA and disease-free cohorts. However, we identified that individuals homozygous for SNPs rs204989 and rs204991 had decreased GPSM3 transcript abundance relative to individuals homozygous for the major allele. In vitro promoter activity studies suggest that SNP rs204989 is the primary cause of this decrease in transcript levels. Knockdown of GPSM3 in THP-1 cells, a human monocytic cell line, was found to disrupt ex vivo migration to the chemokine MCP-1.
Collapse
Affiliation(s)
- BJ Gall
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - A Wilson
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - AB Schroer
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - JD Gross
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - P Stoilov
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - V Setola
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
- Department of Behavioral Medicine & Psychiatry, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - CM Watkins
- Department of Orthopaedics, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| | - DP Siderovski
- Department of Physiology & Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA 26506-9229
| |
Collapse
|
33
|
Felcenloben I, Piasecki T, Miller J, Rossowska J, Bańcyr E, Atamaniuk W, Nowak M, Świerkot J, Ratajczak K, Chełmońska-Soyta A. Adoptively transferred Tregs accumulate in a site-specific manner and ameliorate signs of less advanced collagen-induced arthritis progress in rats. Immunotherapy 2016; 7:215-28. [PMID: 25804475 DOI: 10.2217/imt.14.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM The aim of the study was to assess the therapeutic effect and migration of adoptively transferred Tregs in the course of collagen-induced arthritis (CIA) in rats. METHODS Sorted CD4(+)CD25(+) cells were cultured in the presence of 17-β-estradiol, stained with CellTracker and then administered into the articular capsule of ankle joint of animals in different stages of CIA progression. RESULTS Tregs diminished CIA signs only in animals with less advanced disease progress. Moreover, migration of transferred cells into the LN in the near proximity of the injection site and with distal location was almost completely stopped in animals with fully developed CIA. CONCLUSION Disease progression-related differences in migratory potential of in vitro induced Tregs may be responsible for the failure of cellular therapy during the advanced stages of CIA.
Collapse
Affiliation(s)
- Isaura Felcenloben
- Wroclaw University of Environmental & Life Science, Faculty of Veterinary Medicine, Department of Immunology, Pathophysiology & Prevention Veterinary, Norwida 31, 50-375 Wroclaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang YP, Xie Y, Ma H, Su SA, Wang YD, Wang JA, Xiang MX. Regulatory T lymphocytes in myocardial infarction: A promising new therapeutic target. Int J Cardiol 2016; 203:923-8. [DOI: 10.1016/j.ijcard.2015.11.078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/21/2015] [Accepted: 11/08/2015] [Indexed: 12/31/2022]
|
35
|
Abstract
At least 2.8 million people die each year as a result of being overweight or obese, and the biggest burden being obesity-related diseases. Overweight and obesity account for a major proportion of type 2 diabetes (T2D) cases. Obesity is associated with inflammation in adipose tissue, namely an infiltration and expansion of macrophages, which produce inflammatory cytokines that interfere with insulin signaling, and a loss of protective cells that promote adipose homeostasis. Thus, it is now clear that inflammation is an underlying cause or contributor to T2D as well as many other obesity-induced diseases, including atherosclerosis and cancer. Inflammatory pathways contribute to impaired glucose handling by adipocytes, hepatocytes, and muscle cells and interfere with insulin production and insulin signaling. This review highlights the roles of the different immune populations in lean adipose tissue and their importance in tissue homeostasis to keep inflammation at bay. We also discuss the changes that occur in these immune cells during the development of obesity, which has detrimental effects on the health of adipose tissue, and local and systemic insulin resistance.
