1
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha synuclein modulates mitochondrial Ca 2+ uptake from ER during cell stimulation and under stress conditions. NPJ Parkinsons Dis 2023; 9:137. [PMID: 37741841 PMCID: PMC10518018 DOI: 10.1038/s41531-023-00578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson's disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress1. We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and found that a-syn prevents recovery of stimulated mitochondrial Ca2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Ramezani M, Wagenknecht-Wiesner A, Wang T, Holowka DA, Eliezer D, Baird BA. Alpha Synuclein Modulates Mitochondrial Ca 2+ Uptake from ER During Cell Stimulation and Under Stress Conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.23.537965. [PMID: 37163091 PMCID: PMC10168219 DOI: 10.1101/2023.04.23.537965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson' disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress. 1 We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca 2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and found that a-syn prevents recovery of stimulated mitochondrial Ca 2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca 2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.
Collapse
Affiliation(s)
- Meraj Ramezani
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | | - Tong Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David A. Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065
| | - Barbara A. Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
3
|
The Role of Membrane Affinity and Binding Modes in Alpha-Synuclein Regulation of Vesicle Release and Trafficking. Biomolecules 2022; 12:biom12121816. [PMID: 36551244 PMCID: PMC9775087 DOI: 10.3390/biom12121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Alpha-synuclein is a presynaptic protein linked to Parkinson's disease with a poorly characterized physiological role in regulating the synaptic vesicle cycle. Using RBL-2H3 cells as a model system, we earlier reported that wild-type alpha-synuclein can act as both an inhibitor and a potentiator of stimulated exocytosis in a concentration-dependent manner. The inhibitory function is constitutive and depends on membrane binding by the helix-2 region of the lipid-binding domain, while potentiation becomes apparent only at high concentrations. Using structural and functional characterization of conformationally selective mutants via a combination of spectroscopic and cellular assays, we show here that binding affinity for isolated vesicles similar in size to synaptic vesicles is a primary determinant of alpha-synuclein-mediated potentiation of vesicle release. Inhibition of release is sensitive to changes in the region linking the helix-1 and helix-2 regions of the N-terminal lipid-binding domain and may require some degree of coupling between these regions. Potentiation of release likely occurs as a result of alpha-synuclein interactions with undocked vesicles isolated away from the active zone in internal pools. Consistent with this, we observe that alpha-synuclein can disperse vesicles from in vitro clusters organized by condensates of the presynaptic protein synapsin-1.
Collapse
|
4
|
Mohr JD, Wagenknecht-Wiesner A, Holowka DA, Baird BA. Basic Amino Acids Within the Juxtamembrane Domain of the Epidermal Growth Factor Receptor Regulate Receptor Dimerization and Auto-phosphorylation. Protein J 2020; 39:476-486. [PMID: 33211253 DOI: 10.1007/s10930-020-09943-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
Epidermal growth factor receptor (EGFR) dysregulation is observed in many human cancers and is both a cause of oncogenesis and a target for chemotherapy. We previously showed that partial charge neutralization of the juxtamembrane (JX) region of EGFR via the EGFR R1-6 mutant construct induces constitutive receptor activation and transformation of NIH 3T3 cells, both from the plasma membrane and from the ER when combined with the ER-retaining L417H mutation (Bryant et al. in J Biol Chem 288:34930-34942, 2013). Here, we use chemical crosslinking and immunoblotting to show that these mutant constructs form constitutive, phosphorylated dimers in both the plasma membrane and the ER. Furthermore, we combine this electrostatic perturbation with conformationally-restricted receptor mutants to provide evidence that activation of EGFR R1-6 dimers requires functional coupling both between the EGFR extracellular dimerization arms and between intracellular tyrosine kinase domains. These findings provide evidence that the electrostatic charge of the JX region normally serves as a negative regulator of functional dimerization of EGFR.
Collapse
Affiliation(s)
- Jordan D Mohr
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.,Graduate Field of Pharmacology, Cornell University, Ithaca, NY, USA
| | | | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA. .,Graduate Field of Pharmacology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Levental I, Levental KR, Heberle FA. Lipid Rafts: Controversies Resolved, Mysteries Remain. Trends Cell Biol 2020; 30:341-353. [PMID: 32302547 DOI: 10.1016/j.tcb.2020.01.009] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/08/2023]
Abstract
The lipid raft hypothesis postulates that lipid-lipid interactions can laterally organize biological membranes into domains of distinct structures, compositions, and functions. This proposal has in equal measure exhilarated and frustrated membrane research for decades. While the physicochemical principles underlying lipid-driven domains has been explored and is well understood, the existence and relevance of such domains in cells remains elusive, despite decades of research. Here, we review the conceptual underpinnings of the raft hypothesis and critically discuss the supporting and contradicting evidence in cells, focusing on why controversies about the composition, properties, and even the very existence of lipid rafts remain unresolved. Finally, we highlight several recent breakthroughs that may resolve existing controversies and suggest general approaches for moving beyond questions of the existence of rafts and towards understanding their physiological significance.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA.
