1
|
Jiang H, Sun X, Wu Y, Xu J, Xiao C, Liu Q, Fang L, Liang Y, Zhou J, Wu Y, Lin Z. Contribution of Tregs to the promotion of constructive remodeling after decellularized extracellular matrix material implantation. Mater Today Bio 2024; 27:101151. [PMID: 39104900 PMCID: PMC11298607 DOI: 10.1016/j.mtbio.2024.101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
Host remodeling of decellularized extracellular matrix (dECM) material through the appropriate involvement of immune cells is essential for achieving functional organ/tissue regeneration. As many studies have focused on the role of macrophages, only few have evaluated the role of regulatory T cells (Tregs) in dECM remodeling. In this study, we used a mouse model of traumatic muscle injury to determine the role of Tregs in the constructive remodeling of vascular-derived dECM. According to the results, a certain number of Tregs could be recruited after dECM implantation. Notably, using anti-CD25 to reduce the number of Tregs recruited by the dECM was significantly detrimental to material remodeling based on a significant reduction in the number of M2 macrophages. In addition, collagen and elastic fibers, which maintain the integrity and mechanical properties of the material, rapidly degraded during the early stages of implantation. In contrast, the use of CD28-SA antibodies to increase the number of Tregs recruited by dECM promoted constructive remodeling, resulting in a decreased inflammatory response at the material edge, thinning of the surrounding fibrous connective tissue, uniform infiltration of host cells, and significantly improved tissue remodeling scores. The number of M2 macrophages increased whereas that of M1 macrophages decreased. Moreover, Treg-conditioned medium further enhanced material-induced M2 macrophage polarization in vitro. Overall, Treg is an important cell type that influences constructive remodeling of the dECM. Such findings contribute to the design of next-generation biomaterials to optimize the remodeling and regeneration of dECM materials.
Collapse
Affiliation(s)
- Hongjing Jiang
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Xuheng Sun
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Yindi Wu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Jianyi Xu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Cong Xiao
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Qing Liu
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Lijun Fang
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
| | - Yuanfeng Liang
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510006, Guangzhou, Guangdong, China
| | - Jiahui Zhou
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
| | - Yueheng Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, 528200, Foshan, Guangdong, China
| | - Zhanyi Lin
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, Guangdong, China
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, 528200, Foshan, Guangdong, China
| |
Collapse
|
2
|
Li J, Xia T, Zhao Q, Wang C, Fu L, Zhao Z, Tang Z, Yin C, Wang M, Xia H. Biphasic calcium phosphate recruits Tregs to promote bone regeneration. Acta Biomater 2024; 176:432-444. [PMID: 38185232 DOI: 10.1016/j.actbio.2024.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
The use of bone substitute materials is crucial for the healing of large bone defects. Immune response induced by bone substitute materials is essential in bone regeneration. Prior research has mainly concentrated on innate immune cells, such as macrophages. Existing research suggests that T lymphocytes, as adaptive immune cells, play an indispensable role in bone regeneration. However, the mechanisms governing T cell recruitment and specific subsets that are essential for bone regeneration remain unclear. This study demonstrates that CD4+ T cells are indispensable for ectopic osteogenesis by biphasic calcium phosphate (BCP). Subsequently, the recruitment of CD4+ T cells is closely associated with the activation of calcium channels in macrophages by BCP to release chemokines Ccl3 and Ccl17. Finally, these recruited CD4+ T cells are predominantly Tregs, which play a significant role in ectopic osteogenesis by BCP. These findings not only shed light on the immune-regenerative process after bone substitute material implantation but also establish a theoretical basis for developing bone substitute materials for promoting bone tissue regeneration. STATEMENT OF SIGNIFICANCE: Bone substitute material implantation is essential in the healing of large bone defects. Existing research suggests that T lymphocytes are instrumental in bone regeneration. However, the specific mechanisms governing T cell recruitment and specific subsets that are essential for bone regeneration remain unclear. In this study, we demonstrate that activation of calcium channels in macrophages by biphasic calcium phosphate (BCP) causes them to release the chemokines Ccl3 and Ccl17 to recruit CD4+ T cells, predominantly Tregs, which play a crucial role in ectopic osteogenesis by BCP. Our findings provide a theoretical foundation for developing bone substitute material for bone tissue regeneration.
Collapse
Affiliation(s)
- Jiaojiao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ting Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Qin Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Can Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Liangliang Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zifan Zhao
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & NHC Key Laboratory of Digital Stomatology & Beijing Key Laboratory of Digital Stomatology & Key Laboratory of Digital Stomatology, Chinese Academy of Medical Sciences & NMPA Key Laboratory for Dental Materials, Beijing,100081, China
| | - Ziqiao Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chenghu Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
3
|
Miron RJ, Bohner M, Zhang Y, Bosshardt DD. Osteoinduction and osteoimmunology: Emerging concepts. Periodontol 2000 2024; 94:9-26. [PMID: 37658591 DOI: 10.1111/prd.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 09/03/2023]
Abstract
The recognition and importance of immune cells during bone regeneration, including around bone biomaterials, has led to the development of an entire field termed "osteoimmunology," which focuses on the connection and interplay between the skeletal system and immune cells. Most studies have focused on the "osteogenic" capacity of various types of bone biomaterials, and much less focus has been placed on immune cells despite being the first cell type in contact with implantable devices. Thus, the amount of literature generated to date on this topic makes it challenging to extract needed information. This review article serves as a guide highlighting advancements made in the field of osteoimmunology emphasizing the role of the osteoimmunomodulatory properties of biomaterials and their impact on osteoinduction. First, the various immune cell types involved in bone biomaterial integration are discussed, including the prominent role of osteal macrophages (OsteoMacs) during bone regeneration. Thereafter, key biomaterial properties, including topography, wettability, surface charge, and adsorption of cytokines, growth factors, ions, and other bioactive molecules, are discussed in terms of their impact on immune responses. These findings highlight and recognize the importance of the immune system and osteoimmunology, leading to a shift in the traditional models used to understand and evaluate biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | | | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| | | |
Collapse
|
4
|
Shah NM, Charani E, Ming D, Cheah FC, Johnson MR. Antimicrobial stewardship and targeted therapies in the changing landscape of maternal sepsis. JOURNAL OF INTENSIVE MEDICINE 2024; 4:46-61. [PMID: 38263965 PMCID: PMC10800776 DOI: 10.1016/j.jointm.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/30/2023] [Indexed: 01/25/2024]
Abstract
Pregnant and postnatal women are a high-risk population particularly prone to rapid progression to sepsis with significant morbidity and mortality worldwide. Moreover, severe maternal infections can have a serious detrimental impact on neonates with almost 1 million neonatal deaths annually attributed to maternal infection or sepsis. In this review we discuss the susceptibility of pregnant women and their specific physiological and immunological adaptations that contribute to their vulnerability to sepsis, the implications for the neonate, as well as the issues with antimicrobial stewardship and the challenges this poses when attempting to reach a balance between clinical care and urgent treatment. Finally, we review advancements in the development of pregnancy-specific diagnostic and therapeutic approaches and how these can be used to optimize the care of pregnant women and neonates.
Collapse
Affiliation(s)
- Nishel M Shah
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Esmita Charani
- Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, Imperial College London, London, UK
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Damien Ming
- Department of Infectious Diseases, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Fook-Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mark R Johnson
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
5
|
Malik JA, Kaur G, Agrewala JN. Revolutionizing medicine with toll-like receptors: A path to strengthening cellular immunity. Int J Biol Macromol 2023; 253:127252. [PMID: 37802429 DOI: 10.1016/j.ijbiomac.2023.127252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Toll-like receptors play a vital role in cell-mediated immunity, which is crucial for the immune system's defense against pathogens and maintenance of homeostasis. The interaction between toll-like-receptor response and cell-mediated immunity is complex and essential for effectively eliminating pathogens and maintaining immune surveillance. In addition to pathogen recognition, toll-like receptors serve as adjuvants in vaccines, as molecular sensors, and recognize specific patterns associated with pathogens and danger signals. Incorporating toll-like receptor ligands into vaccines can enhance the immune response to antigens, making them potent adjuvants. Furthermore, they bridge the innate and adaptive immune systems and improve antigen-presenting cells' capacity to process and present antigens to T cells. The intricate signaling pathways and cross-talk between toll-like-receptor and T cell receptor (TCR) signaling emphasize their pivotal role in orchestrating effective immune responses against pathogens, thus facilitating the development of innovative vaccine strategies. This article provides an overview of the current understanding of toll-like receptor response and explores their potential clinical applications. By unraveling the complex mechanisms of toll-like-receptor signaling, we can gain novel insights into immune responses and potentially develop innovative therapeutic approaches. Ongoing investigations into the toll-like-receptor response hold promise in the future in enhancing our ability to combat infections, design effective vaccines, and improve clinical outcomes.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India
| | - Gurpreet Kaur
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India; Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab 140001, India.
| |
Collapse
|
6
|
Ming B, Zhu Y, Zhong J, Dong L. Regulatory T cells: a new therapeutic link for Sjögren syndrome? Rheumatology (Oxford) 2023; 62:2963-2970. [PMID: 36790059 DOI: 10.1093/rheumatology/kead070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Great advancements have been made in understanding the pathogenesis of SS, but there remain unmet needs for effective and targeted treatments. Glandular and extraglandular dysfunction in SS is associated with autoimmune lymphocytic infiltration that invades the epithelial structures of affected organs. Regulatory T (Treg) cells are a subset of CD4+ T lymphocytes that maintain self-tolerance during physiological conditions. Besides inhibiting excessive inflammation and autoimmune response by targeting various immune cell subsets and tissues, Treg cells have also been shown to promote tissue repair and regeneration in pathogenic milieus. The changes of quantity and function of Treg cells in various autoimmune and chronic inflammatory disorders have been reported, owing to their effects on immune regulation. Here we summarize the recent findings from murine models and clinical data about the dysfunction of Treg cells in SS pathogenesis and discuss the therapeutic strategies of direct or indirect targeting of Treg cells in SS. Understanding the current knowledge of Treg cells in the development of SS will be important to elucidate disease pathogenesis and may guide research for successful therapeutic intervention in this disease.
