1
|
Hiéronimus L, Huaux F. B-1 cells in immunotoxicology: Mechanisms underlying their response to chemicals and particles. FRONTIERS IN TOXICOLOGY 2023; 5:960861. [PMID: 37143777 PMCID: PMC10151831 DOI: 10.3389/ftox.2023.960861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Since their discovery nearly 40 years ago, B-1 cells have continued to challenge the boundaries between innate and adaptive immunity, as well as myeloid and lymphoid functions. This B-cell subset ensures early immunity in neonates before the development of conventional B (B-2) cells and respond to immune injuries throughout life. B-1 cells are multifaceted and serve as natural- and induced-antibody-producing cells, phagocytic cells, antigen-presenting cells, and anti-/pro-inflammatory cytokine-releasing cells. This review retraces the origin of B-1 cells and their different roles in homeostatic and infectious conditions before focusing on pollutants comprising contact-sensitivity-inducing chemicals, endocrine disruptors, aryl hydrocarbon receptor (AHR) ligands, and reactive particles.
Collapse
|
2
|
Interactions between Dietary Micronutrients, Composition of the Microbiome and Efficacy of Immunotherapy in Cancer Patients. Cancers (Basel) 2022; 14:cancers14225577. [PMID: 36428677 PMCID: PMC9688200 DOI: 10.3390/cancers14225577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of immunotherapy in cancer patients depends on the activity of the host's immune system. The intestinal microbiome is a proven immune system modulator, which plays an important role in the development of many cancers and may affect the effectiveness of anti-cancer therapy. The richness of certain bacteria in the gut microbiome (e.g., Bifidobacterium spp., Akkermanisa muciniphila and Enterococcus hire) improves anti-tumor specific immunity and the response to anti-PD-1 or anti-PD-L1 immunotherapy by activating antigen-presenting cells and cytotoxic T cells within the tumor. Moreover, micronutrients affect directly the activities of the immune system or regulate their function by influencing the composition of the microbiome. Therefore, micronutrients can significantly influence the effectiveness of immunotherapy and the development of immunorelated adverse events. In this review, we describe the relationship between the supply of microelements and the abundance of various bacteria in the intestinal microbiome and the effectiveness of immunotherapy in cancer patients. We also point to the function of the immune system in the case of shifts in the composition of the microbiome and disturbances in the supply of microelements. This may in the future become a therapeutic target supporting the effects of immunotherapy in cancer patients.
Collapse
|
3
|
Zou MZ, Kong WC, Cai H, Xing MT, Yu ZX, Chen X, Zhang LY, Wang XZ. Activation of natural killer T cells contributes to Th1 bias in the murine liver after 14 d of ethinylestradiol exposure. World J Gastroenterol 2022; 28:3150-3163. [PMID: 36051344 PMCID: PMC9331528 DOI: 10.3748/wjg.v28.i26.3150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/25/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As the main component of oral contraceptives (OCs), ethinylestradiol (EE) has been widely applied as a model drug to induce murine intrahepatic cholestasis. The clinical counterpart of EE-induced cholestasis includes women who are taking OCs, sex hormone replacement therapy, and susceptible pregnant women. Taking intrahepatic cholestasis of pregnancy (ICP) as an example, ICP consumes the medical system due to its high-risk fetal burden and the impotency of ursodeoxycholic acid in reducing adverse perinatal outcomes.
AIM To explore the mechanisms and therapeutic strategies of EE-induced cholestasis based on the liver immune microenvironment.
METHODS Male C57BL/6J mice or invariant natural killer T (iNKT) cell deficiency (Jα18-/- mice) were administered with EE (10 mg/kg, subcutaneous) for 14 d.
RESULTS Both Th1 and Th2 cytokines produced by NKT cells increased in the liver skewing toward a Th1 bias. The expression of the chemokine/chemokine receptor Cxcr6/Cxcl16, toll-like receptors, Ras/Rad, and PI3K/Bad signaling was upregulated after EE administration. EE also influenced bile acid synthase Cyp7a1, Cyp8b1, and tight junctions ZO-1 and Occludin, which might be associated with EE-induced cholestasis. iNKT cell deficiency (Jα18-/- mice) robustly alleviated cholestatic liver damage and lowered the expression of the abovementioned signaling pathways.
CONCLUSION Hepatic NKT cells play a pathogenic role in EE-induced intrahepatic cholestasis. Our research improves the understanding of intrahepatic cholestasis by revealing the hepatic immune microenvironment and also provides a potential clinical treatment by regulating iNKT cells.
Collapse
Affiliation(s)
- Meng-Zhi Zou
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Wei-Chao Kong
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Heng Cai
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Meng-Tao Xing
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Zi-Xun Yu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Xin Chen
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Lu-Yong Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, China
| | - Xin-Zhi Wang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
4
|
Ly6G deficiency alters the dynamics of neutrophil recruitment and pathogen capture during Leishmania major skin infection. Sci Rep 2021; 11:15071. [PMID: 34302006 PMCID: PMC8302578 DOI: 10.1038/s41598-021-94425-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
Neutrophils represent one of the first immune cell types recruited to sites of infection, where they can control pathogens by phagocytosis and cytotoxic mechanisms. Intracellular pathogens such as Leishmania major can hijack neutrophils to establish an efficient infection. However the dynamic interactions of neutrophils with the pathogen and other cells at the site of the infection are incompletely understood. Here, we have investigated the role of Ly6G, a homolog of the human CD177 protein, which has been shown to interact with cell adhesion molecules, and serves as a bona fide marker for neutrophils in mice. We show that Ly6G deficiency decreases the initial infection rate of neutrophils recruited to the site of infection. Although the uptake of L. major by subsequently recruited monocytes was tightly linked with the concomitant uptake of neutrophil material, this process was not altered by Ly6G deficiency of the neutrophils. Instead, we observed by intravital 2-photon microscopy that Ly6G-deficient neutrophils entered the site of infection with delayed initial recruitment kinetics. Thus, we conclude that by promoting neutrophils’ ability to efficiently enter the site of infection, Ly6G contributes to the early engagement of intracellular pathogens by the immune system.
Collapse
|
5
|
Anderson CK, Reilly SP, Brossay L. The Invariant NKT Cell Response Has Differential Signaling Requirements during Antigen-Dependent and Antigen-Independent Activation. THE JOURNAL OF IMMUNOLOGY 2020; 206:132-140. [PMID: 33229442 DOI: 10.4049/jimmunol.2000870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Invariant NKT (iNKT) cells are an innate-like population characterized by their recognition of glycolipid Ags and rapid cytokine production upon activation. Unlike conventional T cells, which require TCR ligation, iNKT cells can also be stimulated independently of their TCR. This feature allows iNKT cells to respond even in the absence of glycolipid Ags, for example, during viral infections. Although the TCR-dependent and -independent activation of iNKT cells have been relatively well established, the exact contributions of IL-12, IL-18, and TLRs remain unclear for these two activation pathways. To definitively investigate how these components affect the direct and indirect stimulation of iNKT cells, we used mice deficient for either MyD88 or the IL-12Rβ2 in the T cell lineage. Using these tools, we demonstrate that IL-12, IL-18, and TLRs are completely dispensable for the TCR activation pathway when a strong agonist is used. In contrast, during murine CMV infection, when the TCR is not engaged, IL-12 signaling is essential, and TLR signaling is expendable. Importantly, to our knowledge, we discovered an intrinsic requirement for IL-18 signaling by splenic iNKT cells but not liver iNKT cells, suggesting that there might be diversity, even within the NKT1 population.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| | - Shanelle P Reilly
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| |
Collapse
|
6
|
Kalmukova OO, Yurchenko AV, Savchuk AM, Dzerzhynsky ME. Changes in the Inflammatory Status in White Adipose Tissue of Rats with Diet-Induced Obesity at Different Regimens of Melatonin Administration. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Yip KH, Papadopoulos M, Pant H, Tumes DJ. The role of invariant T cells in inflammation of the skin and airways. Semin Immunopathol 2019; 41:401-410. [PMID: 30989319 DOI: 10.1007/s00281-019-00740-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/21/2019] [Indexed: 01/20/2023]
Abstract
Invariant and semi-invariant T cells are emerging as important regulators of host environment interactions at barrier tissues such as the airway and skin. In contrast to conventional T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells express T cell receptors of very limited diversity. iNKT and MAIT cells recognise antigens presented by the MHC class 1-like monomorphic molecules CD1d and MR1, respectively. Both iNKT cells and MAIT cells have been identified in the skin and airways and can rapidly produce cytokines after activation. Numerous studies have implicated iNKT cells in the pathology of both skin and airway disease, but conflicting evidence in human disease means that more studies are necessary to resolve the exact roles of iNKT in inflammation. The functions of MAIT cells in skin and lung inflammation are even less well defined. We herein describe the current literature on iNKT and MAIT cells in allergic and non-allergic skin diseases (dermatitis and psoriasis) and airway diseases (asthma, chronic obstructive pulmonary disease, rhinitis, and chronic rhinosinusitis).