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 33830, USA
| |
Collapse
|
6
|
Paving New Roads for CARs. Trends Cancer 2019; 5:583-592. [DOI: 10.1016/j.trecan.2019.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023]
|
7
|
Ramezani M, Wilkes MM, Das T, Holowka D, Eliezer D, Baird B. Regulation of exocytosis and mitochondrial relocalization by Alpha-synuclein in a mammalian cell model. NPJ PARKINSONS DISEASE 2019; 5:12. [PMID: 31263746 PMCID: PMC6597712 DOI: 10.1038/s41531-019-0084-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/23/2019] [Indexed: 12/24/2022]
Abstract
We characterized phenotypes in RBL-2H3 mast cells transfected with human alpha synuclein (a-syn) using stimulated exocytosis of recycling endosomes as a proxy for similar activities of synaptic vesicles in neurons. We found that low expression of a-syn inhibits stimulated exocytosis and that higher expression causes slight enhancement. NMR measurements of membrane interactions correlate with these functional effects: they are eliminated differentially by mutants that perturb helical structure in the helix 1 (A30P) or NAC/helix-2 (V70P) regions of membrane-bound a-syn, but not by other PD-associated mutants or C-terminal truncation. We further found that a-syn (but not A30P or V70P mutants) associates weakly with mitochondria, but this association increases markedly under conditions of cellular stress. These results highlight the importance of specific structural features of a-syn in regulating vesicle release, and point to a potential role for a-syn in perturbing mitochondrial function under pathological conditions.
Collapse
Affiliation(s)
- Meraj Ramezani
- 1Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
| | - Marcus M Wilkes
- 1Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
| | - Tapojyoti Das
- 2Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065 USA
| | - David Holowka
- 1Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
| | - David Eliezer
- 2Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065 USA
| | - Barbara Baird
- 1Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
8
|
Holowka D, Thanapuasuwan K, Baird B. Short chain ceramides disrupt immunoreceptor signaling by inhibiting segregation of Lo from Ld Plasma membrane components. Biol Open 2018; 7:bio.034702. [PMID: 30097519 PMCID: PMC6176950 DOI: 10.1242/bio.034702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid phase heterogeneity in plasma membranes is thought to play a key role in targeting cellular signaling, but efforts to test lipid raft and related hypotheses are limited by the spatially dynamic nature of these phase-based structures in cells and by experimental characterization tools. We suggest that perturbation of plasma membrane structure by lipid derivatives offers a general method for assessing functional roles for ordered lipid regions in membrane and cell biology. We previously reported that short chain ceramides with either C2 or C6 acyl chains inhibit antigen-stimulated Ca2+ mobilization (Gidwani et al., 2003). We now show that these short chain ceramides inhibit liquid order (Lo)-liquid disorder (Ld) phase separation in giant plasma membrane vesicles that normally occurs at low temperatures. Furthermore, they are effective inhibitors of tyrosine phosphorylation stimulated by antigen, as well as store-operated Ca2+ entry. In Jurkat T cells, C6-ceramide is also effective at inhibiting Ca2+ mobilization stimulated by either anti-TCR or thapsigargin, consistent with the view that these short chain ceramides effectively interfere with functional responses that depend on ordered lipid regions in the plasma membrane. Summary: Our manuscript describes how perturbation of plasma membrane structure by short chain ceramides offers a general method for assessing functional roles for ordered lipid regions in membrane and cell biology.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Kankanit Thanapuasuwan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
9
|
Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front Immunol 2018; 9:283. [PMID: 29497427 PMCID: PMC5818392 DOI: 10.3389/fimmu.2018.00283] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic “off-the-shelf” cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use.
Collapse
|
10
|
Stone MB, Shelby SA, Núñez MF, Wisser K, Veatch SL. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. eLife 2017; 6. [PMID: 28145867 PMCID: PMC5373823 DOI: 10.7554/elife.19891] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
Diverse cellular signaling events, including B cell receptor (BCR) activation, are hypothesized to be facilitated by domains enriched in specific plasma membrane lipids and proteins that resemble liquid-ordered phase-separated domains in model membranes. This concept remains controversial and lacks direct experimental support in intact cells. Here, we visualize ordered and disordered domains in mouse B lymphoma cell membranes using super-resolution fluorescence localization microscopy, demonstrate that clustered BCR resides within ordered phase-like domains capable of sorting key regulators of BCR activation, and present a minimal, predictive model where clustering receptors leads to their collective activation by stabilizing an extended ordered domain. These results provide evidence for the role of membrane domains in BCR signaling and a plausible mechanism of BCR activation via receptor clustering that could be generalized to other signaling pathways. Overall, these studies demonstrate that lipid mediated forces can bias biochemical networks in ways that broadly impact signal transduction. DOI:http://dx.doi.org/10.7554/eLife.19891.001 Membranes made of molecules called lipids surround every living cell to protect the cell's contents. Cells also communicate with the outside environment via their membranes. Proteins in the membrane receive information from the environment and trigger signaling pathways inside the cell to relay this information to the center of cell. The way in which proteins are organized on the membrane has a major influence on their signaling activity. Some areas of the membrane are more crowded with certain lipids and signaling proteins than others. Lipid and protein molecules of particular types can come together and