Collapse
Affiliation(s)
- Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaowu Zhu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Hady TF, Hwang B, Waworuntu RL, Ratner BD, Bryers JD. Cells resident to precision templated 40-µm pore scaffolds generate small extracellular vesicles that affect CD4 + T cell phenotypes through regulatory TLR4 signaling. Acta Biomater 2023; 166:119-132. [PMID: 37150279 PMCID: PMC10330460 DOI: 10.1016/j.actbio.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Precision porous templated scaffolds (PTS) are a hydrogel construct of uniformly sized interconnected spherical pores that induce a pro-healing response (reducing the foreign body reaction, FBR) exclusively when the pores are 30-40µm in diameter. Our previous work demonstrated the necessity of Tregs in the maintenance of PTS pore size specific differences in CD4+ T cell phenotype. Work here characterizes the role of Tregs in the responses to implanted 40µm and 100µm PTS using WT and FoxP3+ cell (Treg) depleted mice. Proteomic analyses indicate that integrin signaling, monocytes/macrophages, cytoskeletal remodeling, inflammatory cues, and vesicule endocytosis may participate in Treg activation and the CD4+ T cell equilibrium modulated by PTS resident cell-derived small extracellular vesicles (sEVs). The role of MyD88-dependent and MyD88-independent TLR4 activation in PTS cell-derived sEV-to-T cell signaling is quantified by treating WT, TLR4ko, and MyD88ko splenic T cells with PTS cell-derived sEVs. STAT3 and mTOR are identified as mechanisms for further study for pore-size dependent PTS cell-derived sEV-to-T cell signaling. STATEMENT OF SIGNIFICANCE: Unique cell populations colonizing only within 40µm pore size PTS generate sEVs that resolve inflammation by modifying CD4+ T cell phenotypes through TLR4 signaling.
Collapse
Affiliation(s)
- T F Hady
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - B Hwang
- Center for Lung Biology, Department of Surgery, University of Washington Seattle, WA 98109, USA
| | - R L Waworuntu
- Center for Lung Biology, Department of Surgery, University of Washington Seattle, WA 98109, USA
| | - B D Ratner
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - J D Bryers
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
8
|
Morrison RA, Brookes S, Puls TJ, Cox A, Gao H, Liu Y, Voytik-Harbin SL. Engineered collagen polymeric materials create noninflammatory regenerative microenvironments that avoid classical foreign body responses. Biomater Sci 2023; 11:3278-3296. [PMID: 36942875 PMCID: PMC10152923 DOI: 10.1039/d3bm00091e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
The efficacy and longevity of medical implants and devices is largely determined by the host immune response, which extends along a continuum from pro-inflammatory/pro-fibrotic to anti-inflammatory/pro-regenerative. Using a rat subcutaneous implantation model, along with histological and transcriptomics analyses, we characterized the tissue response to a collagen polymeric scaffold fabricated from polymerizable type I oligomeric collagen (Oligomer) in comparison to commercial synthetic and collagen-based products. In contrast to commercial biomaterials, no evidence of an immune-mediated foreign body reaction, fibrosis, or bioresorption was observed with Oligomer scaffolds for beyond 60 days. Oligomer scaffolds were noninflammatory, eliciting minimal innate inflammation and immune cell accumulation similar to sham surgical controls. Genes associated with Th2 and regulatory T cells were instead upregulated, implying a novel pathway to immune tolerance and regenerative remodeling for biomaterials.
Collapse
Affiliation(s)
- Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Sarah Brookes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Hongyu Gao
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Xu Y, Liang S, Liang Z, Huang C, Luo Y, Liang G, Wang W. Admission D-dimer to lymphocyte counts ratio as a novel biomarker for predicting the in-hospital mortality in patients with acute aortic dissection. BMC Cardiovasc Disord 2023; 23:69. [PMID: 36740681 PMCID: PMC9900915 DOI: 10.1186/s12872-023-03098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/26/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammatory factors are well-established indicators for vascular disease, but the D-dimer to lymphocyte count ratio (DLR) is not measured in routine clinical care. Screening of DLR in individuals may identify individuals at in-hopital mortality of acute aortic dissection (AD). METHODS A retrospective analysis of clinical data from 2013 to 2020 was conducted to identify which factors were related to in-hospital mortality risk of AD. Baseline clinical features, cardiovascular risk factors, and laboratory parameters were obtained from the hospital database. The end point was in-hospital mortality. Forward conditional logistic regression was performed to identify independent risk factors for AA in-hospital death. The cutoff value of the DLR should be ideally calculated by receiver operating characteristic (ROC) analysis. RESULTS The in-hospital mortality rate was 15% (48 of 320 patients). Patients with in-hospital mortality had a higher admission mean DLR level than the alive group (1740 vs. 1010, P < .05). The cutoff point of DLR was 907. The in-hospital mortality rate in the high-level DLR group was significantly higher than that in the low-level DLR group (P < .05). Univariate analysis showed that 8 of 38 factors were associated with in-hospital mortality (P < .05), including admission WBC, neutrophils, lymphocytes, neutrophils/lymphocytes (NLR), prothrombin time (PT), heart rate (HR), D-dimer, and DLR. In multivariate analysis, DLR (odds ratio [OR] 2.127, 95% CI 1.034-4.373, P = 0.040), HR (odds ratio [OR] 1.016, 95% CI 1.002-1.030, P = 0.029) and PT (odds ratio [OR] 1.231, 95% CI 1.018-1.189, P = 0.032) were determined to be independent predictors of in-hospital mortality (P < .05). CONCLUSION Compared with the common clinical parameters PT and HR, serum DLR level on admission is an uncommon but independent parameter that can be used to assess in-hospital mortality in patients with acute AD.
Collapse
Affiliation(s)
- Yansong Xu
- Emergency Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Trauma Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Silei Liang
- Medical Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zheng Liang
- Emergency Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Trauma Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cuiqing Huang
- Emergency Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Trauma Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yihuan Luo
- Emergency Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Trauma Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guanbiao Liang
- Cardiothoracic Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Wang
- Emergency Surgery Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Trauma Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
10
|
Riet T, Chmielewski M. Regulatory CAR-T cells in autoimmune diseases: Progress and current challenges. Front Immunol 2022; 13:934343. [PMID: 36032080 PMCID: PMC9399761 DOI: 10.3389/fimmu.2022.934343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
CAR (Chimeric Antigen Receptor) T-cell therapy has revolutionized the field of oncology in recent years. This innovative shift in cancer treatment also provides the opportunity to improve therapies for many patients suffering from various autoimmune diseases. Recent studies have confirmed the therapeutic suppressive potential of regulatory T cells (Tregs) to modulate immune response in autoimmune diseases. However, the polyclonal character of regulatory T cells and their unknown TCR specificity impaired their therapeutic potency in clinical implementation. Genetical engineering of these immune modulating cells to express antigen-specific receptors and using them therapeutically is a logical step on the way to overcome present limitations of the Treg strategy for the treatment of autoimmune diseases. Encouraging preclinical studies successfully demonstrated immune modulating properties of CAR Tregs in various mouse models. Still, there are many concerns about targeted Treg therapies relating to CAR target selectivity, suppressive functions, phenotype stability and safety aspects. Here, we summarize recent developments in CAR design, Treg biology and future strategies and perspectives in CAR Treg immunotherapy aiming at clinical translation.
Collapse
|
11
|
Muralidhara P, Sood V, Vinayak Ashok V, Bansal K. Pregnancy and Tumour: The Parallels and Differences in Regulatory T Cells. Front Immunol 2022; 13:866937. [PMID: 35493450 PMCID: PMC9043683 DOI: 10.3389/fimmu.2022.866937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
Immunological tolerance plays a critical role during pregnancy as semi-allogeneic fetus must be protected from immune responses during the gestational period. Regulatory T cells (Tregs), a subpopulation of CD4+ T cells that express transcription factor Foxp3, are central to the maintenance of immunological tolerance and prevention of autoimmunity. Tregs are also known to accumulate at placenta in uterus during pregnancy, and they confer immunological tolerance at maternal-fetal interface by controlling the immune responses against alloantigens. Thus, uterine Tregs help in maintaining an environment conducive for survival of the fetus during gestation, and low frequency or dysfunction of Tregs is associated with recurrent spontaneous abortions and other pregnancy-related complications such as preeclampsia. Interestingly, there are many parallels in the development of placenta and solid tumours, and the tumour microenvironment is considered to be somewhat similar to that at maternal-fetal interface. Moreover, Tregs play a largely similar role in tumour immunity as they do at placenta- they create a tolerogenic system and suppress the immune responses against the cells within tumour and at maternal-fetal interface. In this review, we discuss the role of Tregs in supporting the proper growth of the embryo during pregnancy. We also highlight the similarities and differences between Tregs at maternal-fetal interface and tumour Tregs, in an attempt to draw a comparison between their roles in these two physiologic and pathologic states.
Collapse
Affiliation(s)
| | | | | | - Kushagra Bansal
- Molecular Biology and Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India
| |
Collapse
|
12
|
Luck ME, Li X, Herrnreiter CJ, Choudhry MA. Ethanol Intoxication and Burn Injury Increases Intestinal Regulatory T Cell Population and Regulatory T Cell Suppressive Capability. Shock 2022; 57:230-237. [PMID: 34482318 PMCID: PMC8758514 DOI: 10.1097/shk.0000000000001853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ABSTRACT Traumatic injuries, such as burn, are often complicated by ethanol intoxication at the time of injury. This leads to a myriad of complications and post-burn pathologies exacerbated by aberrant immune responses. Recent findings suggest that immune cell dysfunction in the gastrointestinal system is particularly important in deleterious outcomes associated with burn injuries. In particular, intoxication at the time of burn injury leads to compromised intestinal T cell responses, which can diminish intestinal immunity and promote bacterial translocation, allowing for increased secondary infections in the injured host and associated sequelae, such as multiple organ failure and sepsis. Regulatory T cells (Treg) have been identified as important mediators of suppressing effector T cell function. Therefore, the goal of this study was to assess the effects of ethanol intoxication and burn injury on Treg populations in small intestinal immune organs. We also evaluated the suppressive capability of Tregs isolated from injured animals. Male C57BL/6 mice were gavaged with 2.9 g/kg ethanol before receiving a ∼12.5% total body surface area scald burn. One day after injury, we identified a significant increase in Tregs number in small intestine Peyer's patches (∼×1.5) and lamina propria (∼×2). Tregs-producing cytokine IL-10 were also increased in both tissues. Finally, Tregs isolated from ethanol and burn-injured mice were able to suppress proliferation of effector T cells to a greater degree than sham vehicle Tregs. This was accompanied by increased levels of IL-10 and decreased levels of pro-proliferative cytokine IL-2 in cultures containing ethanol + burn Tregs compared with sham Tregs. These findings suggest that Treg populations are increased in intestinal tissues 1 day following ethanol intoxication and burn injury. Tregs isolated from ethanol and burn-injured animals also exhibit a greater suppression of effector T cell proliferation, which may contribute to altered T cell responses following injury.