Collapse
Affiliation(s)
- Kwok Ho Yip
- Centre for Cancer Biology, The University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5000, Australia
| | - Magdalene Papadopoulos
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba, 260-8670, Japan
| | - Harshita Pant
- Centre for Cancer Biology, The University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5000, Australia.,Department of Otolaryngology, Head and Neck Surgery, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, The University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5000, Australia. .,Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba, 260-8670, Japan. .,South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
8
|
Jappe U, Schwager C, Schromm AB, González Roldán N, Stein K, Heine H, Duda KA. Lipophilic Allergens, Different Modes of Allergen-Lipid Interaction and Their Impact on Asthma and Allergy. Front Immunol 2019; 10:122. [PMID: 30837983 PMCID: PMC6382701 DOI: 10.3389/fimmu.2019.00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Molecular allergology research has provided valuable information on the structure and function of single allergenic molecules. There are several allergens in food and inhalant allergen sources that are able to interact with lipid ligands via different structural features: hydrophobic pockets, hydrophobic cavities, or specialized domains. For only a few of these allergens information on their associated ligands is already available. Several of the allergens are clinically relevant, so that it is highly probable that the individual structural features with which they interact with lipids have a direct effect on their allergenic potential, and thus on allergy development. There is some evidence for a protective effect of lipids delaying the enzymatic digestion of the peanut (Arachis hypogaea) allergen Ara h 8 (hydrophobic pocket), probably allowing this molecule to get to the intestinal immune system intact (sensitization). Oleosins from different food allergen sources are part of lipid storage organelles and potential marker allergens for the severity of the allergic reaction. House dust mite (HDM), is more often associated with allergic asthma than other sources of inhalant allergens. In particular, lipid-associated allergens from Dermatophagoides pteronyssinus which are Der p 2, Der p 5, Der p 7, Der p 13, Der p 14, and Der p 21 have been reported to be associated with severe allergic reactions and respiratory symptoms such as asthma. The exact mechanism of interaction of these allergens with lipids still has to be elucidated. Apart from single allergens glycolipids have been shown to directly induce allergic inflammation. Several-in parts conflicting-data exist on the lipid (and allergen) and toll-like receptor interactions. For only few single allergens mechanistic studies were performed on their interaction with the air-liquid interface of the lungs, in particular with the surfactant components SP-A and SP-D. The increasing knowledge on protein-lipid-interaction for lipophilic and hydrophobic food and inhalant allergens on the basis of their particular structure, of their capacity to be integral part of membranes (like the oleosins), and their ability to interact with membranes, surfactant components, and transport lipids (like the lipid transfer proteins) are essential to eventually clarify allergy and asthma development.
Collapse
Affiliation(s)
- Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Borstel, Germany
| | - Christian Schwager
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Andra B. Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nestor González Roldán
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Karina Stein
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Katarzyna A. Duda
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| |
Collapse
|
9
|
Burrello C, Pellegrino G, Giuffrè MR, Lovati G, Magagna I, Bertocchi A, Cribiù FM, Boggio F, Botti F, Trombetta E, Porretti L, Di Sabatino A, Vecchi M, Rescigno M, Caprioli F, Facciotti F. Mucosa-associated microbiota drives pathogenic functions in IBD-derived intestinal iNKT cells. Life Sci Alliance 2019; 2:2/1/e201800229. [PMID: 30760554 PMCID: PMC6374994 DOI: 10.26508/lsa.201800229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis has been linked to the aberrant activation of the Gut-associated lymphoid tissues against components of the intestinal microbiota. Although the contribution of CD4+ T helper cells to inflammatory processes is being increasingly acknowledged, the functional engagement of human invariant natural killer T (iNKT) cells is still poorly defined. Here, we evaluated the functional characteristics of intestinal iNKT cells during IBD pathogenesis and to exploit the role of mucosa-associated microbiota recognition in triggering iNKT cells' pro-inflammatory responses in vivo. Lamina propria iNKT cells, isolated from surgical specimens of active ulcerative colitis and Crohn's disease patients and non-IBD donors, were phenotypically and functionally analyzed ex vivo, and stable cell lines and clones were generated for in vitro functional assays. iNKT cells expressing a pro-inflammatory cytokine profile were enriched in the lamina propria of IBD patients, and their exposure to the mucosa-associated microbiota drives pro-inflammatory activation, inducing direct pathogenic activities against the epithelial barrier integrity. These observations suggest that iNKT cell pro-inflammatory functions may contribute to the fuelling of intestinal inflammation in IBD patients.
Collapse
Affiliation(s)
- Claudia Burrello
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pellegrino
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rita Giuffrè
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Ilaria Magagna
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Alice Bertocchi
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Boggio
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fiorenzo Botti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
10
|
The Role of Invariant NKT in Autoimmune Liver Disease: Can Vitamin D Act as an Immunomodulator? Can J Gastroenterol Hepatol 2018; 2018:8197937. [PMID: 30046564 PMCID: PMC6038587 DOI: 10.1155/2018/8197937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct lineage of T cells which express both the T cell receptor (TCR) and natural killer (NK) cell markers. Invariant NKT (iNKT) cells bear an invariant TCR and recognize a small variety of glycolipid antigens presented by CD1d (nonclassical MHC-I). CD1d-restricted iNKT cells are regulators of immune responses and produce cytokines that may be proinflammatory (such as interferon-gamma (IFN-γ)) or anti-inflammatory (such as IL-4). iNKT cells also appear to play a role in B cell regulation and antibody production. Alpha-galactosylceramide (α-GalCer), a derivative of the marine sponge, is a potent stimulator of iNKT cells and has been proposed as a therapeutic iNKT cell activator. Invariant NKT cells have been implicated in the development and perpetuation of several autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus (SLE). Animal models of SLE have shown abnormalities in iNKT cells numbers and function, and an inverse correlation between the frequency of NKT cells and IgG levels has also been observed. The role of iNKT cells in autoimmune liver disease (AiLD) has not been extensively studied. This review discusses the current data with regard to iNKT cells function in AiLD, in addition to providing an overview of iNKT cells function in other autoimmune conditions and animal models. We also discuss data regarding the immunomodulatory effects of vitamin D on iNKT cells, which may serve as a potential therapeutic target, given that deficiencies in vitamin D have been reported in various autoimmune disorders.
Collapse
|
11
|
Szczepanik M, Majewska-Szczepanik M, Wong FS, Kowalczyk P, Pasare C, Wen L. Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity. Contact Dermatitis 2018; 79:197-207. [PMID: 29943459 DOI: 10.1111/cod.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/15/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Genetic background influences allergic immune responses to environmental stimuli. Non-obese diabetic (NOD) mice are highly susceptible to environmental stimuli. Little is known about the interaction of autoimmune genetic factors with innate immunity in allergies, especially skin hypersensitivity. OBJECTIVES To study the interplay of innate immunity and autoimmune genetic factors in contact hypersensitivity (CHS) by using various innate immunity-deficient NOD mice. METHODS Toll-like receptor (TLR) 2-deficient, TLR9-deficient and MyD88-deficient NOD mice were used to investigate CHS. The cellular mechanism was determined by flow cytometry in vitro and adoptive cell transfer in vivo. To investigate the role of MyD88 in dendritic cells (DCs) in CHS, we also used CD11cMyD88+ MyD88-/- NOD mice, in which MyD88 is expressed only in CD11c+ cells. RESULTS We found that innate immunity negatively regulates CHS, as innate immunity-deficient NOD mice developed exacerbated CHS accompanied by increased numbers of skin-migrating CD11c+ DCs expressing higher levels of major histocompatibility complex II and CD80. Moreover, MyD88-/- NOD mice had increased numbers of CD11c+ CD207- CD103+ DCs and activated T effector cells in the skin-draining lymph nodes. Strikingly, re-expression of MyD88 in CD11c+ DCs (CD11cMyD88+ MyD88-/- NOD mice) restored hyper-CHS to a normal level in MyD88-/- NOD mice. CONCLUSION Our results suggest that the autoimmune-prone NOD genetic background aggravates CHS regulated by innate immunity, through DCs and T effector cells.
