1
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
La Cava A. Low-dose interleukin-2 therapy in systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:150-156. [PMID: 37781677 PMCID: PMC10538619 DOI: 10.2478/rir-2023-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Abstract
In systemic lupus erythematosus (SLE), T regulatory cells (Tregs) contribute to the inhibition of autoimmune responses by suppressing self-reactive immune cells. Interleukin (IL)-2 plays an essential role in the generation, function and homeostasis of the Tregs and is reduced in SLE. Several clinical studies, including randomized trials, have shown that low-dose IL-2 therapy in SLE patients is safe and effective and can reduce disease manifestations. This review discusses the rationale for the use of low-dose IL-2 therapy in SLE, the clinical responses in patients, and the effects of this therapy on different types of T cells. Considerations are made on the current and future directions of use of low-dose IL-2 regimens in SLE.
Collapse
Affiliation(s)
- Antonio La Cava
- Department of Medicine, University of California Los Angeles, Los Angeles, CA90095, USA
| |
Collapse
|
3
|
P. Singh R, S. Bischoff D, S Singh S, H. Hahn B. Peptide-based immunotherapy in lupus: Where are we now? RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:139-149. [PMID: 37781681 PMCID: PMC10538607 DOI: 10.2478/rir-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/01/2023] [Indexed: 10/03/2023]
Abstract
In autoimmune rheumatic diseases, immune hyperactivity and chronic inflammation associate with immune dysregulation and the breakdown of immune self-tolerance. A continued, unresolved imbalance between effector and regulatory immune responses further exacerbates inflammation that ultimately causes tissue and organ damage. Many treatment modalities have been developed to restore the immune tolerance and immmunoregulatory balance in autoimmune rheumatic diseases, including the use of peptide-based therapeutics or the use of nanoparticles-based nanotechnology. This review summarizes the state-of-the-art therapeutic use of peptide-based therapies in autoimmune rheumatic diseases, with a specific focus on lupus.
Collapse
Affiliation(s)
- Ram P. Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, 90073 CA, USA
| | - David S. Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, 90073 CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, 90095 CA, USA
| | | | - Bevra H. Hahn
- Department of Medicine, University of California, Los Angeles, Los Angeles, 90095 CA, USA
| |
Collapse
|
4
|
Singh RP, Hahn BH, Bischoff DS. Cellular and Molecular Phenotypes of pConsensus Peptide (pCons) Induced CD8 + and CD4 + Regulatory T Cells in Lupus. Front Immunol 2021; 12:718359. [PMID: 34867947 PMCID: PMC8640085 DOI: 10.3389/fimmu.2021.718359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with widespread inflammation, immune dysregulation, and is associated with the generation of destructive anti-DNA autoantibodies. We have shown previously the immune modulatory properties of pCons peptide in the induction of both CD4+ and CD8+ regulatory T cells which can in turn suppress development of the autoimmune disease in (NZB/NZW) F1 (BWF1) mice, an established model of lupus. In the present study, we add novel protein information and further demonstrate the molecular and cellular phenotypes of pCons-induced CD4+ and CD8+ Treg subsets. Flow cytometry analyses revealed that pCons induced CD8+ Treg cells with the following cell surface molecules: CD25highCD28high and low subsets (shown earlier), CD62Lhigh, CD122low, PD1low, CTLA4low, CCR7low and 41BBhigh. Quantitative real-time PCR (qRT-PCR) gene expression analyses revealed that pCons-induced CD8+ Treg cells downregulated the following several genes: Regulator of G protein signaling (RGS2), RGS16, RGS17, BAX, GPT2, PDE3b, GADD45β and programmed cell death 1 (PD1). Further, we confirmed the down regulation of these genes by Western blot analyses at the protein level. To our translational significance, we showed herein that pCons significantly increased the percentage of CD8+FoxP3+ T cells and further increased the mean fluorescence intensity (MFI) of FoxP3 when healthy peripheral blood mononuclear cells (PBMCs) are treated with pCons (10 μg/ml, for 24-48 hours). In addition, we found that pCons reduced apoptosis in CD4+ and CD8+ T cells and B220+ B cells of BWF1 lupus mice. These data suggest that pCons stimulates cellular, immunological, and molecular changes in regulatory T cells which in turn protect against SLE autoimmunity.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Singh RP, Bischoff DS, Hahn BH. CD8 + T regulatory cells in lupus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:147-156. [PMID: 35880241 PMCID: PMC9242525 DOI: 10.2478/rir-2021-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/23/2021] [Indexed: 04/11/2023]
Abstract
T regulatory cells (Tregs) have a key role in the maintenance of immune homeostasis and the regulation of immune tolerance by preventing the inflammation and suppressing the autoimmune responses. Numerical and functional deficits of these cells have been reported in systemic lupus erythematosus (SLE) patients and mouse models of SLE, where their imbalance and dysregulated activities have been reported to significantly influence the disease pathogenesis, progression and outcomes. Most studies in SLE have focused on CD4+ Tregs and it has become clear that a critical role in the control of immune tolerance after the breakdown of self-tolerance is provided by CD8+ Tregs. Here we review the role, cellular and molecular phenotypes, and mechanisms of action of CD8+ Tregs in SLE, including ways to induce these cells for immunotherapeutic modulation in SLE.
Collapse
Affiliation(s)
- Ram P. Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, USA
| | - David S. Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bevra H. Hahn
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Singh RP, Hahn BH, Bischoff DS. Effects of Peptide-Induced Immune Tolerance on Murine Lupus. Front Immunol 2021; 12:662901. [PMID: 34093553 PMCID: PMC8171184 DOI: 10.3389/fimmu.2021.662901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of autoimmunity and the molecular mechanisms by which different immune cells, including T cells, polymorphonuclear leukocytes (PMN-granulocytes), and B cells suppress autoimmune diseases is complex. We have shown previously that BWF1 lupus mice are protected from autoimmunity after i.v. injection or oral administration of tolerogenic doses of pCons, an artificial synthetic peptide based on sequences containing MHC class I and MHC class II determinants in the VH region of a J558-encoded BWF1 anti-DNA Ab. Several T cell subsets can transfer this tolerance. In this study, we determined the potential roles of granulocytes, B cells and regulatory T cells altered by pCons treatment in the BWF1 (NZB/NZW) mouse model of lupus. Immunophenotyping studies indicated that pCons treatment of BWF1 mice significantly increased CD4+FoxP3+ T cells, reduced the percent of B cells expressing CD19+CD5+ but increased the percent of CD19+CD1d+ regulatory B cells and increased the ability of the whole B cell population to suppress IgG anti-DNA production in vitro. pCons treatment significantly decreased the expression of CTLA-4 (cytotoxic T-lymphocyte-associated protein-4) in CD8+ T cells. In addition, peptide administration modified granulocytes so they became suppressive. We co-cultured sorted naïve B cells from mice making anti-DNA Ab (supported by addition of sorted naive CD4+ and CD8+ T cells from young auto-antibody-negative BWF1 mice) with sorted B cells or granulocytes from tolerized mice. Both tolerized granulocytes and tolerized B cells significantly suppressed the production of anti-DNA in vitro. In granulocytes from tolerized mice compared to saline-treated littermate controls, real-time PCR analysis indicated that expression of interferon-induced TNFAIP2 increased more than 2-fold while Ptdss2 and GATA1 mRNA were up-regulated more than 10-fold. In contrast, expression of these genes was significantly down-regulated in tolerized B cells. Further, another IFN-induced protein, Bcl2, was reduced in tolerized B cells as determined by Western blot analyses. In contrast, expression of FoxP3 was significantly increased in tolerized B cells. Together, these data suggest that B cells and granulocytes are altered toward suppressive functions by in vivo tolerization of BWF1 mice with pCons and it is possible these cell types participate in the clinical benefits seen in vivo.