1
|
Su CY, Liu TY, Wang HV, Hughes MW, Chuong CM, Yang WC. Histological characterization of γδ T cells in cutaneous wound healing in Fraser's dolphins (Lagenodelphis hosei). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 163:105326. [PMID: 39855438 DOI: 10.1016/j.dci.2025.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cetaceans exhibit remarkable wound healing capabilities. However, the specific immune mechanisms underlying this process, particularly the role of γδ T cells, remains largely unexplored. In ruminants, pigs, and camelids, which are members of the order Cetartiodactyla alongside cetaceans, γδ T cells express a unique receptor called workshop cluster 1 (WC1). Despite cetaceans also belonging to this order, the presence of WC1 in their γδ T cells has not yet been reported. This study aims to investigate the distribution and potential function of γδ T cells in cetacean skin during homeostasis and wound healing. Using immunofluorescence and immunohistochemical staining, we identified γδ TCR+ and WC1+ cells in dolphin skin for the first time. These cells are predominantly located in the dermis and blubber, with an increased presence in healing wounds, suggesting their involvement in wound healing rather than pathogen defense. Furthermore, our findings revealed that γδ TCR+ cells constitute a small fraction of CD3+MHCII+ cells in dolphin skin, indicating their intricate role in cetacean immunology. Additionally, the appearance of WC1+ cells in cetaceans highlights unique immunological features within Cetartiodactyla. Comparative analysis demonstrates that γδ T cells in dolphins exhibit distinctive morphological and distributional characteristics compared to those in humans, mice, and ruminants, implying species-specific adaptations. These insights contribute to a deeper understanding of cetacean immunology and underscore the potential evolutionary adaptations that support their exceptional wound healing capabilities. Future research on the genomic and functional aspects of γδ T cells in cetaceans is essential to further elucidate their roles in immune response and wound healing.
Collapse
Affiliation(s)
- Chen-Yi Su
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| | - Tzu-Yu Liu
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan; Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan, 70101, Taiwan; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90007, USA.
| | - Hao-Ven Wang
- Department of Life Sciences, National Cheng Kung University, Tainan, 70101, Taiwan; Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan, 70101, Taiwan; University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Michael W Hughes
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90007, USA.
| | - Wei-Cheng Yang
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
2
|
Samuel BER, Diaz FE, Maina TW, Corbett RJ, Tuggle CK, McGill JL. Evidence of innate training in bovine γδ T cells following subcutaneous BCG administration. Front Immunol 2024; 15:1423843. [PMID: 39100669 PMCID: PMC11295143 DOI: 10.3389/fimmu.2024.1423843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features. They are in higher proportion in the peripheral blood of cattle than humans or rodents and play an essential role in bovine immune response to pathogens. In the current study, we determined if BCG administration induced innate immune training in bovine γδ T cells. A group of 16 pre-weaned Holstein calves (2-4 d age) were enrolled in the study and randomly assigned to vaccine and control groups (n=8/group). The vaccine group received two doses of 106 colony forming units (CFU) BCG Danish strain subcutaneously, separated by 2 weeks. The control group remained unvaccinated. Gamma delta T cells were purified from peripheral blood using magnetic cell sorting three weeks after receiving the 1st BCG dose. We observed functional changes in the γδ T cells from BCG-treated calves shown by increased IL-6 and TNF-α cytokine production in response to in vitro stimulation with Escherichia coli LPS and PAM3CSK4. ATAC-Seq analysis of 78,278 regions of open chromatin (peaks) revealed that γδ T cells from BCG-treated calves had an altered epigenetic status compared to cells from the control calves. Differentially accessible peaks (DAP) found near the promoters of innate immunity-related genes like Siglec14, Irf4, Ifna2, Lrrfip1, and Tnfrsf10d were 1 to 4-fold more accessible in cells from BCG-treated calves. MOTIF enrichment analysis of the sequences within DAPs, which explores transcription factor binding motifs (TFBM) upstream of regulatory elements, revealed TFBM for Eomes and IRF-5 were among the most enriched transcription factors. GO enrichment analysis of genes proximal to the DAPs showed enrichment of pathways such as regulation of IL-2 production, T-cell receptor signaling pathway, and other immune regulatory pathways. In conclusion, our study shows that subcutaneous BCG administration in pre-weaned calves can induce innate immune memory in the form of trained immunity in γδ T cells. This memory is associated with increased chromatin accessibility of innate immune response-related genes, thereby inducing a functional trained immune response evidenced by increased IL-6 and TNF-α cytokine production.
Collapse
Affiliation(s)
- Beulah Esther Rani Samuel
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Fabian E. Diaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Teresia W. Maina
- Immunology, Cargill Animal Nutrition & Health, Elk River, MN, United States
| | - Ryan J. Corbett
- Center for Data Driven Discovery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Izadfar F, Belyani S, Pormohammadi M, Alizadeh S, Hashempor M, Emadi E, Sangsefidi ZS, Jalilvand MR, Abdollahi S, Toupchian O. The effects of grapes and their products on immune system: a review. Immunol Med 2023; 46:158-162. [PMID: 37158605 DOI: 10.1080/25785826.2023.2207896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Immune system plays a significant role in preventing and controlling diseases. Some studies reported the beneficial effects of grapes and their products on immunity. However, their results are controversial. This review aimed to discuss the effects of grapes and their products on immune system and their mechanisms of action. Although various in-vio and in-vitro studies and some human studies suggested that grapes and their products may help to improve the immune system's function, clinical trials in this area are limited and inconsistent.In conclusions, although, consumption of grapes and their products may help to having a healthy immune syste, further studies particularly human studies are required to clarify the precise effects of them and their mechanisms regarding immune system.
Collapse
Affiliation(s)
- Fatemeh Izadfar
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Saba Belyani
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Masomeh Pormohammadi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Simin Alizadeh
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Mehrara Hashempor
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Elaheh Emadi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health ServicesYazd, Iran
| | - Zohreh Sadat Sangsefidi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Mohammad Reza Jalilvand
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Omid Toupchian
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| |
Collapse
|
4
|
Cronin SK, Barnard AM, Dietz SJ, Lawrence M, Kramer AE, Gressley TF. Effect of short-term abomasal corn starch infusions on postruminal fermentation and blood measures. J Dairy Sci 2023; 106:8658-8669. [PMID: 37641271 DOI: 10.3168/jds.2022-23180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/15/2023] [Indexed: 08/31/2023]
Abstract
It is possible that some of the systemic responses to subacute ruminal acidosis (SARA) may be caused by increased intestinal starch fermentation. The objective of this experiment was to evaluate the effect of abomasal infusion of up to 3 g of corn starch/kg body weight (approximately 1.6 kg of starch/d) on fecal measures of fermentation, plasma acute phase proteins, and white blood cell populations. Six ruminally cannulated cows in late lactation were randomly assigned to duplicate 3 × 3 Latin squares with 21-d periods. Cows were fed a 20.6% starch TMR twice daily and during the last 7 d of each period cows were abomasally infused with corn starch at 0 (CON), 1 (ST1), or 3 (ST3) g/kg body weight split into 2 bolus infusions, provided every 12 h. Fecal samples were collected at 0, 6, 12, and 18 h following feeding on d 21 and were analyzed for pH, VFA, lactic acid, and lipopolysaccharide (LPS). Composite fecal samples were used to estimate apparent total-tract nutrient digestibility using undigested neutral detergent fiber as an internal marker. Blood samples were collected at 0 and 6 h relative to feeding on d 14, 18, and 21 of each period. Concentrations of haptoglobin and serum amyloid A in plasma were measured in all samples, 0 h samples on d 14 and 21 were used to measure white blood cell populations, and 0 h samples from d 14, 18, and 21 were used for flow cytometric analysis of γδ T cells. Data were analyzed in SAS using models that included fixed effects of treatment and period and the random effects of cow and square. For blood measures, d 14 samples collected before the initiation of abomasal infusions were included as covariates. Time (d or h) was added as a repeated measure in variables that included multiple samples during the abomasal infusion period. A contrast was used to determine the linear effect of increasing abomasal corn starch. Abomasal corn starch linearly decreased fecal pH and linearly increased fecal total VFA and LPS, but effects were modest, with fecal pH, total VFA, and LPS changing from 6.96, 57.7 mM, and 4.14 log10 endotoxin units (EU) per gram for the CON treatment to 6.69, 64.1 mM, and 4.58 log10 EU/g for the ST3 treatment, respectively. This suggests that we did not induce hindgut acidosis. There were no effects of treatment on apparent total-tract starch digestibility or fecal starch content (mean of 96.9% and 2.2%, respectively). Treatment did not affect serum acute phase proteins or most circulating white blood cells, but the proportion of circulating γδ T cells tended to linearly decrease from 6.69% for CON to 4.61% for ST3. Contrary to our hypothesis, increased hindgut starch fermentation did not induce an inflammatory response in this study.
Collapse
Affiliation(s)
- S K Cronin
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - A M Barnard
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - S J Dietz
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - M Lawrence
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - A E Kramer
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - T F Gressley
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716.
| |
Collapse
|
5
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
6
|
Bettin L, Darbellay J, van Kessel J, Buchanan R, Popowych Y, Gerdts V. Co-stimulation by TLR7/8 ligand R848 modulates IFN-γ production of porcine γδ T cells in a microenvironment-dependent manner. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 138:104543. [PMID: 36130633 DOI: 10.1016/j.dci.2022.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Gamma-Delta (γδ) T cells represent a prominent lymphocyte subset in pigs. Their role and function, however, remains largely unknown. Toll-like receptors (TLR) are key receptors for the recognition of pathogens, but so far, it is unknown if porcine γδ T cells express TLRs and therefore have the innate ability to recognize pathogens through pattern recognition receptors. In this study, we compared γδ T cells in different age groups of pigs and investigated the functional relevance of TLR7/8 expression. We found that the major γδ T cell phenotype shifts from CD2-CD8α-/dimCD27+ in young pigs to CD2+CD8αhighCD27- in 3-year-old pigs impacting their ability to produce IFN-γ upon cytokine and TLR stimulation. Furthermore, we report that stimulation with TLR7/8 ligand R848 increased IFN-γ production in purified γδ T cells upon co-stimulation with IL-2 and IL-12. However, the effect of R848 as a co-activator of γδ T cells was abrogated by the addition of monocytes or within PBMCs, suggesting that γδ T cells respond to multiple direct and indirect stimulations. Thus, our results indicate that γδ T cells express TLRs, are modulated by TLR7/8 ligand R848 and have subset-specific responses.
