1
|
Zhang T, Zou L. Enhancers in T Cell development and malignant lesions. Cell Death Discov 2024; 10:406. [PMID: 39284807 PMCID: PMC11405840 DOI: 10.1038/s41420-024-02160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Enhancers constitute a vital category of cis-regulatory elements with a Mediator complex within DNA sequences, orchestrating gene expression by activating promoters. In the development of T cells, some enhancers regulate the critical genes, which might also regulate T cell malignant lesions. This review is to comprehensively elucidate the contributions of enhancers in both normal T cell development and its malignant pathogenesis, proposing the idea that the precise subunits of the Mediator complex are the potential drug target for disrupting the specific gene enhancer for T cell malignant diseases.
Collapse
Affiliation(s)
- Tong Zhang
- Clinical Medicine Research Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Postgraduate School in Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Lin Zou
- Clinical Medicine Research Department, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China.
| |
Collapse
|
2
|
Li C, Lanasa D, Park JH. Pathways and mechanisms of CD4 +CD8αα + intraepithelial T cell development. Trends Immunol 2024; 45:288-302. [PMID: 38514370 PMCID: PMC11015970 DOI: 10.1016/j.it.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
The mammalian small intestine epithelium harbors a peculiar population of CD4+CD8αα+ T cells that are derived from mature CD4+ T cells through reprogramming of lineage-specific transcription factors. CD4+CD8αα+ T cells occupy a unique niche in T cell biology because they exhibit mixed phenotypes and functional characteristics of both CD4+ helper and CD8+ cytotoxic T cells. The molecular pathways driving their generation are not fully mapped. However, recent studies demonstrate the unique role of the commensal gut microbiota as well as distinct cytokine and chemokine requirements in the differentiation and survival of these cells. We review the established and newly identified factors involved in the generation of CD4+CD8αα+ intraepithelial lymphocytes (IELs) and place them in the context of the molecular machinery that drives their phenotypic and functional differentiation.
Collapse
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Lanasa
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Gülich AF, Preglej T, Hamminger P, Alteneder M, Tizian C, Orola MJ, Muroi S, Taniuchi I, Ellmeier W, Sakaguchi S. Differential Requirement of Cd8 Enhancers E8 I and E8 VI in Cytotoxic Lineage T Cells and in Intestinal Intraepithelial Lymphocytes. Front Immunol 2019; 10:409. [PMID: 30915074 PMCID: PMC6421288 DOI: 10.3389/fimmu.2019.00409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/15/2019] [Indexed: 01/15/2023] Open
Abstract
CD8 expression in T lymphocytes is tightly regulated by the activity of at least six Cd8 enhancers (E8I-E8VI), however their complex developmental stage-, subset-, and lineage-specific interplays are incompletely understood. Here we analyzed ATAC-seq data on the Immunological Genome Project database and identified a similar developmental regulation of chromatin accessibility of a subregion of E8I, designated E8I-core, and of E8VI. Loss of E8I-core led to a similar reduction in CD8 expression in naïve CD8+ T cells and in IELs as observed in E8 I -/- mice, demonstrating that we identified the core enhancer region of E8I. While E8 VI -/- mice displayed a mild reduction in CD8 expression levels on CD8SP thymocytes and peripheral CD8+ T cells, CD8 levels were further reduced upon combined deletion of E8I-core and E8VI. Moreover, activated E8 I -core-/- E8 VI -/- CD8+ T cells lost CD8 expression to a greater degree than E8 I -core-/- and E8 VI -/- CD8+ T cells, suggesting that the combined activity of both enhancers is required for establishment and maintenance of CD8 expression before and after TCR activation. Finally, we observed a severe reduction of CD4 CTLs among the TCRβ+CD4+ IEL population in E8 I -core-/- but not E8 VI -/- mice. Such a reduction was not observed in Cd8a -/- mice, indicating that E8I-core controls the generation of CD4 CTLs independently of its role in Cd8a gene regulation. Further, the combined deletion of E8I-core and E8VI restored CD4 CTL subsets, suggesting an antagonistic function of E8VI in the generation of CD4 CTLs. Together, our study demonstrates a complex utilization and interplay of E8I-core and E8VI in regulating CD8 expression in cytotoxic lineage T cells and in IELs. Moreover, we revealed a novel E8I-mediated regulatory mechanism controlling the generation of intestinal CD4 CTLs.