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Singh RP, Bischoff DS. Sex Hormones and Gender Influence the Expression of Markers of Regulatory T Cells in SLE Patients. Front Immunol 2021; 12:619268. [PMID: 33746959 PMCID: PMC7966510 DOI: 10.3389/fimmu.2021.619268] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Regulatory T cells have been implicated in the regulation and maintenance of immune homeostasis. Whether gender and sex hormones differentially influence the expression and function of regulatory T cell phenotype and their influence on FoxP3 expression remains obscure. We provide evidence in this study that the number and percent of human regulatory T cells (Tregs) expressing CD4+ and CD8+ are significantly reduced in healthy females compared to healthy males. In addition, both CD4+CD25+hi and CD8+CD25+hi subsets in healthy males have a 2-3 fold increase in FoxP3 mRNA expression compared to healthy females. Female SLE patients, compared to healthy women, have elevated plasma levels of estradiol and decreased levels of testosterone. Higher levels of testosterone correlate with higher expression of FoxP3 in CD4+CD25hiCD127low putative Tregs in women with SLE. Incubation of CD4+ regulatory T cells with 17β-estradiol at physiological levels generally decreased FoxP3 expression in females with SLE. These data suggest that females may be more susceptible than males to SLE and other autoimmune diseases in part because they have fewer Tregs and reduced FoxP3 expression within those cells due to normal E2 levels which suppress FoxP3 expression. In addition, low levels of plasma testosterone in women may further reduce the ability of the Tregs to express FoxP3. These data suggest that gender and sex hormones can influence susceptibility to SLE via effects on regulatory T cells and FoxP3 expression.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Talotta R, Atzeni F, Laska MJ. Therapeutic peptides for the treatment of systemic lupus erythematosus: a place in therapy. Expert Opin Investig Drugs 2020; 29:845-867. [PMID: 32500750 DOI: 10.1080/13543784.2020.1777983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Studies in vitro and in vivo have identified several peptides that are potentially useful in treating systemic lupus erythematosus (SLE). The rationale for their use lies in the cost-effective production, high potency, target selectivity, low toxicity, and a peculiar mechanism of action that is mainly based on the induction of immune tolerance. Three therapeutic peptides have entered clinical development, but they have yielded disappointing results. However, some subsets of patients, such as those with the positivity of anti-dsDNA antibodies, appear more likely to respond to these medications. AREAS COVERED This review evaluates the potential use of therapeutic peptides for SLE and gives an opinion on how they may offer advantages for SLE treatment. EXPERT OPINION Given their acceptable safety profile, therapeutic peptides could be added to agents traditionally used to treat SLE and this may offer a synergistic and drug-sparing effect, especially in selected patient populations. Moreover, they could temporarily be utilized to manage SLE flares, or be administered as a vaccine in subjects at risk. Efforts to ameliorate bioavailability, increase the half-life and prevent immunogenicity are ongoing. The formulation of hybrid compounds, like peptibodies or peptidomimetic small molecules, is expected to yield renewed treatments with a better pharmacologic profile and increased efficacy.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, Azienda Ospedaliera "Gaetano Martino", University of Messina , Messina, Italy
| | - Fabiola Atzeni
- Department of Clinical and Experimental Medicine, Rheumatology Unit, Azienda Ospedaliera "Gaetano Martino", University of Messina , Messina, Italy
| | | |
Collapse
|
9
|
Horwitz DA, Bickerton S, Koss M, Fahmy TM, La Cava A. Suppression of Murine Lupus by CD4+ and CD8+ Treg Cells Induced by T Cell-Targeted Nanoparticles Loaded With Interleukin-2 and Transforming Growth Factor β. Arthritis Rheumatol 2019; 71:632-640. [PMID: 30407752 DOI: 10.1002/art.40773] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/01/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To develop a nanoparticle (NP) platform that can expand both CD4+ and CD8+ Treg cells in vivo for the suppression of autoimmune responses in systemic lupus erythematosus (SLE). METHODS Poly(lactic-co-glycolic acid) (PLGA) NPs encapsulating interleukin-2 (IL-2) and transforming growth factor β (TGFβ) were coated with anti-CD2/CD4 antibodies and administered to mice with lupus-like disease induced by the transfer of DBA/2 T cells into (C57BL/6 × DBA/2)F1 (BDF1) mice. The peripheral frequency of Treg cells was monitored ex vivo by flow cytometry. Disease progression was assessed by measuring serum anti-double-stranded DNA antibody levels by enzyme-linked immunosorbent assay. Kidney disease was defined as the presence of proteinuria or renal histopathologic features. RESULTS Anti-CD2/CD4 antibody-coated, but not noncoated, NPs encapsulating IL-2 and TGFβ induced CD4+ and CD8+ FoxP3+ Treg cells in vitro. The optimal dosing regimen of NPs for expansion of CD4+ and CD8+ Treg cells was determined in in vivo studies in mice without lupus and then tested in BDF1 mice with lupus. The administration of anti-CD2/CD4 antibody-coated NPs encapsulating IL-2 and TGFβ resulted in the expansion of CD4+ and CD8+ Treg cells, a marked suppression of anti-DNA antibody production, and reduced renal disease. CONCLUSION This study shows for the first time that T cell-targeted PLGA NPs encapsulating IL-2 and TGFβ can expand both CD4+ and CD8+ Treg cells in vivo and suppress murine lupus. This approach, which enables the expansion of Treg cells in vivo and inhibits pathogenic immune responses in SLE, could represent a potential new therapeutic modality in autoimmune conditions characterized by impaired Treg cell function associated with IL-2 deficiency.
Collapse
Affiliation(s)
| | | | - Michael Koss
- Keck School of Medicine at the University of Southern California, Los Angeles
| | | | - Antonio La Cava
- David Geffen School of Medicine at the University of California, Los Angeles
| |
Collapse
|
10
|
Hahn BH, Kono DH. Animal Models in Lupus. DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2019:164-215. [DOI: 10.1016/b978-0-323-47927-1.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Valentine KM, Davini D, Lawrence TJ, Mullins GN, Manansala M, Al-Kuhlani M, Pinney JM, Davis JK, Beaudin AE, Sindi SS, Gravano DM, Hoyer KK. CD8 Follicular T Cells Promote B Cell Antibody Class Switch in Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2018; 201:31-40. [PMID: 29743314 DOI: 10.4049/jimmunol.1701079] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/22/2018] [Indexed: 02/04/2023]
Abstract
CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality.
Collapse
Affiliation(s)
- Kristen M Valentine
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343
| | - Dan Davini
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Travis J Lawrence
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343
| | - Genevieve N Mullins
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343
| | - Miguel Manansala
- Stem Cell Instrumentation Foundry, University of California, Merced, Merced, CA 95343; and
| | - Mufadhal Al-Kuhlani
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - James M Pinney
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Jason K Davis
- Department of Applied Mathematics, University of California, Merced, Merced, CA 95343
| | - Anna E Beaudin
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Suzanne S Sindi
- Department of Applied Mathematics, University of California, Merced, Merced, CA 95343
| | - David M Gravano
- Stem Cell Instrumentation Foundry, University of California, Merced, Merced, CA 95343; and
| | - Katrina K Hoyer
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343;
| |
Collapse
|
12
|
|
13
|
Li H, Chen HY, Liu WX, Jia XX, Zhang JG, Ma CL, Zhang XJ, Yu F, Cong B. Prostaglandin E 2 restrains human Treg cell differentiation via E prostanoid receptor 2-protein kinase A signaling. Immunol Lett 2017; 191:63-72. [PMID: 28963072 DOI: 10.1016/j.imlet.2017.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Regulatory T cells (Treg cells) belong to a class of immunosuppressive cells that control the pathological changes of autoimmunity and inflammation. Prostaglandin E2 (PGE2) is a potent lipid mediator of immune inflammation including rheumatoid arthritis (RA) that exerts its effects via four subtypes of G-protein-coupled receptors (EP1-4). The ability of PGE2 to regulate human Treg differentiation has not yet been reported. In the current study, we investigated the effects of PGE2 on the differentiation of naïve T cells from healthy and RA patients into Treg cells and the intracellular signaling involved in this process in vitro. Our data indicate that PGE2 negatively influenced the percentage of Treg cells and Foxp3 mRNA expression. The regulatory effects of PGE2 were associated with increased intracellular cAMP levels and PKA activity. EP2 receptors may mediate the inhibitory role of PGE2, since PGE2 actions were mimicked by EP2 agonist (Butaprost) and cAMP agonist (Sp-8-CPT-cAMPS) but were reversed by an EP2 antagonist (PF-04418948) and a PKA inhibitor (H-89). PGE2 negatively modulated the expression of cytotoxic T lymphocyte antigen-4 (CTLA-4) and glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR), as well as the production of interleukin (IL)-10 by Treg cells via EP2 receptors and cAMP/PKA signaling. All these findings indicate that PGE2 can inhibit Treg differentiation mediated through the EP2-cAMP/PKA signaling pathway, and suggest novel immune-based therapies for use in RA treatment.