Collapse
Affiliation(s)
- Marian Szczepanik
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut.,Department of Medical Biology, Health Science Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Majewska-Szczepanik
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut.,Department of Medical Biology, Health Science Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Florence S Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Paulina Kowalczyk
- Department of Medical Biology, Health Science Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Chandrashekhar Pasare
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Li Wen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
12
|
Bedard M, Salio M, Cerundolo V. Harnessing the Power of Invariant Natural Killer T Cells in Cancer Immunotherapy. Front Immunol 2017; 8:1829. [PMID: 29326711 PMCID: PMC5741693 DOI: 10.3389/fimmu.2017.01829] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a distinct subset of innate-like lymphocytes bearing an invariant T-cell receptor, through which they recognize lipid antigens presented by monomorphic CD1d molecules. Upon activation, iNKT cells are capable of not only having a direct effector function but also transactivating NK cells, maturing dendritic cells, and activating B cells, through secretion of several cytokines and cognate TCR-CD1d interaction. Endowed with the ability to orchestrate an all-encompassing immune response, iNKT cells are critical in shaping immune responses against pathogens and cancer cells. In this review, we examine the critical role of iNKT cells in antitumor responses from two perspectives: (i) how iNKT cells potentiate antitumor immunity and (ii) how CD1d+ tumor cells may modulate their own expression of CD1d molecules. We further explore hypotheses to explain iNKT cell activation in the context of cancer and how the antitumor effects of iNKT cells can be exploited in different forms of cancer immunotherapy, including their role in the development of cancer vaccines.
Collapse
Affiliation(s)
- Melissa Bedard
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Peng H, Tian Z. Natural Killer Cell Memory: Progress and Implications. Front Immunol 2017; 8:1143. [PMID: 28955346 PMCID: PMC5601391 DOI: 10.3389/fimmu.2017.01143] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/30/2017] [Indexed: 01/23/2023] Open
Abstract
Immunological memory is a cardinal feature of adaptive immunity. Although natural killer (NK) cells have long been considered short-lived innate lymphocytes that respond rapidly to transformed and virus-infected cells without prior sensitization, accumulating evidence has recently shown that NK cells develop long-lasting and antigen-specific memory to haptens and viruses. Additionally, cytokine stimulation alone can induce memory-like NK cells with longevity and functional competence, leading to emerging interest in harnessing NK cell memory for cancer immunotherapy. Here, we review the evidence of NK cell memory in different settings, summarize recent advances in mechanisms driving the formation of NK cell memory, and discuss the therapeutic potential of NK cells with memory-like properties in the clinical setting.
Collapse
Affiliation(s)
- Hui Peng
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Bonefeld CM, Geisler C, Gimenéz-Arnau E, Lepoittevin JP, Uter W, Johansen JD. Immunological, chemical and clinical aspects of exposure to mixtures of contact allergens. Contact Dermatitis 2017; 77:133-142. [DOI: 10.1111/cod.12847] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Charlotte M. Bonefeld
- Faculty of Health and Medical Sciences, Department of Immunology and Microbiology; University of Copenhagen; 2200 Copenhagen Denmark
| | - Carsten Geisler
- Faculty of Health and Medical Sciences, Department of Immunology and Microbiology; University of Copenhagen; 2200 Copenhagen Denmark
| | - Elena Gimenéz-Arnau
- Laboratory of Dermatochemistry, Institute of Chemistry-CNRS UMR 7177; University of Strasbourg; 67081 Strasbourg France
| | - Jean-Pierre Lepoittevin
- Laboratory of Dermatochemistry, Institute of Chemistry-CNRS UMR 7177; University of Strasbourg; 67081 Strasbourg France
| | - Wolfgang Uter
- Department of Medical Informatics, Biometry and Epidemiology; University of Erlangen/Nürnberg; 91054 Erlangen Germany
| | - Jeanne D. Johansen
- Department of Dermatology-Allergy, National Allergy Research Centre; Copenhagen University Hospital Gentofte; 2900 Hellerup Denmark
| |
Collapse
|
15
|
Cruz-Adalia A, Veiga E. Close Encounters of Lymphoid Cells and Bacteria. Front Immunol 2016; 7:405. [PMID: 27774092 PMCID: PMC5053978 DOI: 10.3389/fimmu.2016.00405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/21/2016] [Indexed: 01/24/2023] Open
Abstract
During infections, the first reaction of the host against microbial pathogens is carried out by innate immune cells, which recognize conserved structures on pathogens, called pathogen-associated molecular patterns. Afterward, some of these innate cells can phagocytose and destroy the pathogens, secreting cytokines that would modulate the immune response to the challenge. This rapid response is normally followed by the adaptive immunity, more specific and essential for a complete pathogen clearance in many cases. Some innate immune cells, usually named antigen-presenting cells, such as macrophages or dendritic cells, are able to process internalized invaders and present their antigens to lymphocytes, triggering the adaptive immune response. Nevertheless, the traditional boundary of separated roles between innate and adaptive immunity has been blurred by several studies, showing that very specialized populations of lymphocytes (cells of the adaptive immunity) behave similarly to cells of the innate immunity. These “innate-like” lymphocytes include γδ T cells, invariant NKT cells, B-1 cells, mucosal-associated invariant T cells, marginal zone B cells, and innate response activator cells, and together with the newly described innate lymphoid cells are able to rapidly respond to bacterial infections. Strikingly, our recent data suggest that conventional CD4+ T cells, the paradigm of cells of the adaptive immunity, also present innate-like behavior, capturing bacteria in a process called transinfection. Transinfected CD4+ T cells digest internalized bacteria like professional phagocytes and secrete large amounts of proinflammatory cytokines, protecting for further bacterial challenges. In the present review, we will focus on the data showing such innate-like behavior of lymphocytes following bacteria encounter.
Collapse
Affiliation(s)
- Aranzazu Cruz-Adalia
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones, Científicas (CNB-CSIC) , Madrid , Spain
| | - Esteban Veiga
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones, Científicas (CNB-CSIC) , Madrid , Spain
| |
Collapse
|
16
|
Ptak W, Nazimek K, Askenase PW, Bryniarski K. From Mysterious Supernatant Entity to miRNA-150 in Antigen-Specific Exosomes: a History of Hapten-Specific T Suppressor Factor. Arch Immunol Ther Exp (Warsz) 2015; 63:345-56. [PMID: 25690461 PMCID: PMC4572057 DOI: 10.1007/s00005-015-0331-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/26/2015] [Indexed: 11/30/2022]
Abstract
Soon after the discovery of T suppressor cells by Gershon in 1970, it was demonstrated that one subpopulation of these lymphocytes induced by i.v. hapten injection suppresses contact sensitivity response mediated by effector CD4+ or CD8+ T cells in mice through the release of soluble T suppressor factor (TsF) that acts antigen specifically. Our experiments showed that biologically active TsF is a complex entity consisting of two subfactors, one antigen specific and other non-specific, produced by differently induced populations of cells. In following years, we found that the antigen-specific subfactor is a light chain of IgM antibody that is produced by B1a lymphocytes. However, the exact nature of non-specific part remained a mystery for about 30 years. Our current studies characterized TsF as regulatory miRNA-150 carried by T suppressor cell-derived exosomes that are antigen specific due to a surface coat of IgM antibody light chains produced by B1a cells. The present communication briefly summarizes our studies on TsF that led to discovery of regulating miRNA that acts antigen specifically to suppress immune response.
Collapse
Affiliation(s)
- Włodzimierz Ptak
- Department of Immunology, Jagiellonian University Medical College, ul. Czysta 18, 31-121, Kraków, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, ul. Czysta 18, 31-121, Kraków, Poland
| | - Philip W Askenase
- Department of Internal Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, ul. Czysta 18, 31-121, Kraków, Poland.
| |
Collapse
|
17
|
Slauenwhite D, Johnston B. Regulation of NKT Cell Localization in Homeostasis and Infection. Front Immunol 2015; 6:255. [PMID: 26074921 PMCID: PMC4445310 DOI: 10.3389/fimmu.2015.00255] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/07/2015] [Indexed: 01/23/2023] Open
Abstract
Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.
Collapse
Affiliation(s)
- Drew Slauenwhite
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Department of Pediatrics, Dalhousie University , Halifax, NS , Canada ; Department of Pathology, Dalhousie University , Halifax, NS , Canada ; Beatrice Hunter Cancer Research Institute , Halifax, NS , Canada
| |
Collapse
|
18
|
Marcińska K, Majewska-Szczepanik M, Maresz KZ, Szczepanik M. Epicutaneous Immunization with Collagen Induces TCRαβ Suppressor T Cells That Inhibit Collagen-Induced Arthritis. Int Arch Allergy Immunol 2015; 166:121-34. [PMID: 25824601 DOI: 10.1159/000375404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We have shown previously, in an animal model of multiple sclerosis and in TNBS-induced colitis, that epicutaneous (EC) immunization with protein antigen induces T suppressor cells that strongly inhibit the inflammatory response in contact hypersensitivity reactions. METHODS EC immunization was performed by applying to the shaved skin of the mouse dorsum a gauze patch soaked with a solution containing various amounts of type II collagen (COLL II) in a volume of 100 µl of PBS on days 0 and 4. On day 7 the patches were removed and mice were intradermally (i.d.) immunized with COLL II to induce collagen-induced arthritis (CIA). RESULTS Our study shows that EC immunization with 100 or 30 μg of COLL II reduces disease severity, whereas lower doses (10 or 3 μg) do not affect CIA. Decreased disease severity observed after EC immunization with COLL II correlates with reduced myeloperoxidase activity in joint tissue and with reduced production of anti-citrullinated protein and anti-COLL II IgG2a antibodies. Transfer experiments show that EC immunization with COLL II induces suppressor cells that belong to the population of TCRαβ lymphocytes and that EC-induced suppression declines with time. Both in vitro and in vivo experiments show that IL-17A plays an important role in EC-induced suppression of CIA. EC application of COLL II at the first signs of CIA also results in disease suppression. CONCLUSIONS The suppression of inflammatory responses by T suppressor cells induced through EC immunization of a protein antigen may become an attractive noninvasive therapeutic method for a variety of clinical situations.
