1
|
Cicchese JM, Evans S, Hult C, Joslyn LR, Wessler T, Millar JA, Marino S, Cilfone NA, Mattila JT, Linderman JJ, Kirschner DE. Dynamic balance of pro- and anti-inflammatory signals controls disease and limits pathology. Immunol Rev 2018; 285:147-167. [PMID: 30129209 PMCID: PMC6292442 DOI: 10.1111/imr.12671] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune responses to pathogens are complex and not well understood in many diseases, and this is especially true for infections by persistent pathogens. One mechanism that allows for long-term control of infection while also preventing an over-zealous inflammatory response from causing extensive tissue damage is for the immune system to balance pro- and anti-inflammatory cells and signals. This balance is dynamic and the immune system responds to cues from both host and pathogen, maintaining a steady state across multiple scales through continuous feedback. Identifying the signals, cells, cytokines, and other immune response factors that mediate this balance over time has been difficult using traditional research strategies. Computational modeling studies based on data from traditional systems can identify how this balance contributes to immunity. Here we provide evidence from both experimental and mathematical/computational studies to support the concept of a dynamic balance operating during persistent and other infection scenarios. We focus mainly on tuberculosis, currently the leading cause of death due to infectious disease in the world, and also provide evidence for other infections. A better understanding of the dynamically balanced immune response can help shape treatment strategies that utilize both drugs and host-directed therapies.
Collapse
Affiliation(s)
- Joseph M. Cicchese
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie Evans
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Caitlin Hult
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Louis R. Joslyn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Timothy Wessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jess A. Millar
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Simeone Marino
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nicholas A. Cilfone
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joshua T. Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Ho NI, Camps MGM, de Haas EFE, Ossendorp F. Sustained cross-presentation capacity of murine splenic dendritic cell subsets in vivo. Eur J Immunol 2018; 48:1164-1173. [PMID: 29676785 PMCID: PMC6055716 DOI: 10.1002/eji.201747372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
Abstract
An exclusive feature of dendritic cells (DCs) is their ability to cross‐present exogenous antigens in MHC class I molecules. We analyzed the fate of protein antigen in antigen presenting cell (APC) subsets after uptake of naturally formed antigen‐antibody complexes in vivo. We observed that murine splenic DC subsets were able to present antigen in vivo for at least a week. After ex vivo isolation of four APC subsets, the presence of antigen in the storage compartments was visualized by confocal microscopy. Although all APC subsets stored antigen for many days, their ability and kinetics in antigen presentation was remarkably different. CD8α+ DCs showed sustained MHC class I‐peptide specific CD8+ T‐cell activation for more than 4 days. CD8α− DCs also presented antigenic peptides in MHC class I but presentation decreased after 48 h. In contrast, only the CD8α− DCs were able to present antigen in MHC class II to specific CD4+ T cells. Plasmacytoid DCs and macrophages were unable to activate any of the two T‐cell types despite detectable antigen uptake. These results indicate that naturally occurring DC subsets have functional antigen storage capacity for prolonged T‐cell activation and have distinct roles in antigen presentation to specific T cells in vivo.
Collapse
Affiliation(s)
- Nataschja I Ho
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel G M Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin F E de Haas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Ye JF, Lin YQ, Yu XH, Liu MY, Li Y. Immunotherapeutic effects of cytokine-induced killer cells combined with CCL21/IL15 armed oncolytic adenovirus in TERT-positive tumor cells. Int Immunopharmacol 2016; 38:460-7. [PMID: 27380620 DOI: 10.1016/j.intimp.2016.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 11/28/2022]
Abstract
The effective antitumor immune responses are dependent on coordinate interaction of various effector cells. Thus, the combination of adoptive immunotherapy and target gene therapy is capable of efficiently generating a productive antitumor immune response. We investigated whether combination of cytokine-induced killer (CIK) cells adoptive immunotherapy and CCL21/IL15 armed oncolytic adenovirus could induce the enhanced antitumor activity. The CCL21/IL15 co-expression oncolytic adenoviruses were constructed by using the AdEasy system, which uses homologous recombination with shuttle plasmids and full length Ad backbones. This conditionally replicating adenoviruses CRAd-CCL21-IL15 could induce apoptosis in TERTp-positive tumor cells for viral propagation, but do not replicate efficiently in normal cells, because the E1A promoter was replaced by telomerase reverse transcriptase promoter (TERTp). Our results showed that the combination of CIK cells and CRAd-CCL21-IL15 could induce higher antitumor activity than either CIK cells or CRAd-CCL21-IL15 alone. This combined treatment could induce the tumor specific cytotoxicity of CTLs (cytotoxic T lymphocytes) in vitro. Moreover, the treatment of established tumors with the combined therapy of CIK cells and CRAd-CCL21-IL15 resulted in tumor regression. This study suggests that the combined treatment by adoptive immunotherapy and gene therapy is a promising strategy for the therapy of tumor.