Collapse
Affiliation(s)
- Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Caroline Tizian
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maria Jonah Orola
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Li H, Tsokos MG, Bickerton S, Sharabi A, Li Y, Moulton VR, Kong P, Fahmy TM, Tsokos GC. Precision DNA demethylation ameliorates disease in lupus-prone mice. JCI Insight 2018; 3:120880. [PMID: 30135300 DOI: 10.1172/jci.insight.120880] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022] Open
Abstract
Defective DNA methylation in T cells leads to a series of T cell abnormalities in lupus; however, the full effect of T cell lineage-specific DNA methylation on disease expression has not been explored. Here, we show that 5-azacytidine, a DNA methyltransferase inhibitor, targeted to either CD4 or CD8 T cells in mice with established disease using a nanolipogel delivery system dramatically ameliorates lupus-related pathology through distinct mechanisms. In vivo targeted delivery of 5-azacytidine into CD4 T cells favors the expansion and function of Foxp3+ Tregs, whereas targeted delivery to CD8 T cells enhances the cytotoxicity and restrains the expansion of pathogenic TCR-αβ+CD4-CD8- double-negative T cells. Our results signify the importance of cell-specific inhibition of DNA methylation in the treatment of established lupus.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Amir Sharabi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Vaishali R Moulton
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Tarek M Fahmy
- Department of Biomedical Engineering.,Department of Immunobiology, and.,Department of Chemical and Environmental Engineering, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Issuree PDA, Ng CP, Littman DR. Heritable Gene Regulation in the CD4:CD8 T Cell Lineage Choice. Front Immunol 2017; 8:291. [PMID: 28382035 PMCID: PMC5360760 DOI: 10.3389/fimmu.2017.00291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 12/04/2022] Open
Abstract
The adaptive immune system is dependent on functionally distinct lineages of T cell antigen receptor αβ-expressing T cells that differentiate from a common progenitor in the thymus. CD4+CD8+ progenitor thymocytes undergo selection following interaction with MHC class I and class II molecules bearing peptide self-antigens, giving rise to CD8+ cytotoxic and CD4+ helper or regulatory T cell lineages, respectively. The strict correspondence of CD4 and CD8 expression with distinct cellular phenotypes has made their genes useful surrogates for investigating molecular mechanisms of lineage commitment. Studies of Cd4 and Cd8 transcriptional regulation have uncovered cis-regulatory elements that are critical for mediating epigenetic modifications at distinct stages of development to establish heritable transcriptional programs. In this review, we examine the epigenetic mechanisms involved in Cd4 and Cd8 gene regulation during T cell lineage specification and highlight the features that make this an attractive system for uncovering molecular mechanisms of heritability.
Collapse
Affiliation(s)
- Priya D A Issuree
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine , New York, NY , USA
| | - Charles P Ng
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine , New York, NY , USA
| | - Dan R Littman
- The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, Bilic I, Moser MA, Hainberger D, Mayer H, Seiser C, Bergthaler A, Taniuchi I, Ellmeier W. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol 2014; 97:635-44. [PMID: 25548254 DOI: 10.1189/jlb.1hi1113-597rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CD8 coreceptor expression is dynamically regulated during thymocyte development and is tightly controlled by the activity of at least 5 different cis-regulatory elements. Despite the detailed characterization of the Cd8 loci, the regulation of the complex expression pattern of CD8 cannot be fully explained by the activity of the known Cd8 enhancers. In this study, we revisited the Cd8ab gene complex with bioinformatics and transgenic reporter gene expression approaches to search for additional Cd8 cis-regulatory elements. This led to the identification of an ECR (ECR-4), which in transgenic reporter gene expression assays, directed expression preferentially in CD44(hi)CD62L(+) CD8(+) T cells, including innate-like CD8(+) T cells. ECR-4, designated as Cd8 enhancer E8VI, was bound by Runx/CBFβ complexes and Bcl11b, indicating that E8VI is part of the cis-regulatory network that recruits transcription factors to the Cd8ab gene complex in CD8(+) T cells. Transgenic reporter expression was maintained in LCMV-specific CD8(+) T cells upon infection, although short-term, in vitro activation led to a down-regulation of E8VI activity. Finally, E8VI directed transgene expression also in CD8αα(+) DCs but not in CD8αα-expressing IELs. Taken together, we have identified a novel Cd8 enhancer that directs expression in CD44(hi)CD62L(+) CD8(+) T cells, including innate-like and antigen-specific effector/memory CD8(+) T cells and in CD8αα(+) DCs, and thus, our data provide further insight into the cis-regulatory networks that control CD8 expression.
Collapse
Affiliation(s)
- Shinya Sakaguchi
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Matthias Hombauer
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hammad Hassan
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hirokazu Tanaka
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nighat Yasmin
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Yoshinori Naoe
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ivan Bilic
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mirjam A Moser
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Daniela Hainberger
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Herbert Mayer
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christian Seiser
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andreas Bergthaler
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ichiro Taniuchi
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wilfried Ellmeier
- *Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Department of Medical Biochemistry, Max F. Perutz Laboratories, Vienna Biocenter, and Institute of Vascular Biology, Medical University of Vienna, Austria; Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; and CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
7
|
Histone acetylation mediated by Brd1 is crucial for Cd8 gene activation during early thymocyte development. Nat Commun 2014; 5:5872. [PMID: 25519988 DOI: 10.1038/ncomms6872] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/14/2014] [Indexed: 11/08/2022] Open
Abstract
During T-cell development, Cd8 expression is controlled via dynamic regulation of its cis-regulatory enhancer elements. Insufficiency of enhancer activity causes variegated Cd8 expression in CD4(+)CD8(+) double-positive (DP) thymocytes. Brd1 is a subunit of the Hbo1 histone acetyltransferase (HAT) complex responsible for acetylation of histone H3 at lysine 14 (H3K14). Here we show that deletion of Brd1 in haematopoietic progenitors causes variegated expression of Cd8, resulting in the appearance of CD4(+)CD8(-)TCRβ(-/low) thymocytes indistinguishable from DP thymocytes in their properties. Biochemical analysis confirms that Brd1 forms a HAT complex with Hbo1 in thymocytes. ChIP analysis demonstrates that Brd1 localizes at the known enhancers in the Cd8 genes and is responsible for acetylation at H3K14. These findings indicate that the Brd1-mediated HAT activity is crucial for efficient activation of Cd8 expression via acetylation at H3K14, which serves as an epigenetic mark that promotes the recruitment of transcription machinery to the Cd8 enhancers.