Collapse
Affiliation(s)
- Marisa E. Luck
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| | - Xiaoling Li
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| | - Caroline J. Herrnreiter
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Biochemistry and Molecular Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| | - Mashkoor A. Choudhry
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Department of Microbiology and Immunology, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Biochemistry and Molecular Biology Program, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
- Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 601553, USA
| |
Collapse
|
13
|
Alshammary AF, Al-Sulaiman AM. The journey of SARS-CoV-2 in human hosts: a review of immune responses, immunosuppression, and their consequences. Virulence 2021; 12:1771-1794. [PMID: 34251989 PMCID: PMC8276660 DOI: 10.1080/21505594.2021.1929800] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory findings from a significant number of patients with COVID-19 indicate the occurrence of leukocytopenia, specifically lymphocytopenia. Moreover, infected patients can experience contrasting outcomes depending on lymphocytopenia status. Patients with resolved lymphocytopenia are more likely to recover, whereas critically ill patients with signs of unresolved lymphocytopenia develop severe complications, sometimes culminating in death. Why immunodepression manifests in patients with COVID-19 remains unclear. Therefore, the evaluation of clinical symptoms and laboratory findings from infected patients is critical for understanding the disease course and its consequences. In this review, we take a logical approach to unravel the reasons for immunodepression in patients with COVID-19. Following the footprints of the virus within host tissues, from entry to exit, we extrapolate the mechanisms underlying the phenomenon of immunodepression.
Collapse
Affiliation(s)
- Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
14
|
The posttraumatic response of CD4+ regulatory T cells is modulated by direct cell-cell contact via CD40L- and P-selectin-dependent pathways. Cent Eur J Immunol 2021; 46:283-294. [PMID: 34764800 PMCID: PMC8574106 DOI: 10.5114/ceji.2021.109171] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
CD4+ FoxP3+ regulatory T cells (CD4+ Tregs) are important for the posttraumatic anti-inflammatory host response. As described previously, platelets are able to modulate CD4+ Treg activity in a reciprocally activating interaction following injury. The underlying mechanisms of the posttraumatic interaction between platelets and CD4+ Tregs remain unclear. We investigated the potential influence of CD40L and P-selectin, molecules known to be involved in direct cell contact of these cell types. In a murine burn injury model, the potential interaction pathways were addressed using CD40L- and P-selectin-deficient mice. Draining lymph nodes were harvested following trauma (1 h) and following a sham procedure. Early rapid activation of CD4+ Tregs was assessed by phospho-flow cytometry (signaling molecules (p)PKC-δ and (p)ZAP-70). Platelet function was analyzed performing rotational thromboelastometry (ROTEM). We hypothesized that disruption of the direct cell-cell contact via CD40L and P-selectin would affect posttraumatic activation of CD4+ Tregs and influence the hemostatic function of platelets. Indeed, while injury induced early activation of CD4+ Tregs in wild-type mice (ZAP-70: p = 0.13, pZAP-70: p < 0.05, PKC-δ: p < 0.05, pPKC-δ: p < 0.05), disruption of CD40L-dependent interaction (ZAP-70: p = 0.57, pZAP-70: p = 0.68, PKC-δ: p = 0.68, pPKC-δ: p = 0.9) or P-selectin-dependent interaction (ZAP-70: p = 0.78, pZAP-70: p = 0.58, PKC-δ: p = 0.81, pPKC-δ: p = 0.73) resulted in reduced posttraumatic activation. Furthermore, hemostatic function was impaired towards hypocoagulability in either deficiency. Our results suggest that the posttraumatic activation of CD4+ Tregs and hemostatic function of platelets are affected by direct cell-cell-signaling via CD40L and P-selectin.
Collapse
|
15
|
Saxena V, Lakhan R, Iyyathurai J, Bromberg JS. Mechanisms of exTreg induction. Eur J Immunol 2021; 51:1956-1967. [PMID: 33975379 PMCID: PMC8338747 DOI: 10.1002/eji.202049123] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022]
Abstract
CD4+ CD25+ Foxp3+ Tregs play an important role in the maintenance of the immune system by regulating immune responses and resolving inflammation. Tregs exert their function by suppressing other immune cells and mediating peripheral self-tolerance. Under homeostatic conditions, Tregs are stable T-cell populations. However, under inflammatory environments, Tregs are converted to CD4+ CD25low Foxp3low cells. These cells are termed "exTreg" or "exFoxp3" cells. The molecular mechanism of Treg transition to exTregs remains incompletely understood. Uncertainties might be explained by a lack of consensus of biological markers to define Treg subsets in general and exTregs in particular. In this review, we summarize known markers of Tregs and factors responsible for exTreg generation including cytokines, signaling pathways, transcription factors, and epigenetic mechanisms. We also identify studies demonstrating the presence of exTregs in various diseases and sources of exTregs. Understanding the biology of Treg transition to exTregs will help in designing Treg-based therapeutic approaches.
Collapse
Affiliation(s)
- Vikas Saxena
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ram Lakhan
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jegan Iyyathurai
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan S. Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Shen P, Chen Y, Luo S, Fan Z, Wang J, Chang J, Deng J. Applications of biomaterials for immunosuppression in tissue repair and regeneration. Acta Biomater 2021; 126:31-44. [PMID: 33722787 DOI: 10.1016/j.actbio.2021.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
The immune system plays an essential role in tissue repair and regeneration. Regardless of innate or adaptive immune responses, immunosuppressive strategies such as macrophage polarization and regulatory T (Treg) cell induction can be used to modulate the immune system to promote tissue repair and regeneration. Biomaterials can improve the production of anti-inflammatory macrophages and Treg cells by providing physiochemical cues or delivering therapeutics such as cytokines, small molecules, microRNA, growth factors, or stem cells in the damaged tissues. Herein, we present an overview of immunosuppressive modulation by biomaterials in tissue regeneration and highlight the mechanisms of macrophage polarization and Treg cell induction. Overall, we foresee that future biomaterials for regenerative strategies will entail more interactions between biomaterials and the immune cells, and more mechanisms of immunosuppression related to T cell subsets remain to be discovered and applied to develop novel biomaterials for tissue repair and regeneration. STATEMENT OF SIGNIFICANCE: Immunosuppression plays a key role in tissue repair and regeneration, and biomaterials can interact with the immune system through their biological properties and by providing physiochemical cues. Here, we summarize the studies on biomaterials that have been used for immunosuppression to facilitate tissue regeneration. In the first part of this review, we demonstrate the crucial role of macrophage polarization and induction of T regulatory (Treg) cells in immunosuppression. In the second part, distinct approaches used by biomaterials to induce immunosuppression are introduced, which show excellent performance in terms of promoting tissue regeneration.
Collapse
Affiliation(s)
- Peng Shen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanxin Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Shuai Luo
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Zhiyuan Fan
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Jilong Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jiang Chang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Junjie Deng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| |
Collapse
|
17
|
Abstract
Keloid is a skin disease characterized by exaggerated scar formation, excessive fibroblast proliferation, and excessive collagen deposition. Cancers commonly arise from a fibrotic microenvironment; e.g., hepatoma arises from liver cirrhosis, and oral cancers arise from submucosal fibrosis. As keloids are a prototypic fibroproliferative disease, this study investigated whether patients with keloids have an increased cancer risk. In a matched, population-based study, first 17,401 patients treated for keloids during 1998–2010 with 69,604 controls without keloids at a ratio of 1:4 were evaluated. The association between keloids and risk of cancer was estimated by logistic regression or Cox proportional hazard regression models after adjustment of covariates. In total, 893 first-time cases of cancer were identified in the 17,401 patients with keloids. The overall cancer risk was 1.49-fold higher in the keloids group compared to controls. Regarding specific cancers, the keloids group, had a significantly higher risk of skin cancer compared to controls (Relative risk = 1.73). The relative risk for skin cancer was even higher for males with keloids (Relative risk = 2.16). Further stratified analyses also revealed a significantly higher risk of developing pancreatic cancer in female patients with keloids compared to controls (Relative risk = 2.19) after adjustment for known pancreatic cancer risk factors. This study indicates that patients with keloids have a higher than normal risk for several cancer types, especially skin cancers (both genders) and pancreatic cancer (females). Therefore, patients with keloids should undergo regular skin examinations, and females with keloids should regularly undergo abdominal ultrasonography.
Collapse
|
18
|
Yamakawa K, Tajima G, Keegan JW, Nakahori Y, Guo F, Seshadri AJ, Cahill LA, Lederer JA. Trauma induces expansion and activation of a memory-like Treg population. J Leukoc Biol 2021; 109:645-656. [PMID: 32531832 PMCID: PMC10228755 DOI: 10.1002/jlb.4a0520-122r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
CD4+ regulatory T cells (Tregs) are acutely activated by traumatic injury, which suggests that they may react to injury with similar kinetics as memory T cells. Here, we used a mouse burn trauma model to screen for memory-like T cell responses to injury by transferring T cells from sham or burn CD45.1 mice into CD45.2 mice and performing secondary injuries in recipient mice. Among all T cell subsets that were measured, only Tregs expanded in response to secondary injury. The expanded Tregs were a CD44high /CD62Llow subpopulation, markers indicative of memory T cells. CyTOF (cytometry by time-of-flight) mass cytometry was used to demonstrate that injury-expanded Tregs expressed higher levels of CD44, CTLA-4, ICOS, GITR, and Helios than Tregs from noninjured mice. Next, we tested whether a similar population of Tregs might react acutely to burn trauma. We observed that Tregs with a phenotype that matched the injury-expanded Tregs were activated by 6 h after injury. To test if Treg activation by trauma requires functional MHC class II, we measured trauma-induced Treg activation in MHC class II gene deficient (MHCII-/- ) mice or in mice that were given Fab fragment of anti-MHC class II antibody to block TCR activation. Injury-induced Treg activation occurred in normal mice but only partial activation was detected in MHCII-/- mice or in mice that were given Fab anti-MHCII antibody. These findings demonstrate that trauma activates a memory-like Treg subpopulation and that Treg activation by injury is partially dependent on TCR signaling by an MHC class II dependent mechanism.