Collapse
Affiliation(s)
- Leonie Bettin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Joseph Darbellay
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rachelle Buchanan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yurij Popowych
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
7
|
Gao Y, Li J, Cai G, Wang Y, Yang W, Li Y, Zhao X, Li R, Gao Y, Tuo W, Baldwin RL, Li CJ, Fang L, Liu GE. Single-cell transcriptomic and chromatin accessibility analyses of dairy cattle peripheral blood mononuclear cells and their responses to lipopolysaccharide. BMC Genomics 2022; 23:338. [PMID: 35501711 PMCID: PMC9063233 DOI: 10.1186/s12864-022-08562-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Gram-negative bacteria are important pathogens in cattle, causing severe infectious diseases, including mastitis. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and crucial mediators of chronic inflammation in cattle. LPS modulations of bovine immune responses have been studied before. However, the single-cell transcriptomic and chromatin accessibility analyses of bovine peripheral blood mononuclear cells (PBMCs) and their responses to LPS stimulation were never reported. Results We performed single-cell RNA sequencing (scRNA-seq) and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) in bovine PBMCs before and after LPS treatment and demonstrated that seven major cell types, which included CD4 T cells, CD8 T cells, and B cells, monocytes, natural killer cells, innate lymphoid cells, and dendritic cells. Bioinformatic analyses indicated that LPS could increase PBMC cell cycle progression, cellular differentiation, and chromatin accessibility. Gene analyses further showed significant changes in differential expression, transcription factor binding site, gene ontology, and regulatory interactions during the PBMC responses to LPS. Consistent with the findings of previous studies, LPS induced activation of monocytes and dendritic cells, likely through their upregulated TLR4 receptor. NF-κB was observed to be activated by LPS and an increased transcription of an array of pro-inflammatory cytokines, in agreement that NF-κB is an LPS-responsive regulator of innate immune responses. In addition, by integrating LPS-induced differentially expressed genes (DEGs) with large-scale GWAS of 45 complex traits in Holstein, we detected trait-relevant cell types. We found that selected DEGs were significantly associated with immune-relevant health, milk production, and body conformation traits. Conclusion This study provided the first scRNAseq and scATAC-seq data for cattle PBMCs and their responses to the LPS stimulation to the best of our knowledge. These results should also serve as valuable resources for the future study of the bovine immune system and open the door for discoveries about immune cell roles in complex traits like mastitis at single-cell resolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08562-0.
Collapse
Affiliation(s)
- Yahui Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.,Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.
| | - Gaozhan Cai
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China.,Shandong Ox Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Yujiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Wenjing Yang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanqin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Xiuxin Zhao
- Shandong Ox Livestock Breeding Co., Ltd, Jinan, 250100, China
| | - Rongling Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Yundong Gao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No.202, Gongyebei Road, Jinan, 250100, China
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA.
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA.
| |
Collapse
|
8
|
Hossian AKMN, Hackett CS, Brentjens RJ, Rafiq S. Multipurposing CARs: Same engine, different vehicles. Mol Ther 2022; 30:1381-1395. [PMID: 35151842 PMCID: PMC9077369 DOI: 10.1016/j.ymthe.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
T cells genetically engineered to recognize and eliminate tumor cells through synthetic chimeric antigen receptors (CARs) have demonstrated remarkable clinical efficacy against B cell leukemia over the past decade. This therapy is a form of highly personalized medicine that involves genetically modifying a patient's T cells to recognize and kill cancer cells. With the FDA approval of 5 CAR T cell products, this approach has been validated as a powerful new drug in the therapeutic armamentarium against cancer. Researchers are now studying how to expand this technology beyond its use in conventional polyclonal αβ T cells to address limitations to the current therapy in cancer and applications beyond it. Considering the specific characteristics of immune cell from diverse lineages, several preclinical and clinical studies are under way to assess the advantages of CAR-redirected function in these cells and apply the lessons learned from CAR T cell therapy in cancer to other diseases.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA
| | - Christopher S Hackett
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renier J Brentjens
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Alam J, Yazdanpanah G, Ratnapriya R, Borcherding N, de Paiva CS, Li D, Guimaraes de Souza R, Yu Z, Pflugfelder SC. IL-17 Producing Lymphocytes Cause Dry Eye and Corneal Disease With Aging in RXRα Mutant Mouse. Front Med (Lausanne) 2022; 9:849990. [PMID: 35402439 PMCID: PMC8983848 DOI: 10.3389/fmed.2022.849990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose To investigate IL-17 related mechanisms for developing dry eye disease in the Pinkie mouse strain with a loss of function RXRα mutation. Methods Measures of dry eye disease were assessed in the cornea and conjunctiva. Expression profiling was performed by single-cell RNA sequencing (scRNA-seq) to compare gene expression in conjunctival immune cells. Conjunctival immune cells were immunophenotyped by flow cytometry and confocal microscopy. The activity of RXRα ligand 9-cis retinoic acid (RA) was evaluated in cultured monocytes and γδ T cells. Results Compared to wild type (WT) C57BL/6, Pinkie has increased signs of dry eye disease, including decreased tear volume, corneal barrier disruption, corneal/conjunctival cornification and goblet cell loss, and corneal vascularization, opacification, and ulceration with aging. ScRNA-seq of conjunctival immune cells identified γδ T cells as the predominant IL-17 expressing population in both strains and there is a 4-fold increased percentage of γδ T cells in Pinkie. Compared to WT, IL-17a, and IL-17f significantly increased in Pinkie with conventional T cells and γδ T cells as the major producers. Flow cytometry revealed an increased number of IL-17+ γδ T cells in Pinkie. Tear concentration of the IL-17 inducer IL-23 is significantly higher in Pinkie. 9-cis RA treatment suppresses stimulated IL-17 production by γδ T and stimulatory activity of monocyte supernatant on γδ T cell IL-17 production. Compared to WT bone marrow chimeras, Pinkie chimeras have increased IL-17+ γδ T cells in the conjunctiva after desiccating stress and anti-IL-17 treatment suppresses dry eye induced corneal MMP-9 production/activity and conjunctival goblet cell loss. Conclusion These findings indicate that RXRα suppresses generation of dry eye disease-inducing IL-17 producing lymphocytes s in the conjunctiva and identifies RXRα as a potential therapeutic target in dry eye.
Collapse
Affiliation(s)
- Jehan Alam
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Ghasem Yazdanpanah
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Rinki Ratnapriya
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, United States
| | - Nicholas Borcherding
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, United States
| | - Cintia S. de Paiva
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - DeQuan Li
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Rodrigo Guimaraes de Souza
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
- Department of Ophthalmology, University of São Paulo, São Paulo, Brazil
| | - Zhiyuan Yu
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
| | - Stephen C. Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Stephen C. Pflugfelder
| |
Collapse
|
10
|
Le Page L, Baldwin CL, Telfer JC. γδ T cells in artiodactyls: Focus on swine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104334. [PMID: 34919982 DOI: 10.1016/j.dci.2021.104334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Vaccination is the most effective medical strategy for disease prevention but there is a need to improve livestock vaccine efficacy. Understanding the structure of the immune system of swine, which are considered a γδ T cell "high" species, and thus, particularly how to engage their γδ T cells for immune responses, may allow for development of vaccine optimization strategies. The propensity of γδ T cells to home to specific tissues, secrete pro-inflammatory and regulatory cytokines, exhibit memory or recall responses and even function as antigen-presenting cells for αβ T cells supports the concept that they have enormous potential for priming by next generation vaccine constructs to contribute to protective immunity. γδ T cells exhibit several innate-like antigen recognition properties including the ability to recognize antigen in the absence of presentation via major histocompatibility complex (MHC) molecules enabling γδ T cells to recognize an array of peptides but also non-peptide antigens in a T cell receptor-dependent manner. γδ T cell subpopulations in ruminants and swine can be distinguished based on differential expression of the hybrid co-receptor and pattern recognition receptors (PRR) known as workshop cluster 1 (WC1). Expression of various PRR and other innate-like immune receptors diversifies the antigen recognition potential of γδ T cells. Finally, γδ T cells in livestock are potent producers of critical master regulator cytokines such as interferon (IFN)-γ and interleukin (IL)-17, whose production orchestrates downstream cytokine and chemokine production by other cells, thereby shaping the immune response as a whole. Our knowledge of the biology, receptor expression and response to infectious diseases by swine γδ T cells is reviewed here.
Collapse
Affiliation(s)
- Lauren Le Page
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Cynthia L Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Janice C Telfer
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
11
|
Kornuta CA, Cheuquepán F, Bidart JE, Soria I, Gammella M, Quattrocchi V, Hecker YP, Moore DP, Romera SA, Marin MS, Zamorano PI, Langellotti CA. TLR activation, immune response and viral protection elicited in cattle by a commercial vaccine against Bovine Herpesvirus-1. Virology 2021; 566:98-105. [PMID: 34896902 DOI: 10.1016/j.virol.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
The innate and acquired immune response induced by a commercial inactivated vaccine against Bovine Herpesvirus-1 (BoHV-1) and protection conferred against the virus were analyzed in cattle. Vaccination induced high levels of BoHV-1 antibodies at 30, 60, and 90 days post-vaccination (dpv). IgG1 and IgG2 isotypes were detected at 90 dpv, as well as virus-neutralizing antibodies. An increase of anti-BoHV-1 IgG1 in nasal swabs was detected 6 days post-challenge in vaccinated animals. After viral challenge, lower virus excretion and lower clinical score were observed in vaccinated as compared to unvaccinated animals, as well as BoHV-1-specific proliferation of lymphocytes and production of IFNγ, TNFα, and IL-4. Downregulation of the expression of endosome Toll-like receptors 8-9 was detected after booster vaccination. This is the first thorough study of the immunity generated by a commercial vaccine against BoHV-1 in cattle.