Collapse
Affiliation(s)
- Jun-Feng Ye
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Department of Hepato-Biliary-Pancreatic Surgery, First Hospital, Jilin University, Changchun 130062, PR China
| | - Yuan-Qiang Lin
- Ultrasonography department, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China
| | - Xiu-Hua Yu
- The First Hospital of Jilin University, Changchun 130021, PR China
| | - Ming-Yuan Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Department of Hepato-Biliary-Pancreatic Surgery, First Hospital, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Yang Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Department of Hepato-Biliary-Pancreatic Surgery, First Hospital, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
4
|
Zhao DX, Li ZJ, Zhang Y, Zhang XN, Zhao KC, Li YG, Zhang MM, Yu XW, Liu MY, Li Y. Enhanced antitumor immunity is elicited by adenovirus-mediated gene transfer of CCL21 and IL-15 in murine colon carcinomas. Cell Immunol 2014; 289:155-61. [PMID: 24838092 DOI: 10.1016/j.cellimm.2014.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 12/19/2022]
Abstract
The chemokine CCL21 is a potent chemoattractant for T cells and dendritic cells. IL-15 elicits powerful antitumor immune responses through the stimulation of natural killer cells. We constructed a CCL21/IL-15-expressing adenovirus (Ad-CCL21-IL-15) and evaluated its antitumor effects in vitro and in vivo. We found that the intratumoral injection of Ad-CCL21-IL-15 into murine colon carcinomas significantly inhibited tumor growth. Splenocytes from mice treated with Ad-CCL21-IL-15 developed tumor-specific cytotoxic T cells and were protected from subsequent challenges with tumor cells. This study indicates that providing cancer therapy by combining CCL21 and IL-15 can induce antitumor immune responses and is an effective strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Dong-xu Zhao
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China
| | - Zhi-jie Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yang Zhang
- First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Xiao-na Zhang
- First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Kun-chi Zhao
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China
| | - Ya-gang Li
- Fourth Hospital of Jilin University, Changchun 130062, PR China
| | - Meng-meng Zhang
- Fourth Hospital of Jilin University, Changchun 130062, PR China
| | - Xiao-wei Yu
- First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Ming-yuan Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Yang Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
5
|
Chen L, He Z, Qin L, Li Q, Shi X, Zhao S, Chen L, Zhong N, Chen X. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity. PLoS One 2011; 6:e24407. [PMID: 21931708 PMCID: PMC3170332 DOI: 10.1371/journal.pone.0024407] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/08/2011] [Indexed: 12/22/2022] Open
Abstract
Background Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Methodology/Principal Findings Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Conclusions/Significance Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer immune-based therapy.
Collapse
MESH Headings
- Adaptive Immunity/immunology
- Animals
- Apoptosis
- Cancer Vaccines/immunology
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/parasitology
- Carcinoma, Lewis Lung/surgery
- Cell Proliferation
- Cytokines/biosynthesis
- Cytotoxicity, Immunologic/immunology
- Dendritic Cells/immunology
- Disease Models, Animal
- Immunity, Innate/immunology
- Killer Cells, Natural/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Malaria/parasitology
- Mice
- Neoplasm Metastasis
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Parasites/immunology
- Plasmodium yoelii/immunology
- Th1 Cells/immunology
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Lili Chen
- Center for Infection and Immunity, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS-FS Biotech and Pharmaceutical Center, Chinese Academy of Sciences, Foshan, China
| | - Zhengxiang He
- Center for Infection and Immunity, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS-FS Biotech and Pharmaceutical Center, Chinese Academy of Sciences, Foshan, China
| | - Li Qin
- Center for Infection and Immunity, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS-FS Biotech and Pharmaceutical Center, Chinese Academy of Sciences, Foshan, China
| | - Qinyan Li
- Center for Infection and Immunity, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS-FS Biotech and Pharmaceutical Center, Chinese Academy of Sciences, Foshan, China
| | - Xibao Shi
- Center for Infection and Immunity, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Siting Zhao
- Center for Infection and Immunity, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ling Chen
- Center for Infection and Immunity, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- * E-mail: (XC) (NZ); (NZ) (XC)
| | - Xiaoping Chen
- Center for Infection and Immunity, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS-FS Biotech and Pharmaceutical Center, Chinese Academy of Sciences, Foshan, China
- * E-mail: (XC) (NZ); (NZ) (XC)
| |
Collapse
|
6
|
Balza E, Carnemolla B, Mortara L, Castellani P, Soncini D, Accolla RS, Borsi L. Therapy-induced antitumor vaccination in neuroblastomas by the combined targeting of IL-2 and TNFalpha. Int J Cancer 2010; 127:101-10. [PMID: 19877124 DOI: 10.1002/ijc.25018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
L19-IL2 and L19TNFalpha are fusion proteins composed of L19(scFv), specific for the angiogenesis-associated ED-B containing fibronectin isoform and IL-2 or TNFalpha. Because of the tumor targeting properties of L19, IL-2 and TNFalpha concentrate at therapeutic doses at the tumor vascular level. To evaluate the therapeutic effects of L19-IL2 and L19mTNFalpha in neuroblastoma (NB)-bearing mice, A/J mice bearing Neuro2A or NIE115 NB were systemically treated with L19-IL2 and L19mTNFalpha, alone or in combination protocols. Seventy percent of Neuro2A- and 30% of NIE115-bearing mice were cured by the combined treatment with L19-IL2 and L19mTNFalpha, and further rejected a homologous tumor challenge, indicating specific antitumor immune memory. The immunological bases of tumor cure and rejection were studied. A highly efficient priming of CD4(+) T helper cells and CD8(+) CTL effectors was generated, paralleled by massive infiltration in the tumor tissue of CD4(+) and CD8(+) T cells at day 16 after tumor cell implantation, when, after therapy, tumor volume was drastically reduced and tumor necrosis reached about 80%. The curative treatment resulted in a long-lasting antitumor immune memory, accompanied by a mixed Th1/Th2 type of response. Concluding, L19-IL2 and L19mTNFalpha efficiently cooperate in determining a high percentage of NB cure that, in our experimental models, is strongly associated to the generation of adaptive immunity involving CD4(+) and CD8(+) T cells.