Collapse
Affiliation(s)
- Hui Li
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Hai-Ying Chen
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China.
| | - Wen-Xuan Liu
- Department of Forensic Medicine, Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Xian-Xian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Jing-Ge Zhang
- Department of Forensic Medicine, Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Chun-Ling Ma
- Department of Forensic Medicine, Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Xiao-Jing Zhang
- Department of Forensic Medicine, Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Feng Yu
- Department of Forensic Medicine, Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, PR China.
| | - Bin Cong
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
14
|
Abstract
T regulatory cells (Tregs) represent a phenotypically and functionally heterogeneous group of lymphocytes that exert immunosuppressive activities on effector immune responses. Tregs play a key role in maintaining immune tolerance and homeostasis through diverse mechanisms which involve interactions with components of both the innate and adaptive immune systems. As in many autoimmune diseases, Tregs have been proposed to play a relevant role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease characterized by a progressive breakdown of tolerance to self-antigens and the presence of concomitant hyperactive immune responses. Here, we review how Tregs dysfunction in SLE has been manipulated experimentally and preclinically in the attempt to restore, at last in part, the immune disturbances in the disease.
Collapse
|
15
|
|
16
|
Ghali JR, Wang YM, Holdsworth SR, Kitching AR. Regulatory T cells in immune-mediated renal disease. Nephrology (Carlton) 2016. [PMID: 26206106 DOI: 10.1111/nep.12574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) are CD4+ T cells that can suppress immune responses by effector T cells, B cells and innate immune cells. This review discusses the role that Tregs play in murine models of immune-mediated renal diseases and acute kidney injury and in human autoimmune kidney disease (such as systemic lupus erythematosus, anti-glomerular basement membrane disease, anti-neutrophil cytoplasmic antibody-associated vasculitis). Current research suggests that Tregs may be reduced in number and/or have impaired regulatory function in these diseases. Tregs possess several mechanisms by which they can limit renal and systemic inflammatory immune responses. Potential therapeutic applications involving Tregs include in vivo induction of Tregs or inducing Tregs from naïve CD4+ T cells or expanding natural Tregs ex vivo, to use as a cellular therapy. At present, the optimal method of generating a phenotypically stable pool of Tregs with long-lasting suppressive effects is not established, but human studies in renal transplantation are underway exploring the therapeutic potential of Tregs as a cellular therapy, and if successful may have a role as a novel therapy in immune-mediated renal diseases.
Collapse
Affiliation(s)
- Joanna R Ghali
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria.,Department of Nephrology, Monash Medical Centre, Melbourne, Victoria
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria.,Department of Nephrology, Monash Medical Centre, Melbourne, Victoria
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Melbourne, Victoria.,Department of Nephrology, Monash Medical Centre, Melbourne, Victoria.,Department of Paediatric Nephrology, Monash Medical Centre, Melbourne, Victoria
| |
Collapse
|
17
|
Favoino E, Prete M, Marzullo A, Millo E, Shoenfeld Y, Perosa F. CD20-Mimotope Peptide Active Immunotherapy in Systemic Lupus Erythematosus and a Reappraisal of Vaccination Strategies in Rheumatic Diseases. Clin Rev Allergy Immunol 2016; 52:217-233. [DOI: 10.1007/s12016-016-8551-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Sthoeger Z, Sharabi A, Mozes E. Novel approaches to the development of targeted therapeutic agents for systemic lupus erythematosus. J Autoimmun 2014; 54:60-71. [PMID: 24958634 DOI: 10.1016/j.jaut.2014.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/29/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystem disease in which various cell types and immunological pathways are dysregulated. Current therapies for SLE are based mainly on the use of non-specific immunosuppressive drugs that cause serious side effects. There is, therefore, an unmet need for novel therapeutic means with improved efficacy and lower toxicity. Based on recent better understanding of the pathogenesis of SLE, targeted biological therapies are under different stages of development. The latter include B-cell targeted treatments, agents directed against the B lymphocyte stimulator (BLyS), inhibitors of T cell activation as well as cytokine blocking means. Out of the latter, Belimumab was the first drug approved by the FDA for the treatment of SLE patients. In addition to the non-antigen specific agents that may affect the normal immune system as well, SLE-specific therapeutic means are under development. These are synthetic peptides (e.g. pConsensus, nucleosomal peptides, P140 and hCDR1) that are sequences of conserved regions of molecules involved in the pathogenesis of lupus. The peptides are tolerogenic T-cell epitopes that immunomodulate only cell types and pathways that play a role in the pathogenesis of SLE without interfering with normal immune functions. Two of the peptides (P140 and hCDR1) were tested in clinical trials and were reported to be safe and well tolerated. Thus, synthetic peptides are attractive potential means for the specific treatment of lupus patients. In this review we discuss the various biological treatments that have been developed for lupus with a special focus on the tolerogenic peptides.
Collapse
Affiliation(s)
- Zev Sthoeger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; Department of Internal Medicine B and Clinical Immunology, Kaplan Medical Center, Rehovot, Israel
| | - Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Edna Mozes
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
19
|
Amarilyo G, Lourenço EV, Shi FD, La Cava A. IL-17 promotes murine lupus. THE JOURNAL OF IMMUNOLOGY 2014; 193:540-3. [PMID: 24920843 DOI: 10.4049/jimmunol.1400931] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proinflammatory activity of IL-17-producing Th17 cells has been associated with the pathogenesis of several autoimmune diseases. In this article, we provide direct evidence for a role of IL-17 in the pathogenesis of systemic lupus erythematosus (SLE). The induction of SLE by pristane in IL-17-sufficient wild-type mice did not occur in IL-17-deficient mice, which were protected from development of lupus autoantibodies and glomerulonephritis. The protection from SLE in IL-17-deficient mice was associated with a reduced frequency of CD3(+)CD4(-)CD8(-) double-negative T cells and an expansion of CD4(+) regulatory T cells, and did not depend on Stat-1 signaling. These data affirm the key role of IL-17 in the pathogenesis of SLE and strengthen the support for IL-17 blockade in the therapy of SLE.