Collapse
Affiliation(s)
- Claudia Alejandra Kornuta
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Felipe Cheuquepán
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Juan Esteban Bidart
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina
| | - Mariela Gammella
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina
| | - Yanina Paola Hecker
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Dadin Prando Moore
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Sonia Alejandra Romera
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad Del Salvador, Buenos Aires, Argentina
| | - Maia Solange Marin
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Innovación para La Producción Agropecuaria y El Desarrollo Sostenible (IPADS Balcarce), INTA-CONICET, Balcarce, Buenos Aires, Argentina
| | - Patricia Inés Zamorano
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad Del Salvador, Buenos Aires, Argentina
| | - Cecilia Ana Langellotti
- Instituto de Virología e Innovaciones Tecnológicas (IVIT, INTA-CONICET), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Chen W, Lai D, Li Y, Wang X, Pan Y, Fang X, Fan J, Shu Q. Neuronal-Activated ILC2s Promote IL-17A Production in Lung γδ T Cells During Sepsis. Front Immunol 2021; 12:670676. [PMID: 33995408 PMCID: PMC8119647 DOI: 10.3389/fimmu.2021.670676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023] Open
Abstract
Background Studies have revealed important roles for IL-17A in the development of acute lung injury (ALI) following sepsis. However, the mechanism underlying the regulation of lung IL-17A remains to be fully addressed. Recent studies suggested the effect of neuromedin U (NMU) on immune cell activation and the role of group 2 innate lymphoid cells (ILC2s) in the modulation of IL-17A production. We aimed to gain in-depth insight into the mechanism underlying sepsis-induced lung IL-17A production, particularly, the role of NMU in mediating neuronal regulation of ILC2s and IL-17A-producing γδ T cells activation in sepsis. Methods Wild type mice were subjected to cecal ligation and puncture (CLP) to induce sepsis with or without intraperitoneal injection of NMU. The levels of ILC2s, γδ T cells, IL-17A, NMU and NMU receptor 1 (NMUR1) in the lung were then measured. In order to determine the role of NMU signaling in ILC2 activation and the role of ILC2-released IL-9 in ILC2-γδ T cell interaction, ILC2s were sorted, and the genes of nmur1 and il9 in the ILC2s were knocked down using CRISPR/Cas9. The genetically manipulated ILC2s were then co-cultured with lung γδ T cells, and the levels of IL-17A from co-culture systems were measured. Results In septic mice, the levels of NMU, IL-17A, ILC2s, and IL-17A-producing γδ T cells in the lung are significantly increased, and the expression of NMUR1 in ILC2s is increased as well. Exogenous NMU further augments these increases. The main source of IL-17A in response to CLP is γδ T cells, and lung nmur1 is specifically expressed in ILC2s. In vitro co-culture of ILC2s and γδ T cells leads to increased number of γδ T cells and higher production of IL-17A from γδ T cells, and these alterations are further augmented by septic treatment and exogenous NMU. Genetic knockdown of nmur1 or il9 in ILC2s attenuated the upregulation of γδ T cells and IL-17A production. Conclusion In sepsis, NMU acting through NMUR1 in lung ILC2s initiates the ILC2 activation, which, in turn, promote IL-17A-producing γδ T cell expansion and secretion of IL-17A. ILC2-derived IL-9 plays an important role in mediating γδ T cell expansion and IL-17A production. This study explores a new mechanism underlying neuronal regulation of innate immunity in sepsis.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Dengming Lai
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Xueke Wang
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihang Pan
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Special features of γδ T cells in ruminants. Mol Immunol 2021; 134:161-169. [PMID: 33774521 DOI: 10.1016/j.molimm.2021.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Ruminant γδ T cells were discovered in the mid-1980's shortly after a novel T cell receptor (TCR) gene from murine cells was described in 1984 and the murine TCRγ gene locus in 1985. It was possible to identify γδ T cell populations early in ruminants because they represent a large proportion of the peripheral blood mononuclear cells (PBMC). This null cell population, γδ T cells, was designated as such by its non-reactivity with monoclonal antibodies (mAb) against ovine and bovine CD4, CD8 and surface immunoglobulin (Ig). γδ T cells are non-conventional T cells known as innate-like cells capable of using both TCR as well as other types of receptor systems including pattern recognition receptors (PRR) and natural killer receptors (NKR). Bovine γδ T cells have been shown to respond to stimulation through toll-like receptors, NOD, and NKG2D as well as to cytokines alone, protein and non-protein antigens through their TCR, and to pathogen-infected host cells. The two main populations of γδ T cells are distinguished by the presence or absence of the hybrid co-receptor/PRR known as WC1 or T19. These two populations not only differ by their proportional representation in various tissues and organs but also by their migration into inflamed tissues. The WC1+ cells are found in the blood, skin and spleen while the WC1- γδ T cells predominate in the gut, mammary gland and uterus. In ruminants, γδ T cells may produce IFNγ, IL-17, IL-10 and TGFβ, have cytotoxic activity and memory responses. The expression of particular WC1 family members controls the response to particular pathogens and correlates with differences in cytokine responses. The comparison of the WC1 gene families in cattle, sheep and goats is discussed relative to other multigenic arrays that differentiate γδ T cells by function in humans and mice.
Collapse
|
14
|
Liu Y, Han Y, Zeng S, Shen H. In respond to commensal bacteria: γδT cells play a pleiotropic role in tumor immunity. Cell Biosci 2021; 11:48. [PMID: 33653419 PMCID: PMC7927236 DOI: 10.1186/s13578-021-00565-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
γδT cells are a mixture of innate programming and acquired adaptability that bridge the adaptive and innate immune systems. γδT cells are mainly classified as tissue-resident Vδ1 or circulating Vδ2 γδT cells. In the tumor microenvironment, tumor immunity is influenced by the increased quantity and phenotype plasticity of γδT cells. Commensal bacteria are ubiquitous in the human body, and they have been confirmed to exist in various tumor tissues. With the participation of commensal bacteria, γδT cells maintain homeostasis and are activated to affect the development and progression of tumors. Here, we summarize the relationship between γδT cells and commensal bacteria, the potential protumor and antitumor effects underlying γδT cells, and the new developments in γδT cell-based tumor therapy which is expected to open new opportunities for tumor immunotherapy.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P.R. China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
15
|
Myeloid-like γδ T cell subset in the immune response to an experimental Rift Valley fever vaccine in sheep. Vet Immunol Immunopathol 2021; 233:110184. [PMID: 33454621 DOI: 10.1016/j.vetimm.2021.110184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/15/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
γδ T cells are a numerically significant subset of immune cells in ruminants, where they may comprise up to 70 % of all peripheral blood mononuclear cells (PBMCs) in young animals and 25 % in adults. These cells can be activated through traditional TCR-dependent mechanisms, or alternatively in a TCR-independent manner by pattern recognition receptors and have been shown to uptake antigen, as well as process and present it to αβ T cells. We have identified a novel CD11b+ subset of γδ T cells in normal sheep peripheral blood. An increase in the frequency of these cells in sheep peripheral blood in response to immunization with an experimental recombinant subunit Rift Valley fever (RVF) vaccine was observed. However, injection of the vaccine adjuvant ISA-25VG alone without the recombinant RVF virus antigens demonstrated the same effect, pointing to an antigen-independent innate immune function of CD11b+ γδ T cells in response to the adjuvant. In vitro studies showed repeatable increases of CD11b-, CD14-, CD86-, CD40-, CD72-, and IFNγ- expressing γδ T cells in PBMCs after 24 h of incubation in the absence of a mitogen. Moreover, the majority of these myeloid-like γδ T cells were demonstrated to process exogenous antigen even in the absence of mitogen. ConA activation increased CD25- and MHCII- expression in γδ T cells, but not the myeloid associated receptors CD14 or CD11b or co-stimulatory molecules such as CD86 and CD40. Considering the role of CD11b and CD14 in the activation of innate immunity, we hypothesize that this subpopulation of sheep γδ T cells may function as innate antigen presenting and pro-inflammatory cells during immune responses. The results presented here also suggest that stress molecules and/or damage-associated molecular patterns may be involved in triggering antigen presenting and pro-inflammatory functions of γδ T cells, given their appearance in vitro in the absence of specific stimulation. Taken together, these data suggest that the early appearance of γδ T cells following adjuvant administration and their possible role in early activation of αβ T cell subsets may non-specifically contribute to augmented innate immunity and may promote strong initiation of the adaptive immune response to vaccines in general.