Collapse
Affiliation(s)
- Ayano Kohlgruber
- Division of Rheumatology, Immunology and Allergy, Department of Medicine Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lydia Lynch
- Division of Rheumatology, Immunology and Allergy, Department of Medicine Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Endocrinology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Lee YS, Yi HS, Suh YG, Byun JS, Eun HS, Kim SY, Seo W, Jeong JM, Choi WM, Kim MH, Kim JH, Park KG, Jeong WI. Blockade of Retinol Metabolism Protects T Cell-Induced Hepatitis by Increasing Migration of Regulatory T Cells. Mol Cells 2015; 38:998-1006. [PMID: 26537191 PMCID: PMC4673415 DOI: 10.14348/molcells.2015.0218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022] Open
Abstract
Retinols are metabolized into retinoic acids by alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (Raldh). However, their roles have yet to be clarified in hepatitis despite enriched retinols in hepatic stellate cells (HSCs). Therefore, we investigated the effects of retinols on Concanavalin A (Con A)-mediated hepatitis. Con A was injected into wild type (WT), Raldh1 knock-out (Raldh1(-/-)), CCL2(-/-) and CCR2(-/-) mice. For migration study of regulatory T cells (Tregs), we used in vivo and ex vivo adoptive transfer systems. Blockade of retinol metabolism in mice given 4-methylpyrazole, an inhibitor of ADH, and ablated Raldh1 gene manifested increased migration of Tregs, eventually protected against Con A-mediated hepatitis by decreasing interferon-γ in T cells. Moreover, interferon-γ treatment increased the expression of ADH3 and Raldh1, but it suppressed that of CCL2 and IL-6 in HSCs. However, the expression of CCL2 and IL-6 was inversely increased upon the pharmacologic or genetic ablation of ADH3 and Raldh1 in HSCs. Indeed, IL-6 treatment increased CCR2 expression of Tregs. In migration assay, ablated CCR2 in Tregs showed reduced migration to HSCs. In adoptive transfer of Tregs in vivo and ex vivo, Raldh1-deficient mice showed more increased migration of Tregs than WT mice. Furthermore, inhibited retinol metabolism increased survival rate (75%) compared with that of the controls (25%) in Con A-induced hepatitis. These results suggest that blockade of retinol metabolism protects against acute liver injury by increased Treg migration, and it may represent a novel therapeutic strategy to control T cell-mediated acute hepatitis.
Collapse
Affiliation(s)
- Young-Sun Lee
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
- Department of Internal Medicine, Korea University College of Medicine, Seoul 136-705,
Korea
| | - Hyon-Seung Yi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 305-764,
Korea
| | - Yang-Gun Suh
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408,
Korea
| | - Jin-Seok Byun
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu 41566,
Korea
| | - Hyuk Soo Eun
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - So Yeon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Wonhyo Seo
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Jong-Min Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Won-Mook Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Myung-Ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| | - Ji Hoon Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul 136-705,
Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41566,
Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701,
Korea
| |
Collapse
|
37
|
Talbot J, Bianchini FJ, Nascimento DC, Oliveira RDR, Souto FO, Pinto LG, Peres RS, Silva JR, Almeida SCL, Louzada-Junior P, Cunha TM, Cunha FQ, Alves-Filho JC. CCR2 Expression in Neutrophils Plays a Critical Role in Their Migration Into the Joints in Rheumatoid Arthritis. Arthritis Rheumatol 2015; 67:1751-9. [PMID: 25779331 DOI: 10.1002/art.39117] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/12/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Infiltration of neutrophils into the joints plays an important role in bone erosion and articular destruction in rheumatoid arthritis (RA). Neutrophil trafficking during inflammation is a process that involves activation of chemotactic receptors. Recent findings suggest that changes in chemotactic receptor patterns could occur in neutrophils under certain inflammatory conditions. The aim of this study was to evaluate the gain of responsiveness of neutrophils to CCL2 in RA patients and to assess the role of CCL2 in driving neutrophil infiltration into the joints. METHODS Neutrophils were purified from the peripheral blood of patients with RA or from mice with antigen-induced arthritis (AIA). Expression of CCR2 was evaluated using polymerase chain reaction, flow cytometry, and immunofluorescence analyses. In vitro chemotaxis to CCL2 was assayed to evaluate the functional significance of de novo CCR2 expression. The murine AIA model was used to evaluate the in vivo role of CCR2 in neutrophil infiltration into the joints. RESULTS High CCR2 expression and responsiveness to CCL2 were observed in neutrophils from the blood of patients with early RA and in neutrophils from the blood and bone marrow of mice with AIA. Genetic deficiency or pharmacologic inhibition of CCR2 protected against the infiltration of neutrophils into the joints. This protection was not associated with an impairment of the neutrophil chemotactic ability or CXC chemokine production in the joints. Moreover, adoptive transfer of wild-type mouse neutrophils to CCR2-deficient mice restored neutrophil infiltration and the articular mechanical hyperalgesia associated with joint inflammation. CONCLUSION These findings suggest that CCR2 is directly involved in the detrimental infiltration of neutrophils into the joints in patients with RA, showing a new inflammatory role of CCR2 during RA flares or active disease.