form distinct areas called “ordered” and “disordered” domains. The lipids in ordered domains are more tightly packed than disordered domains and it is thought that this difference allows domains to selectively exclude or include certain proteins. Ordered domains are also known as "lipid rafts". Lipid rafts and disordered domains may help cells to control the activities of signaling pathways, however, technical limitations have made it difficult to study the roles of these domains. The membranes surrounding immune cells called B cells contain a protein called the B cell receptor, which engages with proteins from microbes and other foreign invaders. When the B cell receptor binds to a foreign protein it forms clusters with other B cell receptors and becomes active, triggering a signaling pathway that leads to immune responses. Stone, Shelby et al. examined lipid rafts and disordered domains in B cells from mice using a technique called super-resolution fluorescence microscopy. The results show that clusters of B cell receptors are present within lipid rafts. These clusters made the lipid rafts larger and more stable. A protein that is needed during the early stages of B cell receptor signaling was also found in the same lipid rafts. Another protein that terminates signaling was excluded because it prefers disordered domains. Together, this provides a local environment in certain areas of the membrane that favors receptor activity and supports the subsequent immune response. Future work is needed to understand how cells control the make-up of lipids and proteins within their membranes, and how defects in this regulation can alter signaling activity and lead to disease. DOI:http://dx.doi.org/10.7554/eLife.19891.002
Collapse
Affiliation(s)
- Matthew B Stone
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Sarah A Shelby
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Marcos F Núñez
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Kathleen Wisser
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, United States
| |
Collapse
|
11
|
Shelby SA, Veatch SL, Holowka DA, Baird BA. Functional nanoscale coupling of Lyn kinase with IgE-FcεRI is restricted by the actin cytoskeleton in early antigen-stimulated signaling. Mol Biol Cell 2016; 27:3645-3658. [PMID: 27682583 PMCID: PMC5221596 DOI: 10.1091/mbc.e16-06-0425] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/20/2016] [Indexed: 12/13/2022] Open
Abstract
Spatial targeting of signaling components to activated receptors on the plasma membrane is key for initiating signal transduction. The actin cytoskeleton restricts antigen-stimulated colocalization of IgE-FcεRI with membrane-anchored signaling partner Lyn kinase, and this regulation is mediated by organization of plasma membrane lipids. The allergic response is initiated on the plasma membrane of mast cells by phosphorylation of the receptor for immunoglobulin E (IgE), FcεRI, by Lyn kinase after IgE-FcεRI complexes are cross-linked by multivalent antigen. Signal transduction requires reorganization of receptors and membrane signaling proteins, but this spatial regulation is not well defined. We used fluorescence localization microscopy (FLM) and pair-correlation analysis to measure the codistribution of IgE-FcεRI and Lyn on the plasma membrane of fixed cells with 20- to 25-nm resolution. We directly visualized Lyn recruitment to IgE-FcεRI within 1 min of antigen stimulation. Parallel FLM experiments captured stimulation-induced FcεRI phosphorylation and colocalization of a saturated lipid-anchor probe derived from Lyn’s membrane anchorage. We used cytochalasin and latrunculin to investigate participation of the actin cytoskeleton in regulating functional interactions of FcεRI. Inhibition of actin polymerization by these agents enhanced colocalization of IgE-FcεRI with Lyn and its saturated lipid anchor at early stimulation times, accompanied by augmented phosphorylation within FcεRI clusters. Ising model simulations provide a simplified model consistent with our results. These findings extend previous evidence that IgE-FcεRI signaling is initiated by colocalization with Lyn in ordered lipid regions and that the actin cytoskeleton regulates this functional interaction by influencing the organization of membrane lipids.
Collapse
Affiliation(s)
- Sarah A Shelby
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - David A Holowka
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology and Field of Biophysics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
12
|
Wilson JD, Shelby SA, Holowka D, Baird B. Rab11 Regulates the Mast Cell Exocytic Response. Traffic 2016; 17:1027-41. [PMID: 27288050 DOI: 10.1111/tra.12418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023]
Abstract
Stimulated exocytic events provide a means for physiological communication and are a hallmark of the mast cell-mediated allergic response. In mast cells these processes are triggered by antigen crosslinking of IgE bound to its high-affinity receptor, FcϵRI, on the cell surface. Here we use the endosomal v-SNARE VAMP8, and the lysosomal hydrolase β-hexosaminidase (β-Hex), each C-terminally fused to super-ecliptic pHluorin, to monitor stimulated exocytosis. Using these pHluorin-tagged constructs, we monitor stimulated exocytosis by fluorimetry and visualize individual exocytic events with total internal reflection (TIRF) microscopy. Similar to constitutive recycling endosome (RE) trafficking, we find that stimulated RE exocytosis, monitored by VAMP8, is attenuated by expression of dominant negative (S25N) Rab11. Stimulated β-Hex exocytosis is also reduced in the presence of S25N Rab11, suggesting that expression of this mutant broadly impacts exocytosis. Interestingly, pretreatment with inhibitors of actin polymerization, cytochalasin D or latrunculin A, substantially restores both RE and lysosome exocytosis in cells expressing S25N Rab11. Conversely, stabilizing F-actin with jasplakinolide inhibits antigen-stimulated exocytosis but is not additive with S25N Rab11-mediated inhibition, suggesting that these reagents inhibit related processes. Together, our results suggest that Rab11 participates in the regulation necessary for depolymerization of the actin cytoskeleton during stimulated exocytosis in mast cells.