Collapse
|
16
|
Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, McGill JL. Applications of Nanovaccines for Disease Prevention in Cattle. Front Bioeng Biotechnol 2020; 8:608050. [PMID: 33363134 PMCID: PMC7759628 DOI: 10.3389/fbioe.2020.608050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most important tools available to prevent and reduce the incidence of infectious diseases in cattle. Despite their availability and widespread use to combat many important pathogens impacting cattle, several of these products demonstrate variable efficacy and safety in the field, require multiple doses, or are unstable under field conditions. Recently, nanoparticle-based vaccine platforms (nanovaccines) have emerged as promising alternatives to more traditional vaccine platforms. In particular, polymer-based nanovaccines provide sustained release of antigen payloads, stabilize such payloads, and induce enhanced antibod- and cell-mediated immune responses, both systemically and locally. To improve vaccine administrative strategies and efficacy, they can be formulated to contain multiple antigenic payloads and have the ability to protect fragile proteins from degradation. Nanovaccines are also stable at room temperature, minimizing the need for cold chain storage. Nanoparticle platforms can be synthesized for targeted delivery through intranasal, aerosol, or oral administration to induce desired mucosal immunity. In recent years, several nanovaccine platforms have emerged, based on biodegradable and biocompatible polymers, liposomes, and virus-like particles. While most nanovaccine candidates have not yet advanced beyond testing in rodent models, a growing number have shown promise for use against cattle infectious diseases. This review will highlight recent advancements in polymeric nanovaccine development and the mechanisms by which nanovaccines may interact with the bovine immune system. We will also discuss the positive implications of nanovaccines use for combating several important viral and bacterial disease syndromes and consider important future directions for nanovaccine development in beef and dairy cattle.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Hedges JF, Jutila MA. Harnessing γδ T Cells as Natural Immune Modulators. MUCOSAL VACCINES 2020. [PMCID: PMC7150015 DOI: 10.1016/b978-0-12-811924-2.00046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Alkie TN, Yitbarek A, Hodgins DC, Kulkarni RR, Taha-Abdelaziz K, Sharif S. Development of innate immunity in chicken embryos and newly hatched chicks: a disease control perspective. Avian Pathol 2019; 48:288-310. [PMID: 31063007 DOI: 10.1080/03079457.2019.1607966] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Newly hatched chickens are confronted by a wide array of pathogenic microbes because their adaptive immune defences have limited capabilities to control these pathogens. In such circumstances, and within this age group, innate responses provide a degree of protection. Moreover, as the adaptive immune system is relatively naïve to foreign antigens, synergy with innate defences is critical. This review presents knowledge on the ontogeny of innate immunity in chickens pre-hatch and early post-hatch and provides insights into possible interventions to modulate innate responses early in the life of the bird. As in other vertebrate species, the chicken innate immune system which include cellular mediators, cytokine and chemokine repertoires and molecules involved in antigen detection, develop early in life. Comparison of innate immune systems in newly hatched chickens and mature birds has revealed differences in magnitude and quality, but responses in younger chickens can be boosted using innate immune system modulators. Functional expression of pattern recognition receptors and several defence molecules by innate immune system cells of embryos and newly hatched chicks suggests that innate responses can be modulated at this stage of development to combat pathogens. Improved understanding of innate immune system ontogeny and functionality in chickens is critical for the implementation of sound and safe interventions to provide long-term protection against pathogens. Next-generation tools for studying genetic and epigenetic regulation of genes, functional metagenomics and gene knockouts can be used in the future to explore and dissect the contributions of signalling pathways of innate immunity and to devise more efficacious disease control strategies.
Collapse
Affiliation(s)
- Tamiru N Alkie
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Alexander Yitbarek
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Douglas C Hodgins
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Raveendra R Kulkarni
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| | - Khaled Taha-Abdelaziz
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada.,b Pathology Department, Faculty of Veterinary Medicine , Beni-Suef University , Beni-Suef , Egypt
| | - Shayan Sharif
- a Department of Pathobiology, Ontario Veterinary College , University of Guelph , Guelph , ON , Canada
| |
Collapse
|
19
|
Abstract
Gamma delta (γδ) T cells constitute a major lymphocyte population in peripheral blood and epithelial surfaces. They play nonredundant roles in host defense against diverse pathogens. Although γδ T cells share functional features with other cells of the immune system, their distinct methods of antigen recognition, rapid response, and tissue tropism make them a unique effector population. This review considers the current state of our knowledge on γδ T cell biology in ruminants and the important roles played by this nonconventional T cell population in protection against several infectious diseases of veterinary and zoonotic importance.
Collapse
|
20
|
Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 2018; 59:391-412. [PMID: 29730580 PMCID: PMC7106078 DOI: 10.1016/j.intimp.2018.03.002] [Citation(s) in RCA: 442] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
The immune system is a very diverse system of the host that evolved during evolution to cope with various pathogens present in the vicinity of environmental surroundings inhabited by multicellular organisms ranging from achordates to chordates (including humans). For example, cells of immune system express various pattern recognition receptors (PRRs) that detect danger via recognizing specific pathogen-associated molecular patterns (PAMPs) and mount a specific immune response. Toll-like receptors (TLRs) are one of these PRRs expressed by various immune cells. However, they were first discovered in the Drosophila melanogaster (common fruit fly) as genes/proteins important in embryonic development and dorso-ventral body patterning/polarity. Till date, 13 different types of TLRs (TLR1-TLR13) have been discovered and described in mammals since the first discovery of TLR4 in humans in late 1997. This discovery of TLR4 in humans revolutionized the field of innate immunity and thus the immunology and host-pathogen interaction. Since then TLRs are found to be expressed on various immune cells and have been targeted for therapeutic drug development for various infectious and inflammatory diseases including cancer. Even, Single nucleotide polymorphisms (SNPs) among various TLR genes have been identified among the different human population and their association with susceptibility/resistance to certain infections and other inflammatory diseases. Thus, in the present review the current and future importance of TLRs in immunity, their pattern of expression among various immune cells along with TLR based therapeutic approach is reviewed. TLRs are first described PRRs that revolutionized the biology of host-pathogen interaction and immune response The discovery of different TLRs in humans proved milestone in the field of innate immunity and inflammation The pattern of expression of all the TLRs expressed by human immune cells An association of various TLR SNPs with different inflammatory diseases Currently available drugs or vaccines based on TLRs and their future in drug targeting along with the role in reproduction, and regeneration
Collapse
|
21
|
Marin AV, Cárdenas PP, Jiménez-Reinoso A, Muñoz-Ruiz M, Regueiro JR. Lymphocyte integration of complement cues. Semin Cell Dev Biol 2018; 85:132-142. [PMID: 29438807 DOI: 10.1016/j.semcdb.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
We address current data, views and puzzles on the emerging topic of regulation of lymphocytes by complement proteins or fragments. Such regulation is believed to take place through complement receptors (CR) and membrane complement regulators (CReg) involved in cell function or protection, respectively, including intracellular signalling. Original observations in B cells clearly support that complement cues through CR improve their performance. Other lymphocytes likely integrate complement-derived signals, as most lymphoid cells constitutively express or regulate CR and CReg upon activation. CR-induced signals, particularly by anaphylatoxins, clearly regulate lymphoid cell function. In contrast, data obtained by CReg crosslinking using antibodies are not always confirmed in human congenital deficiencies or knock-out mice, casting doubts on their physiological relevance. Unsurprisingly, human and mouse complement systems are not completely homologous, adding further complexity to our still fragmentary understanding of complement-lymphocyte interactions.
Collapse
Affiliation(s)
- Ana V Marin
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paula P Cárdenas
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Miguel Muñoz-Ruiz
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Jose R Regueiro
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| |
Collapse
|
22
|
Baquero MM, Plattner BL. Bovine WC1 + and WC1 neg γδ T Lymphocytes Influence Monocyte Differentiation and Monocyte-Derived Dendritic Cell Maturation during In Vitro Mycobacterium avium Subspecies paratuberculosis Infection. Front Immunol 2017; 8:534. [PMID: 28588573 PMCID: PMC5439176 DOI: 10.3389/fimmu.2017.00534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/21/2017] [Indexed: 12/23/2022] Open
Abstract
During early Mycobacterium avium subspecies paratuberculosis (Map) infection, complex interactions occur between the bacteria, cells from the mononuclear phagocyte system (MPS) including both resident (macrophages and dendritic cells) and recruited (monocytes) cells, and other mucosal sentinel cells such as γδ T lymphocytes. Though the details of early host–pathogen interactions in cattle remain largely underexplored, our hypothesis is that these significantly influence development of host immunity and ultimate success or failure of the host to respond to Map infection. The aims of the present study were to first characterize monocyte-derived MPS cells from young calves with respect to their immunophenotype and function. Then, we set out to investigate the effects of WC1+ and WC1neg γδ T lymphocytes on (1) the differentiation of autologous monocytes and (2) the maturation of autologous monocyte-derived dendritic cells (MDDCs). To achieve this, peripheral blood WC1+ or WC1neg γδ T lymphocytes were cocultured with either autologous freshly isolated peripheral blood-derived monocytes or autologous immature MDDCs (iMDDCs). We began by measuring several markers of interest on MPS cells. Useful markers to distinguish monocyte-derived macrophages (MDMs) from MDDCs include CD11b, CD163, and CD172a, which are expressed significantly higher on MDMs compared with MDDCs. Function, but not phenotype, was influenced by WC1neg γδ T lymphocytes: viability of Map harvested from monocytes differentiated in the presence of WC1neg γδ T lymphocytes (dMonWC1neg) was significantly lower compared to MDMs and MDDCs. With respect to DC maturation, we first showed that mature MDDCs (mMDDCs) have significantly higher expression of CD11c, CD80, and CD86 compared with iMDDCs, and the phagocytic capacity of mMDDCs is significantly reduced compared to iMDDCs. We then showed that γδ T lymphocyte subsets induce functional (reduced phagocytosis) but not phenotypic (surface marker expression) iMDDC maturation. These data collectively show that γδ T lymphocytes influence differentiation, maturation, and ultimately the function of monocytes during Map infection, which has significant implications on survival of Map and success of host defense during early Map infection.