Collapse
Affiliation(s)
- Jhimmy Talbot
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Francine J Bianchini
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Danilele C Nascimento
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Rene D R Oliveira
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Fabricio O Souto
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Larissa G Pinto
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Raphael S Peres
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Jaqueline R Silva
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Sergio C L Almeida
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Paulo Louzada-Junior
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Thiago M Cunha
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Fernando Q Cunha
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| | - Jose C Alves-Filho
- University of São Paulo, Ribeirão Preto Medical School, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
38
|
Mellado M, Martínez-Muñoz L, Cascio G, Lucas P, Pablos JL, Rodríguez-Frade JM. T Cell Migration in Rheumatoid Arthritis. Front Immunol 2015; 6:384. [PMID: 26284069 PMCID: PMC4515597 DOI: 10.3389/fimmu.2015.00384] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies.
Collapse
Affiliation(s)
- Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - Laura Martínez-Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - Graciela Cascio
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Sanitaria Hospital , Madrid , Spain
| | - José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| |
Collapse
|
39
|
Tong B, Yu J, Wang T, Dou Y, Wu X, Kong L, Dai Y, Xia Y. Sinomenine suppresses collagen-induced arthritis by reciprocal modulation of regulatory T cells and Th17 cells in gut-associated lymphoid tissues. Mol Immunol 2015; 65:94-103. [PMID: 25656802 DOI: 10.1016/j.molimm.2015.01.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 01/25/2023]
Abstract
Sinomenine (SIN) has long been used as a therapeutic agent of rheumatoid arthritis (RA) in China. However, the discrepancy between low oral bioavailability and higher minimal effective concentration made its action mode mysterious. The present study aimed to gain insight into the mechanisms by which SIN suppressed collagen-induced arthritis (CIA) in rats in view of Th17 and regulatory T (Treg) cell balance. SIN was orally administered, and the clinical symptoms of CIA rats were monitored; inflammatory cytokines levels in serum were measured by ELISA; pharmacokinetic studies were performed in normal and CIA rats; Th17 and Treg cell frequencies were analyzed by flow cytometry. The data showed that SIN treatment resulted in a dramatic decrease of arthritis scores and paw volume of CIA rats, which was accompanied by down-regulation of IL-17A and up-regulation of IL-10 in rat serum. The frequency of Treg cells was increased and the frequency of Th17 cells was decreased in the gut lymphoid tissues of SIN-treated rats. Immunohistochemistry assay demonstrated that more α4β7-positive cells were detained in joint tissues after SIN treatment. Moreover, the anti-arthritis efficacy of SIN disappeared when it was given by intraperitoneal injection, further confirming the action of SIN was gut-dependent. In conclusion, SIN exerts anti-RA action probably through modulating the frequencies of Treg cells and Th17 cells in intestinal lymph nodes and yielding a trafficking of lymphocytes (especially Treg cells) from gut to joint.