Collapse
Affiliation(s)
- Joshua D Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - Sarah A Shelby
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| |
Collapse
|
13
|
Roles for lipid heterogeneity in immunoreceptor signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:830-836. [PMID: 26995463 DOI: 10.1016/j.bbalip.2016.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 11/22/2022]
Abstract
Immune receptors that specifically recognize foreign antigens to activate leukocytes in adaptive immune responses belong to a family of multichain cell surface proteins. All of these contain immunoreceptor tyrosine-based activation motifs in one or more subunits that initiate signaling cascades following stimulated tyrosine phosphorylation by Src-family kinases. As highlighted in this review, lipids participate in this initial activation step, as well as in more downstream signaling steps. We summarize evidence for cholesterol-dependent ordered lipids serving to regulate the store-operated Ca(2+) channel, Orai1, and we describe the sensitivity of Orai1 coupling to the ER Ca(2+) sensor, STIM1, to inhibition by polyunsaturated fatty acids. Phosphoinositides play key roles in regulating STIM1-Orai1 coupling, as well as in the stimulated Ca(2+) oscillations that are a consequence of IgE receptor signaling in mast cells. They also participate in the coupling between the plasma membrane and the actin cytoskeleton, which regulates immune receptor responses in T cells, B cells, and mast cells, both positively and negatively, depending on the cellular context. Recent studies show that other phospholipids with mostly saturated acylation also participate in coupling between receptors and the actin cytoskeleton. Lipid heterogeneity is a central feature of the intimate relationship between the plasma membrane and the actin cytoskeleton. The detailed nature of these interactions and how they are dynamically regulated to initiate and propagate receptor-mediated cell signaling are challenging questions for further investigation. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
14
|
Xu G, Shang D, Zhang Z, Shaw TS, Ran Y, López JA, Peng Y. The Transmembrane Domains of β and IX Subunits Mediate the Localization of the Platelet Glycoprotein Ib-IX Complex to the Glycosphingolipid-enriched Membrane Domain. J Biol Chem 2015. [PMID: 26203189 DOI: 10.1074/jbc.m115.668145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We have previously reported that the structural elements of the GP Ib-IX complex required for its localization to glycosphingolipid-enriched membranes (GEMs) reside in the Ibβ and IX subunits. To identify them, we generated a series of cell lines expressing mutant GP Ibβ and GP IX where 1) the cytoplasmic tails (CTs) of either or both GP Ibβ and IX are truncated, and 2) the transmembrane domains (TMDs) of GP Ibβ and GP IX were swapped with the TMD of a non-GEMs associating molecule, human transferrin receptor. Sucrose density fractionation analysis showed that the removal of either or both of the CTs from GP Ibβ and GP IX does not alter GP Ibα-GEMs association when compared with the wild type. In contrast, swapping of the TMDs of either GP Ibβ or GP IX with that of transferrin receptor results in a significant loss (∼ 50%) of GP Ibα from the low density GEMs fractions, with the largest effect seen in the dual TMD-replaced cells (> 80% loss) when compared with the wild type cells (100% of GP Ibα present in the GEMs fractions). Under high shear flow, the TMD-swapped cells adhere poorly to a von Willebrand factor-immobilized surface to a much lesser extent than the previously reported disulfide linkage dysfunctional GP Ibα-expressing cells. Thus, our data demonstrate that the bundle of GP Ibβ and GP IX TMDs instead of their individual CTs is the structural element that mediates the β/IX complex localization to the membrane GEMs, which through the α/β disulfide linkage brings GP Ibα into the GEMs.
Collapse
Affiliation(s)
- Guofeng Xu
- From the XinHua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China, the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Dan Shang
- the Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China, the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Zuping Zhang
- the School of Basic Medicine, Central South University, Changsha 410013, China, the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Tanner S Shaw
- the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Yali Ran
- the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - José A López
- the Department of Medicine, Puget Sound Blood Center, Division of Hematology, University of Washington, Seattle, Washington 98195, and
| | - Yuandong Peng
- the Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
15
|
Bryant KL, Baird B, Holowka D. A novel fluorescence-based biosynthetic trafficking method provides pharmacologic evidence that PI4-kinase IIIα is important for protein trafficking from the endoplasmic reticulum to the plasma membrane. BMC Cell Biol 2015; 16:5. [PMID: 25886792 PMCID: PMC4355129 DOI: 10.1186/s12860-015-0049-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023] Open
Abstract
Background Biosynthetic trafficking of receptors and other membrane-associated proteins from the endoplasmic reticulum (ER) to the plasma membrane (PM) underlies the capacity of these proteins to participate in crucial cellular roles. Phosphoinositides have been shown to mediate distinct biological functions in cells, and phosphatidylinositol 4-phosphate (PI4P), in particular, has emerged as a key regulator of biosynthetic trafficking. Results To investigate the source of PI4P that orchestrates trafficking events, we developed a novel flow cytometry based method to monitor biosynthetic trafficking of transiently transfected proteins. We demonstrated that our method can be used to assess the trafficking of both type-1 transmembrane and GPI-linked proteins, and that it can accurately monitor the pharmacological disruption of biosynthetic trafficking with brefeldin A, a well-documented inhibitor of early biosynthetic trafficking. Furthermore, utilizing our newly developed method, we applied pharmacological inhibition of different isoforms of PI 4-kinase to reveal a role for a distinct pool of PI4P, synthesized by PI4KIIIα, in ER-to-PM trafficking. Conclusions Taken together, these findings provide evidence that a specific pool of PI4P plays a role in biosynthetic trafficking of two different classes of proteins from the ER to the Golgi complex. Furthermore, our simple, flow cytometry-based biosynthetic trafficking assay can be widely applied to the study of multiple classes of proteins and varied pharmacological and genetic perturbations.
Collapse
Affiliation(s)
- Kirsten L Bryant
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA. .,University of North Carolina, Chapel Hill, NC, 27514, USA.