Collapse
Affiliation(s)
- Monica M Baquero
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brandon L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
23
|
Baquero MM, Plattner BL. Bovine peripheral blood WC1 + and WC1 neg γδ T lymphocytes modulate monocyte-derived macrophage effector functions during in vitro Mycobacterium avium subspecies paratuberculosis infection. Cell Immunol 2017; 315:34-44. [PMID: 28284486 DOI: 10.1016/j.cellimm.2017.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 01/20/2023]
Abstract
The importance of bovine γδ T lymphocytes during anti-mycobacterial immunity is recognized; however, the role of major subsets of γδ T lymphocytes (WC1+ and WC1neg) in this process remains unclear. We investigated how WC1+ and WC1neg γδ T lymphocyte subsets of calves modulate monocyte-derived macrophage (MDM) functions during Map infection in vitro. To achieve this, Map-infected or uninfected MDMs from young calves were co-cultured with autologous WC1+ or WC1neg γδ T lymphocytes. Our data indicate that WC1+ and WC1neg γδ T lymphocytes of young calves modulate effector functions of MDMs with respect to Map killing, CD11b and MHC-II expression. We observed differences in IFN-γ production and CD25 expression on γδ T lymphocyte subsets, as well as MDM expression of CD1b when in contact with WC1neg γδ T lymphocytes.
Collapse
Affiliation(s)
- Monica M Baquero
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Pathobiology/AHL Building 89, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| | - Brandon L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Pathobiology/AHL Building 89, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
24
|
|
25
|
Adjuvant materials that enhance bovine γδ T cell responses. Vet Immunol Immunopathol 2016; 181:30-38. [DOI: 10.1016/j.vetimm.2016.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
|
26
|
Farias MVN, Lendez PA, Marin M, Quintana S, Martínez-Cuesta L, Ceriani MC, Dolcini GL. Toll-like receptors, IFN-γ and IL-12 expression in bovine leukemia virus-infected animals with low or high proviral load. Res Vet Sci 2016; 107:190-195. [DOI: 10.1016/j.rvsc.2016.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/09/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
|
27
|
Role of cellular events in the pathophysiology of sepsis. Inflamm Res 2016; 65:853-868. [PMID: 27392441 DOI: 10.1007/s00011-016-0970-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/11/2016] [Accepted: 06/25/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Sepsis is a dysregulated host immune response due to an uncontrolled infection. It is a leading cause of mortality in adult intensive care units globally. When the host immune response induced against a local infection fails to contain it locally, it progresses to sepsis, severe sepsis, septic shock and death. METHOD Literature survey was performed on the roles of different innate and adaptive immune cells in the development and progression of sepsis. Additionally, the effects of septic changes on reprogramming of different immune cells were also summarized to prepare the manuscript. FINDINGS Scientific evidences to date suggest that the loss of balance between inflammatory and anti-inflammatory responses results in reprogramming of immune cell activities that lead to irreversible tissue damaging events and multi-organ failure during sepsis. Many surface receptors expressed on immune cells at various stages of sepsis have been suggested as biomarkers for sepsis diagnosis. Various immunomodulatory therapeutics, which could improve the functions of immune cells during sepsis, were shown to restore immunological homeostasis and improve survival in animal models of sepsis. CONCLUSION In-depth and comprehensive knowledge on the immune cell activities and their correlation with severity of sepsis will help clinicians and scientists to design effective immunomodulatory therapeutics for treating sepsis.
Collapse
|
28
|
Manson J, Cole E, De'Ath HD, Vulliamy P, Meier U, Pennington D, Brohi K. Early changes within the lymphocyte population are associated with the development of multiple organ dysfunction syndrome in trauma patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:176. [PMID: 27268230 PMCID: PMC4895987 DOI: 10.1186/s13054-016-1341-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/12/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Early survival following severe injury has been improved with refined resuscitation strategies. Multiple organ dysfunction syndrome (MODS) is common among this fragile group of patients leading to prolonged hospital stay and late mortality. MODS after trauma is widely attributed to dysregulated inflammation but the precise mechanics of this response and its influence on organ injury are incompletely understood. This study was conducted to investigate the relationship between early lymphocyte responses and the development of MODS during admission. METHODS During a 24-month period, trauma patients were recruited from an urban major trauma centre to an ongoing, observational cohort study. Admission blood samples were obtained within 2 h of injury and before in-hospital intervention, including blood transfusion. The study population was predominantly male with a blunt mechanism of injury. Lymphocyte subset populations including T helper, cytotoxic T cells, NK cells and γδ T cells were identified using flow cytometry. Early cytokine release and lymphocyte count during the first 7 days of admission were also examined. RESULTS This study demonstrated that trauma patients who developed MODS had an increased population of NK dim cells (MODS vs no MODS: 22 % vs 13 %, p < 0.01) and reduced γδ-low T cells (MODS vs no MODS: 0.02 (0.01-0.03) vs 0.09 (0.06-0.12) × 10^9/L, p < 0.01) at admission. Critically injured patients who developed MODS (n = 27) had higher interferon gamma (IFN-γ) concentrations at admission, compared with patients of matched injury severity and shock (n = 60) who did not develop MODS (MODS vs no MODS: 4.1 (1.8-9.0) vs 1.0 (0.6-1.8) pg/ml, p = 0.01). Lymphopenia was observed within 24 h of injury and was persistent in those who developed MODS. Patients with a lymphocyte count of 0.5 × 10(9)/L or less at 48 h, had a 45 % mortality rate. CONCLUSIONS This study provides evidence of lymphocyte activation within 2 h of injury, as demonstrated by increased NK dim cells, reduced γδ-low T lymphocytes and high blood IFN-γ concentration. These changes are associated with the development of MODS and lymphopenia. The study reveals new opportunities for investigation to characterise the cellular response to trauma and examine its influence on recovery.
Collapse
Affiliation(s)
- Joanna Manson
- Barts Centre for Trauma Sciences, Blizard Institute, QMUL, London, E1 2AT, UK.
| | - Elaine Cole
- Barts Centre for Trauma Sciences, Blizard Institute, QMUL, London, E1 2AT, UK
| | - Henry D De'Ath
- Barts Centre for Trauma Sciences, Blizard Institute, QMUL, London, E1 2AT, UK
| | - Paul Vulliamy
- Barts Centre for Trauma Sciences, Blizard Institute, QMUL, London, E1 2AT, UK
| | - Ute Meier
- Centre for Neuroscience, Blizard Institute, QMUL, London, E1 2AT, UK
| | - Dan Pennington
- Centre for Immunobiology, Blizard Institute, QMUL, London, E1 2AT, UK
| | - Karim Brohi
- Barts Centre for Trauma Sciences, Blizard Institute, QMUL, London, E1 2AT, UK
| |
Collapse
|
29
|
Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer 2016; 139:976-85. [PMID: 27012367 DOI: 10.1002/ijc.30109] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
γδ T cells are an important innate immune component of the tumor microenvironment and are known to affect the immune response in a wide variety of tumors. Unlike αβ T cells, γδ T cells are capable of spontaneous secretion of IL-17A and IFN-γ without undergoing clonal expansion. Although γδ T cells do not require self-MHC-restricted priming, they can distinguish "foreign" or transformed cells from healthy self-cells by using activating and inhibitory killer Ig-like receptors. γδ T cells were used in several clinical trials to treat cancer patient due to their MHC-unrestricted cytotoxicity, ability to distinguish transformed cells from normal cells, the capacity to secrete inflammatory cytokines and also their ability to enhance the generation of antigen-specific CD8(+) and CD4(+) T cell response. In this review, we discuss the effector and regulatory function of γδ T cells in the tumor microenvironment with special emphasis on the potential for their use in adoptive cellular immunotherapy.
Collapse
Affiliation(s)
- Sourav Paul
- Infection and Immunity Section, National Centre for Cell Science, Pune, India
| | - Girdhari Lal
- Infection and Immunity Section, National Centre for Cell Science, Pune, India
| |
Collapse
|
30
|
McGill JL, Rusk RA, Guerra-Maupome M, Briggs RE, Sacco RE. Bovine Gamma Delta T Cells Contribute to Exacerbated IL-17 Production in Response to Co-Infection with Bovine RSV and Mannheimia haemolytica. PLoS One 2016; 11:e0151083. [PMID: 26942409 PMCID: PMC4778910 DOI: 10.1371/journal.pone.0151083] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/23/2016] [Indexed: 01/08/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of severe lower respiratory tract infection in children under five years of age. IL-17 and Th17 responses are increased in children infected with HRSV and have been implicated in both protective and pathogenic roles during infection. Bovine RSV (BRSV) is genetically closely related to HRSV and is a leading cause of severe respiratory infections in young cattle. While BRSV infection in the calf parallels many aspects of human infection with HRSV, IL-17 and Th17 responses have not been studied in the bovine. Here we demonstrate that calves infected with BRSV express significant levels of IL-17, IL-21 and IL-22; and both CD4 T cells and γδ T cells contribute to this response. In addition to causing significant morbidity from uncomplicated infections, BRSV infection also contributes to the development of bovine respiratory disease complex (BRDC), a leading cause of morbidity in both beef and dairy cattle. BRDC is caused by a primary viral infection, followed by secondary bacterial pneumonia by pathogens such as Mannheimia haemolytica. Here, we demonstrate that in vivo infection with M. haemolytica results in increased expression of IL-17, IL-21 and IL-22. We have also developed an in vitro model of BRDC and show that co-infection of PBMC with BRSV followed by M. haemolytica leads to significantly exacerbated IL-17 production, which is primarily mediated by IL-17-producing γδ T cells. Together, our results demonstrate that calves, like humans, mount a robust IL-17 response during RSV infection; and suggest a previously unrecognized role for IL-17 and γδ T cells in the pathogenesis of BRDC.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Rachel A. Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Mariana Guerra-Maupome
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Robert E. Briggs
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, Iowa, United States of America
| |
Collapse
|
31
|
Ferrara F, Tedin L, Pieper R, Meyer W, Zentek J. Influence of medium-chain fatty acids and short-chain organic acids on jejunal morphology and intra-epithelial immune cells in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2016; 101:531-540. [PMID: 26919402 DOI: 10.1111/jpn.12490] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/26/2016] [Indexed: 01/06/2023]
Abstract
Medium-chain fatty acids (MCFA) and short-chain organic acids (SOA) are often used as feed additives in piglet diets. There are limited studies in pigs describing the impact of MCFA or SOA on gut morphology and the local immune system. The aim of this study was to investigate whether the supplementation of SOA (0.41% fumaric acid and 0.32% lactic acid), or the combination of SOA with MCFA (0.15% caprylic and capric acid) would have effects on gut morphology and intestinal immune cells in weaned piglets. A total number of 72 weaned piglets were randomly allocated into three experimental groups. Tissue samples of six animals per group were used to investigate the potential impact of the feed additives on villus length and crypt depth of the jejunum and to quantify intra-epithelial lymphocytes (IEL). CD3-positive IEL were determined via immunohistochemistry (IHC) and flow cytometry (FC), whereas CD2-, CD5-, CD8β-, CD16- and γδ TCR-positive IEL were only analysed by FC. The supplementation of MCFA and SOA did not significantly affect morphometric data. The FC data indicated that SOA significantly increased the quantity of CD2- CD8- γδ T cells in the jejunum epithelium. Both IHC and FC analyses of pig jejunum confirmed that the majority of IEL expressed the surface marker CD3 and could be classified as cytotoxic T lymphocytes. In conclusion, the data indicated that SOA increased the proportion of CD2- CD8- γδ T cells in the jejunal epithelium. Thus, SOA might enable a beneficial effect on the local immunity by increasing the constitutive number of potential effector cells to defeat infectious diseases.