Collapse
Affiliation(s)
- Bei Tong
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Juntao Yu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ting Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yannong Dou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xin Wu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Yufeng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
40
|
Tong B, Dou Y, Wang T, Yu J, Wu X, Lu Q, Chou G, Wang Z, Kong L, Dai Y, Xia Y. Norisoboldine ameliorates collagen-induced arthritis through regulating the balance between Th17 and regulatory T cells in gut-associated lymphoid tissues. Toxicol Appl Pharmacol 2015; 282:90-9. [PMID: 25481498 DOI: 10.1016/j.taap.2014.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 12/24/2022]
Abstract
Norisoboldine (NOR), the main active ingredient of the dry root of Lindera aggregata, was previously proven to have substantial therapeutic effects on collagen-induced arthritis (CIA) in mice by oral administration. However, it exhibited a very poor bioavailability in normal rats. The pharmacokinetic-pharmacodynamics disconnection attracts us to explore its anti-arthritic mechanism in more detail. In this study, NOR, administered orally, markedly attenuated the pathological changes in CIA rats, which was accompanied by the down-regulation of pro-inflammatory cytokines and the up-regulation of anti-inflammatory cytokine IL-10. Pharmacokinetic studies demonstrated that the plasma concentration of NOR was moderately elevated in CIA rats compared with normal rats, but it was still far lower than the minimal effective concentration required for inhibiting the proliferation and activation of T lymphocytes in vitro. Interestingly, NOR was shown to regulate the balance between Th17 and regulatory T (Treg) cells in the intestinal lymph nodes more strikingly than in other tissues. It could increase the expression of Foxp3 mRNA in both gut and joints, and markedly up-regulate the number of integrin α4β7 (a marker of gut source)-positive Foxp3(+) cells in the joints of CIA rats. These results suggest that the gut might be the primary action site of NOR, and NOR exerts anti-arthritis effect through regulating the balance between Th17 and Treg cells in intestinal lymph nodes and yielding a trafficking of lymphocytes (especially Treg cells) from the gut to joint. The findings of the present study also provide a plausible explanation for the anti-arthritic effects of poorly absorbed compounds like NOR.
Collapse
MESH Headings
- Administration, Oral
- Alkaloids/administration & dosage
- Alkaloids/blood
- Alkaloids/pharmacokinetics
- Alkaloids/pharmacology
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Anti-Inflammatory Agents/blood
- Anti-Inflammatory Agents/pharmacokinetics
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Experimental/blood
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Chemotaxis, Leukocyte/drug effects
- Collagen Type II
- Cytokines/blood
- Female
- Forkhead Transcription Factors/metabolism
- Freund's Adjuvant
- Inflammation Mediators/blood
- Joints/drug effects
- Joints/immunology
- Joints/metabolism
- Joints/pathology
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Mesentery
- Peyer's Patches/drug effects
- Peyer's Patches/immunology
- Peyer's Patches/metabolism
- Rats, Wistar
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Bei Tong
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yannong Dou
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ting Wang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Juntao Yu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xin Wu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qian Lu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Guixin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingyi Kong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Dai
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Yufeng Xia
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
41
|
CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J Neurosci 2014; 34:10141-55. [PMID: 25080578 DOI: 10.1523/jneurosci.0076-14.2014] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monocyte-derived macrophages (mo-MΦs) and T cells have been shown to contribute to spinal cord repair. Recently, the remote brain choroid plexus epithelium (CP) was identified as a portal for monocyte recruitment, and its activation for leukocyte trafficking was found to be IFN-γ-dependent. Here, we addressed how the need for effector T cells can be reconciled with the role of inflammation-resolving immune cells in the repair process. Using an acute spinal cord injury model, we show that in mice deficient in IFN-γ-producing T cells, the CP was not activated, and recruitment of inflammation-resolving mo-MΦ to the spinal cord parenchyma was limited. We further demonstrate that mo-MΦ locally regulated recruitment of thymic-derived Foxp3(+) regulatory T (Treg) cells to the injured spinal cord parenchyma at the subacute/chronic phase. Importantly, an ablation protocol that resulted in reduced Tregs at this stage interfered with tissue remodeling, in contrast to Treg transient ablation, restricted to the 4 d period before the injury, which favored repair. The enhanced functional recovery observed following such a controlled decrease of Tregs suggests that reduced systemic immunosuppression at the time of the insult can enhance CNS repair. Overall, our data highlight a dynamic immune cell network needed for repair, acting in discrete compartments and stages, and involving effector and regulatory T cells, interconnected by mo-MΦ. Any of these populations may be detrimental to the repair process if their level or activity become dysregulated. Accordingly, therapeutic interventions must be both temporally and spatially controlled.