Collapse
Affiliation(s)
- Kazuma Yamakawa
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Goro Tajima
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Emergency Medicine, Unit of Clinical Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Joshua W. Keegan
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yasutaka Nakahori
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Fei Guo
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anupamaa J. Seshadri
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura A. Cahill
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - James A. Lederer
- Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Mata R, Yao Y, Cao W, Ding J, Zhou T, Zhai Z, Gao C. The Dynamic Inflammatory Tissue Microenvironment: Signality and Disease Therapy by Biomaterials. RESEARCH 2021; 2021:4189516. [PMID: 33623917 PMCID: PMC7879376 DOI: 10.34133/2021/4189516] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Tissue regeneration is an active multiplex process involving the dynamic inflammatory microenvironment. Under a normal physiological framework, inflammation is necessary for the systematic immunity including tissue repair and regeneration as well as returning to homeostasis. Inflammatory cellular response and metabolic mechanisms play key roles in the well-orchestrated tissue regeneration. If this response is dysregulated, it becomes chronic, which in turn causes progressive fibrosis, improper repair, and autoimmune disorders, ultimately leading to organ failure and death. Therefore, understanding of the complex inflammatory multiple player responses and their cellular metabolisms facilitates the latest insights and brings novel therapeutic methods for early diseases and modern health challenges. This review discusses the recent advances in molecular interactions of immune cells, controlled shift of pro- to anti-inflammation, reparative inflammatory metabolisms in tissue regeneration, controlling of an unfavorable microenvironment, dysregulated inflammatory diseases, and emerging therapeutic strategies including the use of biomaterials, which expand therapeutic views and briefly denote important gaps that are still prevailing.
Collapse
Affiliation(s)
- Rani Mata
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Yang N, Liu Y. The Role of the Immune Microenvironment in Bone Regeneration. Int J Med Sci 2021; 18:3697-3707. [PMID: 34790042 PMCID: PMC8579305 DOI: 10.7150/ijms.61080] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
Bone is an active tissue, being constantly renewed in healthy individuals with participation of the immune system to a large extent. Any imbalance between the processes of bone formation and bone resorption is linked to various inflammatory bone diseases. The immune system plays an important role in tissue formation and bone resorption. Recently, many studies have demonstrated complex interactions between the immune and skeletal systems. Both of immune cells and cytokines contribute to the regulation of bone homeostasis, and bone cells, including osteoblasts, osteoclasts, osteocytes, also influence the cellular functions of immune cells. These crosstalk mechanisms between the bone and immune system finally emerged, forming a new field of research called osteoimmunology. Therefore, the immune microenvironment is crucial in determining the speed and outcome of bone healing, repair, and regeneration. In this review, we summarise the role of the immune microenvironment in bone regeneration from the aspects of immune cells and immune cytokines. The elucidation of immune mechanisms involved in the process of bone regeneration would provide new therapeutic targets for improving the curative effects of bone injury treatment.
Collapse
Affiliation(s)
- Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
21
|
Tsai YW, Fu SH, Dong JL, Chien MW, Liu YW, Hsu CY, Sytwu HK. Adipokine-Modulated Immunological Homeostasis Shapes the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21249564. [PMID: 33334069 PMCID: PMC7765468 DOI: 10.3390/ijms21249564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammatory colon diseases, which are a global health concern, include a variety of gastrointestinal tract disorders, such as inflammatory bowel disease and colon cancer. The pathogenesis of these colon disorders involves immune alterations with the pronounced infiltration of innate and adaptive immune cells into the intestines and the augmented expression of mucosal pro-inflammatory cytokines stimulated by commensal microbiota. Epidemiological studies during the past half century have shown that the proportion of obese people in a population is associated with the incidence and pathogenesis of gastrointestinal tract disorders. The advancement of understanding of the immunological basis of colon disease has shown that adipocyte-derived biologically active substances (adipokines) modulate the role of innate and adaptive immune cells in the progress of intestinal inflammation. The biomedical significance in immunological homeostasis of adipokines, including adiponectin, leptin, apelin and resistin, is clear. In this review, we highlight the existing literature on the effect and contribution of adipokines to the regulation of immunological homeostasis in inflammatory colon diseases and discuss their crucial roles in disease etiology and pathogenesis, as well as the implications of these results for new therapies in these disorders.
Collapse
Affiliation(s)
- Yi-Wen Tsai
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung, No. 222, Maijin Road, Keelung 204, Taiwan;
- College of Medicine, Chang-Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
| | - Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (J.-L.D.); (Y.-W.L.)
| | - Jia-Ling Dong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (J.-L.D.); (Y.-W.L.)
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (J.-L.D.); (Y.-W.L.)
| | - Yu-Wen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (J.-L.D.); (Y.-W.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, No. 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chao-Yuan Hsu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (S.-H.F.); (M.-W.C.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Correspondence: (C.-Y.H.); (H.-K.S.)
| | - Huey-Kang Sytwu
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (J.-L.D.); (Y.-W.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Correspondence: (C.-Y.H.); (H.-K.S.)
| |
Collapse
|
22
|
Hady TF, Hwang B, Pusic AD, Waworuntu RL, Mulligan M, Ratner B, Bryers JD. Uniform 40-µm-pore diameter precision templated scaffolds promote a pro-healing host response by extracellular vesicle immune communication. J Tissue Eng Regen Med 2020; 15:24-36. [PMID: 33217150 DOI: 10.1002/term.3160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Implanted porous precision templated scaffolds (PTS) with 40-µm spherical pores reduce inflammation and foreign body reaction (FBR) while increasing vascular density upon implantation. Larger or smaller pores, however, promote chronic inflammation and FBR. While macrophage (MØ) recruitment and polarization participates in perpetuating this pore-size-mediated phenomenon, the driving mechanism of this unique pro-healing response is poorly characterized. We hypothesized that the primarily myeloid PTS resident cells release small extracellular vesicles (sEVs) that induce pore-size-dependent pro-healing effects in surrounding T cells. Upon profiling resident immune cells and their sEVs from explanted 40-µm- (pro-healing) and 100-µm-pore diameter (inflammatory) PTS, we found that PTS pore size did not affect PTS resident immune cell population ratios or the proportion of myeloid sEVs generated from explanted PTS. However, quantitative transcriptomic assessment indicated cell and sEV phenotype were pore size dependent. In vitro experiments demonstrated the ability of PTS cell-derived sEVs to stimulate T cells transcriptionally and proliferatively. Specifically, sEVs isolated from cells inhabiting explanted 100 μm PTS significantly upregulated Th1 inflammatory gene expression in immortalized T cells. sEVs isolated from cell inhabiting both 40- and 100-μm PTS upregulated essential Treg transcriptional markers in both primary and immortalized T cells. Finally, we investigated the effects of Treg depletion on explanted PTS resident cells. FoxP3+ cell depletion suggests Tregs play a unique role in balancing T cell subset ratios, thus driving host response in 40-μm PTS. These results indicate that predominantly 40-µm PTS myeloid cell-derived sEVs affect T cells through a distinct, pore-size-mediated modality.
Collapse
Affiliation(s)
- Thomas F Hady
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Billanna Hwang
- Center for Lung Biology, Department of Surgery, University of Washington, Seattle, Washington, USA.,West Coast Exosortium (Westco Exosortium), University of Washington, Seattle, Washington, USA
| | - A D Pusic
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Racheal L Waworuntu
- Center for Lung Biology, Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Michael Mulligan
- Center for Lung Biology, Department of Surgery, University of Washington, Seattle, Washington, USA.,West Coast Exosortium (Westco Exosortium), University of Washington, Seattle, Washington, USA
| | - Buddy Ratner
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - James D Bryers
- Department of Bioengineering, University of Washington, Seattle, Washington, USA.,West Coast Exosortium (Westco Exosortium), University of Washington, Seattle, Washington, USA
| |
Collapse
|
23
|
Glaubitz J, Wilden A, van den Brandt C, Weiss FU, Bröker BM, Mayerle J, Lerch MM, Sendler M. Experimental pancreatitis is characterized by rapid T cell activation, Th2 differentiation that parallels disease severity, and improvement after CD4 + T cell depletion. Pancreatology 2020; 20:1637-1647. [PMID: 33097430 DOI: 10.1016/j.pan.2020.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute pancreatitis is a gastrointestinal disorder of high incidence resulting in life threatening complications in up to 20% of patients. Its severe form is characterized by an extensive and systemic immune response. We investigated the role of the adaptive immune response in two experimental models of pancreatitis. METHODS In C57BI/6-mice mild pancreatitis was induced by 8-hourly injections of caerulein and severe pancreatitis by additional, partial pancreatic duct ligation. T-cell-activation was determined by flow-cytometry of CD25/CD69, T-cell-differentiation by nuclear staining of the transcription-factors Tbet, Gata3 and Foxp3. In vivo CD4+ T-cells were depleted using anti-CD4 antibody. Disease severity was determined by histology, serum amylase and lipase activities, lung MPO and serum cytokine levels (IL-6, TNFα, IL-10). RESULTS In both models T-cells were activated. Th1-differentiation (Tbet) was absent during pancreatitis but we detected a pronounced Th2/Treg (Gata3/Foxp3) response which paralleled disease severity in both models. The complete depletion of CD4+ T-cells via anti-CD4 antibody, surprisingly, reduced disease severity significantly, as well as granulocyte infiltration and pro- and anti-inflammatory cytokine levels. Co-incubation of acini and T-cells did not lead to T-cell-activation by acinar cells but to acinar damage by T-cells. During pancreatitis no significant T-cell-infiltration into the pancreas was observed. CONCLUSION T cells orchestrate the early local as well as the systemic immune responses in pancreatitis and are directly involved in organ damage. The Th2 response appears to increase disease severity, rather than conferring an immunological protection.
Collapse
Affiliation(s)
- Juliane Glaubitz
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Anika Wilden
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Cindy van den Brandt
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine, University of Greifswald, Germany; Medizinische Klinik und Poliklinik II, Klinikum der LMU München-Grosshadern, München, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Germany.
| |
Collapse
|
24
|
Lymphocyte Immunosuppression and Dysfunction Contributing to Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS). Shock 2020; 55:723-741. [PMID: 33021569 DOI: 10.1097/shk.0000000000001675] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Persistent Inflammation, Immune Suppression, and Catabolism Syndrome (PICS) is a disease state affecting patients who have a prolonged recovery after the acute phase of a large inflammatory insult. Trauma and sepsis are two pathologies after which such an insult evolves. In this review, we will focus on the key clinical determinants of PICS: Immunosuppression and cellular dysfunction. Currently, relevant immunosuppressive functions have been attributed to both innate and adaptive immune cells. However, there are significant gaps in our knowledge, as for trauma and sepsis the immunosuppressive functions of these cells have mostly been described in acute phase of inflammation so far, and their clinical relevance for the development of prolonged immunosuppression is mostly unknown. It is suggested that the initial immune imbalance determines the development of PCIS. Additionally, it remains unclear what distinguishes the onset of immune dysfunction in trauma and sepsis and how this drives immunosuppression in these cells. In this review, we will discuss how regulatory T cells (Tregs), innate lymphoid cells, natural killer T cells (NKT cells), TCR-a CD4- CD8- double-negative T cells (DN T cells), and B cells can contribute to the development of post-traumatic and septic immunosuppression. Altogether, we seek to fill a gap in the understanding of the contribution of lymphocyte immunosuppression and dysfunction to the development of chronic immune disbalance. Further, we will provide an overview of promising diagnostic and therapeutic interventions, whose potential to overcome the detrimental immunosuppression after trauma and sepsis is currently being tested.