Collapse
|
8
|
DNA methylation and regulation of the CD8A after duck hepatitis virus type 1 infection. PLoS One 2014; 9:e88023. [PMID: 24505360 PMCID: PMC3913717 DOI: 10.1371/journal.pone.0088023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/02/2014] [Indexed: 11/19/2022] Open
Abstract
Background Cluster of differentiation 8 (CD8) is expressed in cytotoxic T cells, where it functions as a co-receptor for the T-cell receptor by binding to major histocompatibility complex class I (MHCI) proteins, which present peptides on the cell surface. CD8A is critical for cell-mediated immune defense and T-cell development. CD8A transcription is controlled by several cis-acting elements and trans-acting elements and is also regulated by DNA methylation. However, the epigenetic regulation of CD8A in the duck and its relationship with virus infection are still unclear. Results We investigated the epigenetic transcriptional regulatory mechanisms, such as DNA methylation, for the expression of the CD8A and further evaluated the contribution of such epigenetic regulatory mechanisms to DHV-I infection in the duck. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed the highest level of CD8A expression to be in the thymus, followed by the lungs, spleen, and liver, and the levels of CD8A expression were very low in the kidney, cerebrum, cerebellum, and muscle in the duck. RT-qPCR also demonstrated that the CD8A mRNA was down-regulated significantly in morbid ducklings treated with DHV-1 and up-regulated significantly in non-morbid ducklings in all the tissues tested. In addition, hypermethylation of CD8A was detected in the morbid ducklings, whereas relatively low methylation of CD8A was evident in the non-morbid ducklings. The CD8A mRNA level was negatively associated with the CpG methylation level of CD8A and global methylation status. Conclusions We concluded that the mRNA level of the CD8A was negatively associated with the CpG methylation level of CD8A and global methylation status in the duck, suggesting that the hypermethylation of CD8A may be associated with DHV-1 infection. The first two CpG sites of the CD8A promoter region could be considered as epigenetic biomarkers for resistance breeding against duckling hepatitis disease in the duck.
Collapse
|
9
|
Hedrich CM, Crispín JC, Rauen T, Ioannidis C, Koga T, Rodriguez Rodriguez N, Apostolidis SA, Kyttaris VC, Tsokos GC. cAMP responsive element modulator (CREM) α mediates chromatin remodeling of CD8 during the generation of CD3+ CD4- CD8- T cells. J Biol Chem 2013; 289:2361-70. [PMID: 24297179 DOI: 10.1074/jbc.m113.523605] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
TCR-αβ(+)CD3(+)CD4(-)CD8(-) "double negative" T cells are expanded in the peripheral blood of patients with systemic lupus erythematosus (SLE) and lupus-prone mice. Double negative T cells have been claimed to derive from CD8(+) cells that down-regulate CD8 co-receptors and acquire a distinct effector phenotype that includes the expression of proinflammatory cytokines. This, along with the fact that double negative T cells have been documented in inflamed organs, suggests that they may contribute to disease expression and tissue damage. We recently linked the transcription factor cAMP responsive element modulator (CREM) α, which is expressed at increased levels in T cells from SLE patients and lupus prone MRL/lpr mice, with trans-repression of a region syntenic to the murine CD8b promoter. However, the exact molecular mechanisms that result in a stable silencing of both CD8A and CD8B genes remain elusive. Here, we demonstrate that CREMα orchestrates epigenetic remodeling of the CD8 cluster through the recruitment of DNA methyltransferase (DNMT) 3a and histone methyltransferase G9a. Thus, we propose that CREMα is essential for the expansion of double negative T cells in SLE. CREMα blockade may have therapeutic value in autoimmune disorders with DN T cell expansion.
Collapse
Affiliation(s)
- Christian M Hedrich
- From the Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hedrich CM, Rauen T, Crispin JC, Koga T, Ioannidis C, Zajdel M, Kyttaris VC, Tsokos GC. cAMP-responsive element modulator α (CREMα) trans-represses the transmembrane glycoprotein CD8 and contributes to the generation of CD3+CD4-CD8- T cells in health and disease. J Biol Chem 2013; 288:31880-7. [PMID: 24047902 DOI: 10.1074/jbc.m113.508655] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
T cell receptor-αβ(+) CD3(+)CD4(-)CD8(-) "double-negative" T cells are expanded in the peripheral blood of patients with systemic lupus erythematosus and autoimmune lymphoproliferative syndrome. In both disorders, double-negative T cells infiltrate tissues, induce immunoglobulin production, and secrete proinflammatory cytokines. Double-negative T cells derive from CD8(+) T cells through down-regulation of CD8 surface co-receptors. However, the molecular mechanisms orchestrating this process remain unclear. Here, we demonstrate that the transcription factor cAMP-responsive element modulator α (CREMα), which is expressed at increased levels in T cells from systemic lupus erythematosus patients, contributes to transcriptional silencing of CD8A and CD8B. We provide the first evidence that CREMα trans-represses a regulatory element 5' of the CD8B gene. Therefore, CREMα represents a promising candidate in the search for biomarkers and treatment options in diseases in which double-negative T cells contribute to the pathogenesis.