Collapse
|
42
|
CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci 2014; 34:3901-9. [PMID: 24623768 DOI: 10.1523/jneurosci.4070-13.2014] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating type of stroke that lacks a specific treatment. An intense immune response develops after ICH, which contributes to neuronal injury, disability, and death. However, the specific mediators of inflammation-induced injury remain unclear. The objective of the present study was to determine whether blood-derived CCR2+ Ly6C(hi) inflammatory monocytes contribute to disability. ICH was induced in mice and the resulting inflammatory response was quantified using flow cytometry, confocal microscopy, and neurobehavioral testing. Importantly, blood-derived monocytes were distinguished from resident microglia by differential CD45 staining and by using bone marrow chimeras with fluorescent leukocytes. After ICH, blood-derived CCR2+ Ly6C(hi) inflammatory monocytes trafficked into the brain, outnumbered other leukocytes, and produced tumor necrosis factor. Ccr2(-/-) mice, which have few circulating inflammatory monocytes, exhibited better motor function following ICH than control mice. Chimeric mice with wild-type CNS cells and Ccr2(-/-) hematopoietic cells also exhibited early improvement in motor function, as did wild-type mice after inflammatory monocyte depletion. These findings suggest that blood-derived inflammatory monocytes contribute to acute neurological disability. To determine the translational relevance of our experimental findings, we examined CCL2, the principle ligand for the CCR2 receptor, in ICH patients. Serum samples from 85 patients were collected prospectively at two hospitals. In patients, higher CCL2 levels at 24 h were independently associated with poor functional outcome at day 7 after adjusting for potential confounding variables. Together, these findings suggest that inflammatory monocytes worsen early disability after murine ICH and may represent a therapeutic target for patients.
Collapse
|
43
|
CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated chikungunya virus arthritis. J Virol 2014; 88:6862-72. [PMID: 24696480 DOI: 10.1128/jvi.03364-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a member of a globally distributed group of arthritogenic alphaviruses that cause weeks to months of debilitating polyarthritis/arthralgia, which is often poorly managed with current treatments. Arthritic disease is usually characterized by high levels of the chemokine CCL2 and a prodigious monocyte/macrophage infiltrate. Several inhibitors of CCL2 and its receptor CCR2 are in development and may find application for treatment of certain inflammatory conditions, including autoimmune and viral arthritides. Here we used CCR2(-/-) mice to determine the effect of CCR2 deficiency on CHIKV infection and arthritis. Although there were no significant changes in viral load or RNA persistence and only marginal changes in antiviral immunity, arthritic disease was substantially increased and prolonged in CCR2(-/-) mice compared to wild-type mice. The monocyte/macrophage infiltrate was replaced in CCR2(-/-) mice by a severe neutrophil (followed by an eosinophil) infiltrate and was associated with changes in the expression levels of multiple inflammatory mediators (including CXCL1, CXCL2, granulocyte colony-stimulating factor [G-CSF], interleukin-1β [IL-1β], and IL-10). The loss of anti-inflammatory macrophages and their activities (e.g., efferocytosis) was also implicated in exacerbated inflammation. Clear evidence of cartilage damage was also seen in CHIKV-infected CCR2(-/-) mice, a feature not normally associated with alphaviral arthritides. Although recruitment of CCR2(+) monocytes/macrophages can contribute to inflammation, it also appears to be critical for preventing excessive pathology and resolving inflammation following alphavirus infection. Caution might thus be warranted when considering therapeutic targeting of CCR2/CCL2 for the treatment of alphaviral