Collapse
|
25
|
Shah NM, Edey LF, Imami N, Johnson MR. Human labour is associated with altered regulatory T cell function and maternal immune activation. Clin Exp Immunol 2019; 199:182-200. [PMID: 31617583 DOI: 10.1111/cei.13384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
During human pregnancy, regulatory T cell (Treg ) function is enhanced and immune activation is repressed allowing the growth and development of the feto-placental unit. Here, we have investigated whether human labour is associated with a reversal of the pregnancy-induced changes in the maternal immune system. We tested the hypothesis that human labour is associated with a decline in Treg function, specifically their ability to modulate Toll-like receptor (TLR)-induced immune responses. We studied the changes in cell number, activation status and functional behaviour of peripheral blood, myometrial (myoMC) and cord blood mononuclear cells (CBMC) with the onset of labour. We found that Treg function declines and that Treg cellular targets change with labour onset. The changes in Treg function were associated with increased activation of myoMC, assessed by their expression of major histocompatibility complex (MHC) class II molecules and CBMC inflammatory cells. The innate immune system showed increased activation, as shown by altered monocyte and neutrophil cell phenotypes, possibly to be ready to respond to microbial invasion after birth or to contribute to tissue remodelling. Our results highlight changes in the function of the adaptive and innate immune systems that may have important roles in the onset of human labour.
Collapse
Affiliation(s)
- N M Shah
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - L F Edey
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - N Imami
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - M R Johnson
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
26
|
Greer O, Shah NM, Sriskandan S, Johnson MR. Sepsis: Precision-Based Medicine for Pregnancy and the Puerperium. Int J Mol Sci 2019; 20:E5388. [PMID: 31671794 PMCID: PMC6861904 DOI: 10.3390/ijms20215388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Sepsis contributes significantly to global morbidity and mortality, particularly in vulnerable populations. Pregnant and recently pregnant women are particularly prone to rapid progression to sepsis and septic shock, with 11% of maternal deaths worldwide being attributed to sepsis. The impact on the neonate is considerable, with 1 million neonatal deaths annually attributed to maternal infection or sepsis. Pregnancy specific physiological and immunological adaptations are likely to contribute to a greater impact of infection, but current approaches to the management of sepsis are based on those developed for the non-pregnant population. Pregnancy-specific strategies are required to optimise recognition and management of these patients. We review current knowledge of the physiology and immunology of pregnancy and propose areas of research, which may advance the development of pregnancy-specific diagnostic and therapeutic approaches to optimise the care of pregnant women and their babies.
Collapse
Affiliation(s)
- Orene Greer
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | - Nishel Mohan Shah
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | - Shiranee Sriskandan
- Imperial College London, NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | - Mark R Johnson
- Imperial College London, Academic Department of Obstetrics & Gynaecology, Level 3, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
- Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| |
Collapse
|
27
|
Hefele F, Ditsch A, Krysiak N, Caldwell CC, Biberthaler P, van Griensven M, Huber-Wagner S, Hanschen M. Trauma Induces Interleukin-17A Expression on Th17 Cells and CD4+ Regulatory T Cells as Well as Platelet Dysfunction. Front Immunol 2019; 10:2389. [PMID: 31681282 PMCID: PMC6797820 DOI: 10.3389/fimmu.2019.02389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background: The organism's immune response to trauma is distinctively controlled, its dysregulation leading to severe post-traumatic complications. Platelets, CD4+ regulatory T cells (CD4+ Tregs) and T helper 17 (Th17) cells have been identified to participate in the post-traumatic immune response. Unfortunately, little is known about their exact role and potential interdependency in humans. Aims of this clinical trial were to phenotype the human immune response following injury and to identify risk factors rendering the host more susceptible to trauma induced injury. Methods: This non-interventional prospective clinical trial enrolled patients following multiple trauma, follow up was conducted for 10 days. Peripheral blood CD4+ Tregs and Th17 cells were analyzed using flow cytometry to determine Interleukin 17A (IL-17A) expression. Hemostasis and platelet function were assessed with rotational thromboelastometry (ROTEM®). Subgroup analysis was conducted for the factors gender, age, and trauma severity. Results and Conclusion: This is the first clinical trial to phenotype the immune response following trauma, focusing on platelets, and the adaptive immune response. We discovered a novel increased IL-17A expression on Th17 cells and on CD4+ Tregs following trauma and describe the kinetics of the immune response. The IL-17A response on CD4+ Tregs challenges the ascribed role of CD4+ Tregs to be solely counter inflammatory in this setting. Furthermore, despite a rising number of platelets, ROTEM analysis shows post-traumatic platelet dysfunction. Subgroup analysis revealed gender, age, and trauma severity as influencing factors for several of the analyzed parameters.
Collapse
Affiliation(s)
- Friederike Hefele
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Division of Oncology and Hematology (CCM), Medical Department, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Ditsch
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Niels Krysiak
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Trauma Surgery, Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany
| | - Charles C Caldwell
- Division of Research, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Research, Shriners Hospital for Children, Cincinnati, OH, United States
| | - Peter Biberthaler
- Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martijn van Griensven
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Huber-Wagner
- Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marc Hanschen
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
28
|
Li J, Yang KY, Tam RCY, Chan VW, Lan HY, Hori S, Zhou B, Lui KO. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics 2019; 9:4324-4341. [PMID: 31285764 PMCID: PMC6599663 DOI: 10.7150/thno.32734] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The neonatal mouse heart is capable of transiently regenerating after injury from postnatal day (P) 0-7 and macrophages are found important in this process. However, whether macrophages alone are sufficient to orchestrate this regeneration; what regulates cardiomyocyte proliferation; why cardiomyocytes do not proliferate after P7; and whether adaptive immune cells such as regulatory T-cells (Treg) influence neonatal heart regeneration have less studied. Methods: We employed both loss- and gain-of-function transgenic mouse models to study the role of Treg in neonatal heart regeneration. In loss-of-function studies, we treated mice with the lytic anti-CD25 antibody that specifically depletes Treg; or we treated FOXP3DTR with diphtheria toxin that specifically ablates Treg. In gain-of-function studies, we adoptively transferred hCD2+ Treg from NOD.Foxp3hCD2 to NOD/SCID that contain Treg as the only T-cell population. Furthermore, we performed single-cell RNA-sequencing of Treg to uncover paracrine factors essential for cardiomyocyte proliferation. Results: Unlike their wild type counterparts, NOD/SCID mice that are deficient in T-cells but harbor macrophages fail to regenerate their injured myocardium at as early as P3. During the first week of injury, Treg are recruited to the injured cardiac muscle but their depletion contributes to more severe cardiac fibrosis. On the other hand, adoptive transfer of Treg results in mitigated fibrosis and enhanced proliferation and function of the injured cardiac muscle. Mechanistically, single-cell transcriptomic profiling reveals that Treg could be a source of regenerative factors. Treg directly promote proliferation of both mouse and human cardiomyocytes in a paracrine manner; and their secreted factors such as CCL24, GAS6 or AREG potentiate neonatal cardiomyocyte proliferation. By comparing the regenerating P3 and non-regenerating P8 heart, there is a significant increase in the absolute number of intracardiac Treg but the whole transcriptomes of these Treg do not differ regardless of whether the neonatal heart regenerates. Furthermore, even adult Treg, given sufficient quantity, possess the same regenerative capability. Conclusion: Our results demonstrate a regenerative role of Treg in neonatal heart regeneration. Treg can directly facilitate cardiomyocyte proliferation in a paracrine manner.
Collapse
Affiliation(s)
- Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y. Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rachel Chun Yee Tam
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W. Chan
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Yao Lan
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kathy O. Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
29
|
Darrabie MD, Cheeseman J, Limkakeng AT, Borawski J, Sullenger BA, Elster EA, Kirk AD, Lee J. Toll-like receptor activation as a biomarker in traumatically injured patients. J Surg Res 2018; 231:270-277. [PMID: 30278940 DOI: 10.1016/j.jss.2018.05.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/25/2018] [Accepted: 05/25/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Surgical insult and trauma have been shown to cause dysregulation of the immune and inflammatory responses. Interaction of damage-associated molecular patterns (DAMPs) with toll-like receptors (TLRs) initiates innate immune response and systemic inflammatory responses. Given that surgical patients produce high levels of circulating damage-associated molecular patterns, we hypothesized that plasma-activated TLR activity would be correlated to injury status and could be used to predict pathological conditions involving tissue injury. METHODS An observational study was performed using samples from a single-institution prospective tissue and data repository from a Level-1 trauma center. In vitro TLR 2, 3, 4, and 9 activation was determined in a TLR reporter assay after isolation of plasma from peripheral blood. We determined correlations between plasma-activated TLR activity and clinical course measures of severity. RESULTS Eighteen patients were enrolled (median Injury Severity Score 15 [interquartile range 10, 23.5]). Trauma resulted in significant elevation in circulation high mobility group box 1 as well as increase of plasma-activated TLR activation (2.8-5.4-fold) compared to healthy controls. There was no correlation between circulating high mobility group box 1 and trauma morbidity; however, the plasma-activated TLR activity was correlated with acute physiology and chronic health evaluation II scores (R square = 0.24-0.38, P < 0.05). Patients who received blood products demonstrated significant increases in the levels of plasma-activated TLRs 2, 3, 4, and 9 and had a trend toward developing systemic inflammatory response syndrome. CONCLUSIONS Further studies examining TLR modulation and signaling in surgical patients may assist in predictive risk modeling and reduction in morbidity and mortality.