Collapse
Affiliation(s)
- Katarzyna Marcińska
- Department of Medical Biology, Jagiellonian University Medical College, Kraków, Poland
| | | | | | | |
Collapse
|
19
|
Ghosh AK, Sinha D, Mukherjee S, Biswas R, Biswas T. LPS stimulates and Hsp70 down-regulates TLR4 to orchestrate differential cytokine response of culture-differentiated innate memory CD8(+) T cells. Cytokine 2015; 73:44-52. [PMID: 25697138 DOI: 10.1016/j.cyto.2015.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 01/04/2023]
Abstract
Nonconventional innate memory CD8(+) T cells characteristically expressing CD44, CD122, eomesodermin (Eomes) and promyelocytic leukemia zinc finger (PLZF) were derived in culture from CD4(+)CD8(+) double positive (DP) thymocytes of normal BALB/c and C57BL/6 mice. These culture-differentiated cells constitutively express toll-like receptor (TLR)4 and release interferon (IFN)-γ and interleukin (IL)-10. We show the TLR4-ligand lipopolysaccharide (LPS) stimulate the TLR and up-regulate IFN-γ skewing the cells towards type 1 polarization. In presence of LPS these cells also express suppressor of cytokine signaling (SOCS)1 and thus suppress IL-10 expression. In contrast, heat shock protein (Hsp)70 down-regulated TLR4 augmenting the anti-inflammatory cytokine IL-10. In association with IL-10 release IFN-γ was abrogated. The programmed cell death (PD)-1 mostly present in regulatory T cells was stimulated in these IL-10 producing cells by Hsp70 and not LPS indicating the cells can be driven to two contrast outcomes by the two TLR4 ligands. Our work provides a scope for in vitro monitoring of CD8(+) T cells to decipher important immune therapeutic option during infection or sepsis.
Collapse
Affiliation(s)
- Amlan Kanti Ghosh
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debolina Sinha
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Subhadeep Mukherjee
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ratna Biswas
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata, India.
| | - Tapas Biswas
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
20
|
Toll-like receptor 3 increases allergic and irritant contact dermatitis. J Invest Dermatol 2014; 135:411-417. [PMID: 25229251 DOI: 10.1038/jid.2014.402] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 07/30/2014] [Accepted: 08/18/2014] [Indexed: 11/09/2022]
Abstract
There is increasing recognition of the role of Toll-like receptor 3 (TLR3) in noninfectious inflammatory diseases, but the function of TLR3 in inflammatory skin diseases is unclear. We investigated the functions of TLR3 in allergic and irritant contact dermatitis (ICD). The contact hypersensitivity (CHS) response was lower in Toll-like receptor 3 knockout (Tlr3 KO) mice, and was greater in TLR3 transgenic (Tg) mice than in wild-type (WT) mice after challenge with 2,4,6-trinitro-1-chlorobenzene. Adoptive transfer of immunized lymph node cells from Tlr3 KO mice induced CHS in WT recipients. In contrast, adoptive transfer of those from WT mice did not fully induce CHS in Tlr3 KO recipients. The ICD reaction following croton oil application was lower in Tlr3 KO mice, and was greater in TLR3 Tg mice than in WT mice. Maturation, migration, and antigen presentation of dendritic cells and proliferation of lymphocytes between WT mice and Tlr3 KO mice were comparable. These results show that TLR3 enhances antigen-independent skin inflammation in the elicitation phase of allergic contact dermatitis and in ICD.
Collapse
|
21
|
Majewska-Szczepanik M, Dorożyńska I, Strzępa A, Szczepanik M. Epicutaneous immunization with protein antigen TNP-Ig and NOD2 ligand muramyl dipeptide (MDP) reverses skin-induced suppression of contact hypersensitivity. Pharmacol Rep 2014; 66:137-42. [DOI: 10.1016/j.pharep.2013.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/14/2013] [Indexed: 10/25/2022]
|
22
|
Reynolds JM, Dong C. Toll-like receptor regulation of effector T lymphocyte function. Trends Immunol 2013; 34:511-9. [PMID: 23886621 DOI: 10.1016/j.it.2013.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 12/25/2022]
Abstract
The landmark discovery of pattern-recognition receptors, including Toll-like receptors (TLRs), furthered our understanding on how the host rapidly responds to invading pathogens. For over a decade now, extensive research has demonstrated the crucial role of multiple TLRs in the detection of a broad range of molecules expressed by microbial pathogens as well as host-derived danger signals. TLR activation is the hallmark of the innate immune response. Recent evidence, however, demonstrates that cells of the adaptive immune response use these innate signaling pathways as well. This review discusses recent findings regarding TLR functionality in T lymphocytes with a specific emphasis on the promotion of T helper cell-dependent inflammation through direct TLR signaling.
Collapse
Affiliation(s)
- Joseph M Reynolds
- Department of Immunology and Center for Inflammation and Cancer, MD Anderson Cancer Center, 7455 Fannin, Unit 906, Houston, TX 77030, USA; Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay, North Chicago, IL 60064, USA
| | | |
Collapse
|
23
|
Majewska-Szczepanik M, Strzępa A, Drożyńska I, Motyl S, Banach T, Szczepanik M. Epicutaneous immunization with hapten-conjugated protein antigen alleviates contact sensitivity mediated by three different types of effector cells. Pharmacol Rep 2013; 64:919-26. [PMID: 23087144 DOI: 10.1016/s1734-1140(12)70887-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 04/23/2012] [Indexed: 10/25/2022]
Abstract
BACKGROUND Allergic contact dermatitis (ACD) is a common clinical condition in industrialized countries and often causes occupational diseases. Animal model of contact sensitivity (CS) is commonly used to study ACD in mice and can be induced by skin application of haptens. It has been previously shown that CS is mediated by CD4(+) or CD(8+) T effector cells. More recently it was found that also liver NK cells can play a role of CS effector cells in mice. METHODS The aim of the present study was to test whether skin-induced suppression could inhibit CS response in vivo. RESULTS Here we show that EC immunization of normal mice with hapten conjugated protein antigen prior to hapten sensitization suppresses Th1, Tc1 and NK mediated CS responses. CONCLUSIONS These data strongly suggest that maneuver of EC immunization may have important implications for designing therapeutic schemes aimed at modulating unwanted immune responses in contact hypersensitivity.
Collapse
|
24
|
Nowak M, Krämer B, Haupt M, Papapanou PN, Kebschull J, Hoffmann P, Schmidt-Wolf IG, Jepsen S, Brossart P, Perner S, Kebschull M. Activation of invariant NK T cells in periodontitis lesions. THE JOURNAL OF IMMUNOLOGY 2013; 190:2282-91. [PMID: 23365081 DOI: 10.4049/jimmunol.1201215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Periodontitis is one of the most prevalent human inflammatory diseases. The major clinical phenotypes of this polymicrobial, biofilm-mediated disease are chronic and aggressive periodontitis, the latter being characterized by a rapid course of destruction that is generally attributed to an altered immune-inflammatory response against periodontal pathogens. Still, the biological basis for the pathophysiological distinction of the two disease categories has not been well documented yet. Type I NKT cells are a lymphocyte subset with important roles in regulating immune responses to either tolerance or immunity, including immune responses against bacterial pathogens. In this study, we delineate the mechanisms of NKT cell activation in periodontal infections. We show an infiltration of type I NKT cells in aggressive, but not chronic, periodontitis lesions in vivo. Murine dendritic cells infected with aggressive periodontitis-associated Aggregatibacter actinomycetemcomitans triggered a type I IFN response followed by type I NKT cell activation. In contrast, infection with Porphyromonas gingivalis, a principal pathogen in chronic periodontitis, did not induce NKT cell activation. This difference could be explained by the absence of a type I IFN response to P. gingivalis infection. We found these IFNs to be critical for NKT cell activation. Our study provides a conceivable biological distinction between the two periodontitis subforms and identifies factors required for the activation of the immune system in response to periodontal bacteria.