Collapse
Affiliation(s)
- Enrica Balza
- Cell Biology Laboratory, Department of Translational Oncology, Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Delivering cytokines at tumor site: The immunocytokine-conjugated anti-EDB-fibronectin antibody case. Immunobiology 2009; 214:800-10. [PMID: 19625102 DOI: 10.1016/j.imbio.2009.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Abstract
Tumor necrosis factor (TNF) is a multifunctional cytokine that plays important roles in diverse cellular events such as cell survival, proliferation, differentiation, and death. As a pro-inflammatory cytokine, TNF is secreted by inflammatory cells, which may be involved in inflammation-associated carcinogenesis. TNF exerts its biological functions through activating distinct signaling pathways such as nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK). NF-kappaB is a major cell survival signal that is anti-apoptotic, whereas sustained JNK activation contributes to cell death. The crosstalk between the NF-kappaB and JNK is involved in determining cellular outcomes in response to TNF. In regard to cancer, TNF is a double-dealer. On one hand, TNF could be an endogenous tumor promoter, because TNF stimulates the growth, proliferation, invasion and metastasis, and tumor angiogenesis of cancer cells. On the other hand, TNF could be a cancer killer. The property of TNF in inducing cancer cell death renders it a potential cancer therapeutic, although much work is needed to reduce its toxicity for systematic TNF administration. Recent studies have focused on sensitizing cancer cells to TNF-induced apoptosis through inhibiting survival signals such as NF-kappaB, by combined therapy. In this article we provide an overview of the roles of TNF-induced signaling pathways in cancer biology with specific emphasis on carcinogenesis and cancer therapy.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory of Molecular and Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | | |
Collapse
|
9
|
Melanoma and lymphoma rejection associated with eosinophil infiltration upon intratumoral injection of dendritic and NK/LAK cells. J Immunother 2008; 31:458-65. [PMID: 18463539 DOI: 10.1097/cji.0b013e318174a512] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) are promising tools for tumor immunotherapy. Their efficacy in the tumor environment increases when tumor cells die as a consequence of chemo/radiotherapy or when local stimuli promoting DC maturation and function are available. Dying tumor cells could represent a source of tumor antigens, which DCs cross-present to tumor-specific T cells. The outcome of cross presentation is in turn determined by the maturation state of DCs. Natural killer (NK)/lymphokine-activated killer (LAK) cells injected into growing tumors could both provide a source of dying cells for cross-presentation and deliver stimuli for DC maturation. Here, we report that NK/LAK cells recognized and killed in vivo major histocompatibility complex class I(low) highly tumorigenic, nonimmunogenic B16F1 melanoma cells when injected into exponentially growing neoplastic lesions. The simultaneous injection of immature DCs was required to heal animals. Similar results were obtained injecting NK/LAK cells and DC into growing Raucher leukaemia virus induced cell line lymphomas. Cured mice failed to reject other implantable tumors, and developed a specific cytotoxic response against the original neoplasm; moreover, they developed a long-lasting memory, and were protected against further challenges with living tumor cells only when both cell populations were introduced. The response associated to the preferential recruitment within tumors of eosinophils. The simultaneous injection in solid tumors of DCs and NK/LAK cells represents an attractive approach for antineoplastic immunotherapeutic strategies.
Collapse
|
10
|
Chimeric form of tumor necrosis factor-alpha has enhanced surface expression and antitumor activity. Cancer Gene Ther 2008; 16:53-64. [PMID: 18654609 DOI: 10.1038/cgt.2008.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tumor necrosis factor (TNF)-alpha is a type-II transmembrane protein that is cleaved by TNF-alpha-converting enzyme (TACE/ADAM-17) to release soluble TNF, a cytokine with potent antitumor properties whose use in clinical applications is limited by its severe systemic toxicity. We found that human cells transfected with vectors encoding TNF without the TACE cleavage site (DeltaTACE-TNF) still released functional cytokine at substantial levels that varied between transfected cell lines of different tissue types. Vectors encoding membrane-associated domains of CD154, another TNF-family protein, conjoined with the carboxyl-terminal domain of TNF, directed higher-level surface expression of a functional TNF that, in contrast to DeltaTACE-TNF, was resistant to cleavage in all cell types. Furthermore, adenovirus vectors encoding CD154-TNF had significantly greater in vivo biological activity in inducing regression of established, syngeneic tumors in mice than adenovirus vectors encoding TNF, and lacked toxicity associated with soluble TNF. As such, CD154-TNF is a novel TNF that appears superior for treatment of tumors in which high-level local expression of TNF is desired.