Collapse
Affiliation(s)
| | | | | | - Joseph Borawski
- Department of Surgery, Duke University, Durham, North Carolina
| | | | - Eric A Elster
- Department of Surgery, Uniformed Services University of Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, North Carolina
| | - Jaewoo Lee
- Department of Surgery, Duke University, Durham, North Carolina.
| |
Collapse
|
30
|
The posttraumatic activation of CD4+ T regulatory cells is modulated by TNFR2- and TLR4-dependent pathways, but not by IL-10. Cell Immunol 2018; 331:137-145. [PMID: 29954581 DOI: 10.1016/j.cellimm.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/10/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022]
Abstract
Platelets modulate the immune system following injury by interacting with CD4+ T regulatory cells (CD4+ Tregs). The underlying mechanisms remain unsolved. We hypothesize paracrine interactions via Tumor necrosis factor-alpha (TNFα)-, Toll like receptor-4 (TLR4)-, and Interleukin-10 (IL-10). In the murine burn injury model, CD4+ Treg activation pathways were selectively addressed using TNFR2-, TLR4- and IL-10-deficient mice. The CD4+ Treg signalling molecule PKC-θ was analyzed using phospho-flow cytometry to detect rapid cell activation. Thromboelastometry (ROTEM®) was used to assess platelet activation. Injury induced significant early activation of CD4+ Tregs, disruption of TNFR2 and TLR4 activation pathways resulted in lower activity. The disruption of IL-10 crosstalk had no significant impact. Selective disruption of paracrine interactions is associated with changes in posttraumatic hemostasis parameters. TNFR2- and TLR4-dependent pathways modulate the activation of CD4+ Tregs following trauma. In contrast, we did not observe a role of IL-10 in the posttraumatic activation of CD4+ Tregs. ONE SENTENCE SUMMARY TLR4- and TNFR2-dependent mechanisms, but not IL-10-dependent pathways, modulate the anti-inflammatory response of CD4+ Tregs following trauma.
Collapse
|
31
|
Li J, Tan J, Martino MM, Lui KO. Regulatory T-Cells: Potential Regulator of Tissue Repair and Regeneration. Front Immunol 2018; 9:585. [PMID: 29662491 PMCID: PMC5890151 DOI: 10.3389/fimmu.2018.00585] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
The identification of stem cells and growth factors as well as the development of biomaterials hold great promise for regenerative medicine applications. However, the therapeutic efficacy of regenerative therapies can be greatly influenced by the host immune system, which plays a pivotal role during tissue repair and regeneration. Therefore, understanding how the immune system modulates tissue healing is critical to design efficient regenerative strategies. While the innate immune system is well known to be involved in the tissue healing process, the adaptive immune system has recently emerged as a key player. T-cells, in particular, regulatory T-cells (Treg), have been shown to promote repair and regeneration of various organ systems. In this review, we discuss the mechanisms by which Treg participate in the repair and regeneration of skeletal and heart muscle, skin, lung, bone, and the central nervous system.
Collapse
Affiliation(s)
- Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jean Tan
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Kathy O Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
32
|
Schmoeckel K, Mrochen DM, Hühn J, Pötschke C, Bröker BM. Polymicrobial sepsis and non-specific immunization induce adaptive immunosuppression to a similar degree. PLoS One 2018; 13:e0192197. [PMID: 29415028 PMCID: PMC5802895 DOI: 10.1371/journal.pone.0192197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/19/2018] [Indexed: 11/18/2022] Open
Abstract
Sepsis is frequently complicated by a state of profound immunosuppression, in its extreme form known as immunoparalysis. We have studied the role of the adaptive immune system in the murine acute peritonitis model. To read out adaptive immunosuppression, we primed post-septic and control animals by immunization with the model antigen TNP-ovalbumin in alum, and measured the specific antibody-responses via ELISA and ELISpot assay as well as T-cell responses in a proliferation assay after restimulation. Specific antibody titers, antibody affinity and plasma cell counts in the bone marrow were reduced in post-septic animals. The antigen-induced splenic proliferation was also impaired. The adaptive immunosuppression was positively correlated with an overwhelming general antibody response to the septic insult. Remarkably, antigen “overload” by non-specific immunization induced a similar degree of adaptive immunosuppression in the absence of sepsis. In both settings, depletion of regulatory T cells before priming reversed some parameters of the immunosuppression. In conclusion, our data show that adaptive immunosuppression occurs independent of profound systemic inflammation and life-threatening illness.
Collapse
Affiliation(s)
- Katrin Schmoeckel
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Jochen Hühn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Pötschke
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Barbara M. Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
- * E-mail:
| |
Collapse
|
33
|
Update on the Protective Role of Regulatory T Cells in Myocardial Infarction: A Promising Therapy to Repair the Heart. J Cardiovasc Pharmacol 2017; 68:401-413. [PMID: 27941502 DOI: 10.1097/fjc.0000000000000436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction (MI) remains one of the leading causes of heart failure development and death worldwide. To date, interventional and pharmacological therapies are effective in reducing the onset of heart failure and promoting survival. However, progressive maladaptive remodeling post-MI persists in a large fraction of patients resulting in poor prognosis. Immune cell responses and an inflammatory environment largely contribute to adverse cardiac remodeling post-MI. CD4FOXP3 regulatory T cells (Tregs) are known for their immunosuppressive capacity and have been successfully implemented in multiple preclinical studies of permanent and ischemia-reperfusion MI. In this review, we highlight the important cardioprotective role of Tregs at the cardiac tissue, cellular, and molecular level, as well as the most prominent pharmacological venues that could be used to exploit Tregs as a novel therapeutic intervention to lessen myocardial injury post-MI.
Collapse
|
34
|
Tashireva LA, Perelmuter VM, Manskikh VN, Denisov EV, Savelieva OE, Kaygorodova EV, Zavyalova MV. Types of Immune-Inflammatory Responses as a Reflection of Cell-Cell Interactions under Conditions of Tissue Regeneration and Tumor Growth. BIOCHEMISTRY (MOSCOW) 2017; 82:542-555. [PMID: 28601064 DOI: 10.1134/s0006297917050029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammatory infiltration of tumor stroma is an integral reflection of reactions that develop in response to any damage to tumor cells including immune responses to antigens or necrosis caused by vascular disorders. In this review, we use the term "immune-inflammatory response" (IIR) that allows us to give an integral assessment of the cellular composition of the tumor microenvironment. Two main types of IIRs are discussed: type 1 and 2 T-helper reactions (Th1 and Th2), as well as their inducers: immunosuppressive responses and reactions mediated by Th22 and Th17 lymphocytes and capable of modifying the main types of IIRs. Cellular and molecular manifestations of each IIR type are analyzed and their general characteristics and roles in tissue regeneration and tumor growth are presented. Since inflammatory responses in a tumor can also be initiated by innate immunity mechanisms, special attention is given to inflammation based on them. We emphasize that processes accompanying tissue regeneration are prototypes of processes underlying cancer progression, and these processes have the same cellular and molecular substrates. We focus on evidence that tumor progression is mainly contributed by processes specific for the second phase of "wound healing" that are based on the Th2-type IIR. We emphasize that the effect of various types of immune and stroma cells on tumor progression is determined by the ability of the cells and their cytokines to promote or prevent the development of Th1- or Th2-type of IIR. Finally, we supposed that the nonspecific influence on the tumor caused by the cytokine context of the Th1- or Th2-type microenvironment should play a decisive role for suppression or stimulation of tumor growth and metastasis.
Collapse
Affiliation(s)
- L A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634050 Tomsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Xia C, Rao X, Zhong J. Role of T Lymphocytes in Type 2 Diabetes and Diabetes-Associated Inflammation. J Diabetes Res 2017; 2017:6494795. [PMID: 28251163 PMCID: PMC5307004 DOI: 10.1155/2017/6494795] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Although a critical role of adaptive immune system has been confirmed in driving local and systemic inflammation in type 2 diabetes and promoting insulin resistance, the underlying mechanism is not completely understood. Inflammatory regulation has been focused on innate immunity especially macrophage for a long time, while increasing evidence suggests T cells are crucial for the development of metabolic inflammation and insulin resistance since 2009. There was growing evidence supporting the critical implication of T cells in the pathogenesis of type 2 diabetes. We will discuss the available effect of T cells subsets in adaptive immune system associated with the procession of T2DM, which may unveil several potential strategies that could provide successful therapies in the future.
Collapse
Affiliation(s)
- Chang Xia
- College of Health Science & Nursing, Wuhan Polytechnic University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoquan Rao
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
- *Jixin Zhong:
| |
Collapse
|
36
|
Ma H, Zhang S, Shi D, Mao Y, Cui J. MicroRNA-26a Promotes Regulatory T cells and Suppresses Autoimmune Diabetes in Mice. Inflammation 2016. [PMID: 26208605 DOI: 10.1007/s10753-015-0215-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type-1 diabetes (TID) is an autoimmune disease in which the body's own immune cells attack islet β cells, the cells in the pancreas that produce and release the hormone insulin. Mir-26a has been reported to play functions in cellular differentiation, cell growth, cell apoptosis, and metastasis. However, the role of microRNA-26a (Mir-26a) in autoimmune TID has never been investigated. In our current study, we found that pre-Mir-26a (LV-26a)-treated mice had significantly longer normoglycemic time and lower frequency of autoreactive IFN-γ-producing CD4(+) cells compared with an empty lentiviral vector (LV-Con)-treated non-obese diabetic (NOD) mice. Mir-26a suppresses autoreactive T cells and expands Tregs in vivo and in vitro. Furthermore, in our adoptive transfer study, the groups receiving whole splenocytes and CD25-depleted splenocytes from LV-Con-treated diabetic NOD mice develop diabetes at 3 to 4 weeks of age. In comparison, mice injected with undepleted splenocytes obtained from LV-26a-treated reversal NOD mice develop diabetes after 6-8 weeks. And depletion of CD25(+) cells in the splenocytes of reversed mice abrogates the delay in diabetes onset. In conclusion, Mir-26a suppresses autoimmune diabetes in NOD mice in part through promoted regulatory T cells (Tregs) expression.
Collapse
Affiliation(s)
- Hui Ma
- Department of Geriatrics, Affiliated Hospital of Binzhou Medical University, No.661, Section 2, The Yellow River Road, Binzhou, Shandong, 256603, China.
| | - Shoutao Zhang
- Department of Orthopedics, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, China
| | - Doufei Shi
- Department of Geriatrics, Affiliated Hospital of Binzhou Medical University, No.661, Section 2, The Yellow River Road, Binzhou, Shandong, 256603, China
| | - Yanhua Mao
- Department of Geriatrics, Affiliated Hospital of Binzhou Medical University, No.661, Section 2, The Yellow River Road, Binzhou, Shandong, 256603, China
| | - Jianguo Cui
- Department of Geriatrics, Affiliated Hospital of Binzhou Medical University, No.661, Section 2, The Yellow River Road, Binzhou, Shandong, 256603, China
| |
Collapse
|
37
|
Platelets modulate the immune response following trauma by interaction with CD4+ T regulatory cells in a mouse model. Immunol Res 2016; 64:508-17. [PMID: 26471021 DOI: 10.1007/s12026-015-8726-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD4+ T regulatory cells (Tregs) play a pivotal role in the anti-inflammatory immune response following trauma. The mechanisms of CD4+ Treg activation are mostly unknown. Here, we hypothesize that platelets regulate CD4+ Treg activation following trauma. In a murine burn injury model (male C57Bl/6N mice), depletion of platelets or CD4+ Tregs was conducted. Draining lymph nodes, blood and spleen were harvested 2 h and 7 days after trauma. CD4+ Treg activation was measured using phospho- and conventional flow cytometry. Platelet activation was analyzed using thromboelastometry and flow cytometry. Trauma differentially activates CD4+ T cells, early after trauma only CD4+ Tregs are activated. Following burn injury, platelets augment the activation of CD4+ Tregs. This effect could only be seen early after trauma. While CD4+ Tregs influence hemostasis early following trauma, platelet activation markers were unchanged. Beyond their role in hemostasis, platelets are able to modulate the immunologic host response to trauma-induced injury by augmenting the activation of CD4+ Tregs. CD4+ Treg activation following trauma is considered protective. In addition, CD4+ Tregs are capable of modulating the hemostatic function of platelets. For the first time, we could show reciprocal activation of platelets and CD4+ Tregs as part of the protective immune response following trauma.