Collapse
Affiliation(s)
- Gil Amarilyo
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Elaine V Lourenço
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Fu-Dong Shi
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013
| | - Antonio La Cava
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| |
Collapse
|
20
|
Mak A, Kow NY. The pathology of T cells in systemic lupus erythematosus. J Immunol Res 2014; 2014:419029. [PMID: 24864268 PMCID: PMC4017881 DOI: 10.1155/2014/419029] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the production of a wide array of autoantibodies. Thus, the condition was traditionally classified as a "B-cell disease". Compelling evidence has however shown that without the assistance of the helper T lymphocytes, it is indeed difficult for the "helpless" B cells to become functional enough to trigger SLE-related inflammation. T cells have been recognized to be crucial in the pathogenicity of SLE through their capabilities to communicate with and offer enormous help to B cells for driving autoantibody production. Recently, a number of phenotypic and functional alterations which increase the propensity to trigger lupus-related inflammation have been identified in lupus T cells. Here, potential mechanisms involving alterations in T-cell receptor expressions, postreceptor downstream signalling, epigenetics, and oxidative stress which favour activation of lupus T cells will be discussed. Additionally, how regulatory CD4+, CD8+, and γδ T cells tune down lupus-related inflammation will be highlighted. Lastly, while currently available outcomes of clinical trials evaluating therapeutic agents which manipulate the T cells such as calcineurin inhibitors indicate that they are at least as efficacious and safe as conventional immunosuppressants in treating lupus glomerulonephritis, larger clinical trials are undoubtedly required to validate these as-yet favourable findings.
Collapse
MESH Headings
- Animals
- Autoantibodies/biosynthesis
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Calcineurin Inhibitors/therapeutic use
- Cell Communication
- Clinical Trials as Topic
- Gene Expression Regulation
- Humans
- Immunologic Factors/therapeutic use
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Mice
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Anselm Mak
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore 119228
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Nien Yee Kow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|
21
|
Liu Y, Liu A, Iikuni N, Xu H, Shi FD, La Cava A. Regulatory CD4+ T Cells Promote B Cell Anergy in Murine Lupus. THE JOURNAL OF IMMUNOLOGY 2014; 192:4069-73. [DOI: 10.4049/jimmunol.1302897] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Zhang L, Bertucci AM, Ramsey-Goldman R, Harsha-Strong ER, Burt RK, Datta SK. Major pathogenic steps in human lupus can be effectively suppressed by nucleosomal histone peptide epitope-induced regulatory immunity. Clin Immunol 2013; 149:365-78. [PMID: 24211843 DOI: 10.1016/j.clim.2013.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/22/2013] [Accepted: 08/14/2013] [Indexed: 02/05/2023]
Abstract
Low-dose tolerance therapy with nucleosomal histone peptide epitopes blocks lupus disease in mouse models, but effect in humans is unknown. Herein, we found that CD4(+)CD25(high)FoxP3(+) or CD4(+)CD45RA(+)FoxP3(low) T-cells, and CD8(+)CD25(+)FoxP3(+) T-cells were all induced durably in PBMCs from inactive lupus patients and healthy subjects by the histone peptide/s themselves, but in active lupus, dexamethasone or hydroxychloroquine unmasked Treg-induction by the peptides. The peptide-induced Treg depended on TGFβ/ALK-5/pSmad 2/3 signaling, and they expressed TGF-β precursor LAP. Lupus patients' sera did not inhibit Treg induction. The peptide epitope-induced T cells markedly suppressed type I IFN related gene expression in lupus PBMC. Finally, the peptide epitopes suppressed pathogenic autoantibody production by PBMC from active lupus patients to baseline levels by additional mechanisms besides Treg induction, and as potently as anti-IL6 antibody. Thus, low-dose histone peptide epitopes block pathogenic autoimmune response in human lupus by multiple mechanisms to restore a stable immunoregulatory state.
Collapse
Affiliation(s)
- Li Zhang
- Divisions of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
23
|
Gleisner MA, Reyes P, Alfaro J, Solanes P, Simon V, Crisostomo N, Sauma D, Rosemblatt M, Bono MR. Dendritic and stromal cells from the spleen of lupic mice present phenotypic and functional abnormalities. Mol Immunol 2013; 54:423-34. [DOI: 10.1016/j.molimm.2013.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 01/18/2023]
|
24
|
Association between leptin and systemic lupus erythematosus. Rheumatol Int 2013; 34:559-63. [DOI: 10.1007/s00296-013-2774-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 05/04/2013] [Indexed: 11/27/2022]
|
25
|
Wong M, La Cava A, Hahn BH. Blockade of programmed death-1 in young (New Zealand Black x New Zealand White)F1 mice promotes the suppressive capacity of CD4+ regulatory T cells protecting from lupus-like disease. THE JOURNAL OF IMMUNOLOGY 2013; 190:5402-10. [PMID: 23636058 DOI: 10.4049/jimmunol.1202382] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Programmed death-1 (PD-1) usually acts as a negative signal for T cell activation, and its expression on CD8(+)Foxp3(+) T cells is required for their suppressive capacity. In this study, we show that PD-1 signaling is required for the maintenance of functional regulatory CD4(+)CD25(+)Foxp3(+) regulatory T cells (CD4(+) T(reg)) that can control autoimmunity in (New Zealand Black × New Zealand White)F1 lupus mice. PD-1 signaling induced resistance to apoptosis and prolonged the survival of CD4(+) T(reg). In vivo, the blockade of PD-1 with a neutralizing Ab reduced PD-1 expression on CD4(+) T(reg) (PD1(lo)CD4(+) T(reg)). PD1(lo)CD4(+) T(reg) had an increased ability to promote B cell apoptosis and to suppress CD4(+) Th as compared with CD4(+) T(reg) with elevated PD-1 expression (PD1(hi)CD4(+) T(reg)). When PD-1 expression on CD4(+) T(reg) was blocked in vitro, PD1(lo)CD4(+) T(reg) suppressed B cell production of IgG and anti-dsDNA Ab. Finally, in vitro studies showed that the suppressive capacity of CD4(+) T(reg) depended on PD-1 expression and that a fine-tuning of the expression of this molecule directly affected cell survival and immune suppression. These results indicate that PD-1 expression has multiple effects on different immune cells that directly contribute to a modulation of autoimmune responses.
Collapse
Affiliation(s)
- Maida Wong
- Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
26
|
Abstract
A large antibody repertoire is generated in developing B cells in the bone marrow. Before these B cells achieve immunocompetence, those expressing autospecificities must be purged. To that end, B cells within the bone marrow and just following egress from the bone marrow are subject to tolerance induction. Once B cells achieve immunocompetence, the antibody repertoire can be further diversified by somatic hypermutation of immunoglobulin genes in B cells that have been activated by antigen and cognate T cell help and have undergone a germinal center (GC) response. This process also leads to the generation of autoreactive B cells which must be again purged to protect the host. Thus, B cells within the GC and just following egress from the GC are also subject to tolerance induction. Available data suggest that B cell intrinsic processes triggered by signaling through the B cell receptor activate tolerance mechanisms at both time points. Recent data suggest that GC and post-GC B cells are also subject to B cell extrinsic tolerance mechanisms mediated through soluble and membrane-bound factors derived from various T cell subsets.