Collapse
Affiliation(s)
- Michael Nowak
- Department of Prostate Cancer Research, Institute of Pathology, University of Bonn, Bonn 53127, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim HS, Chung DH. TLR4-mediated IL-12 production enhances IFN-γ and IL-1β production, which inhibits TGF-β production and promotes antibody-induced joint inflammation. Arthritis Res Ther 2012; 14:R210. [PMID: 23036692 PMCID: PMC3580522 DOI: 10.1186/ar4048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022] Open
Abstract
Introduction Toll-like receptor (TLR)4 promotes joint inflammation in mice. Despite that several studies report a functional link between TLR4 and interleukin-(IL-)1β in arthritis, TLR4-mediated regulation of the complicated cytokine network in arthritis is poorly understood. To address this, we investigated the mechanisms by which TLR4 regulates the cytokine network in antibody-induced arthritis. Methods To induce arthritis, we injected mice with K/BxN serum. TLR4-mediated pathogenesis in antibody-induced arthritis was explored by measuring joint inflammation, cytokine levels and histological alteration. Results Compared to wild type (WT) mice, TLR4-/- mice showed attenuated arthritis and low interferon (IFN)-γ, IL-12p35 and IL-1β transcript levels in the joints, but high transforming growth factor (TGF)-β expression. Injection of lipopolysaccharide (LPS) enhanced arthritis and exaggerated joint cytokine alterations in WT, but not TLR4-/- or IL-12p35-/- mice. Moreover, STAT4 phosphorylation in joint cells and intracellular IL-12p35 expression in macrophages, mast cells and Gr-1+ cells were detected in WT mice with arthritis and enhanced by LPS injection. Therefore, IL-12p35 appears to act downstream of TLR4 in antibody-induced arthritis. TLR4-mediated IL-12 production enhanced IFN-γ and IL-1β production via T-bet and pro-IL-1β production. Recombinant IL-12, IFN-γ and IL-1β administration restored arthritis, but reduced joint TGF-β levels in TLR4-/- mice. Moreover, a TGF-β blockade restored arthritis in TLR4-/- mice. Adoptive transfer of TLR4-deficient macrophages and mast cells minimally altered joint inflammation and cytokine levels in macrophage- and mast cell-depleted WT mice, respectively, whereas transfer of WT macrophages or mast cells restored joint inflammation and cytokine expression. Gr-1+ cell-depleted splenocytes partially restored arthritis in TLR4-/- mice. Conclusion TLR4-mediated IL-12 production by joint macrophages, mast cells and Gr-1+ cells enhances IFN-γ and IL-1β production, which suppresses TGF-β production, thereby promoting antibody-induced arthritis.
Collapse
|
26
|
Kim JH, Kim HS, Kim HY, Oh SJ, Chung DH. Direct engagement of TLR4 in invariant NKT cells regulates immune diseases by differential IL-4 and IFN-γ production in mice. PLoS One 2012; 7:e45348. [PMID: 23028952 PMCID: PMC3446883 DOI: 10.1371/journal.pone.0045348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 08/21/2012] [Indexed: 12/23/2022] Open
Abstract
During interaction with APCs, invariant (i) NKT cells are thought to be indirectly activated by TLR4-dependently activated APCs. However, whether TLR4 directly activates iNKT cells is unknown. Therefore, the expression and function of TLR4 in iNKT cells were investigated. Flow cytometric and confocal microscopic analysis revealed TLR4 expression on the surface and in the endosome of iNKT cells. Upon LPS stimulation, iNKT cells enhanced IFN-γ production, but reduced IL-4 production, in the presence of TCR signals, depending on TLR4, MyD88, TRIF, and the endosome. However, enhanced TLR4-mediated IFN-γ production by iNKT cells did not affect IL-12 production or CD1d expression by DCs. Adoptive transfer of WT, but not TLR4-deficient, iNKT cells promoted antibody-induced arthritis in CD1d(-/-) mice, suggesting that endogenous TLR4 ligands modulate iNKT cell function in arthritis. Furthermore, LPS-pretreated WT, but not TLR4-deficient, iNKT cells suppressed pulmonary fibrosis, but worsened hypersensitivity pneumonitis more than untreated WT iNKT cells, indicating that exogenous TLR4 ligands regulate iNKT cell functions in pulmonary diseases. Taken together, we propose a novel direct activation pathway of iNKT cells in the presence of TCR signals via endogenous or exogenous ligand-mediated engagement of TLR4 in iNKT cells, which regulates immune diseases by altering IFN-γ and IL-4 production.
Collapse
Affiliation(s)
- Ji Hyung Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
27
|
Shi YL, Gu J, Park JJ, Xu YP, Yu FS, Zhou L, Mi QS. Histone deacetylases inhibitor Trichostatin A ameliorates DNFB-induced allergic contact dermatitis and reduces epidermal Langerhans cells in mice. J Dermatol Sci 2012; 68:99-107. [PMID: 22999682 DOI: 10.1016/j.jdermsci.2012.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/28/2012] [Accepted: 09/02/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Histone deacetylases (HDACs) influence chromatin organization, representing a key epigenetic regulatory mechanism in cells. Trichostatin A (TSA), a potent HDAC inhibitor, has anti-tumor and anti-inflammatory effects. Allergic contact dermatitis (ACD) is a T-cell-mediated inflammatory reaction in skin and is regulated by epidermal Langerhans cells (LCs). OBJECTIVE The aim of this study was to investigate if TSA treatment prevents 2,4-dinitrofluorobenzene (DNFB)-induced ACD in mice and regulates epidermal LCs and other immune cells during ACD development. METHODS ACD was induced by sensitizing and challenging with DNFB topically. Mice were treated intraperitoneally with TSA or vehicle DMSO as a control every other day before and during induction of ACD. The ear swelling response was measured and skin biopsies from sensitized skin areas were obtained for histology. Epidermal cells, thymus, spleen and skin draining lymph nodes were collected for immune staining. RESULTS TSA treatment ameliorated skin lesion severity of DNFB-induced ACD. The percentages of epidermal LCs and splenic DCs as well as LC maturation were significantly reduced in TSA-treated mice. However, TSA treatment did not significantly affect the homeostasis of conventional CD4(+) and CD8(+) T cells, Foxp3(+)CD4(+) regulatory T cells, iNKT cells, and γδ T cells in thymus, spleen and draining lymph nodes (dLNs). Furthermore, there were no significant differences in IL-4 and IFN-γ-producing T cells and iNKT cells between TSA- and DMSO-treated mice. CONCLUSION Our findings suggest that TSA may ameliorate ACD through the regulation of epidermal LCs and HDACs could serve as potential therapeutic targets for ACD and other LCs-related skin diseases.
Collapse
Affiliation(s)
- Yu-Ling Shi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Dickgreber N, Farrand KJ, van Panhuys N, Knight DA, McKee SJ, Chong ML, Miranda-Hernandez S, Baxter AG, Locksley RM, Le Gros G, Hermans IF. Immature murine NKT cells pass through a stage of developmentally programmed innate IL-4 secretion. J Leukoc Biol 2012; 92:999-1009. [PMID: 22941735 DOI: 10.1189/jlb.0512242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We assessed the production of the canonical Th2 cytokine IL-4 by NKT cells directly in vivo using IL-4-substituting strains of reporter mice that provide faithful and sensitive readouts of cytokine production without the confounding effects of in vitro stimulation. Analysis in naïve animals revealed an "innate" phase of IL-4 secretion that did not need to be triggered by administration of a known NKT cell ligand. This secretion was by immature NKT cells spanning Stage 1 of the maturation process in the thymus (CD4(+) CD44(lo) NK1.1(-) cells) and Stage 2 (CD4(+) CD44(hi) NK1.1(-) cells) in the spleen. Like ligand-induced IL-4 production by mature cells, this innate activity was independent of an initial source of IL-4 protein and did not require STAT6 signaling. A more sustained level of innate IL-4 production was observed in animals on a BALB/c background compared with a C57BL/6 background, suggesting a level of genetic regulation that may contribute to the "Th2-prone" phenotype in BALB/c animals. These observations indicate a regulated pattern of IL-4 expression by maturing NKT cells, which may endow these cells with a capacity to influence the development of surrounding cells in the thymus.