Collapse
|
38
|
Interleukin-17A Contributes to the Control of Streptococcus pyogenes Colonization and Inflammation of the Female Genital Tract. Sci Rep 2016; 6:26836. [PMID: 27241677 PMCID: PMC4886215 DOI: 10.1038/srep26836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
Postpartum women are at increased risk of developing puerperal sepsis caused by group A Streptococcus (GAS). Specific GAS serotypes, including M1 and M28, are more commonly associated with puerperal sepsis. However, the mechanisms of GAS genital tract infection are not well understood. We utilized a murine genital tract carriage model to demonstrate that M1 and M28 GAS colonization triggers TNF-α, IL-1β, and IL-17A production in the female genital tract. GAS-induced IL-17A significantly influences streptococcal carriage and alters local inflammatory responses in two genetically distinct inbred strains of mice. An absence of IL-17A or the IL-1 receptor was associated with reduced neutrophil recruitment to the site of infection; and clearance of GAS was significantly attenuated in IL-17A(-/-) mice and Rag1(-/-) mice (that lack mature lymphocytes) but not in mice deficient for the IL-1 receptor. Together, these findings support a role for IL-17A in contributing to the control of streptococcal mucosal colonization and provide new insight into the inflammatory mediators regulating host-pathogen interactions in the female genital tract.
Collapse
|
39
|
Rowe RK, Ellis GI, Harrison JL, Bachstetter AD, Corder GF, Van Eldik LJ, Taylor BK, Marti F, Lifshitz J. Diffuse traumatic brain injury induces prolonged immune dysregulation and potentiates hyperalgesia following a peripheral immune challenge. Mol Pain 2016; 12:12/0/1744806916647055. [PMID: 27178244 PMCID: PMC4955995 DOI: 10.1177/1744806916647055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/30/2016] [Indexed: 01/09/2023] Open
Abstract
Background Nociceptive and neuropathic pain occurs as part of the disease process after traumatic brain injury (TBI) in humans. Central and peripheral inflammation, a major secondary injury process initiated by the traumatic brain injury event, has been implicated in the potentiation of peripheral nociceptive pain. We hypothesized that the inflammatory response to diffuse traumatic brain injury potentiates persistent pain through prolonged immune dysregulation. Results To test this, adult, male C57BL/6 mice were subjected to midline fluid percussion brain injury or to sham procedure. One cohort of mice was analyzed for inflammation-related cytokine levels in cortical biopsies and serum along an acute time course. In a second cohort, peripheral inflammation was induced seven days after surgery/injury with an intraplantar injection of carrageenan. This was followed by measurement of mechanical hyperalgesia, glial fibrillary acidic protein and Iba1 immunohistochemical analysis of neuroinflammation in the brain, and flow cytometric analysis of T-cell differentiation in mucosal lymph. Traumatic brain injury increased interleukin-6 and chemokine ligand 1 levels in the cortex and serum that peaked within 1–9 h and then resolved. Intraplantar carrageenan produced mechanical hyperalgesia that was potentiated by traumatic brain injury. Further, mucosal T cells from brain-injured mice showed a distinct deficiency in the ability to differentiate into inflammation-suppressing regulatory T cells (Tregs). Conclusions We conclude that traumatic brain injury increased the inflammatory pain associated with cutaneous inflammation by contributing to systemic immune dysregulation. Regulatory T cells are immune suppressors and failure of T cells to differentiate into regulatory T cells leads to unregulated cytokine production which may contribute to the potentiation of peripheral pain through the excitation of peripheral sensory neurons. In addition, regulatory T cells are identified as a potential target for therapeutic rebalancing of peripheral immune homeostasis to improve functional outcome and decrease the incidence of peripheral inflammatory pain following traumatic brain injury.
Collapse
Affiliation(s)
- Rachel K Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA Phoenix Veteran Affairs Healthcare System, Phoenix, AZ, USA
| | - Gavin I Ellis
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jordan L Harrison
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA Arizona State University, Tempe, AZ, USA
| | - Adam D Bachstetter
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Gregory F Corder
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Linda J Van Eldik
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA Sanders-Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Francesc Marti
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA Phoenix Veteran Affairs Healthcare System, Phoenix, AZ, USA Arizona State University, Tempe, AZ, USA
| |
Collapse
|
40
|
Abstract
Traumatic injury remains one of the most prevalent reasons for patients to be hospitalized. Burn injury accounts for 40,000 hospitalizations in the United States annually, resulting in a large burden on both the health and economic system and costing millions of dollars every year. The complications associated with postburn care can quickly cause life-threatening conditions including sepsis and multiple organ dysfunction and failure. In addition, alcohol intoxication at the time of burn injury has been shown to exacerbate these problems. One of the biggest reasons for the onset of these complications is the global suppression of the host immune system and increased susceptibility to infection. It has been hypothesized that infections after burn and other traumatic injury may stem from pathogenic bacteria from within the host's gastrointestinal tract. The intestine is the major reservoir of bacteria within the host, and many studies have demonstrated perturbations of the intestinal barrier after burn injury. This article reviews the findings of these studies as they pertain to changes in the intestinal immune system after alcohol and burn injury.
Collapse
|
41
|
Gong Y, Tao L, Jing L, Liu D, Hu S, Liu W, Zhou N, Xie Y. Association of TLR4 and Treg in Helicobacter pylori Colonization and Inflammation in Mice. PLoS One 2016; 11:e0149629. [PMID: 26901645 PMCID: PMC4762684 DOI: 10.1371/journal.pone.0149629] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/03/2016] [Indexed: 12/14/2022] Open
Abstract
The host immune response plays an important role in the pathogenesis of Helicobacter pylori infection. The aim of this study was to clarify the immune pathogenic mechanism of Helicobacter pylori infection via TLR signaling and gastric mucosal Treg cells in mice. To discover the underlying mechanism, we selectively blocked the TLR signaling pathway and subpopulations of regulatory T cells in the gastric mucosa of mice, and examined the consequences on H. pylori infection and inflammatory response as measured by MyD88, NF-κB p65, and Foxp3 protein expression levels and the levels of Th1, Th17 and Th2 cytokines in the gastric mucosa. We determined that blocking TLR4 signaling in H. pylori infected mice decreased the numbers of Th1 and Th17 Treg cells compared to controls (P < 0.001-0.05), depressed the immune response as measured by inflammatory grade (P < 0.05), and enhanced H. pylori colonization (P < 0.05). In contrast, blocking CD25 had the opposite effects, wherein the Th1 and Th17 cell numbers were increased (P < 0.001-0.05), immune response was enhanced (P < 0.05), and H. pylori colonization was inhibited (P < 0.05) compared to the non-blocked group. In both blocked groups, the Th2 cytokine IL-4 remained unchanged, although IL-10 in the CD25 blocked group was significantly decreased (P < 0.05). Furthermore, MyD88, NF-κB p65, and Foxp3 in the non-blocked group were significantly lower than those in the TLR4 blocked group (P < 0.05), but significantly higher than those of the CD25 blocked group (P < 0.05). Together, these results suggest that there might be an interaction between TLR signaling and Treg cells that is important for limiting H. pylori colonization and suppressing the inflammatory response of infected mice.
Collapse
Affiliation(s)
- Yanfeng Gong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi, China
- Department of Geriatrics, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi, China
| | - Liming Tao
- Department of Obstetrics, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi, China
| | - Lei Jing
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi, China
| | - Dongsheng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi, China
| | - Sijun Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi, China
| | - Wei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi, China
| | - Nanjin Zhou
- Department of Biochemistry and Molecular Biology, Jiangxi Academy of Medical Science, Jiangxi, China
- * E-mail: (YX); (NZ)
| | - Yong Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi, China
- * E-mail: (YX); (NZ)
| |
Collapse
|
42
|
Mohammad Hosseini A, Majidi J, Baradaran B, Yousefi M. Toll-Like Receptors in the Pathogenesis of Autoimmune Diseases. Adv Pharm Bull 2015; 5:605-14. [PMID: 26793605 DOI: 10.15171/apb.2015.082] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 12/15/2022] Open
Abstract
Human Toll-like receptors (TLRs) are a family of transmembrane receptors, which play a key role in both innate and adaptive immune responses. Beside of recognizing specific molecular patterns that associated with different types of pathogens, TLRs may also detect a number of self-proteins and endogenous nucleic acids. Activating TLRs lead to the heightened expression of various inflammatory genes, which have a protective role against infection. Data rising predominantly from human patients and animal models of autoimmune disease indicate that, inappropriate triggering of TLR pathways by exogenous or endogenous ligands may cause the initiation and/or perpetuation of autoimmune reactions and tissue damage. Given their important role in infectious and non-infectious disease process, TLRs and its signaling pathways emerge as appealing targets for therapeutics. In this review, we demonstrate how TLRs pathways could be involved in autoimmune disorders and their therapeutic application.
Collapse
Affiliation(s)
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
ter Horst EN, Hakimzadeh N, van der Laan AM, Krijnen PAJ, Niessen HWM, Piek JJ. Modulators of Macrophage Polarization Influence Healing of the Infarcted Myocardium. Int J Mol Sci 2015; 16:29583-91. [PMID: 26690421 PMCID: PMC4691130 DOI: 10.3390/ijms161226187] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
To diminish heart failure development after acute myocardial infarction (AMI), several preclinical studies have focused on influencing the inflammatory processes in the healing response post-AMI. The initial purpose of this healing response is to clear cell debris of the injured cardiac tissue and to eventually resolve inflammation and support scar tissue formation. This is a well-balanced reaction. However, excess inflammation can lead to infarct expansion, adverse ventricular remodeling and thereby propagate heart failure development. Different macrophage subtypes are centrally involved in both the promotion and resolution phase of inflammation. Modulation of macrophage subset polarization has been described to greatly affect the quality and outcome of healing after AMI. Therefore, it is of great interest to reveal the process of macrophage polarization to support the development of therapeutic targets. The current review summarizes (pre)clinical studies that demonstrate essential molecules involved in macrophage polarization that can be modulated and influence cardiac healing after AMI.