arthritides. IMPORTANCE Here we describe the first analysis of viral arthritis in mice deficient for the chemokine receptor CCR2. CCR2 is thought to be central to the monocyte/macrophage-dominated inflammatory arthritic infiltrates seen after infection with arthritogenic alphaviruses such as chikungunya virus. Surprisingly, the viral arthritis caused by chikungunya virus in CCR2-deficient mice was more severe, prolonged, and erosive and was neutrophil dominated, with viral replication and persistence not being significantly affected. Monocytes/macrophages recruited by CCL2 thus also appear to be important for both preventing even worse pathology mediated by neutrophils and promoting resolution of inflammation. Caution might thus be warranted when considering the use of therapeutic agents that target CCR2/CCL2 or inflammatory monocytes/macrophages for the treatment of alphaviral (and perhaps other viral) arthritides. Individuals with diminished CCR2 responses (due to drug treatment or other reasons) may also be at risk of exacerbated arthritic disease following alphaviral infection.
Collapse
|
44
|
Reynolds G, Cooles FAH, Isaacs JD, Hilkens CMU. Emerging immunotherapies for rheumatoid arthritis. Hum Vaccin Immunother 2014; 10:822-37. [PMID: 24535556 DOI: 10.4161/hv.27910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Novel treatments in development for rheumatoid arthritis target 3 broad areas: cytokines, cells, and signaling pathways. Therapies from each domain share common advantages (for example previously demonstrated efficacy, potential long-term immunomodulation, and oral administration respectively) that have stimulated research in each area but also common obstacles to their development. In this review recent progress in each area will be discussed alongside the factors that have impeded their path to clinical use.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - Faye A H Cooles
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne and Wear UK
| | - John D Isaacs
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| | - Catharien M U Hilkens
- Institute of Cellular Medicine; Musculoskeletal Research Group; Newcastle University; Newcastle upon Tyne, Tyne & Wear UK
| |
Collapse
|
45
|
Faustino L, da Fonseca DM, Takenaka MC, Mirotti L, Florsheim EB, Guereschi MG, Silva JS, Basso AS, Russo M. Regulatory T cells migrate to airways via CCR4 and attenuate the severity of airway allergic inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:2614-21. [PMID: 23390295 DOI: 10.4049/jimmunol.1202354] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have previously shown that regulatory T (Treg) cells that accumulate in the airways of allergic mice upregulate CC-chemokine receptor 4 (CCR4) expression. These Treg cells suppressed in vitro Th2 cell proliferation but not type 2 cytokine production. In the current study, using a well-established murine model of allergic lung disease or oral tolerance, we evaluated the in vivo activity of Treg cells in allergic airway inflammation with special focus on CCR4 function. We found that allergic, but not tolerant, mice treated with anti-CD25 Ab showed increased airway eosinophilia and IL-5- or IL-4-producing Th2 cells when compared with untreated mice. Notably, mice with CCR4 deficiency displayed an augmented airway allergic inflammation compared with wild-type or CCR2 knockout (KO) mice. The allergic phenotype of CCR4KO mice was similar to that observed in anti-CD25-treated mice. The exacerbated allergic inflammation of CCR4KO mice was directly associated with an impaired migration of Treg cells to airways and augmented frequency of pulmonary Th2 cells. Adoptive transfer of CD25(+)CD4(+) T cells expressing high levels of CCR4, but not CCR4KO CD25(+)CD4(+) T cells, attenuated the severe airway Th2 response of CCR4KO mice. Our results show that CCR4 is critically involved in the migration of Treg cells to allergic lungs that, in turn, attenuate airway Th2 activation and allergic eosinophilic inflammation.