Collapse
Affiliation(s)
- Nina Dickgreber
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schouten B, van Esch BCAM, Lim SM, Hofman GA, Knippels LMJ, Willemsen LEM, Vos AP, Garssen J. Invariant natural killer T cells contribute to the allergic response in cow's milk protein-sensitized mice. Int Arch Allergy Immunol 2012; 159:51-9. [PMID: 22555211 DOI: 10.1159/000335242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/17/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Little is known about the contribution of the invariant natural killer T (iNKT) cells in the onset of food allergy. Using a mouse model for cow's milk allergy the function of iNKT cells was investigated. METHODS Mice were sensitized orally with casein or whey proteins. One hour before the sensitizations the mice were injected intraperitoneally with α-galactosylceramide (αGalCer) or control. One week after the last sensitization acute allergic skin reactions were measured. Furthermore, in the liver, spleen and mesenteric lymph nodes (MLN) percentages of iNKT cells were analyzed and liver lymphocyte restimulation assays were performed. RESULTS Whey- or casein-sensitized mice treated with αGalCer showed enhanced acute allergic skin reactions. The percentage of iNKT cells in the liver of sensitized mice was reduced compared to sham-sensitized mice. αGalCer treatment was found to deplete iNKT cells in the liver of sensitized as well as sham-sensitized mice, and these hepatocytes did not respond to ex vivo restimulation with αGalCer. αGalCer treatment did not reduce iNKT cell percentages in the spleen and MLN of sham-sensitized mice but abrogated the increase in iNKT cell percentage in the spleen upon whey sensitization, whereas it enhanced the iNKT cell percentage in the MLN of casein-sensitized mice. Due to the repeated application of αGalCer, livers were functionally depleted of iNKT cells. This resulted in an increased allergic effector response which was most pronounced in whey-sensitized mice and associated with enhanced whey-specific immunoglobulin levels. CONCLUSION iNKT cells may suppress cow's milk allergic symptoms in mice and may differentially regulate oral sensitization for casein and whey.
Collapse
Affiliation(s)
- Bastiaan Schouten
- Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Costimulatory activation of murine invariant natural killer T cells by toll-like receptor agonists. Cell Immunol 2012; 277:33-43. [DOI: 10.1016/j.cellimm.2012.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/04/2012] [Indexed: 12/11/2022]
|
31
|
Renna MS, Figueredo CM, Rodríguez-Galán MC, Icely PA, Peralta Ramos JM, Correa SG, Sotomayor CE. Abrogation of spontaneous liver tolerance during immune response to Candida albicans: contribution of NKT and hepatic mononuclear cells. Int Immunol 2012; 24:315-25. [DOI: 10.1093/intimm/dxs001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
32
|
|
33
|
McDonald B, Kubes P. Cellular and molecular choreography of neutrophil recruitment to sites of sterile inflammation. J Mol Med (Berl) 2011; 89:1079-88. [PMID: 21751029 DOI: 10.1007/s00109-011-0784-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/01/2011] [Accepted: 06/17/2011] [Indexed: 12/15/2022]
Abstract
Liberation of damage-associated molecular patterns (DAMPs) following tissue injury and necrotic cell death leads to the induction of sterile inflammation. A hallmark of acute inflammation is the recruitment of neutrophils to injured tissues. This review focuses on the journey of neutrophils to sites of sterile inflammation and the cellular and molecular mechanisms that choreograph this complex voyage. We review the pathway of leukocyte recruitment, with emphasis on recent additions to our understanding of intravascular neutrophil migration. The contributions of various tissue-resident sentinel cell populations to the detection of danger signals (DAMPs) and coordination of neutrophil recruitment and migration are discussed. In addition, we highlight recent data on the control of neutrophil chemotaxis towards sites of sterile inflammation, including new insight into the temporal and spatial regulation of chemoattractant guidance signals that direct cell migration. Given that inappropriate neutrophilic inflammation is a cornerstone in the pathogenesis of many diseases, a complete understanding of the choreography of neutrophil recruitment to sites of sterile inflammation may uncover new avenues for therapeutic interventions to treat inflammatory pathologies.
Collapse
Affiliation(s)
- Braedon McDonald
- Snyder Institute of Infection, Immunity, and Inflammation, University of Calgary, Alberta, Canada
| | | |
Collapse
|
34
|
Askenase PW, Majewska-Szczepanik M, Kerfoot S, Szczepanik M. Participation of iNKT cells in the early and late components of Tc1-mediated DNFB contact sensitivity: cooperative role of γδ-T cells. Scand J Immunol 2011; 73:465-77. [PMID: 21272050 DOI: 10.1111/j.1365-3083.2011.02522.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prior studies of classical 24 h responses in TNP-Cl (picryl chloride) allergic contact sensitivity (CS), showed mediation by Th1 cells in CBA mice, and established that 24 h elicitation of responses requires an early 2 h CS-initiating component dependent on iNKT cells, IL-4 and B-1 B cells. Here, we studied the other form of cytotoxic T cell (Tc1) CS in DNFB sensitized BALB/c mice and determined that similar CS-initiation also is required. We systematically tested each step of the initiation pathway in this model. Thus, DNFB Tc1 CS was significantly impaired in iNKT cell deficient CD1d(-/-) and Jα18(-/-) mice, IL4Rα(-/-) and STAT-6(-/-) mice, and also in pan B-cell deficient JH(-/-) mice. Further, the Tc1 DNFB CS-initiating component, like Th1 response to TNP-Cl, was elicited by only 1-day after immunization, due to B-1 cells. In summary, we show that CS-Initiation also is required in Tc1 CS. Further, we have newly determined regulatory support of both the early and late components of DNFB induced Tc1 CS by iNKT cells and γδ-T cells. In summary, both iNKT cells and assisting γδ-T cells are involved in initiating and effector phases of DNFB induced CS.
Collapse
Affiliation(s)
- P W Askenase
- Section of Allergy and Clinical Immunology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | |
Collapse
|
35
|
Lass C, Merfort I, Martin SF. In vitro and in vivo analysis of pro- and anti-inflammatory effects of weak and strong contact allergens. Exp Dermatol 2011; 19:1007-13. [PMID: 20701630 DOI: 10.1111/j.1600-0625.2010.01136.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Inflammation is a crucial step in the development of allergic contact dermatitis. The primary contact with chemical allergens, called sensitization, and the secondary contact, called elicitation, result in an inflammatory response in the skin. The ability of contact allergens to induce allergic contact dermatitis correlates to a great extent with their inflammatory potential. Therefore, the analysis of the sensitizing potential of a putative contact allergen should include the examination of its ability and potency to cause an inflammation. In this study, we examined the inflammatory potential of different weak contact allergens and of the strong sensitizer 2,4,6-trinitrochlorobenzene (TNCB) in vitro and in vivo using the contact hypersensitivity model, the mouse model for allergic contact dermatitis. Cytokine induction was analysed by PCR and ELISA to determine mRNA and protein levels, respectively. Inflammation-dependent recruitment of skin-homing effector T cells was measured in correlation with the other methods. We show that the sensitizing potential of a contact allergen correlates with the strength of the inflammatory response. The different methods used gave similar results. Quantitative cytokine profiling may be used to determine the sensitizing potential of chemicals for hazard identification and risk assessment.
Collapse
Affiliation(s)
- Christian Lass
- Allergy Research Group, Department of Dermatology, University Medical Center Freiburg, Hauptstrasse, Freiburg, Germany
| | | | | |
Collapse
|
36
|
Moreno M, Mol BM, von Mensdorff-Pouilly S, Verheijen RHM, de Jong EC, von Blomberg BME, van den Eertwegh AJM, Scheper RJ, Bontkes HJ. Differential indirect activation of human invariant natural killer T cells by Toll-like receptor agonists. Immunotherapy 2011; 1:557-70. [PMID: 20635987 DOI: 10.2217/imt.09.30] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Invariant natural killer (iNK) T cells are activated by bacterial glycosphingolipids presented by CD1d on dendritic cells (DCs). Here, it was investigated whether Toll-like receptor (TLR) ligands derived from various microorganisms can either directly or indirectly (through DC activation) activate iNKT cells. MATERIALS & METHODS TLR expression by iNKT cells was examined and the ability of various TLR ligands to activate iNKT cells was evaluated. RESULTS Although human iNKT cells express all TLRs, apart from TLR8, they did not respond directly to TLR ligands. However, iNKT cells became strongly activated when total peripheral blood mononuclear cells were stimulated with TLR2/6, 7/8 and 9 ligands, but not or to a lesser extent with TLR3, 4 and 5 ligands. TLR-stimulated monocyte-derived DCs promoted iNKT cell phenotypic activation and, in turn, these activated iNKT cells further enhanced DC maturation. CONCLUSION TLR agonists may act as strong adjuvants for immunotherapy by promoting combined and reciprocal activation of iNKT cells and DCs.
Collapse
|
37
|
Reilly EC, Wands JR, Brossay L. Cytokine dependent and independent iNKT cell activation. Cytokine 2010; 51:227-31. [PMID: 20554220 DOI: 10.1016/j.cyto.2010.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 11/19/2022]
Abstract
Invariant NKT (iNKT) cells have been extensively studied throughout the last decade due to their ability to polarize and amplify the downstream immune response. Only recently however, have the various mechanisms underlying NKT cell activation begun to unfold. iNKT cells have the ability to respond as innate immune cells with minimal TCR involvement as well as through direct TCR recognition of glycolipid antigens. Additionally, the existence of several subsets of iNKT cells creates the potential for other unique pathways, which are not yet clearly defined. Here, we provide an overview of the known mechanisms of invariant NKT cell activation, focusing on cytokine driven pathways and the resulting cytokine responses.