Collapse
Affiliation(s)
- Christian M Hedrich
- From the Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013; 70:4537-53. [PMID: 23793512 PMCID: PMC3827898 DOI: 10.1007/s00018-013-1393-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 11/24/2022]
Abstract
The differentiation and function of peripheral helper and cytotoxic T cell lineages is coupled with the expression of CD4 and CD8 coreceptor molecules, respectively. This indicates that the control of coreceptor gene expression is closely linked with the regulation of CD4/CD8 lineage decision of DP thymocytes. Research performed during the last two decades revealed comprehensive mechanistic insight into the developmental stage- and subset/lineage-specific regulation of Cd4, Cd8a and Cd8b1 (Cd8) gene expression. These studies provided important insight into transcriptional control mechanisms during T cell development and into the regulation of cis-regulatory networks in general. Moreover, the identification of transcription factors involved in the regulation of CD4 and CD8 significantly advanced the knowledge of the transcription factor network regulating CD4/CD8 cell-fate choice of DP thymocytes. In this review, we provide an overview of the identification and characterization of CD4/CD8 cis-regulatory elements and present recent progress in our understanding of how these cis-regulatory elements control CD4/CD8 expression during T cell development and in peripheral T cells. In addition, we describe the transcription factors implicated in the regulation of coreceptor gene expression and discuss how these factors are integrated into the transcription factor network that regulates CD4/CD8 cell-fate choice of DP thymocytes.
Collapse
|
12
|
Adoro S, McCaughtry T, Erman B, Alag A, Van Laethem F, Park JH, Tai X, Kimura M, Wang L, Grinberg A, Kubo M, Bosselut R, Love P, Singer A. Coreceptor gene imprinting governs thymocyte lineage fate. EMBO J 2011; 31:366-77. [PMID: 22036949 PMCID: PMC3261554 DOI: 10.1038/emboj.2011.388] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 09/28/2011] [Indexed: 11/30/2022] Open
Abstract
Double-positive (CD4+CD8+) thymocytes differentiate into CD4+ helper T cells and CD8+ cytotoxic T cells. A knock-in approach replacing CD8-coding sequences with CD4 cDNA shows that it is the expression kinetics of CD8, and not the identity of the coreceptor, that governs thymocyte-lineage fate. Immature thymocytes are bipotential cells that are signalled during positive selection to become either helper- or cytotoxic-lineage T cells. By tracking expression of lineage determining transcription factors during positive selection, we now report that the Cd8 coreceptor gene locus co-opts any coreceptor protein encoded within it to induce thymocytes to express the cytotoxic-lineage factor Runx3 and to adopt the cytotoxic-lineage fate, findings we refer to as ‘coreceptor gene imprinting'. Specifically, encoding CD4 proteins in the endogenous Cd8 gene locus caused major histocompatibility complex class II-specific thymocytes to express Runx3 during positive selection and to differentiate into CD4+ cytotoxic-lineage T cells. Our findings further indicate that coreceptor gene imprinting derives from the dynamic regulation of specific cis Cd8 gene enhancer elements by positive selection signals in the thymus. Thus, for coreceptor-dependent thymocytes, lineage fate is determined by Cd4 and Cd8 coreceptor gene loci and not by the specificity of T-cell antigen receptor/coreceptor signalling. This study identifies coreceptor gene imprinting as a critical determinant of lineage fate determination in the thymus.
Collapse
Affiliation(s)
- Stanley Adoro
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cd8 enhancer E8I and Runx factors regulate CD8α expression in activated CD8+ T cells. Proc Natl Acad Sci U S A 2011; 108:18330-5. [PMID: 22025728 DOI: 10.1073/pnas.1105835108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cd8a and Cd8b1 coreceptor gene (Cd8) expression is tightly controlled during T-cell development by the activity of five Cd8 enhancers (E8(I)-E8(V)). Here we demonstrate a unique transcriptional program regulating CD8 expression during CD8(+) effector T-cell differentiation. The Cd8 enhancer E8(I) and Runx/core-binding factor-β (CBFβ) complexes were required for the establishment of this regulatory circuit, because E8(I)-, Runx3-, or CBFβ-deficient CD8(+) T cells down-regulated CD8α expression during activation. This finding correlated with enhanced repressive histone marks at the Cd8a promoter in the absence of E8(I), and the down-regulation of CD8α expression could be blocked by treating E8(I)-, Runx3-, or CBFβ-deficient CD8(+) T cells with the histone deacetylase inhibitor trichostatin A. Moreover, Runx/CBFβ complexes bound the Cd8ab gene cluster in activated CD8(+) T cells, suggesting direct control of the Cd8a locus. However, CD8(+) effector T cells maintained high levels of CD8α when CBFβ was conditionally deleted after activation. Thus, our data suggest an E8(I)- and Runx3/CBFβ-dependent epigenetic programming of the Cd8a locus during T-cell activation, leading to Runx/CBFβ complex-independent maintenance of CD8α expression in effector T cells.
Collapse
|
14
|
Calvanese V, Fernández AF, Urdinguio RG, Suárez-Alvarez B, Mangas C, Pérez-García V, Bueno C, Montes R, Ramos-Mejía V, Martínez-Camblor P, Ferrero C, Assenov Y, Bock C, Menendez P, Carrera AC, Lopez-Larrea C, Fraga MF. A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res 2011; 40:116-31. [PMID: 21911366 PMCID: PMC3245917 DOI: 10.1093/nar/gkr685] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Global mechanisms defining the gene expression programs specific for hematopoiesis are still not fully understood. Here, we show that promoter DNA demethylation is associated with the activation of hematopoietic-specific genes. Using genome-wide promoter methylation arrays, we identified 694 hematopoietic-specific genes repressed by promoter DNA methylation in human embryonic stem cells and whose loss of methylation in hematopoietic can be associated with gene expression. The association between promoter methylation and gene expression was studied for many hematopoietic-specific genes including CD45, CD34, CD28, CD19, the T cell receptor (TCR), the MHC class II gene HLA-DR, perforin 1 and the phosphoinositide 3-kinase (PI3K) and results indicated that DNA demethylation was not always sufficient for gene activation. Promoter demethylation occurred either early during embryonic development or later on during hematopoietic differentiation. Analysis of the genome-wide promoter methylation status of induced pluripotent stem cells (iPSCs) generated from somatic CD34+ HSPCs and differentiated derivatives from CD34+ HSPCs confirmed the role of DNA methylation in regulating the expression of genes of the hemato-immune system, and indicated that promoter methylation of these genes may be associated to stemness. Together, these data suggest that promoter DNA demethylation might play a role in the tissue/cell-specific genome-wide gene regulation within the hematopoietic compartment.