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
16
|
Gray E, Karslake J, Machta BB, Veatch SL. Liquid general anesthetics lower critical temperatures in plasma membrane vesicles. Biophys J 2014; 105:2751-9. [PMID: 24359747 DOI: 10.1016/j.bpj.2013.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 12/21/2022] Open
Abstract
A large and diverse array of small hydrophobic molecules induce general anesthesia. Their efficacy as anesthetics has been shown to correlate both with their affinity for a hydrophobic environment and with their potency in inhibiting certain ligand-gated ion channels. In this study we explore the effects that n-alcohols and other liquid anesthetics have on the two-dimensional miscibility critical point observed in cell-derived giant plasma membrane vesicles (GPMVs). We show that anesthetics depress the critical temperature (Tc) of these GPMVs without strongly altering the ratio of the two liquid phases found below Tc. The magnitude of this affect is consistent across n-alcohols when their concentration is rescaled by the median anesthetic concentration (AC50) for tadpole anesthesia, but not when plotted against the overall concentration in solution. At AC50 we see a 4°C downward shift in Tc, much larger than is typically seen in the main chain transition at these anesthetic concentrations. GPMV miscibility critical temperatures are also lowered to a similar extent by propofol, phenylethanol, and isopropanol when added at anesthetic concentrations, but not by tetradecanol or 2,6 diterbutylphenol, two structural analogs of general anesthetics that are hydrophobic but have no anesthetic potency. We propose that liquid general anesthetics provide an experimental tool for lowering critical temperatures in plasma membranes of intact cells, which we predict will reduce lipid-mediated heterogeneity in a way that is complimentary to increasing or decreasing cholesterol. Also, several possible implications of our results are discussed in the context of current models of anesthetic action on ligand-gated ion channels.
Collapse
Affiliation(s)
- Ellyn Gray
- Department of Biophysics, University of Michigan, Ann Arbor MI 48109
| | - Joshua Karslake
- Department of Biophysics, University of Michigan, Ann Arbor MI 48109
| | - Benjamin B Machta
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton NJ 08544.
| | - Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor MI 48109.
| |
Collapse
|
17
|
Kelly CV, Wakefield DL, Holowka DA, Craighead HG, Baird BA. Near-field fluorescence cross-correlation spectroscopy on planar membranes. ACS NANO 2014; 8:7392-404. [PMID: 25004429 PMCID: PMC4326781 DOI: 10.1021/nn502593k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/08/2014] [Indexed: 05/23/2023]
Abstract
The organization and dynamics of plasma membrane components at the nanometer scale are essential for biological functions such as transmembrane signaling and endocytosis. Planarized nanoscale apertures in a metallic film are demonstrated as a means of confining the excitation light for multicolor fluorescence spectroscopy to a 55 ± 10 nm beam waist. This technique provides simultaneous two-color, subdiffraction-limited fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy on planar membranes. The fabrication and implementation of this technique are demonstrated for both model membranes and live cells. Membrane-bound proteins were observed to cluster upon the addition of a multivalent cross-linker: On supported lipid bilayers, clusters of cholera toxin subunit B were formed upon cross-linking by an antibody specific for this protein; on living cells, immunoglobulin E bound to its receptor (FcεRI) on the plasma membranes of RBL mast cells was observed to form clusters upon exposure to a trivalent antigen. The formation of membrane clusters was quantified via fluorescence intensity vs time and changes in the temporal auto- and cross-correlations above a single nanoscale aperture. The illumination profile from a single aperture is analyzed experimentally and computationally with a rim-dominated illumination profile, yielding no change in the autocorrelation dwell time with changes in aperture diameter from 60 to 250 nm. This near-field fluorescence cross-correlation methodology provides access to nanoscale details of dynamic membrane interactions and motivates further development of near-field optical methods.
Collapse
Affiliation(s)
- Christopher V. Kelly
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, United States
- Address correspondence to
| | - Devin L. Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - David A. Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Harold G. Craighead
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Barbara A. Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Wilkes MM, Wilson JD, Baird B, Holowka D. Activation of Cdc42 is necessary for sustained oscillations of Ca2+ and PIP2 stimulated by antigen in RBL mast cells. Biol Open 2014; 3:700-10. [PMID: 24996924 PMCID: PMC4133723 DOI: 10.1242/bio.20148862] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Antigen stimulation of mast cells via FcεRI, the high-affinity receptor for IgE, triggers a signaling cascade that requires Ca2+ mobilization for exocytosis of secretory granules during the allergic response. To characterize the role of Rho GTPases in FcεRI signaling, we utilized a mutant RBL cell line, B6A4C1, that is deficient in antigen-stimulated Cdc42 activation important for these processes. Recently the importance of stimulated intracellular oscillations has emerged, and we find that B6A4C1 cells exhibit severely attenuated Ca2+ oscillations in response to antigen, which are restored to wild-type RBL-2H3 levels by expression of constitutively active Cdc42 G12V or by a GEF for Cdc42, DOCK7, but not when the C-terminal di-arginine motif of active Cdc42 is mutated to di-glutamine. We found that antigen-stimulated FcεRI endocytosis, which occurs independently of Ca2+ mobilization, is also defective in B6A4C1 cells, and Cdc42 G12V reconstitutes this response as well. Thus, activation of Cdc42 occurs prior to and is critical for antigen-stimulated pathways leading separately to both Ca2+ mobilization and receptor endocytosis. Accounting for these downstream functional consequences, we show that Cdc42 G12V reconstitutes antigen-stimulated oscillations of phosphatidylinositol 4,5-bisphosphate (PIP2) at the plasma membrane in mutant B6A4C1 cells, pointing to Cdc42 participation in the regulation of stimulated PIP2 synthesis.