Collapse
Affiliation(s)
- Emma C Reilly
- Department of Molecular Microbiology and Immunology and Graduate Program in Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
38
|
Kulkarni R, Behboudi S, Sharif S. Insights into the role of Toll-like receptors in modulation of T cell responses. Cell Tissue Res 2010; 343:141-52. [PMID: 20680345 DOI: 10.1007/s00441-010-1017-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/02/2010] [Indexed: 12/14/2022]
Abstract
The innate immune receptors, such as Toll-like receptors (TLRs), are intimately involved in the early sensing of invading microorganisms or their structural components. Engagement of TLRs with their ligands results in activation of several downstream intracellular pathways leading to activation of innate and adaptive immune system cells. It was initially thought that TLRs are primarily expressed by antigen-presenting cells (APCs), such as macrophages and dendritic cells, and that interactions between microbial ligands and TLRs in these cells will indirectly result in activation of cells of the adaptive immune system, especially T cells. However, it has now become evident that TLRs are also expressed by various T cell subsets, such as conventional αβT cells, regulatory T cells, and γδT cells as well as natural killer T cells. Importantly, it appears that at least in some of these T cell subsets, TLRs are functionally active, because stimulation of these cells with TLR agonists in the absence of APCs results in exertion of effector or regulatory functions of T cells. The present review attempts to summarize the recent findings related to TLR expression in different T cell subsets and the direct role of TLRs in the induction and regulation of T cell responses, including those responses that occur at mucosal surfaces. In addition, the potential use of TLR agonists for steering T cell responses as a prophylactic or therapeutic strategy in the context of infectious, allergic or autoimmune diseases is explored.
Collapse
Affiliation(s)
- Raveendra Kulkarni
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
39
|
Kulkarni RR, Haeryfar SM, Sharif S. The invariant NKT cell subset in anti-viral defenses: a dark horse in anti-influenza immunity? J Leukoc Biol 2010; 88:635-43. [DOI: 10.1189/jlb.0410191] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
40
|
|
41
|
How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin Immunol 2009; 22:79-86. [PMID: 19948416 DOI: 10.1016/j.smim.2009.10.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/26/2009] [Indexed: 12/12/2022]
Abstract
Invariant natural killer T (iNKT) cells have evolved to recognize CD1d-presented lipid antigens and are known to play important roles during infection with bacterial, viral, protozoan, and fungal pathogens. The limited antigen specificity and reactivity to self- and foreign antigens distinguish iNKT cells from MHC-restricted T cells and bear similarity to innate-like lymphocytes, such as NK cells, gammadelta T cells, MZB and B1-B cells. This review summarizes how direct recognition of microbial lipids or synergistic stimulation by self-lipids and pro-inflammatory cytokines results in activation of these innate-like iNKT cell during infection. iNKT cell activation in the absence of foreign antigen recognition is unique for cells bearing TCRs and underscores that not only the function but also the activation mechanism of iNKT cells is innate-like, and distinct from adaptive T cells. The different pathways of activation endow iNKT cells with the ability to respond rapidly to a wide variety of infectious agents and to contribute effectively to the early immune response during infection.
Collapse
|
42
|
Abstract
The gastrointestinal tract allows the residence of an almost enumerable number of bacteria. To maintain homeostasis, the mucosal immune system must remain tolerant to the commensal microbiota and eradicate pathogenic bacteria. Aberrant interactions between the mucosal immune cells and the microbiota have been implicated in the pathogenesis of inflammatory disorders, such as inflammatory bowel disease (IBD). In this review, we discuss the role of natural killer T cells (NKT cells) in intestinal immunology. NKT cells are a subset of non-conventional T cells recognizing endogenous and/or exogenous glycolipid antigens when presented by the major histocompatibility complex (MHC) class I-like antigen-presenting molecules CD1d and MR1. Upon T-cell receptor (TCR) engagement, NKT cells can rapidly produce various cytokines that have important roles in mucosal immunity. Our understanding of NKT-cell-mediated pathways including the identification of specific antigens is expanding. This knowledge will facilitate the development of NKT cell-based interventions and immune therapies for human intestinal diseases.
Collapse
Affiliation(s)
- S Middendorp
- Department of Pediatric Gastroenterology and Laboratory of Pediatrics, Erasmus MC Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|
43
|
Komai-Koma M, Gilchrist DS, Xu D. Direct recognition of LPS by human but not murine CD8+ T cells via TLR4 complex. Eur J Immunol 2009; 39:1564-72. [PMID: 19405031 DOI: 10.1002/eji.200838866] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
LPS comprises a major PAMP and is a key target of the immune system during bacterial infection. While LPS can be recognised by innate immune cells via the TLR4 complex, it is unknown whether T lymphocytes, especially CD8(+) T cells are also capable of doing so. We report here that naive human CD8(+) T cells, after activation by TCR stimulation, express surface TLR4 and CD14. These activated CD8(+) T cells can then secrete high concentrations of IFN-gamma, granzyme and perforin in response to LPS. These effects can be specifically inhibited using siRNA for TLR4. Furthermore, LPS can synergize with IL-12 to polarize the CD8(+) T cells into cytotoxic T-cell 1 (Tc1) that produce IFN-gamma but not IL-4, with or without TCR activation. Moreover, CD8(+)CD45RO(+) memory T cells constitutively expressed TLR4 and markedly enhanced IFN-gamma production when stimulated with LPS. In contrast, activated murine CD8(+) T cells lack TLR4 and CD14 expression and fail to respond to LPS for proliferation and cytokine production. Thus, human but not murine CD8(+) T cells are able to directly recognise bacterial LPS via LPS receptor complex and TLR4 provides a novel signal for the activation of effector and memory human CD8(+) T cells.
Collapse
Affiliation(s)
- Mousa Komai-Koma
- Division of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
44
|
Hu CK, Venet F, Heffernan DS, Wang YL, Horner B, Huang X, Chung CS, Gregory SH, Ayala A. The role of hepatic invariant NKT cells in systemic/local inflammation and mortality during polymicrobial septic shock. THE JOURNAL OF IMMUNOLOGY 2009; 182:2467-75. [PMID: 19201902 DOI: 10.4049/jimmunol.0801463] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NKT cells have been described as innate regulatory cells because of their rapid response to conserved glycolipids presented on CD1d via their invariant TCR. However, little is known about the contribution of the hepatic NKT cell to the development of a local and/or systemic immune response to acute septic challenge (cecal ligation and puncture (CLP)). We found not only that mice deficient in invariant NKT cells (Jalpha18(-/-)) had a marked attenuation in CLP-induced mortality, but also exhibited an oblation of the systemic inflammatory response (with little effect on splenic/peritoneal immune responsiveness). Flow cytometric data indicated that following CLP, there was a marked decline in the percentage of CD3(+)alpha-galactosylceramide CD1d tetramer(+) cells in the mouse C57BL/6J and BALB/c liver nonparenchymal cell population. This was associated with the marked activation of these cells (increased expression of CD69 and CD25) as well as a rise in the frequency of NKT cells positive for both Th1 and Th2 intracellular cytokines. In this respect, when mice were pretreated in vivo with anti-CD1d-blocking Ab, we observed not only that this inhibited the systemic rise of IL-6 and IL-10 levels in septic mice and improved overall septic survival, but that the CLP-induced changes in liver macrophage IL-6 and IL-10 expressions were inversely effected by this treatment. Together, these findings suggest that the activation of hepatic invariant NKT cells plays a critical role in regulating the innate immune/systemic inflammatory response and survival in a model of acute septic shock.
Collapse
Affiliation(s)
- Caroline K Hu
- Shock-Trauma Research Laboratories, Division of Surgical Research, Department of Surgery, Rhode Island Hospital and Brown University School of Medicine, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mathias CB, Freyschmidt EJ, Oettgen HC. Immunoglobulin E antibodies enhance pulmonary inflammation induced by inhalation of a chemical hapten. Clin Exp Allergy 2008; 39:417-25. [PMID: 19032356 DOI: 10.1111/j.1365-2222.2008.03140.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Occupational exposure to chemicals is an important cause of asthma. Recent studies indicate that IgE antibodies enhance sensitization to chemicals in the skin. OBJECTIVE We investigated whether IgE might similarly promote the development of airway inflammation following inhalation of a contact sensitizer. METHODS A model of chemical-induced asthma is described in which introduction of the low-molecular-weight compound, trinitrobenzene sulphonic acid (TNBS), via the respiratory tract was used for both sensitization and challenge. The role of IgE antibodies in the immune response to inhaled TNBS in this model was assessed by comparing the responses of wild-type (WT) and IgE-deficient (IgE(-/-)) mice on the BALB/c background. Reconstitution of circulating IgE levels by intravenous injection of IgE antibodies into IgE(-/-) mice before sensitization was performed to confirm the role of IgE in any differences observed between the responses of WT and IgE(-/-) mice. RESULTS Intranasal challenge of TNBS-sensitized (but not sham-sensitized control mice) induced intense pulmonary inflammation. Macrophages, eosinophils and lymphocytes, including T, B, natural killer and natural killer T cells, were recruited to the airway and the animals displayed bronchial hyperresponsiveness (BHR) to methacholine. Serum levels of murine mast cell protease-1 (mMCP-1) were elevated suggesting mast cell activation. In contrast, the development of airway inflammation, recruitment of lymphocytes, induction of BHR and production of mMCP-1 were all significantly attenuated in IgE-deficient mice. Reconstitution of IgE(-/-) mice with IgE (of unrelated antigen specificity) before sensitization partially restored these features of asthma. CONCLUSION Our data indicate that IgE antibodies non-specifically enhance the development of airway inflammation induced by exposure to chemical antigens.