Collapse
Affiliation(s)
- Vincenzo Calvanese
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, Cantoblanco, Madrid E-28049, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chatterjee S, Lufkin T. Fishing for function: zebrafish BAC transgenics for functional genomics. MOLECULAR BIOSYSTEMS 2011; 7:2345-51. [PMID: 21647532 DOI: 10.1039/c1mb05116d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transgenics using bacterial artificial chromosomes (BACs) offers a great opportunity to look at gene regulation in a developing embryo. The modified BAC containing a reporter inserted just before the translational start site of the gene of interest allows for the visualization of spatio-temporal gene expression. Though this method has been used in the mouse model extensively, its utility in zebrafish studies is relatively new. This review aims to look at the utility of making BAC transgenics in zebrafish and its applications in functional genomics. We look at the various methods to modify the BAC, some limitations and what the future holds.
Collapse
Affiliation(s)
- Sumantra Chatterjee
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore
| | | |
Collapse
|
16
|
Harker N, Garefalaki A, Menzel U, Ktistaki E, Naito T, Georgopoulos K, Kioussis D. Pre-TCR signaling and CD8 gene bivalent chromatin resolution during thymocyte development. THE JOURNAL OF IMMUNOLOGY 2011; 186:6368-77. [PMID: 21515796 DOI: 10.4049/jimmunol.1003567] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CD8 gene is silent in CD4(-)CD8(-) double-negative thymocytes, expressed in CD4(+)CD8(+) double-positive cells, and silenced in cells committing to the CD4(+) single-positive (SP) lineage, remaining active in the CD8(+) SP lineage. In this study, we show that the chromatin of the CD8 locus is remodeled in C57BL/6 and B6/J Rag1(-/-) MOM double-negative thymocytes as indicated by DNaseI hypersensitivity and widespread bivalent chromatin marks. Pre-TCR signaling coincides with chromatin bivalency resolution into monovalent activating modifications in double-positive and CD8 SP cells. Shortly after commitment to CD4 SP cell lineage, monovalent repressive characteristics and chromatin inaccessibility are established. Differential binding of Ikaros, NuRD, and heterochromatin protein 1α on the locus during these processes may participate in the complex regulation of CD8.
Collapse
Affiliation(s)
- Nicola Harker
- Division of Molecular Immunology, National Institute for Medical Research, Medical Research Council, London NW7 1AA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
17
|
The epigenetic landscape of lineage choice: lessons from the heritability of CD4 and CD8 expression. Curr Top Microbiol Immunol 2011; 356:165-88. [PMID: 21989924 PMCID: PMC4417357 DOI: 10.1007/82_2011_175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Developing αβ T cells choose between the helper and cytotoxic lineages, depending upon the specificity of their T cell receptors for MHC molecules. The expression of the CD4 co-receptor on helper cells and the CD8 co-receptor on cytotoxic cells is intimately linked to this decision, and their regulation at the transcriptional level has been the subject of intense study to better understand lineage choice. Indeed, as the fate of developing T cells is decided, the expression status of these genes is accordingly locked. Genetic models have revealed important transcriptional elements and the ability to manipulate these elements in the framework of development has added a new perspective on the temporal nature of their function and the epigenetic maintenance of gene expression. We examine here novel insights into epigenetic mechanisms that have arisen through the study of these genes.
Collapse
|
18
|
Abstract
The helper versus cytotoxic-lineage choice of CD4(+)CD8(+) DP thymocytes correlates with MHC restriction of their T cell receptors and the termination of either CD8 or CD4 coreceptor expression. It has been hypothesized that transcription factors regulating the expression of the Cd4/Cd8 coreceptor genes must play a role in regulating the lineage decision of DP thymocytes. Indeed, progress made during the past decade led to the identification of several transcription factors that regulate CD4/CD8 expression that are as well important regulators of helper/cytotoxic cell fate choice. These studies provided insight into the molecular link between the regulation of coreceptor expression and lineage decision. However, studies initiated by the identification of ThPOK, a central transcription factor for helper T cell development, have offered another perspective on the cross-regulation between these two processes. Here, we review advances in our understanding of regulatory circuits composed of transcription factors and their link to epigenetic mechanisms, which play essential roles in specifying and sealing cell lineage identity during the CD4/CD8 commitment process of DP thymocytes.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, Research Center for Allergy and Immunology, RIKEN, Suehiro-cho, Turumi-ku, Yokohama, Kanagawa, Japan
| | | |
Collapse
|
19
|
Yao X, Nie H, Rojas IC, Harriss JV, Maika SD, Gottlieb PD, Rathbun G, Tucker PW. The L2a element is a mouse CD8 silencer that interacts with MAR-binding proteins SATB1 and CDP. Mol Immunol 2010; 48:153-63. [PMID: 20884053 DOI: 10.1016/j.molimm.2010.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/29/2010] [Accepted: 08/24/2010] [Indexed: 02/07/2023]
Abstract
Previous transgenic-reporter and targeted-deletion studies indicate that the subset-specific expression of CD8αβ heterodimers is controlled by multiple enhancer activities, since no silencer elements had been found within the locus. We have identified such a silencer as L2a, a previously characterized ∼ 220 bp nuclear matrix associating region (MAR) located ∼ 4.5 kb upstream of CD8α. L2a transgenes driven by the E8(I) enhancer showed no reporter expression in thymic subsets or T cells in splenic, inguinal and mesenteric lymph node peripheral T cells. Deletion of L2a resulted in significant reporter de-repression, even in the CD4(+)CD8(+) double positive (DP) thymocyte population. L2a contains binding sites for two MAR-interacting proteins, SATB1 and CDP. We found that that binding of these factors was markedly influenced by the content and spacing of L2a sub-motifs (L and S) and that SATB1 binds preferentially to the L motif both in vitro and in vivo. A small fraction of the transgenic CD8 single positive (SP) thymocytes and peripheral CD8(+) T cells bypassed L2a-silencing to give rise to variegated expression of the transgenic reporter. Crossing the L2a-containing transgene onto a SATB1 knockdown background enhanced variegated expression, suggesting that SATB1 is critical in overcoming L2a-silenced transcription.