Collapse
|
27
|
Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB J 2012; 26:2253-76. [DOI: 10.1096/fj.11-193672] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Klaus G. Schmetterer
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
| | - Alina Neunkirchner
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for ImmunmodulationViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for Pathophysiology, Infectiology, and ImmunologyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for ImmunmodulationViennaAustria
| |
Collapse
|
28
|
Liu Y, Yu Y, Matarese G, La Cava A. Cutting edge: fasting-induced hypoleptinemia expands functional regulatory T cells in systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2012; 188:2070-3. [PMID: 22291185 DOI: 10.4049/jimmunol.1102835] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fasting is beneficial in the prevention and amelioration of the clinical manifestations of autoimmune diseases including systemic lupus erythematosus. The mechanisms responsible for these effects are not well understood. During fasting, there is a dramatic reduction of the levels of circulating leptin, an adipokine with proinflammatory effects. Leptin also inhibits CD4(+)CD25(+)Foxp3(+) regulatory T cells, which are known to contribute significantly to the mechanisms of peripheral immune tolerance. In this study, we show that fasting-induced hypoleptinemia in (NZB × NZW)F(1) lupus-prone mice induced an expansion of functional regulatory T cells that was reversed by leptin replacement. The specificity of the findings was indicated by the lack of these effects in leptin-deficient ob/ob mice and leptin receptor-deficient db/db mice. These observations help to explain the beneficial effects of fasting in autoimmunity and could be exploited for leptin-based immune intervention in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yaoyang Liu
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
29
|
Sang A, Yin Y, Zheng YY, Morel L. Animal Models of Molecular Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:321-70. [DOI: 10.1016/b978-0-12-394596-9.00010-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Regulatory T-cell-associated cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011; 2011:463412. [PMID: 22219657 PMCID: PMC3247013 DOI: 10.1155/2011/463412] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/08/2011] [Indexed: 11/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production, complement activation, and immune complex deposition, resulting in tissue and organ damage. An understanding of the mechanisms responsible for homeostatic control of inflammation, which involve both innate and adoptive immune responses, will enable the development of novel therapies for SLE. Regulatory T cells (Treg) play critical roles in the induction of peripheral tolerance to self- and foreign antigens. Naturally occurring CD4+CD25+ Treg, which characteristically express the transcription factor forkhead box protein P3 (Foxp3), have been intensively studied because their deficiency abrogates self-tolerance and causes autoimmune disease. Moreover, regulatory cytokines such as interleukin-10 (IL-10) also play a central role in controlling inflammatory processes. This paper focuses on Tregs and Treg-associated cytokines which might regulate the pathogenesis of SLE and, hence, have clinical applications.
Collapse
|
31
|
Abstract
The characterization of functional CD8(+) inhibitory or regulatory T cells and their gene regulation remains a critical challenge in the field of tolerance and autoimmunity. Investigating the genes induced in regulatory cells and the regulatory networks and pathways that underlie mechanisms of immune resistance and prevent apoptosis in the CD8(+) T cell compartment are crucial to understanding tolerance mechanisms in systemic autoimmunity. Little is currently known about the genetic control that governs the ability of CD8(+) Ti or regulatory cells to suppress anti-DNA Ab production in B cells. Silencing genes with siRNA or shRNA and overexpression of genes with lentiviral cDNA transduction are established approaches to identifying and understanding the function of candidate genes in tolerance and immunity. Elucidation of interactions between genes and proteins, and their synergistic effects in establishing cell-cell cross talk, including receptor modulation/antagonism, are essential for delineating the roles of these cells. In this review, we will examine recent reports which describe the modulation of cells from lupus prone mice or lupus patients to confer anti-inflammatory and protective gene expression and novel associated phenotypes. We will highlight recent findings on the role of selected genes induced by peptide tolerance in CD8(+) Ti.
Collapse
|
32
|
Yu Y, Liu Y, Shi FD, Zou H, Hahn BH, La Cava A. Tolerance induced by anti-DNA Ig peptide in (NZB×NZW)F1 lupus mice impinges on the resistance of effector T cells to suppression by regulatory T cells. Clin Immunol 2011; 142:291-5. [PMID: 22137928 DOI: 10.1016/j.clim.2011.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 02/01/2023]
Abstract
We have previously shown that immune tolerance induced by the anti-DNA Ig peptide pCons in (NZB×NZW)F(1) (NZB/W) lupus mice prolonged survival of treated animals and delayed the appearance of autoantibodies and glomerulonephritis. Part of the protection conferred by pCons could be ascribed to the induction of regulatory T cells (T(Reg)) that suppressed the production of anti-DNA antibodies in a p38 MAPK-dependent fashion. Here we show that another effect of pCons in the induction of immune tolerance in NZB/W lupus mice is the facilitation of effector T cell suppression by T(Reg). These new findings indicate that pCons exerts protective effects in NZB/W lupus mice by differentially modulating the activity of different T cell subsets, implying new considerations in the design of T(Reg)-based approaches to modulate T cell autoreactivity in SLE.
Collapse
Affiliation(s)
- Yiyun Yu
- Division of Rheumatology at the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
33
|
Sawla P, Hossain A, Hahn BH, Singh RP. Regulatory T cells in systemic lupus erythematosus (SLE); role of peptide tolerance. Autoimmun Rev 2011; 11:611-4. [PMID: 22001419 DOI: 10.1016/j.autrev.2011.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/27/2011] [Indexed: 12/23/2022]
Abstract
Regulatory T cells play an important role in the maintenance and regulation of immune tolerance and in the prevention of autoimmunity. Recent studies have demonstrated a deficiency in number and function of regulatory T cells in lupus and other autoimmune diseases. This may contribute to immune dysregulations and a defect in self-tolerance mechanisms. How to balance and "reset" the immune response from harmful pro-inflammatory to beneficial anti-inflammatory is the current strategy of the research. In this regard, several studies have been performed with various peptides, drugs, steroids and epigenetic agents to induce or modify regulatory cells and some measure of success has been achieved in the animal model of SLE and with lupus patient cells. Challenges ahead include the heterogeneous nature, phenotype and function of regulatory cells and the difficulties in manipulation of regulatory function in healthy versus diseased states. In this review, we will provide some recent findings indicating challenges and potential benefits of targeting of regulatory T cells in lupus.
Collapse
Affiliation(s)
- Priya Sawla
- Division of Rheumatology, Dept. of Medicine, David Geffen School of Medicine, University of California at Los Angeles, CA 90095-1670, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Glomerulonephritis is a common cause of chronic kidney disease and end stage renal failure. Current therapy relies on variably effective, nonspecific and toxic immunosuppression. Recent insights into underlying biology and disease pathogenesis in human glomerulonephritis combined with advances in the fields of inflammation and autoimmunity promise a cadre of novel targeted interventions. This review highlights the therapeutic potential of two antigens, alpha3 (IV)NC1 collagen and podocyte neutral endopeptidase, and two cell signaling and effector molecules, IgG Fc receptors and complement, judged to be particularly amenable to therapeutic manipulation in man. It is anticipated that continued dissection of pathogenesis in the diverse disorders that comprise the glomerulonephritides will provide the basis for individualized disease-specific therapy.
Collapse
Affiliation(s)
- Mary H Foster
- Department of Medicine and Research Service, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| |
Collapse
|
35
|
Skaggs BJ, Lourenço EV, Hahn BH. Oral administration of different forms of a tolerogenic peptide to define the preparations and doses that delay anti-DNA antibody production and nephritis and prolong survival in SLE-prone mice. Lupus 2011; 20:912-20. [PMID: 21562020 DOI: 10.1177/0961203311398509] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Therapeutic agents currently in use to treat systemic lupus erythematosus (SLE) are predominantly immunosuppressive agents with limited specificities. Multiple groups, including ours, have illustrated that inducing tolerance in SLE animal models ameliorates disease symptoms and increases survival. We examined if oral administration of a tolerogenic peptide could affect SLE disease progression. The pConsensus (pCons) peptide, based on protein sequences of anti-double stranded (anti-ds)DNA antibodies, induces tolerance through upregulation of regulatory T cells when administered intravenously. Six different forms of pCons, including multiple antigenic peptides (MAP) and cyclic peptides made up of L- and D-amino acids, at three different concentrations, were fed to BWF1 SLE-susceptible mice for 30 weeks. Mice fed 100 µg of L-MAP or D-MAP had less cumulative proteinuria and serum anti-dsDNA antibody levels than controls. In addition, animals in these groups also survived significantly longer than controls with a corresponding increase in serum transforming growth factor beta (TGFβ, implying a protective role for pCons-induced regulatory T cells. Oral administration of a tolerogenic peptide is a safe, effective method for ameliorating SLE disease manifestations and prolonging survival in SLE-prone mice. Induction of oral tolerance using modified pCons peptides could lead to a novel targeted therapy for human SLE.