Collapse
Affiliation(s)
- Marcus M Wilkes
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA
| | - Joshua D Wilson
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA
| | - David Holowka
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA
| |
Collapse
|
19
|
Holowka D, Korzeniowski MK, Bryant KL, Baird B. Polyunsaturated fatty acids inhibit stimulated coupling between the ER Ca(2+) sensor STIM1 and the Ca(2+) channel protein Orai1 in a process that correlates with inhibition of stimulated STIM1 oligomerization. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1210-6. [PMID: 24769339 DOI: 10.1016/j.bbalip.2014.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 04/02/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have been found to be effective inhibitors of cell signaling in numerous contexts, and we find that acute addition of micromolar PUFAs such as linoleic acid effectively inhibit of Ca(2+) responses in mast cells stimulated by antigen-mediated crosslinking of FcεRI or by the SERCA pump inhibitor, thapsigargin. In contrast, the saturated fatty acid, stearic acid, with the same carbon chain length as linoleic acid does not inhibit these responses. Consistent with this inhibition of store-operated Ca(2+) entry (SOCE), linoleic acid inhibits antigen-stimulated granule exocytosis to a similar extent. Using the fluorescently labeled plasma membrane Ca(2+) channel protein, AcGFP-Orai1, together with the labeled ER Ca(2+) sensor protein, STIM1-mRFP, we monitor stimulated coupling of these proteins that is essential for SOCE with a novel spectrofluorimetric resonance energy transfer method. We find effective inhibition of this stimulated coupling by linoleic acid that accounts for the inhibition of SOCE. Moreover, we find that linoleic acid induces some STIM1-STIM1 association, while inhibiting stimulated STIM1 oligomerization that precedes STIM1-Orai1 coupling. We hypothesize that linoleic acid and related PUFAs inhibit STIM1-Orai1 coupling by a mechanism that involves perturbation of ER membrane structure, possibly by disrupting electrostatic interactions important in STIM1 oligomerization. Thisarticle is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA.
| | - Marek K Korzeniowski
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Kirsten L Bryant
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
The structure of the CD3ζζ transmembrane dimer in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:739-46. [PMID: 24333300 DOI: 10.1016/j.bbamem.2013.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/23/2022]
Abstract
Virtually every aspect of the human adaptive immune response is controlled by T cells. The T cell receptor (TCR) complex is responsible for the recognition of foreign peptide sequences, forming the initial step in the elimination of germ-infected cells. The recognition leads to an extracellular conformational change that is transmitted intracellularly through the Cluster of Differentiation 3 (CD3) subunits of the TCR-CD3 complex. Here we address the interplay between the disulfide-linked CD3ζζ dimer, an essential signaling component of the TCR-CD3 complex, and its lipidic environment. The disulfide bond formation requires the absolute presence of a nearby conserved aspartic acid, a fact that has mystified the scientific community. We use atomistic simulation methods to demonstrate that the conserved aspartic acid pair of the CD3ζζ dimer leads to a deformation of the membrane. This deformation changes the local environment of the cysteines and promotes disulfide bond formation. We also investigate the role of a conserved Tyr, highlighting its possible role in the interaction with other transmembrane components of the TCR-CD3 complex.
Collapse
|
21
|
Bryant KL, Antonyak MA, Cerione RA, Baird B, Holowka D. Mutations in the polybasic juxtamembrane sequence of both plasma membrane- and endoplasmic reticulum-localized epidermal growth factor receptors confer ligand-independent cell transformation. J Biol Chem 2013; 288:34930-42. [PMID: 24142702 DOI: 10.1074/jbc.m113.513333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deregulation of ErbB receptor-tyrosine kinases is a hallmark of many human cancers. Conserved in the ErbB family is a cluster of basic amino acid residues in the cytoplasmic juxtamembrane region. We found that charge-silencing mutagenesis within this juxtamembrane region of the epidermal growth factor receptor (EGFR) results in the generation of a mutant receptor (EGFR Mut R1-6) that spontaneously transforms NIH 3T3 cells in a ligand-independent manner. A similar mutant with one additional basic residue, EGFR Mut R1-5, fails to exhibit ligand-independent transformation. The capacity of EGFR Mut R1-6 to mediate this transformation is maintained when this mutant is retained in the endoplasmic reticulum via a single point mutation, L393H, which we describe. We show that EGFR Mut R1-6 with or without L393H exhibits enhanced basal tyrosine phosphorylation when ectopically expressed, and the ligand-independent transforming activity of EGFR Mut R1-6 is sensitive to inhibition of EGFR kinase activity and is particularly dependent on PI3K and mTOR activity. Similar to EGFR Mut R1-6/L393H in NIH 3T3 cells, EGFR variant type III, a highly oncogenic mutant form of EGFR linked to human brain cancers, confers transforming activity while it is wholly endoplasmic reticulum-retained in U87 cells. Our findings highlight the importance of the polybasic juxtamembrane sequence in regulating the oncogenic potential of EGFR signaling.