Collapse
Affiliation(s)
- Xin Yao
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78721-0162, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhang S, Rozell M, Verma RK, Albu DI, Califano D, VanValkenburgh J, Merchant A, Rangel-Moreno J, Randall TD, Jenkins NA, Copeland NG, Liu P, Avram D. Antigen-specific clonal expansion and cytolytic effector function of CD8+ T lymphocytes depend on the transcription factor Bcl11b. ACTA ACUST UNITED AC 2010; 207:1687-99. [PMID: 20660613 PMCID: PMC2916134 DOI: 10.1084/jem.20092136] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CD8(+) T lymphocytes mediate the immune response to viruses, intracellular bacteria, protozoan parasites, and tumors. We provide evidence that the transcription factor Bcl11b/Ctip2 controls hallmark features of CD8(+) T cell immunity, specifically antigen (Ag)-dependent clonal expansion and cytolytic activity. The reduced clonal expansion in the absence of Bcl11b was caused by altered proliferation during the expansion phase, with survival remaining unaffected. Two genes with critical roles in TCR signaling were deregulated in Bcl11b-deficient CD8(+) T cells, CD8 coreceptor and Plcgamma1, both of which may contribute to the impaired responsiveness. Bcl11b was found to bind the E8I, E8IV, and E8V, but not E8II or E8III, enhancers. Thus, Bcl11b is one of the transcription factors implicated in the maintenance of optimal CD8 coreceptor expression in peripheral CD8(+) T cells through association with specific enhancers. Short-lived Klrg1(hi)CD127(lo) effector CD8(+) T cells were formed during the course of infection in the absence of Bcl11b, albeit in smaller numbers, and their Ag-specific cytolytic activity on a per-cell basis was altered, which was associated with reduced granzyme B and perforin.
Collapse
Affiliation(s)
- Shuning Zhang
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
During alphabeta T cell development, cells diverge into alternate CD4 helper and CD8(+) cytotoxic T cell lineages. The precise correlation between a T cell's CD8 and CD4 choice and its TCR specificity to class I or class II MHC was noted more than 20 years ago, and establishing the underlying mechanism has remained a focus of intense study since then. This review deals with three formerly discrete topics that are gradually becoming interconnected: the role of TCR signaling in lineage commitment, the regulation of expression of the CD4 and CD8 genes, and transcriptional regulation of lineage commitment. It is widely accepted that TCR signaling exerts a decisive influence on lineage choice, although the underlying mechanism remains intensely debated. Current evidence suggests that both duration and intensity of TCR signaling may control lineage choice, as proposed by the kinetic signaling and quantitative instructive models, respectively. Alternate expression of the CD4 and CD8 genes is the most visible manifestation of lineage choice, and much progress has been made in defining the responsible cis elements and transcription factors. Finally, important clues to the molecular basis of lineage commitment have been provided by the recent identification of the transcription factor ThPOK as a key regulator of lineage choice. ThPOK is selectively expressed in class II-restricted cells at the CD4(+)8(lo) stage and is necessary and sufficient for development to the CD4 lineage. Given the central role of ThPOK in lineage commitment, understanding its upstream regulation and downstream gene targets is expected to reveal further important aspects of the molecular machinery underlying lineage commitment.
Collapse
Affiliation(s)
- Xi He
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
22
|
Sakaguchi S, Hombauer M, Bilic I, Naoe Y, Schebesta A, Taniuchi I, Ellmeier W. The zinc-finger protein MAZR is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes. Nat Immunol 2010; 11:442-8. [PMID: 20383150 DOI: 10.1038/ni.1860] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/03/2010] [Indexed: 12/12/2022]
Abstract
The CD4 versus CD8 lineage specification of thymocytes is linked to coreceptor expression. The transcription factor MAZR has been identified as an important regulator of Cd8 expression. Here we show that variegated CD8 expression by loss of Cd8 enhancers was reverted in MAZR-deficient mice, which confirms that MAZR negatively regulates the Cd8 loci during the transition to the double-positive (DP) stage. Moreover, loss of MAZR led to partial redirection of major histocompatibility complex (MHC) class I-restricted thymocytes into CD4(+) helper-like T cells, which correlated with derepression of Th-POK, a central transcription factor for helper-lineage development. MAZR bound the silencer of the gene encoding Th-POK, which indicated direct regulation of this locus by MAZR. Thus, MAZR is part of the transcription factor network that regulates the CD8 lineage differentiation of DP thymocytes.