Collapse
Affiliation(s)
- Lucas Faustino
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, SP 05508-900, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Eriksson C, Rantapää-Dahlqvist S, Sundqvist KG. Changes in chemokines and their receptors in blood during treatment with the TNF inhibitor infliximab in patients with rheumatoid arthritis. Scand J Rheumatol 2013; 42:260-5. [PMID: 23379516 DOI: 10.3109/03009742.2012.754937] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Chemokines are involved in leucocyte recruitment into inflammatory sites. The release of certain chemokines is augmented by tumour necrosis factor (TNF). Infliximab, a monoclonal antibody that blocks the effects of TNF, is used for treatment of rheumatoid arthritis (RA). The effect of TNF blockage on chemokines is not fully understood. The aim of this study was to analyse the effects on chemokines and their receptors on peripheral mononuclear cells of anti-TNF treatment in RA patients. METHOD Twelve patients with established RA who started treatment with infliximab and nine patients with early RA treated with other anti-rheumatic drugs were followed clinically for 30 weeks and chemokine levels in blood samples were analysed along with chemokine receptor expression on the surface of T cells and monocytes. Nine healthy subjects were included as a control group. RESULTS The chemokine CXCL10/IP-10 was significantly higher in RA patients than in healthy controls (p = 0.012). Two weeks after infliximab infusion, CXCL10/IP-10, CCL2/MCP-1, and CCL4/MIP-1β had decreased significantly (p = 0.005, 0.037, and 0.028, respectively), and after 30 weeks of treatment, soluble CD26 was significantly increased (p = 0.050). Several chemokine receptors on T cells were elevated in RA patients at inclusion. The expression of CCR2 and CXCR1 on T cells decreased significantly after infliximab treatment. CONCLUSIONS The chemokines CXCL10/IP-10, CCL2/MCP-1, and CCL4/MIP-1β, mainly targeting the T-helper (Th)1 immune response, decreased after treatment with anti-TNF, suggesting a more pronounced effect on Th1 activity than on Th2-mediated response. Several chemokine receptors on blood T cells were elevated in RA patients, suggesting that they may be involved in the recruitment of T lymphocytes from the blood to affected tissues.
Collapse
Affiliation(s)
- C Eriksson
- Department of Clinical Immunology/Clinical Microbiology, Umea University, Umea, Sweden.
| | | | | |
Collapse
|
47
|
White GE, Iqbal AJ, Greaves DR. CC chemokine receptors and chronic inflammation--therapeutic opportunities and pharmacological challenges. Pharmacol Rev 2013; 65:47-89. [PMID: 23300131 DOI: 10.1124/pr.111.005074] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines are a family of low molecular weight proteins with an essential role in leukocyte trafficking during both homeostasis and inflammation. The CC class of chemokines consists of at least 28 members (CCL1-28) that signal through 10 known chemokine receptors (CCR1-10). CC chemokine receptors are expressed predominantly by T cells and monocyte-macrophages, cell types associated predominantly with chronic inflammation occurring over weeks or years. Chronic inflammatory diseases including rheumatoid arthritis, atherosclerosis, and metabolic syndrome are characterized by continued leukocyte infiltration into the inflammatory site, driven in large part by excessive chemokine production. Over years or decades, persistent inflammation may lead to loss of tissue architecture and function, causing severe disability or, in the case of atherosclerosis, fatal outcomes such as myocardial infarction or stroke. Despite the existence of several clinical strategies for targeting chronic inflammation, these diseases remain significant causes of morbidity and mortality globally, with a concomitant economic impact. Thus, the development of novel therapeutic agents for the treatment of chronic inflammatory disease continues to be a priority. In this review we introduce CC chemokine receptors as critical mediators of chronic inflammatory responses and explore their potential role as pharmacological targets. We discuss functions of individual CC chemokine receptors based on in vitro pharmacological data as well as transgenic animal studies. Focusing on three key forms of chronic inflammation--rheumatoid arthritis, atherosclerosis, and metabolic syndrome--we describe the pathologic function of CC chemokine receptors and their possible relevance as therapeutic targets.