Collapse
|
11
|
Ogawa Y, Yoshinaga T, Nishikawa M, Takakura Y. Unique cytokine production profile following stimulation with DNA in macrophages from NZB/W F1 mice. Biol Pharm Bull 2008; 31:1244-9. [PMID: 18520062 DOI: 10.1248/bpb.31.1244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleosome is the major autoantigen in systemic lupus erythematosus (SLE). Professional antigen-presenting cells (APCs), such as macrophages (M Phis) and dendritic cells (DCs), play the central roles in the acquisition of Ag-specific immune responses and activation of such APCs is required for the efficient Ag-presentation. Therefore, adjuvant activity of DNA in nucleosomes would cause the prominent effects on the production of anti-nucleosome antibodies. In this study, we report that elicited peritoneal M Phis from New Zealand Black/White F1 (NZB/W) mice showed a unique cytokine production profile following stimulation with DNA. M Phis from 5-week old NZB/W mice produced a higher amount of IL-6 and about a half amount of TNF-alpha after stimulation with DNA complexed with cationic liposomes compared with those from control ICR mice. These results suggest that M Phis of NZB/W mice have altered responsiveness to DNA and this might elevate the antigenicity of nucleosomes to induce the production of anti-nucleosome antibodies.
Collapse
Affiliation(s)
- Yoshiyuki Ogawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
12
|
Buonocore S, Haddou NO, Moore F, Florquin S, Paulart F, Heirman C, Thielemans K, Goldman M, Flamand V. Neutrophil-dependent tumor rejection and priming of tumoricidal CD8+ T cell response induced by dendritic cells overexpressing CD95L. J Leukoc Biol 2008; 84:713-20. [PMID: 18567840 DOI: 10.1189/jlb.0108075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Overexpression of CD95 (Fas/Apo-1) ligand (CD95L) has been shown to induce T cell tolerance but also, neutrophilic inflammation and rejection of allogeneic tissue. We explored the capacity of dendritic cells (DCs) genetically engineered to overexpress CD95L to induce an antitumor response. We first found that DCs overexpressing CD95L, in addition to MHC class I-restricted OVA peptides (CD95L-OVA-DCs), induced increased antigen-specific CD8(+) T cell responses as compared with DCs overexpressing OVA peptides alone. The enhanced T cell responses were associated with improved regression of a tumor expressing OVA, allowing survival of all animals. When DCs overexpressing CD95L (CD95L-DCs) were injected with the tumor expressing OVA, in vivo tumor proliferation was strikingly inhibited. A strong cellular apoptosis and a massive neutrophilic infiltrate developed in this setting. Neutrophil depletion prevented tumor regression as well as enhanced IFN-gamma production induced by CD95L-OVA-DCs. Furthermore, the CD8(+) T cell response induced by the coadministration of tumor cells and CD95L-DCs led to rejection of a tumor implanted at a distance from the DC injection site. In summary, DCs expressing CD95L promote tumor rejection involving neutrophil-mediated innate immunity and CD8(+) T cell-dependent adaptative immune responses.
Collapse
Affiliation(s)
- Sofia Buonocore
- Institute for Medical Immunology, Université Libre de Bruxelles, Rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wu S, Xing W, Peng J, Yuan X, Zhao X, Lei P, Li W, Wang M, Zhu H, Huang B, Huang L, Shen G. Tumor transfected with CCL21 enhanced reactivity and apoptosis resistance of human monocyte-derived dendritic cells. Immunobiology 2007; 213:417-26. [PMID: 18472050 DOI: 10.1016/j.imbio.2007.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 10/13/2007] [Accepted: 10/22/2007] [Indexed: 12/12/2022]
Abstract
Chemokine CCL21 can effectively attract CCR7(+) dendritic cells (DCs), however its role in this event is poorly understood. In this report, we investigated the effect of exogenous CCL21 expressed in breast cancer MCF-7 on human monocyte-derived DCs. CCL21-transfected MCF-7 stimulation prompted DC functions: migration, antigen-uptake and presentation. The stimulated DCs facilitated Th1 type cytokines production, perforin-forming CD8(+) T cell transformation and final T cell-associated clearance of MCF-7. Moreover, the MCF-7-resourced CCL21 protected DCs from apoptosis significantly, involving up-regulations of Bcl-2 expression and NF-kappaB activity, and reduction of caspase-3. This study provides evidence that tumor-derived CCL21 increases the presentation and apoptosis resistance of DCs, suggesting such a mechanism may be useful for the improvement of tumor cell immunogenicity and anti-tumor response.
Collapse
Affiliation(s)
- Sha Wu
- Department of Immunology, Basic Medicine Institute, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bondanza A, Rovere-Querini P, Zimmermann VS, Balestrieri G, Tincani A, Sabbadini MG, Manfredi AA. Requirement for dendritic cells in the establishment of anti-phospholipid antibodies. Autoimmunity 2007; 40:302-6. [PMID: 17516215 DOI: 10.1080/08916930701356572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The cross-presentation of cell-associated autoantigens contributes to systemic autoimmune diseases, including systemic lupus erythematosus (SLE). Little is known about the regulation of the immune response against soluble autoantigens targeted in these diseases. METHODS We immunized the offspring of New Zealand Black and New Zealand White mice (NZB x NZW F(1)) with syngeneic dendritic cells (DC) that had macropinocytosed beta2-glycoprotein 1 (beta(2)GPI) during propagation in normal mouse serum or that had phagocytosed apoptotic thymocytes with syngeneic (murine) or xenogeneic (bovine) beta(2)GPI, which was associated to plasma membrane of the cells. Mice were in parallel immunized with apoptotic thymocytes that had associated the beta(2)GPI to their membranes in the absence of DC. The development of anti-beta(2)GPI antibodies and clinical features were monitored. RESULTS Apoptotic cells alone, opsonized with beta(2)GPI, failed to induce anti-beta(2)GPI autoantibodies or clinical disease. In contrast, autoimmunity developed in the presence of DC. Furthermore, the syngeneic beta(2)GPI was a more effective antigen than the xenogeneic protein in re-boosted animals. CONCLUSIONS DC effectively initiate in NZB x NZW F(1) mice self-sustaining autoimmunity against the beta(2)GPI, either associated to apoptotic cells or macropinocytosed from the serum.