Collapse
Affiliation(s)
- Ellis N ter Horst
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands.
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
- Interuniversity Cardiology Institute of the Netherlands, Netherlands Heart Institute, Moreelsepark 1, Utrecht 3511 EP, The Netherlands.
- Institute for Cardiovascular Research, VU University Medical Center, van der Boechorstraat 7, Amsterdam 1081 BT, The Netherlands.
| | - Nazanin Hakimzadeh
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| | - Anja M van der Laan
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| | - Paul A J Krijnen
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands.
- Institute for Cardiovascular Research, VU University Medical Center, van der Boechorstraat 7, Amsterdam 1081 BT, The Netherlands.
| | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands.
- Institute for Cardiovascular Research, VU University Medical Center, van der Boechorstraat 7, Amsterdam 1081 BT, The Netherlands.
- Department of Cardiac Surgery, VU University Medical Center, de Boelelaan 1117, Amsterdam 1081 HV, The Netherlands.
| | - Jan J Piek
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
44
|
Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep 2015; 5:16801. [PMID: 26582486 PMCID: PMC4652162 DOI: 10.1038/srep16801] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022] Open
Abstract
Numerous regulatory T cells (Tregs) are present in adipose tissues compared with other lymphoid or non-lymphoid tissues. Adipose Tregs regulate inflammatory state and insulin sensitivity. However, the mechanism that maintains Tregs in adipose tissue remains unclear. Here, we revealed the contribution of adipose tissue macrophages (ATMs) to the induction and proliferation of adipose Tregs. ATMs isolated from mice under steady state conditions induced Tregs with high expression of PPARγ compared with splenic dendritic cells in vitro. Furthermore, ATMs from obese mice prompted the differentiation of PPARγ low Tregs. Adoptive transfer of ATMs induced differentiation and proliferation of Tregs, whereas depletion of ATMs by clodronate-liposome resulted in reduction of adipose Tregs, in vivo. Deficiency of anti-inflammatory adipocytokine, Adipoq, resulted in small proportions of ATMs and adipose Tregs without alteration of other immune cells in vivo. Therefore, these data suggest that the abundance of Tregs in adipose tissue could be partly attributed to the ability of ATMs to induce PPARγ-expressing Tregs.
Collapse
|
45
|
Jackson JA. Immunology in wild nonmodel rodents: an ecological context for studies of health and disease. Parasite Immunol 2015; 37:220-32. [PMID: 25689683 PMCID: PMC7167918 DOI: 10.1111/pim.12180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/04/2015] [Indexed: 12/16/2022]
Abstract
Transcriptomic methods are set to revolutionize the study of the immune system in naturally occurring nonmodel organisms. With this in mind, the present article focuses on ways in which the use of 'nonmodel' rodents (not the familiar laboratory species) can advance studies into the classical, but ever relevant, epidemiologic triad of immune defence, infectious disease and environment. For example, naturally occurring rodents are an interesting system in which to study the environmental stimuli that drive the development and homeostasis of the immune system and, by extension, to identify where these stimuli are altered in anthropogenic environments leading to the formation of immunopathological phenotypes. Measurement of immune expression may help define individual heterogeneity in infectious disease susceptibility and transmission and facilitate our understanding of infection dynamics and risk in the natural environment; furthermore, it may provide a means of surveillance that can filter individuals carrying previously unknown acute infections of potential ecological or zoonotic importance. Finally, the study of immunology in wild animals may reveal interactions within the immune system and between immunity and other organismal traits that are not observable under restricted laboratory conditions. Potentiating much of this is the possibility of combining gene expression profiles with analytical tools derived from ecology and systems biology to reverse engineer interaction networks between immune responses, other organismal traits and the environment (including symbiont exposures), revealing regulatory architecture. Such holistic studies promise to link ecology, epidemiology and immunology in natural systems in a unified approach that can illuminate important problems relevant to human health and animal welfare and production.
Collapse
Affiliation(s)
- J A Jackson
- IBERS, Aberystwyth University, Aberystwyth, Ceredigion, UK
| |
Collapse
|
46
|
Research Progress on Regulatory T Cells in Acute Kidney Injury. J Immunol Res 2015; 2015:174164. [PMID: 26273681 PMCID: PMC4529954 DOI: 10.1155/2015/174164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/02/2015] [Indexed: 02/06/2023] Open
Abstract
Immune inflammation is crucial in mediating acute kidney injury (AKI). Immune cells of both the innate and adaptive immune systems substantially contribute to overall renal damage in AKI. Regulatory T cells (Tregs) are key regulator of immunological function and have been demonstrated to ameliorate injury in several murine experimental models of renal inflammation. Recent studies have illuminated the renal-protective function of Tregs in AKI. Tregs appear to exert beneficial effects in both the acute injury phase and the recovery phase of AKI. Additionally, Tregs-based immunotherapy may represent a promising approach to ameliorate AKI and promote recovery from AKI. This review will highlight the recent insights into the role of Tregs and their therapeutic potential in AKI.
Collapse
|
47
|
Depletion of Foxp3+ Regulatory T Cells Promotes Profibrogenic Milieu of Cholestasis-Induced Liver Injury. Dig Dis Sci 2015; 60:2009-18. [PMID: 25416630 DOI: 10.1007/s10620-014-3438-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 11/11/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Accumulating evidence suggests that Foxp3+ regulatory T (Treg) cells act as inhibitory mediators of inflammation; however, the in vivo mechanism underlying this protection remains elusive in liver diseases. AIMS To clarify the in vivo role of Foxp3+ Treg cells in liver fibrosis, we used the DEREG mouse, which expresses the diphtheria toxin receptor under control of the Foxp3 promoter, allowing for specific deletion of Foxp3+ Treg cells. METHODS Bile duct ligation-induced liver injury and fibrosis were assessed by histopathology, fibrogenic gene expression, and measurement of cytokine and chemokine levels. RESULTS Depletion of Foxp3+ Treg cells enhanced Th17 cell response as demonstrated by the increase of IL-17+ cells and related gene expressions including Il17f, Il17ra, and Rorgt in the fibrotic livers of DEREG mice. Of note, infiltration of CD8+ T cells and Cd8 gene expression was significantly increased in the livers of DEREG mice. Consistent with increased IL-17+ and CD8+ T cell responses, DEREG mice generated higher levels of inflammatory cytokines (TNF-α, IL-6, and IL-12p70) and chemokines (MCP-1, MIP-1α, and RANTES). These results were concordant with severity of liver fibrosis and hepatic enzyme levels (ALT and ALP). CONCLUSIONS The present findings demonstrate that Foxp3+ Treg cells inhibit the profibrogenic inflammatory milieu through suppression of pro-fibrogenic CD8+ and IL-17+ T cells.
Collapse
|
48
|
Liang S, Wang W, Gou X. MicroRNA 26a modulates regulatory T cells expansion and attenuates renal ischemia–reperfusion injury. Mol Immunol 2015; 65:321-7. [DOI: 10.1016/j.molimm.2015.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/28/2015] [Accepted: 02/05/2015] [Indexed: 10/23/2022]
|
49
|
Cao C, Ma T, Chai YF, Shou ST. The role of regulatory T cells in immune dysfunction during sepsis. World J Emerg Med 2015; 6:5-9. [PMID: 25802559 DOI: 10.5847/wjem.j.1920-8642.2015.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Although regulatory T cells (Tregs) are key to the maintenance of immunologic homeostasis and tolerance, little is known about Treg-mediated immunosuppression in the stage of sepsis. This article aimed to review the current literature on the role of Tregs in the pathophysiology of septic response, attempting to investigate the role of Tregs in immune dysfunction during sepsis. DATA SOURCES A literature search was conducted in January 2014 using the China National Knowledge Infrastructure and PubMed. Articles on the role of Tregs in immune dysfunction during sepsis were identified. RESULTS The identified articles indicated that Treg levels can be used for the assessment of the course of sepsis. The inhibition of Treg activity can promote the recovery of immune function. CONCLUSION Since the mechanism of Tregs is complex during the sepsis, more studies are needed.
Collapse
Affiliation(s)
- Chao Cao
- Emergency Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan-Fen Chai
- Emergency Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Song-Tao Shou
- Emergency Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
50
|
Liu H, Ding J, Ma Z, Zhu Z, Shankowsky HA, Tredget EE. A novel subpopulation of peripheral blood mononuclear cells presents in major burn patients. Burns 2015; 41:998-1007. [PMID: 25683215 DOI: 10.1016/j.burns.2014.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 11/28/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
Hypertrophic scars (HTS) are generally believed to result from proliferation and activation of resident connective tissue fibroblasts after burns. To demonstrate a potential role of blood-borne cells, the peripheral blood mononuclear cells (PBMCs) and the effect of PBMCs on dermal fibroblast behavior was investigated. Flow cytometry was used to analyze the surface and intracellular protein expression of PBMCs and fibroblasts. Transwell migration assay, enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction was performed to assess fibroblast functions. We identified a novel subpopulation of PBMCs in burn patients in vivo that appears at an early stage following major thermal injuries, which primarily express procollagen 1, leukocyte specific protein 1, CD204, toll-like receptor 4 and stromal cell-derived factor 1 (SDF-1) receptor CXCR4. In vitro, the conditioned media from burn patient PBMCs up-regulated the expression of fibrotic growth factors and extracellular matrix molecules, down-regulated antifibrotic factor decorin, enhanced cell chemotaxis and promoted cell differentiation into contractile myofibroblasts in dermal fibroblasts. After thermal injury, this novel subpopulation of PBMCs is systemically triggered and attracted to the wounds under SDF-1/CXCR4 signaling where they appear to modulate the functions of resident connective tissue cells and thus contribute to the development of HTS.
Collapse
Affiliation(s)
- Hongbin Liu
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB, Canada T6G 2B7
| | - Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB, Canada T6G 2B7
| | - Zengshuan Ma
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB, Canada T6G 2B7; Division of Critical Care Medicine, Department of Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB, Canada T6G 2B7
| | - Zhenshen Zhu
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB, Canada T6G 2B7; Division of Critical Care Medicine, Department of Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB, Canada T6G 2B7
| | - Heather A Shankowsky
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB, Canada T6G 2B7
| | - Edward E Tredget
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB, Canada T6G 2B7; Division of Critical Care Medicine, Department of Surgery, University of Alberta, 2D2.28 WMC, 8440-112 Street, Edmonton, AB, Canada T6G 2B7.
| |
Collapse
|