Collapse
Affiliation(s)
- Kirsten L Bryant
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 and
| | | | | | | | | |
Collapse
|
22
|
Smith NL, Abi Abdallah DS, Butcher BA, Denkers EY, Baird B, Holowka D. Toxoplasma gondii inhibits mast cell degranulation by suppressing phospholipase Cγ-mediated Ca(2+) mobilization. Front Microbiol 2013; 4:179. [PMID: 23847603 PMCID: PMC3701878 DOI: 10.3389/fmicb.2013.00179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/14/2013] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii is well-known to subvert normal immune responses, however, mechanisms are incompletely understood. In particular, its capacity to alter receptor-activated Ca2+-mediated signaling processes has not been well-characterized. In initial experiments, we found evidence that T. gondii infection inhibits Ca2+ responses to fMetLeuPhe in murine macrophages. To further characterize the mechanism of inhibition of Ca2+ mobilization by T. gondii, we used the well-studied RBL mast cell model to probe the capacity of T. gondii to modulate IgE receptor-activated signaling within the first hour of infection. Ca2+ mobilization that occurs via IgE/FcεRI signaling leads to granule exocytosis in mast cells. We found that T. gondii inhibits antigen-stimulated degranulation in infected cells in a strain-independent manner. Under these conditions, we found that cytoplasmic Ca2+ mobilization, particularly antigen-mediated Ca2+ release from intracellular stores, is significantly reduced. Furthermore, stimulation-dependent activation of Syk kinase leading to tyrosine phosphorylation and activation of phospholipase Cγ is inhibited by infection. Therefore, we conclude that inhibitory effects of infection are likely due to parasite-mediated inhibition of the tyrosine kinase signaling cascade that results in reduced hydrolysis of phosphatidylinositol 4,5-bisphosphate. Interestingly, inhibition of IgE/FcεRI signaling persists when tachyzoite invasion is arrested via cytochalasin D treatment, suggesting inhibition is mediated by a parasite-derived factor secreted into the cells during the invasion process. Our study provides direct evidence that immune subversion by T. gondii is initiated concurrently with invasion.
Collapse
Affiliation(s)
- Norah L Smith
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University Ithaca, NY, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lee J, Veatch SL, Baird B, Holowka D. Molecular mechanisms of spontaneous and directed mast cell motility. J Leukoc Biol 2012; 92:1029-41. [PMID: 22859829 PMCID: PMC3476239 DOI: 10.1189/jlb.0212091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 07/02/2012] [Accepted: 07/16/2012] [Indexed: 01/01/2023] Open
Abstract
Migration is a fundamental function of immune cells, and a role for Ca(2+) in immune cell migration has been an interest of scientific investigations for many decades. Mast cells are the major effector cells in IgE-mediated immune responses, and cross-linking of IgE-FcεRI complexes at the mast cell surface by antigen activates a signaling cascade that causes mast cell activation, resulting in Ca(2+) mobilization and granule exocytosis. These cells are known to accumulate at sites of inflammation in response to parasite and bacterial infections. Using real-time imaging, we monitored chemotactic migration of RBL and rat BMMCs in response to a gradient of soluble multivalent antigen. Here, we show that Ca(2+) influx via Orai1 plays an important role in regulating spontaneous motility and directional migration of mast cells toward antigen via IgER complexes. Inhibition of Ca(2+) influx or knockdown of the Ca(2+) entry channel protein Orai1 by shRNA causes inhibition of both of these processes. In addition, a mutant Syk- shows impaired spontaneous motility and chemotaxis toward antigen that is rescued by expression of Syk. Our findings identify a novel Ca(2+) influx-mediated, Orai1-dependent mechanism for mast cell migration.
Collapse
Affiliation(s)
- Jinmin Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
24
|
Veatch SL, Chiang EN, Sengupta P, Holowka DA, Baird BA. Quantitative nanoscale analysis of IgE-FcεRI clustering and coupling to early signaling proteins. J Phys Chem B 2012; 116:6923-35. [PMID: 22397623 DOI: 10.1021/jp300197p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antigen-mediated cross-linking of IgE bound to its receptor, FcεRI, initiates a transmembrane signaling cascade that results in mast cell activation in the allergic response. Using immunogold labeling of intact RBL mast cells and scanning electron microscopy (SEM), we visualize molecular reorganization of IgE-FcεRI and early signaling proteins on both leaflets of the plasma membrane, without the need for ripped off membrane sheets. As quantified by pair correlation analysis, we observe dramatic changes in the nanoscale distribution of IgE-FcεRI after binding of multivalent antigen to stimulate transmembrane signaling, and this is accompanied by similar clustering of Lyn and Syk tyrosine kinases, and adaptor protein LAT. We find that Lyn co-redistributes with IgE-FcεRI into clusters that cross-correlate throughout 20 min of stimulation. Inhibition of tyrosine kinase activity reduces the numbers of both IgE-FcεRI and Lyn in stimulated clusters. Coupling of these proteins is also decreased when membrane cholesterol is reduced either before or after antigen addition. These results provide evidence for involvement of FcεRI phosphorylation and cholesterol-dependent membrane structure in the interactions that accompany IgE-mediated activation of RBL mast cells. More generally, this SEM view of intact cell surfaces provides new insights into the nanoscale organization of receptor-mediated signaling complexes in the plasma membrane.