Collapse
Affiliation(s)
- Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
23
|
Chong MMW, Simpson N, Ciofani M, Chen G, Collins A, Littman DR. Epigenetic propagation of CD4 expression is established by the Cd4 proximal enhancer in helper T cells. Genes Dev 2010; 24:659-69. [PMID: 20360383 DOI: 10.1101/gad.1901610] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The stability of a lineage program (cellular memory) is dependent on mechanisms that epigenetically maintain active or repressed states of gene expression (transcriptional memory). Although epigenetic silencing of genes has been clearly demonstrated from yeast to mammals, heritable maintenance of active transcription has been less clearly defined. To investigate the potential role of active transcriptional memory during lineage diversification, we employed targeted mutation of a positive-acting cis element in the Cd4 locus to determine the impact on CD4 expression and the differentiation of CD4(+) helper T cells in mice. We show that the proximal enhancer (E4(P)) of Cd4 is essential for CD4 expression in immature CD4(+)8(+) thymocytes. Furthermore, its loss resulted in reduced and unstable expression of CD4 in mature T cells. However, if the enhancer was deleted after cells had already committed to the helper T-cell lineage, CD4 expression remained high and was stable upon cell division. "Active" histone modifications, once initiated by E4(P), were also propagated independently of the enhancer. Thus, E4(P) is responsible for establishing an epigenetically inherited active Cd4 locus in the helper T-cell lineage. To our knowledge, this is the first genetic demonstration of active transcriptional memory in mammalian cells.
Collapse
Affiliation(s)
- Mark M W Chong
- The Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
24
|
Egawa T. Runx and ThPOK: A balancing act to regulate thymocyte lineage commitment. J Cell Biochem 2009; 107:1037-45. [DOI: 10.1002/jcb.22212] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Singer A, Adoro S, Park JH. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol 2008; 8:788-801. [PMID: 18802443 DOI: 10.1038/nri2416] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Following successful gene rearrangement at alphabeta T-cell receptor (TCR) loci, developing thymocytes express both CD4 and CD8 co-receptors and undergo a life-or-death selection event, which is known as positive selection, to identify cells that express TCRs with potentially useful ligand specificities. Positively selected thymocytes must then differentiate into either CD4(+) helper T cells or CD8(+) cytotoxic T cells, a crucial decision known as CD4/CD8-lineage choice. In this Review, we summarize recent advances in our understanding of the cellular and molecular events involved in lineage-fate decision and discuss them in the context of the major models of CD4/CD8-lineage choice.
Collapse
Affiliation(s)
- Alfred Singer
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
26
|
Abstract
"The beginning of wisdom is found in doubting; by doubting we come to question, and by seeking we may come upon the truth." -Pierre Abélard. CD8 is a glycoprotein expressed on hematopoietic cells. Two isoforms of CD8, CD8alphabeta and CD8alphaalpha, have been identified that are distinct in their expression and function. Whereas CD8alphabeta serves as a T cell receptor (TCR) coreceptor to enhance the functional avidity and is constitutively expressed on MHC class I-restricted T cells, CD8alphaalpha marks T cells that are distinct from the conventional thymus-selected and MHC-restricted CD4(+) or CD8alphabeta(+) T cells. Inconsistent with a coreceptor function, CD8alphaalpha decreases antigen sensitivity of the TCR, and it can be transiently or permanently expressed on T cells, regardless of the MHC restriction of the TCR or the presence of conventional coreceptors. Together, these observations indicate that CD8alphaalpha on T cells marks a differentiation stage and that it likely functions as a TCR corepressor to negatively regulate T cell activation.
Collapse
|
27
|
Park JH, Adoro S, Lucas PJ, Sarafova SD, Alag AS, Doan LL, Erman B, Liu X, Ellmeier W, Bosselut R, Feigenbaum L, Singer A. 'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat Immunol 2007; 8:1049-59. [PMID: 17873878 DOI: 10.1038/ni1512] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/16/2007] [Indexed: 02/06/2023]
Abstract
T cell immunity requires the long-term survival of T cells that are capable of recognizing self antigens but are not overtly autoreactive. How this balance is achieved remains incompletely understood. Here we identify a homeostatic mechanism that transcriptionally tailors CD8 coreceptor expression in individual CD8+ T cells to the self-specificity of their clonotypic T cell receptor (TCR). 'Coreceptor tuning' results from interplay between cytokine and TCR signals, such that signals from interleukin 7 and other common gamma-chain cytokines transcriptionally increase CD8 expression and thereby promote TCR engagement of self ligands, whereas TCR signals impair common gamma-chain cytokine signaling and thereby decrease CD8 expression. This dynamic interplay induces individual CD8+ T cells to express CD8 in quantities appropriate for the self-specificity of their TCR, promoting the engagement of self ligands, yet avoiding autoreactivity.
Collapse
Affiliation(s)
- Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
T lymphocyte development is directed by a gene-expression program that occurs in the complex nucleoprotein environment of chromatin. This review examines basic principles of chromatin regulation and evaluates ongoing progress toward understanding how the chromatin template is manipulated to control gene expression and gene recombination in developing thymocytes. Special attention is devoted to the loci encoding T cell receptors alpha and beta, T cell coreceptors CD4 and CD8, and the enzyme terminal deoxynucleotidyl transferase. The properties of SATB1, a notable organizer of thymocyte chromatin, are also addressed.