Collapse
Affiliation(s)
- Attilio Bondanza
- H San Raffaele Scientific Institute, Università Vita-Salute, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Chen M, Huang L, Shabier Z, Wang J. Regulation of the lifespan in dendritic cell subsets. Mol Immunol 2007; 44:2558-65. [PMID: 17267035 PMCID: PMC2851400 DOI: 10.1016/j.molimm.2006.12.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/17/2006] [Indexed: 12/27/2022]
Abstract
The lifespan of dendritic cells (DCs) can potentially influence immune responses by affecting the duration of DCs in stimulating lymphocytes. Significant differences in the lifespan have been reported for various DC subsets, however, the molecular mechanisms for regulating such differences between DC subsets remain unclear. In this study, we compared the apoptosis signaling molecules in two major DC subjects, the myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). We observed a lower ratio between anti-apoptotic Bcl-2/Bcl-xL and pro-apoptotic Bax/Bak in shorter-lived myeloid DCs (mDCs) than in longer-lived plasmacytoid DCs (pDCs) or T cells. Transfection with Bcl-2 or Bcl-xL prolonged the survival of mouse primary mDCs in vitro, while deletion of Bcl-2 accelerated DC turnover in vivo. In addition, the ratios between anti-apoptotic Bcl-2/Bcl-xL and pro-apoptotic Bax/Bak could be regulated in DCs. Signaling from toll-like receptors (TLRs) up-regulated Bcl-xL and improved DC survival. Our data suggest that differential expression of apoptosis signaling molecules regulates the lifespan of different DC subsets.
Collapse
Affiliation(s)
| | | | | | - Jin Wang
- Correspondence: Jin Wang, Ph.D., Department of Immunology, Baylor College of Medicine, One Baylor Plaza, N920, Houston, TX 77030, USA, Phone: 713-798-6193, FAX: 713-798-3033, e-mail:
| |
Collapse
|
16
|
Tu CF, Lin CC, Chen MC, Ko TM, Lin CM, Wang YC, Lai MD. Autologous neu DNA vaccine can be as effective as xenogenic neu DNA vaccine by altering administration route. Vaccine 2007; 25:719-28. [PMID: 16962215 DOI: 10.1016/j.vaccine.2006.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/25/2006] [Accepted: 08/10/2006] [Indexed: 12/28/2022]
Abstract
We examined the therapeutic efficacy of xenogenic human N'-terminal neu DNA vaccine and autologous mouse N'-terminal neu DNA vaccine on MBT-2 tumor cells in C3H mice. Intramuscular injection of xenogenic and autologous neu DNA vaccines produced comparable therapeutic efficacies. Mouse and human N'-neu DNA vaccine induced tumor infiltration of CD8(+) T cells, while the human vaccine was less effective at stimulating natural killer cells. Depletion of CD8(+) T cells abolished the therapeutic efficacy of both types of DNA vaccines. On the other hand, xenogenic neu DNA vaccine showed significantly better therapeutic efficacy than autologous DNA vaccine with gene gun immunization. Increased infiltration of CD8(+) T cells was correlated with enhanced therapeutic efficacy in the human N'-neu group of mice. Therefore, intramuscular injection can enhance the therapeutic efficacy of autologous neu DNA vaccine.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
17
|
Rovere-Querini P, Antonacci S, Dell'Antonio G, Angeli A, Almirante G, Cin ED, Valsecchi L, Lanzani C, Sabbadini MG, Doglioni C, Manfredi AA, Castiglioni MT. Plasma and tissue expression of the long pentraxin 3 during normal pregnancy and preeclampsia. Obstet Gynecol 2006; 108:148-55. [PMID: 16816069 DOI: 10.1097/01.aog.0000224607.46622.bc] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Cell death normally occurs during pregnancy and is critical during its common complication, preeclampsia. The long pentraxin 3 (PTX3) gene is generated in tissues that cope with excessive or deregulated cell death and inhibits the cross-presentation of cell-associated antigens. We examined whether PTX3 is expressed during pregnancy and possibly involved in the development of preeclampsia. METHODS Women with preeclampsia (n = 30), women with uncomplicated pregnancies (n = 66), age-matched healthy women (n = 50), women who developed acute bacterial infections (n = 20), and women with rheumatoid arthritis (n = 20) were studied. The concentrations of PTX3 were measured in the blood by a sandwich enzyme-linked immunosorbent assay (ELISA) and in placentas by immunohistochemistry. The concentrations of PTX3 and C-reactive protein in the various groups were compared by nonparametric tests (the Mann-Whitney U and the Kruskal-Wallis tests). The odds of developing preeclampsia were assessed using logistic regression. RESULTS PTX3 was expressed in amniotic epithelium and chorionic mesoderm, trophoblast terminal villi, and perivascular stroma in placentas from pregnancies of uncomplicated subjects. Circulating levels steadily rose during normal gestation and peaked during labor. Serum levels of PTX3 were strikingly higher in preeclampsia compared with normal control pregnancies (5.08 +/- 1.34 and 0.59 +/- 0.07 ng/mL, respectively, P < .001). Sites of higher expression in the placentas from preeclamptic patients include infarcts and fibrinoid zones. CONCLUSION Defects in the homeostatic response to cell death/remodeling events, revealed by enhanced levels of PTX3, could be implicated in preeclampsia. LEVEL OF EVIDENCE II-2.