Collapse
Affiliation(s)
- B J Skaggs
- University of California, Los Angeles, David Geffen School of Medicine, Division of Rheumatology, Los Angeles, CA, USA.
| | | | | |
Collapse
|
36
|
Dinesh R, Hahn BH, La Cava A, Singh RP. Interferon-inducible gene 202b controls CD8(+) T cell-mediated suppression in anti-DNA Ig peptide-treated (NZB × NZW) F1 lupus mice. Genes Immun 2011; 12:360-9. [PMID: 21326316 PMCID: PMC3149980 DOI: 10.1038/gene.2011.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Administration of an artificial peptide (pConsensus) based on anti-DNA IgG sequences that contain major histocompatibility complex class I and class II T-cell determinants, induces immune tolerance in NZB/NZW F1 female (BWF1) mice. To understand the molecular basis of CD8+ Ti-mediated suppression, we previously performed microarray analysis to identify genes that were differentially expressed following tolerance induction with pCons. CD8+ T cells from mice tolerized with pCons showed more than two-fold increase in Ifi202b mRNA, an interferon inducible gene, versus cells from untolerized mice. Ifi202b expression increased through weeks 1–4 after tolerization and then decreased, reapproaching baseline levels at 6 weeks. In vitro polyclonal activation of tolerized CD8+ T cells significantly increased Ifi202b mRNA expression. Importantly, silencing of Ifi202b abrogated the suppressive capacity of CD8+ Ti cells. This was associated with decreased expression of Foxp3, and decreased gene and protein expression of transforming growth factor (TGF)β and interleukin-2 (IL-2), but not of interferon (IFN)-γ, IL-10, or IL-17. Silencing of another IFN-induced gene upregulated in tolerized CD8+ T cells, IFNAR1, had no effect on the ability of CD8+ T cells to suppress autoantibody production. Our findings indicate a potential role for Ifi202b in the suppressive capacity of peptide-induced regulatory CD8+ Ti cells through effects on the expression of Foxp3 and the synthesis of TGFβ.
Collapse
Affiliation(s)
- R Dinesh
- Division of Rheumatology, Department of Medicine at the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
37
|
Kang HK, Chiang MY, Liu M, Ecklund D, Datta SK. The histone peptide H4 71-94 alone is more effective than a cocktail of peptide epitopes in controlling lupus: immunoregulatory mechanisms. J Clin Immunol 2011; 31:379-94. [PMID: 21287397 DOI: 10.1007/s10875-010-9504-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/27/2010] [Indexed: 12/01/2022]
Abstract
Tolerance therapy with nucleosomal histone peptides H4(71-94), H4(16-39), or H1'(22-42) controls disease in lupus-prone SNF1 mice. It would be clinically important to determine whether a cocktail of the above epitopes would be superior. Herein, we found that compared with cocktail peptides, H4(71-94) monotherapy more effectively delayed nephritis onset, prolonged lifespan, diminished immunoglobulin G autoantibody levels, reduced autoantigen-specific Th1 and Th17 responses and frequency of T(FH) cells in spleen and the helper ability of autoimmune T cells to B cells, by inducing potent CD8 Treg cells. H4(71-94) therapy was superior in "tolerance spreading," suppressing responses to other autoepitopes, nucleosomes, and ribonucleoprotein. We also developed an in vitro assay for therapeutic peptides (potentially in humans), which showed that H4(71-94), without exogenous transforming growth factor (TGF)-β, was efficient in inducing stable CD4(+)CD25(+)Foxp3(+) T cells by decreasing interleukin 6 and increasing TGF-β production by dendritic cells that induced ALK5-dependent Smad-3 phosphorylation (TGF-β signal) in target autoimmune CD4(+) T cells.
Collapse
Affiliation(s)
- Hee-Kap Kang
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, 240 East Huron St. McGaw # M300, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
38
|
Sharabi A, Mozes E. Harnessing regulatory T cells for the therapy of lupus and other autoimmune diseases. Immunotherapy 2011; 1:385-401. [PMID: 20635958 DOI: 10.2217/imt.09.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regulatory T cells (Tregs) maintain immunological homeostasis and prevent autoimmunity. The depletion or functional alteration of Tregs may lead to the development of autoimmune diseases. Tregs consist of different subpopulations of cells, of which CD4(+)CD25(+)Foxp3(+) cells are the most well characterized. However, CD8 Tregs also constitute a major cell population that has been shown to play an important role in autoimmune diseases. This review will discuss the role of Tregs in autoimmune diseases in general and specifically in systemic lupus erythematosus (SLE). SLE is a multisystem autoimmune disease characterized by the production of autoantibodies against nuclear components and by the deposition of immune complexes in the kidneys as well as in other organs. Abnormalities in Tregs were reported in SLE patients and in animal models of the disease. Current treatment of SLE is based on immunosuppressive drugs that are nonspecific and may cause adverse effects. Therefore, the development of novel, specific, side effect-free therapeutic means that will induce functional Tregs is a most desirable goal. Our group and others have designed and utilized tolerogenic peptides that ameliorate SLE manifestations in murine models. Here, we demonstrate the role of CD4 and CD8 Tregs, as well as the interaction between the two subsets of cells and the mechanism of action of the tolerogenic peptides. We also discuss their therapeutic potential for the treatment of SLE.
Collapse
Affiliation(s)
- Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
39
|
Wong M, La Cava A, Singh RP, Hahn BH. Blockade of programmed death-1 in young (New Zealand black x New Zealand white)F1 mice promotes the activity of suppressive CD8+ T cells that protect from lupus-like disease. THE JOURNAL OF IMMUNOLOGY 2010; 185:6563-71. [PMID: 21041733 DOI: 10.4049/jimmunol.0903401] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The programmed death-1 (PD-1)/programmed death-1 ligand 1 (PD-L1) pathway regulates both stimulatory and inhibitory signals. In some conditions, PD-1/PD-L1 inhibits T and B cell activation, induces anergy, and reduces cytotoxicity in CD8(+) T cells. In other conditions, PD-l/PD-L1 has costimulatory effects on T cells. We recently showed that induction of suppressive CD8(+)Foxp3(+) T cells by immune tolerance of lupus-prone (New Zealand black × New Zealand white)F(1) (BWF(1)) mice with the anti-DNA Ig-based peptide pConsensus (pCons) is associated with significantly reduced PD-1 expression on those cells. In this study, we tested directly the role of PD-1 by administering in vivo neutralizing Ab to PD-1 to premorbid BWF(1) and healthy control mice. Anti-PD-1-treated mice were protected from the onset of lupus nephritis for 10 wk, with significantly improved survival. Although the numbers of T cells declined in aging control mice, they were maintained in anti-PD-1-treated mice, including CD8(+)Foxp3(+) T cells that suppressed syngeneic CD4(+)CD25(-) T cell proliferation and IFN-γ production, reduced production of IgG and anti-dsDNA IgG, induced apoptosis in syngeneic B cells, and increased IL-2 and TGF-β production. The administration of anti-PD-1 Ab to BWF(1) mice after induction of tolerance with pCons abrogated tolerance; mice developed autoantibodies and nephritis at the same time as control mice, being unable to induce CD8(+)Foxp3(+) T suppressor cells. These data suggest that tightly regulated PD-1 expression is essential for the maintenance of immune tolerance mediated by those CD8(+)Foxp3(+) T cells that suppress both T(h) cells and pathogenic B cells. PD-1 regulation could represent a target to preserve tolerance and prevent autoimmunity.