Collapse
Affiliation(s)
- Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710 USA.
| |
Collapse
|
29
|
Bilic I, Ellmeier W. The role of BTB domain-containing zinc finger proteins in T cell development and function. Immunol Lett 2006; 108:1-9. [PMID: 17084908 DOI: 10.1016/j.imlet.2006.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 09/26/2006] [Accepted: 09/28/2006] [Indexed: 10/24/2022]
Abstract
Cell fate specifications during T lymphocyte differentiation result from the orchestrated expression of developmentally regulated genes. Furthermore, epigenetic processes that result in a heritable chromatin structure are required for the maintenance of gene expression programs within cells. More and more is known about the basic mechanisms of T cell development and their diversification into various peripheral T cell subsets. Recent research has begun to provide insight into the interactive network of transcription factors as critical regulators of T lymphocyte differentiation. In the past years several members of the BTB domain-containing family of zinc finger proteins (BTB-ZF) have been described to be important for the development and function of hematopoietic cells, and also to contribute to malignant hematopoiesis. This review will provide a brief overview about the role of BTB-ZF proteins during thymocyte development and T cell function.
Collapse
Affiliation(s)
- Ivan Bilic
- Institute of Immunology, Medical University of Vienna, Lazarettgasse 19, A-1090 Vienna, Austria
| | | |
Collapse
|
30
|
Bilic I, Koesters C, Unger B, Sekimata M, Hertweck A, Maschek R, Wilson CB, Ellmeier W. Negative regulation of CD8 expression via Cd8 enhancer-mediated recruitment of the zinc finger protein MAZR. Nat Immunol 2006; 7:392-400. [PMID: 16491076 PMCID: PMC3001192 DOI: 10.1038/ni1311] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 01/17/2006] [Indexed: 01/22/2023]
Abstract
Coreceptor expression is tightly regulated during thymocyte development. Deletion of specific Cd8 enhancers leads to variegated expression of CD8alphabeta heterodimers in double-positive thymocytes. Here we show CD8 variegation is correlated with an epigenetic 'off' state, linking Cd8 enhancer function with chromatin remodeling of the adjacent genes Cd8a and Cd8b1 (Cd8). The zinc finger protein MAZR bound the Cd8 enhancer and interacted with the nuclear receptor corepressor N-CoR complex in double-negative thymocytes. MAZR was downregulated in double-positive and CD8 single-positive thymocytes. 'Enforced' expression of MAZR led to impaired Cd8 activation and variegated CD8 expression. Our results demonstrate epigenetic control of the Cd8 loci and identify MAZR as an important regulator of Cd8 expression.
Collapse
Affiliation(s)
- Ivan Bilic
- Institute of Immunology, Medical University of Vienna, Vienna 1090, Austria
| | | | | | | | | | | | | | | |
Collapse
|
31
|
He X, Kappes DJ. CD4/CD8 lineage commitment: light at the end of the tunnel? Curr Opin Immunol 2006; 18:135-42. [PMID: 16480861 DOI: 10.1016/j.coi.2006.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 02/01/2006] [Indexed: 11/17/2022]
Abstract
Two surprisingly clear results have emerged in the past year that suggest that the seemingly intractable problem of CD4/CD8 lineage commitment might eventually be resolved. Manipulating expression of the CD4 and CD8 coreceptors has long been a favorite method to examine the influence of T-cell receptor signalling on lineage commitment. An elegant new twist on this approach now shows that it is all a matter of timing. Thus, termination of CD4 expression after the initiation of positive selection is sufficient to cause complete redirection of class II-restricted thymocytes to the CD8 lineage, which strongly supports quantitative instructive models of lineage commitment. Progress in the field has been significantly hampered by ignorance of the underlying intracellular pathways. Two independent groups, which employed old-fashioned genetics versus new-fangled microarray technology, have now identified the same transcription factor, Th-POK, as a key regulator of alternate lineage commitment. The presence of this factor directs positively selected thymocytes to the CD4 lineage, whereas its absence causes default development to the CD8 lineage.
Collapse
Affiliation(s)
- Xiao He
- Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
32
|
Sarafova SD, Erman B, Yu Q, Van Laethem F, Guinter T, Sharrow SO, Feigenbaum L, Wildt KF, Ellmeier W, Singer A. Modulation of Coreceptor Transcription during Positive Selection Dictates Lineage Fate Independently of TCR/Coreceptor Specificity. Immunity 2005; 23:75-87. [PMID: 16039581 DOI: 10.1016/j.immuni.2005.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/13/2005] [Accepted: 05/19/2005] [Indexed: 11/24/2022]
Abstract
For developing T cells, coreceptor choice is matched to T cell antigen receptor (TCR) MHC specificity during positive selection in the thymus, but the mechanism remains uncertain. Here, we document that TCR-mediated positive selection signals inactivate the immature CD8(III) enhancer in double positive (DP) thymocytes, explaining in part the cessation of CD8 coreceptor transcription that occurs during positive selection. More importantly, by placing CD4 protein expression under the control of CD8 transcriptional regulatory elements, we demonstrate that cessation of CD4 coreceptor transcription during positive selection results in precisely the same lineage fate as cessation of CD8 coreceptor transcription. That is, MHC-II-signaled DP thymocytes differentiated into CD8-lineage cytotoxic T cells, despite the MHC-II specificity and CD4 dependence of their TCRs. This study demonstrates that termination of coreceptor transcription during positive selection promotes CD8-lineage fate, regardless of TCR specificity or coreceptor protein identity.
Collapse
Affiliation(s)
- Sophia D Sarafova
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|