Collapse
Affiliation(s)
- C B Mathias
- Division of Immunology, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
46
|
Ple C, Duez C. Toll-like receptor-expressing cells for antiallergy compound screening. Expert Opin Drug Discov 2008; 3:629-41. [PMID: 23506145 DOI: 10.1517/17460441.3.6.629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Regulation of type 2 helper T cell (TH2) polarization by toll-like receptors (TLRs) has triggered great interest in new antiallergic therapeutics. In addition to being involved in the regulation of co-stimulation by antigen-presenting cells, they are expressed on other immune and non-immune cells. OBJECTIVE To review the expression and function of TLRs on these cells and their potential to regulate TH2-associated responses. METHODS We focused on human cells that can be used for in vitro testing of TLR agonists. RESULTS/CONCLUSION Many cells involved in the allergic reaction have the capacity to respond to TLR agonists. Therefore, one needs to be cautious in extrapolating the antiallergic effect of a TLR agonist from the response analyzed in one cell type. Therefore, it is suggested that several cell types should be studied.
Collapse
Affiliation(s)
- Coline Ple
- INSERM, Institut National de la Santé et de la Recherche Médicale U774, 59019 Lille, France
| | | |
Collapse
|
47
|
Medeiros MM, Peixoto JR, Oliveira AC, Cardilo-Reis L, Koatz VLG, Van Kaer L, Previato JO, Mendonça-Previato L, Nobrega A, Bellio M. Toll-like receptor 4 (TLR4)-dependent proinflammatory and immunomodulatory properties of the glycoinositolphospholipid (GIPL) from Trypanosoma cruzi. J Leukoc Biol 2007; 82:488-96. [PMID: 17540734 DOI: 10.1189/jlb.0706478] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have demonstrated recently that the glycoinositolphospholipid (GIPL) molecule from the protozoan Trypanosoma cruzi is a TLR4 agonist with proinflammatory effects. Here, we show that GIPL-induced neutrophil recruitment into the peritoneal cavity is mediated by at least two pathways: one, where IL-1beta acts downstream of TNF-alpha, and a second, which is IL-1beta- and TNFRI-independent. Moreover, NKT cells participate in this proinflammatory cascade, as in GIPL-treated CD1d(-/-) mice, TNF-alpha and MIP-2 levels are reduced significantly. As a consequence of this inflammatory response, spleen and lymph nodes of GIPL-treated mice have an increase in the percentage of T and B cells expressing the CD69 activation marker. Cell-transfer experiments demonstrate that T and B cell activation by GIPL is an indirect effect, which relies on the expression of TLR4 by other cell types. Moreover, although signaling through TNFRI contributes to the activation of B and gammadelta+ T cells, it is not required for increasing CD69 expression on alphabeta+ T lymphocytes. It is interesting that T cells are also functionally affected by GIPL treatment, as spleen cells from GIPL-injected mice show enhanced production of IL-4 following in vitro stimulation by anti-CD3. Together, these results contribute to the understanding of the inflammatory properties of the GIPL molecule, pointing to its potential role as a parasite-derived modulator of the immune response during T. cruzi infection.
Collapse
MESH Headings
- Animals
- Antigens, CD1/genetics
- Antigens, CD1/physiology
- Antigens, CD1d
- Chemokine CXCL2
- Chemokines/metabolism
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Glycolipids/administration & dosage
- Glycolipids/pharmacology
- Glycolipids/physiology
- Immunity, Innate/genetics
- Inflammation Mediators/physiology
- Interleukin-1beta/metabolism
- Lymphocyte Activation
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- Phospholipids/administration & dosage
- Phospholipids/pharmacology
- Phospholipids/physiology
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/physiology
- T-Lymphocytes/metabolism
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/metabolism
- Trypanosoma cruzi/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Monica M Medeiros
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS Bloco I, 20 andar Sala: I2-051, Avenida Carlos Chagas Filho, 373, Cidade Universitária, Ilha do Fundão, CEP: 21941-902, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nagarajan NA, Kronenberg M. Invariant NKT cells amplify the innate immune response to lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2007; 178:2706-13. [PMID: 17312112 DOI: 10.4049/jimmunol.178.5.2706] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
NKT cells are thought of as a bridge between innate and adaptive immunity. In this study, we demonstrate that mouse NKT cells are activated in response to Escherichia coli LPS, and produce IFN-gamma, but not IL-4, although activation through their TCR typically induces both IL-4 and IFN-gamma production. IFN-gamma production by NKT cells is dependent on LPS-induced IL-12 and IL-18 from APC. LPS induced IFN-gamma production by NKT cells does not require CD1d-mediated presentation of an endogenous Ag and exposure to a combination of IL-12 and IL-18 is sufficient to activate them. In mice that are deficient for NKT cells, innate immune cells are activated less efficiently in response to LPS, resulting in the reduced production of TNF and IFN-gamma. We propose that in addition to acting as a bridge to adaptive immunity, NKT cells act as an early amplification step in the innate immune response and that the rapid and complete initiation of this innate response depends on the early production of IFN-gamma by NKT cells.
Collapse
Affiliation(s)
- Niranjana A Nagarajan
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
49
|
Di Nardo A, Braff MH, Taylor KR, Na C, Granstein RD, McInturff JE, Krutzik S, Modlin RL, Gallo RL. Cathelicidin Antimicrobial Peptides Block Dendritic Cell TLR4 Activation and Allergic Contact Sensitization. THE JOURNAL OF IMMUNOLOGY 2007; 178:1829-34. [PMID: 17237433 DOI: 10.4049/jimmunol.178.3.1829] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cathelicidins are antimicrobial peptides of the innate immune system that establish an antimicrobial barrier at epithelial interfaces and have been proposed to have a proinflammatory function. We studied the role of cathelicidin in allergic contact dermatitis, a model requiring dendritic cells of the innate immune response and T cells of the adaptive immune response. Deletion of the murine cathelicidin gene Cnlp enhanced an allergic contact response, whereas local administration of cathelicidin before sensitization inhibited the allergic response. Cathelicidins inhibited TLR4 but not TLR2 mediated induction of dendritic cell maturation and cytokine release, and this inhibition was associated with an alteration of cell membrane function and structure. Further analysis in vivo connected these observations because inhibition of sensitization by exogenous cathelicidin was dependent on the presence of functional TLR4. These observations provide evidence that cathelicidin antimicrobial peptides mediate an anti-inflammatory response in part by their activity at the membrane.
Collapse
Affiliation(s)
- Anna Di Nardo
- Division of Dermatology, Department of Medicine, University of California, San Diego, CA 92161, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Montoya CJ, Rugeles MT, Landay AL. Innate immune defenses in HIV-1 infection: prospects for a novel immune therapy. Expert Rev Anti Infect Ther 2007; 4:767-80. [PMID: 17140354 DOI: 10.1586/14787210.4.5.767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 infection leads to a severe decrease of CD4(+) T lymphocytes, dysregulation of several leukocyte subpopulations and generalized immune activation, with the subsequent development of opportunistic infections and malignancies. Administration of highly active antiretroviral therapy (HAART) has been successful in reducing HIV-1 plasma viremia; however, the ability of HAART to restore immunocompetence appears incomplete, particularly in patients with chronic and advanced disease. Several components of the innate immune system have direct anti-HIV-1 effects, and studies to analyze the benefits of enhancing the function of the innate response during HIV-1 infection are increasing. Development of any complementary therapeutic approaches to HIV-1 infection, particularly those able to compensate for the limitations of HAART, and enhance the anti-HIV-1 innate immune activity would be of interest. The stimulation of innate immune responses using Toll-like receptor agonists, such as monophosphoryl lipid A and oligodeoxynucleotides with CpG motifs, are currently being investigated and their benefit in HIV-1-infected patients are under evaluation.
Collapse
Affiliation(s)
- Carlos J Montoya
- University of Antioquia, Group of Immunovirology-Biogenesis, Medellin, Colombia.
| | | | | |
Collapse
|