Collapse
Affiliation(s)
- Patrizia Rovere-Querini
- Clinical Immunology Unit, Division of Pathology, H. San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Balza E, Mortara L, Sassi F, Monteghirfo S, Carnemolla B, Castellani P, Neri D, Accolla RS, Zardi L, Borsi L. Targeted Delivery of Tumor Necrosis Factor-α to Tumor Vessels Induces a Therapeutic T Cell–Mediated Immune Response that Protects the Host Against Syngeneic Tumors of Different Histologic Origin. Clin Cancer Res 2006; 12:2575-82. [PMID: 16638868 DOI: 10.1158/1078-0432.ccr-05-2448] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We sought to demonstrate that a single systemic administration of L19mTNFalpha (a fusion protein constituted by the scFv L19 specific for the oncofetal ED-B domain of fibronectin and tumor necrosis factor alpha, TNFalpha) in combination with melphalan induced complete and long-lasting tumor eradication in tumor-bearing mice and triggered the generation of a specific T cell-based immune response that protects the animals from a second tumor challenge, as well as from challenges with syngeneic tumor cells of different histologic origin. EXPERIMENTAL DESIGN AND RESULTS Treatment with L19mTNFalpha, in combination with melphalan, induced complete tumor regression in 83% of BALB/c mice with WEHI-164 fibrosarcoma and 33% of animals with C51 colon carcinoma. All cured mice rejected challenges with the same tumor cells and, in a very high percentage of animals, also rejected challenges with syngeneic tumor cells of different histologic origin. In adoptive immunity transfer experiments, the splenocytes from tumor-cured mice protected naive mice both from C51 colon carcinoma and from WEHI-164 fibrosarcoma. Similar results were also obtained in adoptive immunity transfer experiments using severely immunodepressed mice. Experiments using depleted splenocytes showed that T cells play a major role in tumor rejection. CONCLUSIONS The results show that the selective targeting of mTNFalpha to the tumor enhances its immunostimulatory properties to the point of generating a therapeutic immune response against different histologically unrelated syngeneic tumors. These findings predicate treatment approaches for cancer patients based on the targeted delivery of TNFalpha to the tumor vasculature.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Cell Survival/drug effects
- Cytotoxicity, Immunologic/immunology
- Dose-Response Relationship, Drug
- Fibronectins/genetics
- Fibronectins/immunology
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Immunoglobulin Fragments/genetics
- Immunotherapy, Adoptive/methods
- Melphalan/administration & dosage
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/prevention & control
- Neoplasms, Experimental/therapy
- Recombinant Fusion Proteins/pharmacology
- Recombinant Fusion Proteins/therapeutic use
- Spleen/cytology
- Spleen/immunology
- Spleen/transplantation
- Survival Analysis
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- Time Factors
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/pharmacology
- Tumor Necrosis Factor-alpha/therapeutic use
Collapse
Affiliation(s)
- Enrica Balza
- Department of Translational Oncology, Istituto Nazionale per la Ricerca sul Cancro, Unit of Innovative Therapies, Istituto Giannina Gaslini, Centro Biotecnologie Avanzate, Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Baruah P, Propato A, Dumitriu IE, Rovere-Querini P, Russo V, Fontana R, Accapezzato D, Peri G, Mantovani A, Barnaba V, Manfredi AA. The pattern recognition receptor PTX3 is recruited at the synapse between dying and dendritic cells, and edits the cross-presentation of self, viral, and tumor antigens. Blood 2005; 107:151-8. [PMID: 16166594 DOI: 10.1182/blood-2005-03-1112] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pentraxins are soluble pattern recognition receptors with a dual role: protection against extracellular microbes and autoimmunity. The mechanisms by which they accomplish these tasks are not yet fully understood. Here we show that the prototypic long pentraxin PTX3 is specifically recruited at both sides of the phagocytic synapse between dendritic cells (DCs) and dying cells and remains stably bound to the apoptotic membranes (estimated half-time > 36 hours). Apoptotic cells per se influence the production of PTX3 by maturing DCs. When both microbial stimuli and dying cells are present, PTX3 behaves as a flexible adaptor of DC function, regulating the maturation program and the secretion of soluble factors. Moreover a key event associated with autoimmunity (ie, the cross-presentation of epitopes expressed by apoptotic cells to T cells) abates in the presence of PTX3, as evaluated using self, viral, and tumor-associated model antigens (vinculin, NS3, and MelanA/MART1). In contrast, PTX3 did not influence the presentation of exogenous soluble antigens, an event required for immunity against extracellular pathogens. These data suggest that PTX3 acts as a third-party agent between microbial stimuli and dying cells, contributing to limit tissue damage under inflammatory conditions and the activation of autoreactive T cells.