Collapse
Affiliation(s)
- Gemma E White
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
48
|
Longobardi L, Li T, Myers TJ, O'Rear L, Ozkan H, Li Y, Contaldo C, Spagnoli A. TGF-β type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development. Dev Cell 2012; 23:71-81. [PMID: 22814601 DOI: 10.1016/j.devcel.2012.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/16/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Despite its clinical significance, the mechanisms of joint morphogenesis are elusive. By combining laser-capture microdissection for RNA sampling with microarrays, we show that the setting in which joint-forming interzone cells develop is distinct from adjacent growth plate chondrocytes and is characterized by downregulation of chemokines, such as monocyte-chemoattractant protein-5 (MCP-5). Using in vivo, ex vivo, and in vitro approaches, we show that low levels of interzone-MCP-5 are essential for joint formation and contribute to proper growth plate organization. Mice lacking the TGF-β-type-II-receptor (TβRII) in their limbs (Tgfbr2(Prx1KO)), which lack joint development and fail chondrocyte hypertrophy, show upregulation of interzone-MCP-5. In vivo and ex vivo blockade of the sole MCP-5 receptor, CCR2, led to the rescue of joint formation and growth plate maturation in Tgfbr2(Prx1KO) but an acceleration of growth plate mineralization in control mice. Our study characterized the TβRII/MCP-5 axis as an essential crossroad for joint development and endochondral growth.
Collapse
Affiliation(s)
- Lara Longobardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Spiering R, van der Zee R, Wagenaar J, Kapetis D, Zolezzi F, van Eden W, Broere F. Tolerogenic dendritic cells that inhibit autoimmune arthritis can be induced by a combination of carvacrol and thermal stress. PLoS One 2012; 7:e46336. [PMID: 23050016 PMCID: PMC3457998 DOI: 10.1371/journal.pone.0046336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022] Open
Abstract
Tolerogenic dendritic cells (DCs) can induce regulatory T cells and dampen pathogenic T cell responses. Therefore, they are possible therapeutic targets in autoimmune diseases. In this study we investigated whether mouse tolerogenic DCs are induced by the phytonutrient carvacrol, a molecule with known anti-inflammatory properties, in combination with a physiological stress. We show that treatment of DCs with carvacrol and thermal stress led to the mRNA expression of both pro- and anti-inflammatory mediators. Interestingly, treated DCs with this mixed gene expression profile had a reduced ability to activate pro-inflammatory T cells. Furthermore, these DCs increased the proportion of FoxP3+ regulatory T cells. In vivo, prophylactic injection of carvacrol-thermal stress treated DCs pulsed with the disease inducing antigen was able to suppress disease in a mouse model of arthritis. These findings suggest that treatment of mouse bone marrow derived DCs with carvacrol and thermal stress induce a functionally tolerogenic DC that can suppress autoimmune arthritis. Herewith carvacrol seems to offer novel opportunities for the development of a dietary based intervention in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rachel Spiering
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Ruurd van der Zee
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Josée Wagenaar
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Dimos Kapetis
- Department of Biotechnology and Bioscience, Genopolis, University of Milano-Bicocca, Milan, Italy
| | - Francesca Zolezzi
- Department of Biotechnology and Bioscience, Genopolis, University of Milano-Bicocca, Milan, Italy
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Affiliation(s)
- James Pease
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London SW7 2AZ, U.K
| | | |
Collapse
|