Collapse
Affiliation(s)
- Maida Wong
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1670, USA.
| | | | | | | |
Collapse
|
40
|
Nakatsukasa H, Tsukimoto M, Tokunaga A, Kojima S. Repeated gamma irradiation attenuates collagen-induced arthritis via up-regulation of regulatory T cells but not by damaging lymphocytes directly. Radiat Res 2010; 174:313-24. [PMID: 20726718 DOI: 10.1667/rr2121.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We recently reported that repeated 0.5-Gy gamma irradiation attenuates the pathology of collagen-induced arthritis. In this study, to investigate the mechanism further, we focused on changes in Treg/Th17 cells and changes in the production of antibody against an external antigen in response to gamma irradiation as well as on the radiosensitivity of Treg cells. DBA/1J mice were immunized with type II collagen to induce arthritis and exposed to low-dose gamma rays (0.5 Gy/week for 5 weeks). Production of IL6 and IL17 as well as autoantibody was suppressed by irradiation in the early phase of collagen-induced arthritis. The percentage of Treg cells was significantly increased by irradiation at 4, 6 and 8 weeks after the immunization. We also investigated the effect of repeated gamma radiation on the production of antibodies against an external antigen in ovalbumin-immunized BALB/c mice. We found that repeated 0.5-Gy gamma irradiation enhanced antibody production, accompanied by an increase of the antibody-producing plasma cell population and increased Th2-type cytokine secretion. We also found that the radiosensitivity of Treg cells did not differ from that of other T cells. These results suggest that a major mechanism of attenuation of the pathology of collagen-induced arthritis by repeated 0.5-Gy gamma irradiation is up-regulation of Treg cells concomitantly with suppression of IL6 and IL17 production.
Collapse
Affiliation(s)
- Hiroko Nakatsukasa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | | | | | | |
Collapse
|
41
|
Abstract
The loss of immune tolerance to self antigens leads to the development of autoimmune responses. Since self antigens are often multiple and/or their sequences may be known, one approach to restore immune tolerance uses synthetic artificial peptides that interfere or compete with self peptides in the networks of cellular interactions that drive the autoimmune process. This review describes the rationale behind the use of artificial peptides in autoimmunity and their mechanisms of action. Examples of use of artificial peptides in preclinical studies and in the management of human autoimmune diseases are provided.
Collapse
Affiliation(s)
- Antonio La Cava
- Division of Rheumatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
Filaci G, Fenoglio D, Indiveri F. CD8(+) T regulatory/suppressor cells and their relationships with autoreactivity and autoimmunity. Autoimmunity 2010; 44:51-7. [PMID: 20670118 DOI: 10.3109/08916931003782171] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regulatory T lymphocytes (Treg) are fundamental for immune homeostasis since they contribute to the induction of peripheral tolerance to autologous antigens and regulate effector immune responses. Treg subsets are present within both the CD4+and the CD8(+) T cell compartments. Considering the CD8(+) Treg, in the last decades several subpopulations, provided with different phenotypes and mechanisms of action, have been characterized. This review is an attempt of integrating in an organic scenario the different CD8(+) Treg subpopulations. Moreover, it summarizes the findings so far achieved on the existence of CD8(+) Treg alterations in autoimmune diseases.
Collapse
Affiliation(s)
- Gilberto Filaci
- Department of Internal Medicine (DIMI), Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | | | | |
Collapse
|
43
|
Singh RP, Dinesh R, Elashoff D, de Vos S, Rooney RJ, Patel D, La Cava A, Hahn BH. Distinct gene signature revealed in white blood cells, CD4(+) and CD8(+) T cells in (NZBx NZW) F1 lupus mice after tolerization with anti-DNA Ig peptide. Genes Immun 2010; 11:294-309. [PMID: 20200542 PMCID: PMC10725082 DOI: 10.1038/gene.2010.6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/27/2009] [Accepted: 01/06/2010] [Indexed: 11/08/2022]
Abstract
Tolerizing mice polygenically predisposed to lupus-like disease (NZB/NZW F1 females) with a peptide mimicking anti-DNA IgG sequences containing MHC class I and class II T cell determinants (pConsensus, pCons) results in protection from full-blown disease attributable in part to the induction of CD4(+)CD25(+)Foxp3+ and CD8(+)Foxp3+ regulatory T cells. We compared 45 000 murine genes in total white blood cells (WBC), CD4(+) T cells, and CD8(+) T cells from splenocytes of (NZBxNZW) F1 lupus-prone mice tolerized with pCons vs untreated naïve mice and found two-fold or greater differential expression for 448 WBC, 174 CD4, and 60 CD8 genes. We identified differentially expressed genes that played roles in the immune response and apoptosis. Using real-time PCR, we validated differential expression of selected genes (IFI202B, Bcl2, Foxp3, Trp-53, CCR7 and IFNar1) in the CD8(+)T cell microarray and determined expression of selected highly upregulated genes in different immune cell subsets. We also determined Smads expression in different immune cell subsets, including CD4(+) T cells and CD8(+) T cells, to detect the effects of TGF-beta, known to be the major cytokine that accounts for the suppressive capacity of CD8(+) Treg in this system. Silencing of anti-apoptotic gene Bcl2 or interferon genes (IFI202b and IFNar1 in combination) in CD8(+) T cells from tolerized mice did not affect the expression of the other selected genes. However, silencing of Foxp3 reduced expression of Foxp3, Ifi202b and PD1-all of which are involved in the suppressive capacity of CD8(+) Treg in this model.
Collapse
Affiliation(s)
- R P Singh
- Division of Rheumatology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dinesh RK, Skaggs BJ, La Cava A, Hahn BH, Singh RP. CD8+ Tregs in lupus, autoimmunity, and beyond. Autoimmun Rev 2010; 9:560-8. [PMID: 20385256 DOI: 10.1016/j.autrev.2010.03.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/30/2010] [Indexed: 12/12/2022]
Abstract
While CD4(+)CD25(high) regulatory T cells (Tregs) have garnered much attention for their role in the maintenance of immune homeostasis, recent findings have shown that subsets of CD8(+) T cells (CD8(+) Tregs) display immunoregulatory functions as well. Both CD4(+) Tregs and CD8(+) Tregs appear impaired in number and/or function in several autoimmune diseases and in experimental animal models of autoimmunity, suggesting the possibility of immunotherapeutic targeting of these cells for improved management of autoimmune conditions. Our group has developed a strategy to induce CD8(+) Tregs in autoimmune mice through the use of a tolerogenic self-peptide, and new information has been gained on the phenotype, function and role of induced CD8(+) Tregs in autoimmunity. Here we present an overview of the role and mechanisms of action of CD8(+) Tregs in autoimmunity, with a special focus on lupus. We also discuss the potential role of CD8(+) Tregs in other diseases, including chronic infection and cancer.
Collapse
Affiliation(s)
- Ravi K Dinesh
- Division of Rheumatology, Dept of Medicine at the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-1670, USA
| | | | | | | | | |
Collapse
|
45
|
Kasagi S, Kawano S, Okazaki T, Honjo T, Morinobu A, Hatachi S, Shimatani K, Tanaka Y, Minato N, Kumagai S. Anti-Programmed Cell Death 1 Antibody Reduces CD4+PD-1+ T Cells and Relieves the Lupus-Like Nephritis of NZB/W F1 Mice. THE JOURNAL OF IMMUNOLOGY 2010; 184:2337-47. [DOI: 10.4049/jimmunol.0901652] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Zhang L, Bertucci AM, Ramsey-Goldman R, Burt RK, Datta SK. Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-beta-producing CD8+ Treg cells are associated with immunological remission of lupus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:6346-58. [PMID: 19841178 PMCID: PMC2784684 DOI: 10.4049/jimmunol.0901773] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Compared with conventional drug therapy, autologous hemopoietic stem cell transplantation (HSCT) can induce very-long-term remission in refractory lupus patients. Herein, we show that in posttransplant patients, both CD4(+)CD25(high)FoxP3(+) and an unusual CD8(+)FoxP3(+) Treg subset return to levels seen in normal subjects; accompanied by almost complete inhibition of pathogenic T cell response to critical peptide autoepitopes from histones in nucleosomes, the major lupus autoantigen from apoptotic cells. In addition to a stably sustained elevation of FoxP3, posttransplant CD8 T cells also maintained markedly higher expression levels of latency-associated peptide (LAP), CD103, PD-1, PD-L1, and CTLA-4, as compared with pretransplant CD8 T cells that were identically treated by a one-time activation and rest in short-term culture. The posttransplant CD8 regulatory T cells (Treg) have autoantigen-specific and nonspecific suppressive activity, which is contact independent and predominantly TGF-beta dependent. By contrast, the pretransplant CD8 T cells have helper activity, which is cell contact dependent. Although CD4(+)CD25(high) Treg cells return during clinical remission of conventional drug-treated lupus, the posttransplant patient's CD8 Treg cells are considerably more potent, and they are absent in drug-treated patients in whom CD4 T cell autoreactivity to nucleosomal epitopes persists even during clinical remission. Therefore, unlike conventional drug therapy, hemopoietic stem cell transplantation generates a newly differentiated population of LAP(high)CD103(high) CD8(TGF-beta) Treg cells, which repairs the Treg deficiency in human lupus to maintain patients in true immunological remission.