Collapse
Affiliation(s)
- F Ferrara
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Institute of Vegetative Physiology, Charité University Hospital and Center of Cardiovascular Research Berlin, Germany
| | - L Tedin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - R Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - W Meyer
- Institute of Anatomy, Foundation, University of Veterinary Medicine, Hannover, Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
32
|
McGill JL, Sacco RE. γδ T cells and the immune response to respiratory syncytial virus infection. Vet Immunol Immunopathol 2016; 181:24-29. [PMID: 26923879 DOI: 10.1016/j.vetimm.2016.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 01/06/2016] [Accepted: 02/16/2016] [Indexed: 01/14/2023]
Abstract
γδ T cells are a subset of nonconventional T cells that play a critical role in bridging the innate and adaptive arms of the immune system. γδ T cells are particularly abundant in ruminant species and may constitute up to 60% of the circulating lymphocyte pool in young cattle. The frequency of circulating γδ T cells is highest in neonatal calves and declines as the animal ages, suggesting these cells may be particularly important in the immune system of the very young. Bovine respiratory syncytial virus (BRSV) is a significant cause of respiratory infection in calves, and is most severe in animals under one year of age. BRSV is also a significant factor in the development of bovine respiratory disease complex (BRDC), the leading cause of morbidity and mortality in feedlot cattle. Human respiratory syncytial virus (RSV) is closely related to BRSV and a leading cause of lower respiratory tract infection in infants and children worldwide. BRSV infection in calves shares striking similarities with RSV infection in human infants. To date, there have been few studies defining the role of γδ T cells in the immune response to BRSV or RSV infection in animals or humans, respectively. However, emerging evidence suggests that γδ T cells may play a critical role in the early recognition of infection and in shaping the development of the adaptive immune response through inflammatory chemokine and cytokine production. Further, while it is clear that γδ T cells accumulate in the lungs during BRSV and RSV infection, their role in protection vs. immunopathology remains unclear. This review will summarize what is currently known about the role of γδ T cells in the immune response to BRSV and BRDC in cattle, and where appropriate, draw parallels to the role of γδ T cells in the human response to RSV infection.
Collapse
Affiliation(s)
- Jodi L McGill
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, 1800 Denison Ave., Manhattan, KS 66503, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, 1920 Dayton Ave., Ames, IA 50010, USA
| |
Collapse
|
33
|
Baquero MM, Plattner BL. Bovine WC1(+) γδ T lymphocytes modify monocyte-derived macrophage responses during early Mycobacterium avium subspecies paratuberculosis infection. Vet Immunol Immunopathol 2015; 170:65-72. [PMID: 26848050 DOI: 10.1016/j.vetimm.2015.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/21/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
Abstract
Following Mycobacterium avium subspecies paratuberculosis (Map) infection, some calves are apparently able to successfully clear the pathogen whereas others become persistently infected; however the reasons for this remain unknown. The importance of innate immunity, and in particular the role of γδ T lymphocytes, during early anti-mycobacterial immune response is recognized but specific mechanisms remain incompletely characterized. The objective of this study was to investigate how bovine WC1(+) γδ T lymphocytes mediate macrophage function during early Map infection. To achieve this objective, Map-infected monocyte-derived macrophages (MDMs) were co-cultured either in direct contact with, or separated by a semi-permeable membrane from, autologous WC1(+) γδ T lymphocytes. Nitrites, IL-17A, IFN-γ, IL-4 and IL-10 from cell culture supernatants were measured. Expression of CD25 on WC1(+) γδ T lymphocytes, expression of MHC-I and MHC-II on MDMs and the viability of Map recovered from MDM cultures 72h after Map infection were also assessed. Map viability was significantly reduced when WC1(+) γδ T lymphocytes were co-cultured in direct contact with Map-infected MDMs. Both MDMs and WC1(+) γδ T lymphocytes generated increased concentrations of IFN-γ and IL-4 in our system, and MDM/WC1(+) γδ T lymphocyte synergism was identified for IFN-γ production. MDMs but not WC1(+) γδ T lymphocytes were a significant source of IL-17A. The presence of WC1(+) γδ T lymphocytes was associated with higher expression of MHC-I on MDMs and increased concentration of nitrites in supernatants 72h after Map infection. In conclusion, this study showed that WC1(+) γδ lymphocytes had differential effects on Map-infected macrophages in vitro.
Collapse
Affiliation(s)
- Monica M Baquero
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Pathobiology/AHL Building 89, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| | - Brandon L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Pathobiology/AHL Building 89, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
34
|
Costa MFDS, de Negreiros CBT, Bornstein VU, Valente RH, Mengel J, Henriques MDG, Benjamim CF, Penido C. Murine IL-17+ Vγ4 T lymphocytes accumulate in the lungs and play a protective role during severe sepsis. BMC Immunol 2015; 16:36. [PMID: 26037291 PMCID: PMC4451961 DOI: 10.1186/s12865-015-0098-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/19/2015] [Indexed: 12/14/2022] Open
Abstract
Background Lung inflammation is a major consequence of the systemic inflammatory response caused by severe sepsis. Increased migration of γδ T lymphocytes into the lungs has been previously demonstrated during experimental sepsis; however, the involvement of the γδ T cell subtype Vγ4 has not been previously described. Methods Severe sepsis was induced by cecal ligation and puncture (CLP; 9 punctures, 21G needle) in male C57BL/6 mice. γδ and Vγ4 T lymphocyte depletion was performed by 3A10 and UC3-10A6 mAb i.p. administration, respectively. Lung infiltrating T lymphocytes, IL-17 production and mortality rate were evaluated. Results Severe sepsis induced by CLP in C57BL/6 mice led to an intense lung inflammatory response, marked by the accumulation of γδ T lymphocytes (comprising the Vγ4 subtype). γδ T lymphocytes present in the lungs of CLP mice were likely to be originated from peripheral lymphoid organs and migrated towards CCL2, CCL3 and CCL5, which were highly produced in response to CLP-induced sepsis. Increased expression of CD25 by Vγ4 T lymphocytes was observed in spleen earlier than that by αβ T cells, suggesting the early activation of Vγ4 T cells. The Vγ4 T lymphocyte subset predominated among the IL-17+ cell populations present in the lungs of CLP mice (unlike Vγ1 and αβ T lymphocytes) and was strongly biased toward IL-17 rather than toward IFN-γ production. Accordingly, the in vivo administration of anti-Vγ4 mAb abrogated CLP-induced IL-17 production in mouse lungs. Furthermore, anti-Vγ4 mAb treatment accelerated mortality rate in severe septic mice, demonstrating that Vγ4 T lymphocyte play a beneficial role in host defense. Conclusions Overall, our findings provide evidence that early-activated Vγ4 T lymphocytes are the main responsible cells for IL-17 production in inflamed lungs during the course of sepsis and delay mortality of septic mice. Electronic supplementary material The online version of this article (doi:10.1186/s12865-015-0098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Fernanda de Souza Costa
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil. .,Centro de Desenvolvimento Tecnológico em Saúde, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Catarina Bastos Trigo de Negreiros
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil.
| | - Victor Ugarte Bornstein
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil. .,Mount Sinai School of Medicine, New York City, USA.
| | - Richard Hemmi Valente
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - José Mengel
- Laboratório de Imunologia, Faculdade de Medicina de Petrópolis, Petrópolis, Rio de Janeiro, Brazil. .,Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Maria das Graças Henriques
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil. .,Centro de Desenvolvimento Tecnológico em Saúde, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | - Claudia Farias Benjamim
- Laboratório de Inflamação, Estresse Oxidativo e Câncer, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Carmen Penido
- Laboratório de Farmacologia Aplicada, Departamento de Farmacologia, Farmanguinhos, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ, CEP 21041-250, Brazil. .,Centro de Desenvolvimento Tecnológico em Saúde, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças Negligenciadas (INCT-IDN), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
35
|
Baldwin CL, Telfer JC. The bovine model for elucidating the role of γδ T cells in controlling infectious diseases of importance to cattle and humans. Mol Immunol 2014; 66:35-47. [PMID: 25547715 DOI: 10.1016/j.molimm.2014.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 01/29/2023]
Abstract
There are several instances of co-investigation and related discoveries and achievements in bovine and human immunology; perhaps most interesting is the development of the BCG vaccine, the tuberculin skin test and the more recent interferon-gamma test that were developed first in cattle to prevent and diagnosis bovine tuberculosis and then applied to humans. There are also a number of immune-physiological traits that ruminant share with humans including the development of their immune systems in utero which increases the utility of cattle as a model for human immunology. These are reviewed here with a particular focus on the use of cattle to unravel γδ T cell biology. Based on the sheer number of γδ T cells in this γδ T cell high species, it is reasonable to expect γδ T cells to play an important role in protective immune responses. For that reason alone cattle may provide good models for elucidating at least some of the roles γδ T cells play in protective immunity in all species. This includes fundamental research on γδ T cells as well as the responses of ruminant γδ T cells to a variety of infectious disease situations including to protozoan and bacterial pathogens. The role that pattern recognition receptors (PRR) play in the activation of γδ T cells may be unique relative to αβ T cells. Here we focus on that of the γδ T cell specific family of molecules known as WC1 or T19 in ruminants, which are part of the CD163 scavenger receptor cysteine rich (SRCR) family that includes SCART1 and SCART2 expressed on murine γδ T cells. We review the evidence for WC1 being a PRR as well as an activating co-receptor and the role that γδ T cells bearing these receptors play in immunity to leptospirosis and tuberculosis. This includes the generation of memory responses to vaccines, thereby continuing the tradition of co-discovery between cattle and humans.