Collapse
Affiliation(s)
- Paramita Baruah
- Cancer Immunotherapy & Gene Therapy Program, H San Raffaele Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sanford AN, Dietzmann K, Sullivan KE. Apoptotic cells, autoantibodies, and the role of HMGB1 in the subcellular localization of an autoantigen. J Autoimmun 2005; 25:264-71. [PMID: 16242306 DOI: 10.1016/j.jaut.2005.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 07/26/2005] [Accepted: 08/01/2005] [Indexed: 11/30/2022]
Abstract
A current model for the evolution of systemic lupus erythematosus hypothesizes that there is a genetic predisposition coupled with an environmental or infectious trigger. This study investigated whether apoptotic cells given with a proinflammatory signal could induce features of lupus. Balb/c mice were injected with an apoptotic Balb/c-derived myeloid cell line, J774.1, either with or without the DNA-binding protein HMGB1 for five injections over 16 days in an IACUC approved study. Mice were sacrificed at 6 weeks and 12 weeks after treatment. Renal disease was assessed by immunofluorescence and autoantibodies were defined by ELISA. Western blotting was performed to characterize autoantigens. Mice injected with apoptotic cells developed antibodies to histones, SSA, ssDNA, and phospholipids. Antibodies to SSA and ssDNA persisted; however, antibodies to histones, and phospholipid declined at 12 weeks. IgG deposits in the kidney were detected at 6 weeks and persisted through 12 weeks primarily in animals that received both apoptotic cells and HMGB1. Autoantibodies in mice were diverse but the mice that received apoptotic cells developed particularly high titer antibodies to an unknown 78kDa protein. This protein became externalized on the surface of J774.1 cells in the presence of HMGB1. Mice that received apoptotic J774.1 cells with HMGB1 developed more extensive renal IgG deposition. While the mechanism is uncertain, an important effect of HMGB1 was to alter the subcellular distribution of a major autoantigen, making the autoantigen accessible for immune responses. This is the first description of an inflammatory stimulus altering the immunologic availability of a potential autoantigen.
Collapse
Affiliation(s)
- Amy N Sanford
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
21
|
Manjili MH, Arnouk H, Knutson KL, Kmieciak M, Disis ML, Subjeck JR, Kazim AL. Emergence of immune escape variant of mammary tumors that has distinct proteomic profile and a reduced ability to induce “danger signals”. Breast Cancer Res Treat 2005; 96:233-41. [PMID: 16211331 DOI: 10.1007/s10549-005-9044-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 08/02/2005] [Indexed: 11/27/2022]
Abstract
Breast tumors are shaped, in part, by a process termed immunoediting which selects for immunologically evasive phenotypes. In the present study we used the rat neu-transgenic mouse model of breast cancer and its congenic non-transgenic parental strain, FVB, to explore the phenotype of tumors that emerge in the presence of an immune response directed against the neu antigen. When inoculated into parental FVB mice, a neu-overexpressing mouse mammary carcinoma (MMC) cell line isolated from spontaneous breast tumors of the FVB neu (FVBN202) transgenic mouse, elicited a neu-specific immune response resulting in a tumor rejection because of the presence of the rat neu antigen. However, a neu negative variant (ANV) of MMC arose after a long latency in spite of the neu-specific immune response. We show that compared to MMC, ANV tumor cells have a significantly reduced ability to secrete pro-inflammatory cytokines and the CCL5 chemokine, to express immunostimulatory chaperones, and they have a distinct expression of proteins involved in cell motility, and metabolic and signal transduction pathways. These studies suggest that tumor escape through immunoediting can not be explained by the loss of a single tumor antigen, but rather by a selection process of a tumor variant that has a reduced ability to induce "danger signals" together with up-regulation of proteins involved in the tumor survival. Based on these findings, we propose to target novel antigens over-expressed in the escape variant of breast tumors to treat primary tumor and to prevent tumor relapse.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, VA, 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen DS, Soen Y, Stuge TB, Lee PP, Weber JS, Brown PO, Davis MM. Marked differences in human melanoma antigen-specific T cell responsiveness after vaccination using a functional microarray. PLoS Med 2005; 2:e265. [PMID: 16162034 PMCID: PMC1216330 DOI: 10.1371/journal.pmed.0020265] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 06/30/2005] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In contrast to many animal model studies, immunotherapeutic trials in humans suffering from cancer invariably result in a broad range of outcomes, from long-lasting remissions to no discernable effect. METHODS AND FINDINGS In order to study the T cell responses in patients undergoing a melanoma-associated peptide vaccine trial, we have developed a high-throughput method using arrays of peptide-major histocompatibility complexes (pMHC) together with antibodies against secreted factors. T cells were specifically immobilized and activated by binding to particular pMHCs. The antibodies, spotted together with the pMHC, specifically capture cytokines secreted by the T cells. This technique allows rapid, simultaneous isolation and multiparametric functional characterization of antigen-specific T cells present in clinical samples. Analysis of CD8+ lymphocytes from ten melanoma patients after peptide vaccination revealed a diverse set of patient- and antigen-specific profiles of cytokine secretion, indicating surprising differences in their responsiveness. Four out of four patients who showed moderate or greater secretion of both interferon-gamma (IFNgamma) and tumor necrosis factor-alpha (TNFalpha) in response to a gp100 antigen remained free of melanoma recurrence, whereas only two of six patients who showed discordant secretion of IFNgamma and TNFalpha did so. CONCLUSION Such multiparametric analysis of T cell antigen specificity and function provides a valuable tool with which to dissect the molecular underpinnings of immune responsiveness and how this information correlates with clinical outcome.