Collapse
Affiliation(s)
- Li Zhang
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Anne M. Bertucci
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Richard K. Burt
- Division of Immunotherapy, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Syamal K. Datta
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
47
|
A new model of induced experimental systemic lupus erythematosus (SLE) in pigs and its amelioration by treatment with a tolerogenic peptide. J Clin Immunol 2009; 30:34-44. [PMID: 19756988 DOI: 10.1007/s10875-009-9326-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 08/20/2009] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is characterized by a variety of autoantibodies and systemic clinical manifestations. A tolerogenic peptide, hCDR1, ameliorated lupus manifestations in mice models. The objectives of this study were to induce experimental SLE in pigs and to determine the ability of hCDR1 to immunomodulate the disease manifestations. RESULTS AND DISCUSSION We report here the successful induction, by a monoclonal anti-DNA antibody, of an SLE-like disease in pigs, manifested by autoantibody production and glomerular immune complex deposits. Treatment of pigs with hCDR1 ameliorated the lupus-related manifestations. Furthermore, the treatment downregulated the gene expression of the pathogenic cytokines, interleukin (IL)-1beta, tumor necrosis factor alpha, interferon gamma, and IL-10, and upregulated the expression of the immunosuppressive cytokine transforming growth factor beta, the antiapoptotic molecule Bcl-xL, and the suppressive master gene, Foxp3, hence restoring the expression of the latter to normal levels. Thus, hCDR1 is capable of ameliorating lupus in large animals and is a potential candidate for the treatment of SLE patients.
Collapse
|
48
|
Iikuni N, Lourenço EV, Hahn BH, La Cava A. Cutting edge: Regulatory T cells directly suppress B cells in systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2009; 183:1518-22. [PMID: 19570829 DOI: 10.4049/jimmunol.0901163] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In systemic lupus erythematosus (SLE), adaptive CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) suppress Th cells that help autoantibody (autoAb)-producing B cells. It is not known whether naturally occurring Tregs can directly suppress B cells in SLE without an intermediate suppression of Th cells. This aspect is important for its implications in the natural course of SLE, because most if not all of the clinical and pathologic effects in SLE are associated with a dysregulated production of autoAbs. In this study, we show that natural Tregs can inhibit B cell activity in vitro and in vivo in SLE through cell contact-mediated mechanisms that directly suppress autoAb-producing B cells, including those B cells that increase numerically during active disease. These results indicate that one way by which natural Tregs attempt to limit humoral autoimmunity in SLE is by directly targeting autoreactive B cells.
Collapse
Affiliation(s)
- Noriko Iikuni
- Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
49
|
Lourenço EV, Procaccini C, Ferrera F, Iikuni N, Singh RP, Filaci G, Matarese G, Shi FD, Brahn E, Hahn BH, La Cava A. Modulation of p38 MAPK activity in regulatory T cells after tolerance with anti-DNA Ig peptide in (NZB x NZW)F1 lupus mice. THE JOURNAL OF IMMUNOLOGY 2009; 182:7415-21. [PMID: 19494264 DOI: 10.4049/jimmunol.0804214] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Treatment of (NZB x NZW)F(1) (NZB/W) lupus-prone mice with the anti-DNA Ig-based peptide pConsensus prolongs the survival of treated animals and effectively delays the appearance of autoantibodies and glomerulonephritis. We have previously shown that part of these protective effects associated with the induction of CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) that suppressed autoantibody responses. Because the effects of pConsensus appeared secondary to qualitative rather than quantitative changes in Tregs, we investigated the molecular events induced by tolerance in Tregs and found that signaling pathways including ZAP70, p27, STAT1, STAT3, STAT6, SAPK, ERK, and JNK were not significantly affected. However, peptide tolerization affected in Tregs the activity of the MAPK p38, whose phosphorylation was reduced by tolerance. The pharmacologic inhibition of p38 with the pyridinyl imidazole inhibitor SB203580 in naive NZB/W mice reproduced in vivo the effects of peptide-induced tolerance and protected mice from lupus-like disease. Transfer experiments confirmed the role of p38 in Tregs on disease activity in the NZB/W mice. These data indicate that the modulation of p38 activity in lupus Tregs can significantly influence the disease activity.
Collapse
Affiliation(s)
- Elaine V Lourenço
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Scalapino KJ, Daikh DI. Suppression of glomerulonephritis in NZB/NZW lupus prone mice by adoptive transfer of ex vivo expanded regulatory T cells. PLoS One 2009; 4:e6031. [PMID: 19551149 PMCID: PMC2696596 DOI: 10.1371/journal.pone.0006031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 05/01/2009] [Indexed: 01/07/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown cause characterized by expansion of autoreactive lymphocytes. Regulatory T cells (Tregs) are a component of the normal immune system and contribute to the maintenance of peripheral tolerance. Treg abnormalities have been associated with several autoimmune diseases and there is interest in the role of Tregs in SLE. We previously demonstrated that transfer of expanded CD4+CD25+CD62LHI Tregs slows the development of lupus in (NZBxNZW)F1 (B/W) mice. However in the absence of Treg specific surface antigens, cell purification remains a compromise between the breadth and purity of the population isolated. Importantly, purified populations always contain Foxp3− effector T cells (Teffs) that theoretically could exacerbate autoimmunity in the recipient. Here we explore the impact of transferring the more comprehensive, but less pure Treg subset defined by CD4+CD25+ expression on development of murine lupus. All cells were FACS sorted and expanded prior to adoptive transfer. Development of proteinuria and survival were measured. We found that exogenous expansion of CD4+CD25+ cells produced a population containing 70–85% CD4+Foxp3+Tregs. Expanded Tregs had higher CTLA-4 and Foxp3 expression, increased in vitro suppression capacity, and prolonged in vivo survival as compared to freshly isolated cells. Adoptive transfer of expanded CD4+CD25+ Tregs inhibited the onset of glomerulonephritis and prolonged survival in mice. Importantly the population of Teff contained within the adoptively transferred cells had reduced survival and proliferation capacity as compared to either co-transferred Tregs or transferred Teffs expanded in the absence of Tregs. These studies demonstrate that adoptive transfer of expanded CD4+CD25+Foxp3+Tregs has the capacity to inhibit the onset of murine lupus and that this capacity is significant despite transfer of co-cultured Teff cells. These data indicate that when co-expanded with regulatory T cells, exogenously activated Teffs from autoimmune patients may not pose a significant risk of promoting disease.
Collapse
Affiliation(s)
- Kenneth J. Scalapino
- Arthritis Section, San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - David I. Daikh
- Arthritis Section, San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
- Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|