Collapse
Affiliation(s)
- Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| |
Collapse
|
36
|
Dar AA, Patil RS, Chiplunkar SV. Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses. Front Immunol 2014; 5:366. [PMID: 25132835 PMCID: PMC4116803 DOI: 10.3389/fimmu.2014.00366] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/15/2014] [Indexed: 01/26/2023] Open
Abstract
The tumor microenvironment is an important aspect of cancer biology that contributes to tumor initiation, tumor progression and responses to therapy. The composition and characteristics of the tumor microenvironment vary widely and are important in determining the anti-tumor immune response. Successful immunization requires activation of both innate and adaptive immunity. Generally, immune system is compromised in patients with cancer due to immune suppression, loss of tumor antigen expression and dysfunction of antigen presenting cells (APC). Thus, therapeutic immunization leading to cancer regression remains a significant challenge. Certain cells of the immune system, including dendritic cells (DCs) and gamma delta (γδ) T cells are capable of driving potent anti-tumor responses. The property of MHC-unrestricted cytotoxicity, high potential of cytokine release, tissue tropism and early activation in infections and malignant disease makes γδ T cells as an emerging candidate for immunotherapy. Various strategies are being developed to enhance anti-tumor immune responses of γδ T cells and DCs one of them is the use of novel adjuvants like toll like receptors (TLR) agonists, which enhance γδ T cell function directly or through DC activation, which has ability to prime γδ T cells. TLR agonists are being used clinically either alone or in combination with tumor antigens and has shown initial success in both enhancing immune responses and eliciting anti-tumor activity. TLR activated γδ T cells and DCs nurture each other's activation. This provides a potent base for first line of defense and manipulation of the adaptive response against pathogens and cancer. The available data provides a strong rationale for initiating combinatorial therapy for the treatment of diseases and this review will summarize the application of adjuvants (TLRs) for boosting immune response of γδ T cells to treat cancer and infectious diseases and their use in combinatorial therapy.
Collapse
Affiliation(s)
- Asif Amin Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| | - Rushikesh Sudam Patil
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| | - Shubhada Vivek Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| |
Collapse
|
37
|
McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Ray Waters W. The role of gamma delta T cells in immunity to Mycobacterium bovis infection in cattle. Vet Immunol Immunopathol 2014; 159:133-43. [DOI: 10.1016/j.vetimm.2014.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Waters WR. Specific Recognition of Mycobacterial Protein and Peptide Antigens by γδ T Cell Subsets following Infection with VirulentMycobacterium bovis. THE JOURNAL OF IMMUNOLOGY 2014; 192:2756-69. [DOI: 10.4049/jimmunol.1302567] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Paul S, Singh AK, Shilpi, Lal G. Phenotypic and functional plasticity of gamma-delta (γδ) T cells in inflammation and tolerance. Int Rev Immunol 2013; 33:537-58. [PMID: 24354324 DOI: 10.3109/08830185.2013.863306] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gamma-delta T cells (γδ T cells) are an unique group of lymphocytes and play an important role in bridging the gap between innate and adaptive immune systems under homeostatic condition as well as during infection and inflammation. They are predominantly localized into the mucosal and epithelial sites, but also exist in other peripheral tissues and secondary lymphoid organs. γδ T cells can produce cytokines and chemokines to regulate the migration of other immune cells, can bring about lysis of infected or stressed cells by secreting granzymes, provide help to B cells and induce IgE production, can present antigen to conventional T cells, activate antigen presenting cells (APC) maturation, and are also known to produce growth factors that regulate the stromal cell function. γδ T cells spontaneously produce IFN-γ and IL-17 cytokines compared to delayed differentiation of Th1 and Th17 cells. In this review, we discussed the current knowledge about the mechanism of γδ T cell function including its mode of antigen recognition, and differentiation into various subsets of γδ T cells. We also explored how γδ T cells interact with different types of innate and adaptive immune cells, and how these interactions shape the immune response highlighting the plasticity and role of these cells-protective or pathogenic under inflammatory and tolerogenic conditions.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
40
|
Reynolds JM, Dong C. Toll-like receptor regulation of effector T lymphocyte function. Trends Immunol 2013; 34:511-9. [PMID: 23886621 DOI: 10.1016/j.it.2013.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 12/25/2022]
Abstract
The landmark discovery of pattern-recognition receptors, including Toll-like receptors (TLRs), furthered our understanding on how the host rapidly responds to invading pathogens. For over a decade now, extensive research has demonstrated the crucial role of multiple TLRs in the detection of a broad range of molecules expressed by microbial pathogens as well as host-derived danger signals. TLR activation is the hallmark of the innate immune response. Recent evidence, however, demonstrates that cells of the adaptive immune response use these innate signaling pathways as well. This review discusses recent findings regarding TLR functionality in T lymphocytes with a specific emphasis on the promotion of T helper cell-dependent inflammation through direct TLR signaling.
Collapse
Affiliation(s)
- Joseph M Reynolds
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, 7455 Fannin, Unit 906, Houston, TX 77030, USA; Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay, North Chicago, IL 60064, USA
| | | |
Collapse
|
41
|
McGill JL, Nonnecke BJ, Lippolis JD, Reinhardt TA, Sacco RE. Differential chemokine and cytokine production by neonatal bovine γδ T-cell subsets in response to viral toll-like receptor agonists and in vivo respiratory syncytial virus infection. Immunology 2013; 139:227-44. [PMID: 23368631 DOI: 10.1111/imm.12075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 12/21/2022] Open
Abstract
γδ T cells respond to stimulation via toll-like receptors (TLR). Bovine γδ T cells express TLR3 and TLR7, receptors that are key for the recognition of viruses such as bovine respiratory syncytial virus (BRSV); however, responses of γδ T cells to stimulation via these receptors, and their role during viral infections, remains unclear. Here, we demonstrate that neonatal bovine γδ T cells exhibit robust chemokine and cytokine production in response to the TLR3 agonist, Poly(I:C), and the TLR7 agonist, Imiquimod. Importantly, we observe a similar phenotype in γδ T-cell subsets purified from calves infected with BRSV. Bovine γδ T cells are divided into subsets based upon their expression of WC1, and the response to TLR stimulation and viral infection differs between these subsets, with WC1.1(+) and WC1(neg) γδ T cells producing macrophage inflammatory protein-1α and granulocyte-macrophage colony-stimulating factor, and WC1.2(+) γδ T cells preferentially producing the regulatory cytokines interleukin-10 and transforming growth factor-β. We further report that the active vitamin D metabolite 1,25-dihydroxyvitamin D3 does not alter γδ T-cell responses to TLR agonists or BRSV. To our knowledge, this is the first characterization of the γδ T-cell response during in vivo BRSV infection and the first suggestion that WC1.1(+) and WC1(neg) γδ T cells contribute to the recruitment of inflammatory populations during viral infection. Based on our results, we propose that circulating γδ T cells are poised to rapidly respond to viral infection and suggest an important role for γδ T cells in the innate immune response of the bovine neonate.
Collapse
Affiliation(s)
- Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, Ames, IA 50010, USA.
| | | | | | | | | |
Collapse
|
42
|
Cell mediated innate responses of cattle and swine are diverse during foot-and-mouth disease virus (FMDV) infection: a unique landscape of innate immunity. Immunol Lett 2013; 152:135-43. [PMID: 23727070 PMCID: PMC7112845 DOI: 10.1016/j.imlet.2013.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022]
Abstract
Harnessing the innate immunity can protect domestic animals from viruses. Innate immune cells have potential capacity to afford protection against infection. Understanding the innate and adaptive immunity will aid rational vaccine design.
Pathogens in general and pathogenic viruses in particular have evolved a myriad of mechanisms to escape the immune response of mammalian species. Viruses that cause acute disease tend to bear characteristics that make them very contagious, as survival does not derive from chronicity of infection, but spread of disease throughout the herd. Foot-and-mouth disease virus (FMDV) is one of the most contagious viruses known. Upon infection of susceptible species, cloven-hoofed animals, the virus proliferates rapidly and causes a vesicular disease within 2–4 days. Disease symptoms resolve by 10 days to 2 weeks and in most cases, virus can no longer be detected. Periods of fever and viremia are usually brief, 1–3 days. In vivo control of virus infection and clearance of the virus during and following acute infection is of particular interest. The interaction of this virus with cells mediating the early, innate immune response has been analyzed in a number of recent studies. In most reports, the virus has a distinct inhibitory effect on the response of cells early in infection. Here we review these new data and discuss the dynamics of the interaction of virus with different cell types mediating the immune response to infection.