Collapse
Affiliation(s)
- Daniel S Chen
- 1Department of Internal Medicine/Division of Oncology, Stanford University, Stanford, California, United States of America
- 2Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Yoav Soen
- 3Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Tor B Stuge
- 4Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Peter P Lee
- 4Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Jeffrey S Weber
- 5Norris Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Patrick O Brown
- 2Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- 3Department of Biochemistry, Stanford University, Stanford, California, United States of America
| | - Mark M Davis
- 2Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- 6 Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
23
|
Bertho N, Adamski H, Toujas L, Debove M, Davoust J, Quillien V. Efficient migration of dendritic cells toward lymph node chemokines and induction of TH1 responses require maturation stimulus and apoptotic cell interaction. Blood 2005; 106:1734-41. [PMID: 15899913 DOI: 10.1182/blood-2004-10-3991] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Dendritic cells (DCs) have the unique ability to initiate primary immune responses, and they can be conditioned for vaccinal purposes to present antigens after the engulfment of apoptotic cells. To recruit the rare antigen-specific naive T cells, DCs require a maturation step and subsequent transport toward lymph node (LN). To date, prostaglandin E2 (PGE2) is the best-characterized compound inducing this LN-directed migration in vitro, but PGE2 may skew the immune responses in a TH2 direction. We demonstrate here that on incubation with apoptotic tumor cells and tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS), human monocyte-derived DCs become fully mature and acquire high migratory capacities toward LN-directing chemokines. The migration of TNF-α-treated DCs occurs only after cotreatment with apoptotic cells but not with necrotic cells. DC migration requires CD36 expression and incubation with apoptotic cells in the presence of heat-labile serum components. Moreover, on treatment with apoptotic cells and LPS, the migrating DCs are able to recruit naive T cells to generate TH1 immune responses. Our results show that the cotreatment of DCs with apoptotic tumor cells and inflammatory signals is promising for the design of an antitumoral DC-based vaccine. (Blood. 2005;106:1734-1741)
Collapse
Affiliation(s)
- Nicolas Bertho
- Immunology Department, UMR8115 Genethon BP60, 1 bis rue de l'Internationale, 91002 Evry Cedex, France.
| | | | | | | | | | | |
Collapse
|
24
|
Skoberne M, Beignon AS, Larsson M, Bhardwaj N. Apoptotic cells at the crossroads of tolerance and immunity. Curr Top Microbiol Immunol 2005; 289:259-92. [PMID: 15791960 DOI: 10.1007/3-540-27320-4_12] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clearance of apoptotic cells by phagocytes can result in either anti-inflammatory and immunosuppressive effects or prostimulatory consequences through presentation of cell-associated antigens to T cells. The differences in outcome are due to the conditions under which apoptosis is induced, the type of phagocytic cell, the nature of the receptors involved in apoptotic cell capture, and the milieu in which phagocytosis of apoptotic cells takes place. Preferential ligation of specific receptors on professional antigen-presenting cells (dendritic cells) has been proposed to induce potentially tolerogenic signals. On the other hand, dendritic cells can efficiently process and present antigens from pathogen-infected apoptotic cells to T cells. In this review, we discuss how apoptotic cells manipulate immunity through interactions with dendritic cells.
Collapse
Affiliation(s)
- M Skoberne
- Cancer Institute, NYU School of Medicine, 550 First Avenue, MSB507, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
25
|
Bondanza A, Zimmermann VS, Rovere-Querini P, Turnay J, Dumitriu IE, Stach CM, Voll RE, Gaipl US, Bertling W, Pöschl E, Kalden JR, Manfredi AA, Herrmann M. Inhibition of phosphatidylserine recognition heightens the immunogenicity of irradiated lymphoma cells in vivo. ACTA ACUST UNITED AC 2004; 200:1157-65. [PMID: 15504819 PMCID: PMC2211859 DOI: 10.1084/jem.20040327] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Strategies to enhance the immunogenicity of tumors are urgently needed. Although vaccination with irradiated dying lymphoma cells recruits a tumor-specific immune response, its efficiency as immunogen is poor. Annexin V (AxV) binds with high affinity to phosphatidylserine on the surface of apoptotic and necrotic cells and thereby impairs their uptake by macrophages. Here, we report that AxV preferentially targets irradiated lymphoma cells to CD8+ dendritic cells for in vivo clearance, elicits the release of proinflammatory cytokines and dramatically enhances the protection elicited against the tumor. The response was endowed with both memory, because protected animals rejected living lymphoma cells after 72 d, and specificity, because vaccinated animals failed to reject unrelated neoplasms. Finally, AxV–coupled irradiated cells induced the regression of growing tumors. These data indicate that endogenous adjuvants that bind to dying tumor cells can be exploited to target tumors for immune rejection.
Collapse
Affiliation(s)
- Attilio Bondanza
- Clinical Immunology Unit, Cancer Immunotherapy and Gene Therapy Program, H. San Raffaele Institute, DIBIT 3A1, via Olgettina 58, 20132 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|