Collapse
|
43
|
Gamma delta T cells are activated by polysaccharide K (PSK) and contribute to the anti-tumor effect of PSK. Cancer Immunol Immunother 2013; 62:1335-45. [PMID: 23685781 DOI: 10.1007/s00262-013-1436-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
Polysaccharide K (PSK) is a widely used mushroom extract that has shown anti-tumor and immunomodulatory effects in both preclinical and clinical studies. Therefore, it is important to understand the mechanism of actions of PSK. We recently reported that PSK can activate toll-like receptor 2 and enhances the function of NK cells. The current study was undertaken to study the effect of PSK on gamma delta (γδ) T cells, another important arm of the innate immunity. In vitro experiments using mouse splenocytes showed that γδ T cells produce IFN-γ after treatment with PSK and have up-regulated expression of CD25, CD69, and CD107a. To investigate whether the effect of PSK on γδ T cells is direct or indirect, purified γδ T cells were cultured either alone or together with bone marrow-derived DC in a co-culture or trans-well system and then stimulated with PSK. Results showed that direct cell-to-cell contact between γδ T cells and DC is required for optimal activation of γδ T cells. There was also reciprocal activation of DC by PSK-activated γδ T cells, as demonstrated by higher expression of costimulatory molecules and enhanced production of IL-12 by DC in the presence of γδ T cells. PSK can also co-stimulate γδ T cells with anti-TCR and anti-CD3 stimulation, in the absence of DC. Finally, in vivo treatment with PSK activates γδ T cells among the tumor infiltrating lymphocytes, and depleting γδ T cells during PSK treatment attenuated the anti-tumor effect of PSK. All together, these results demonstrated that γδ T cells are activated by PSK and contribute to the anti-tumor effect of PSK.
Collapse
|
44
|
Enriching pathogen transcripts from infected samples: a capture-based approach to enhanced host-pathogen RNA sequencing. Anal Biochem 2013; 438:90-6. [PMID: 23535274 DOI: 10.1016/j.ab.2013.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/06/2013] [Accepted: 03/08/2013] [Indexed: 01/22/2023]
Abstract
To fully understand the interactions of a pathogen with its host, it is necessary to analyze the RNA transcripts of both the host and pathogen throughout the course of an infection. Although this can be accomplished relatively easily on the host side, the analysis of pathogen transcripts is complicated by the overwhelming amount of host RNA isolated from an infected sample. Even with the read depth provided by second-generation sequencing, it is extremely difficult to get enough pathogen reads for an effective gene-level analysis. In this study, we describe a novel capture-based technique and device that considerably enriches for pathogen transcripts from infected samples. This versatile method can, in principle, enrich for any pathogen in any infected sample. To test the technique's efficacy, we performed time course tissue culture infections using Rift Valley fever virus and Francisella tularensis. At each time point, RNA sequencing (RNA-Seq) was performed and the results of the treated samples were compared with untreated controls. The capture of pathogen transcripts, in all cases, led to more than an order of magnitude enrichment of pathogen reads, greatly increasing the number of genes hit, the coverage of those genes, and the depth at which each transcript was sequenced.
Collapse
|
45
|
Hedges JF, Kimmel E, Snyder DT, Jerome M, Jutila MA. Solute carrier 11A1 is expressed by innate lymphocytes and augments their activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4263-73. [PMID: 23509347 DOI: 10.4049/jimmunol.1200732] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Solute carrier 11A1 (SLC11A1) is a divalent ion transporter formerly known as the natural resistance-associated macrophage protein (NRAMP1) and the Bcg/Lsh/Ity locus. SLC11A1 was thought to be exclusively expressed in monocyte/macrophages and to have roles in phagosome maturation and cell activation. We characterized the expression of SLC11A1 in the majority of human and bovine γδ T cells and NK cells and in human CD3(+)CD45RO(+) T cells. Consistent with a role for iron-dependent inhibition of protein tyrosine phosphatases, SLC11A1(+) lymphocytes were more prone to activation and retained tyrosine phosphorylation. Transfection of SLC11A1 into a human γδ T cell-like line rendered the cells more prone to activation. Nonadherent splenocytes from wild-type mice expressed significantly greater IFN-γ compared with cells from Sv/129 (SLC11A1(-/-)) mice. Our data suggest that SLC11A1 has a heretofore unknown role in activation of a large subset of innate lymphocytes that are critical sources of IFN-γ. SLC11A1(+) animals have enhanced innate IFN-γ expression in response to Salmonella infection compared with SLC11A1(-) mice, which include commonly used inbred laboratory mice. Expression of SLC11A1 in innate lymphocytes and its role in augmenting their activation may account for inconsistencies in studies of innate lymphocytes in different animal models.
Collapse
Affiliation(s)
- Jodi F Hedges
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59718, USA.
| | | | | | | | | |
Collapse
|
46
|
Parlakgul G, Guney E, Erer B, Kılıcaslan Z, Direskeneli H, Gul A, Saruhan-Direskeneli G. Expression of regulatory receptors on γδ T cells and their cytokine production in Behcet's disease. Arthritis Res Ther 2013; 15:R15. [PMID: 23336215 PMCID: PMC3672743 DOI: 10.1186/ar4147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Behcet's disease (BD) is a multi-systemic disorder with muco-cutaneous, ocular, arthritic, vascular or central nervous system involvement. The role of γδ T cells is implicated in BD. The activation status of γδ T cells and their cytokine secretion against phosphoantigens are evaluated in BD. METHODS NKG2A, NKG2C, NKG2D, CD16 and CCR7 molecules on γδ T cells were analyzed in 70 BD, 27 tuberculosis (TB) patients and 26 healthy controls (HC). Peripheral γδ T cells were expanded with a phosphoantigen (BrHPP) and IL-2, restimulated with BrHPP and a TLR3 ligand, and cytokine production was measured. RESULTS γδ T cells were not increased in both BD and TB patients, but the proportions of TCRVδ2+ T cells were lower (58.9 and 50.7 vs. 71.7%, P=0.04 and P=0.005) compared to HC. Higher proportion of TCRVδ2+ T cells were CD16+ (26.2 and 33.9 vs. 16.6%, P=0.02 and P=0.001) and CCR7- (32.2 and 27.9 vs. 17.7%, P<0.0001 and P=0.014) in BD and TB patients compared to HC. NKG2C+ γδ+ T cells were relatively increased (0.5 and 0.6 vs. 0.3%, P=0.008 and 0.018), whereas NKG2D positivity was decreased in patients with BD and TB (77.7 and 75.8 vs. 87.5%, P=0.001 and 0.004). Expansion capacity of γδ T cells in BD and TB as well as production of IL-13, IFN-γ, granulocyte monocyte colony stimulating factor (GM-CSF), TNF-α, CCL4 and CCL5 in BD was lower compared to HC, when restimulated by TLR3 ligand and BrHPP. CONCLUSION The changes on γδ T cells of BD as well as TB patients implicate that γδ T cells have already been exposed to regulatory effects, which changed their activity. Lower cytokine response of γδ T cells implicates down modulation of these cells in BD.
Collapse
|
47
|
Holderness J, Hedges JF, Ramstead A, Jutila MA. Comparative biology of γδ T cell function in humans, mice, and domestic animals. Annu Rev Anim Biosci 2013; 1:99-124. [PMID: 25387013 DOI: 10.1146/annurev-animal-031412-103639] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
γδ T cells are a functionally heterogeneous population and contribute to many early immune responses. The majority of their activity is described in humans and mice, but the immune systems of all jawed vertebrates include the γδ T cell lineage. Although some aspects of γδ T cells vary between species, critical roles in early immune responses are often conserved. Common features of γδ T cells include innate receptor expression, antigen presentation, cytotoxicity, and cytokine production. Herein we compare studies describing these conserved γδ T cell functions and other, potentially unique, functions. γδ T cells are well documented for their potential immunotherapeutic properties; however, these proposed therapies are often focused on human diseases and the mouse models thereof. This review consolidates some of these studies with those in other animals to provide a consensus for the current understanding of γδ T cell function across species.
Collapse
Affiliation(s)
- Jeff Holderness
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana 59717; , , ,
| | | | | | | |
Collapse
|
48
|
Plattner BL, Huffman EL, Hostetter JM. Gamma-delta T-cell responses during subcutaneous Mycobacterium avium subspecies paratuberculosis challenge in sensitized or naive calves using matrix biopolymers. Vet Pathol 2012; 50:630-7. [PMID: 23051915 DOI: 10.1177/0300985812463404] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have developed a model to explore the early immune response against Mycobacterium avium subspecies paratuberculosis (Map) infection in the bovine calf using subcutaneously placed liquid gel matrix biopolymer (matrigel) containing live Map. Matrigel rapidly polymerizes in vivo, retains recruited cellular infiltrates and soluble immune mediators, and can be rapidly removed 48 hours later and depolymerized for analysis. In this study, we examined early host immune events at matrigel/Map sites; recruited cells were evaluated by histopathology and flow cytometry, and cytokines were measured by flow cytometry, enzyme-linked immunosorbent assay, and Luminex bead immunoassay. Our results demonstrate earlier recruitment of gamma-delta (γδ) T cells to matrigel/Map challenge sites compared to CD4+ T cells. We also show that significantly more γδ T cells were recruited to matrigel/Map sites postinfection day 7 compared to postinfection day 30 and that these cells produced significant amounts of the cytokine interferon gamma. We also provide evidence that peripheral blood-derived γδ T-cell subsets in cattle differentially generate interferon gamma, suggesting distinct roles for these cells. These data provide unique insight into initial antimycobacterial host cellular immune responses following Map infection in calves.
Collapse
Affiliation(s)
- B L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| | | | | |
Collapse
|
49
|
|
50
|
Nantz MP, Rowe CA, Muller CE, Creasy RA, Stanilka JM, Percival SS. Supplementation with aged garlic extract improves both NK and γδ-T cell function and reduces the severity of cold and flu symptoms: A randomized, double-blind, placebo-controlled nutrition intervention. Clin Nutr 2012; 31:337-44. [DOI: 10.1016/j.clnu.2011.11.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/30/2011] [Accepted: 11/24/2011] [Indexed: 12/14/2022]
|