Collapse
Affiliation(s)
- Sarah L Veatch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | | | |
Collapse
|
25
|
Veatch SL, Machta BB, Shelby SA, Chiang EN, Holowka DA, Baird BA. Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS One 2012; 7:e31457. [PMID: 22384026 PMCID: PMC3288038 DOI: 10.1371/journal.pone.0031457] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 01/08/2012] [Indexed: 12/21/2022] Open
Abstract
We present an analytical method using correlation functions to quantify clustering in super-resolution fluorescence localization images and electron microscopy images of static surfaces in two dimensions. We use this method to quantify how over-counting of labeled molecules contributes to apparent self-clustering and to calculate the effective lateral resolution of an image. This treatment applies to distributions of proteins and lipids in cell membranes, where there is significant interest in using electron microscopy and super-resolution fluorescence localization techniques to probe membrane heterogeneity. When images are quantified using pair auto-correlation functions, the magnitude of apparent clustering arising from over-counting varies inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. In contrast, we demonstrate that over-counting does not give rise to apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (FcεRI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM/dSTORM) and scanning electron microscopy (SEM). We find that apparent clustering of FcεRI-bound IgE is dominated by over-counting labels on individual complexes when IgE is directly conjugated to organic fluorophores. We verify this observation by measuring pair cross-correlation functions between two distinguishably labeled pools of IgE-FcεRI on the cell surface using both imaging methods. After correcting for over-counting, we observe weak but significant self-clustering of IgE-FcεRI in fluorescence localization measurements, and no residual self-clustering as detected with SEM. We also apply this method to quantify IgE-FcεRI redistribution after deliberate clustering by crosslinking with two distinct trivalent ligands of defined architectures, and we evaluate contributions from both over-counting of labels and redistribution of proteins.
Collapse
Affiliation(s)
- Sarah L Veatch
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | | | | | | | | | |
Collapse
|
26
|
Calloway N, Owens T, Corwith K, Rodgers W, Holowka D, Baird B. Stimulated association of STIM1 and Orai1 is regulated by the balance of PtdIns(4,5)P₂ between distinct membrane pools. J Cell Sci 2011; 124:2602-10. [PMID: 21750194 DOI: 10.1242/jcs.084178] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have previously shown that PIP5KIβ and PIP5KIγ generate functionally distinct pools of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] important for antigen-stimulated Ca(2+) entry in mast cells. In the present study, we find that association of the endoplasmic reticulum (ER) Ca(2+) sensor, STIM1, and the store-operated Ca(2+) channel, Orai1, stimulated by thapsigargin-mediated ER store depletion, is enhanced by overexpression of PIP5KIβ and inhibited by overexpression of PIP5KIγ. These different PIP5KI isoforms cause differential enhancement of PtdIns(4,5)P(2) in detergent-resistant membrane (DRM) fractions, which comprise ordered lipid regions, and detergent-solubilized membrane (DSM) fractions, which comprise disordered lipid regions. Consistent with these results, the inositol 5-phosphatase L10-Inp54p, which is targeted to ordered lipids, decreases PtdIns(4,5)P(2) in the DRM fraction and inhibits thapsigargin-stimulated STIM1-Orai1 association and store-operated Ca(2+) entry, whereas the inositol 5-phosphatase S15-Inp54p, which is targeted to disordered lipids, decreases PtdIns(4,5)P(2) in the DSM fraction and enhances STIM1-Orai1 association. Removal of either the STIM1 C-terminal polylysine sequence (amino acids 677-685) or an N-terminal polyarginine sequence in Orai1 (amino acids 28-33) eliminates this differential sensitivity of STIM1-Orai1 association to PtdIns(4,5)P(2) in the distinctive membrane domains. Our results are consistent with a model of PtdIns(4,5)P(2) balance, in which store-depletion-stimulated STIM1-Orai1 association is positively regulated by the ordered lipid pool of PtdIns(4,5)P(2) and negatively regulated by PtdIns(4,5)P(2) in disordered lipid domains.
Collapse
Affiliation(s)
- Nathaniel Calloway
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
27
|
Geng H, Xu G, Ran Y, López JA, Peng Y. Platelet glycoprotein Ib beta/IX mediates glycoprotein Ib alpha localization to membrane lipid domain critical for von Willebrand factor interaction at high shear. J Biol Chem 2011; 286:21315-23. [PMID: 21507943 DOI: 10.1074/jbc.m110.202549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The localization of the platelet glycoprotein GP Ib-IX complex (GP Ibα, GP Ibβ, and GP IX) to membrane lipid domain, also known as glycosphingolipid-enriched membranes (GEMs or raft) lipid domain, is essential for the GP Ib-IX complex mediated platelet adhesion to von Willebrand factor (vWf) and subsequent platelet activation. To date, the mechanism for the complex association with the GEMs remains unclear. Although the palmitate modifications of GP Ibβ and GP IX were thought to be critical for the complex presence in the GEMs, we found that the removal of the putative palmitoylation sites of GP Ibβ and GP IX had no effects on the localization of the GP Ib-IX complex to the GEMs. Instead, the disruption of GP Ibα disulfide linkage with GP Ibβ markedly decreased the amount of the GEM-associated GP Ibα without altering the GEM association of GP Ibβ and GP IX. Furthermore, partial dissociation with the GEMs greatly inhibited GP Ibα interaction with vWf at high shear instead of in static condition or under low shear stress. Thus, for the first time, we demonstrated that GP Ibβ/GP IX mediates the disulfide-linked GP Ibα localization to the GEMs, which is critical for vWf interaction at high shear.
Collapse
Affiliation(s)
- Hongquan Geng
- XinHua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
28
|
Rashid A, Iodice MW, Carroll KM, Housden JE, Hunter M, Sabban S, Artymiuk PJ, Helm BA. Assessing the role of Asp 194 in the transmembrane domains of the α-chain of the high-affinity receptor complex for immunoglobulin E in signal transduction. Mol Immunol 2010; 48:128-36. [DOI: 10.1016/j.molimm.2010.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 08/30/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
|
29
|
Hutchinson LM, Trinh BM, Palmer RK, Preziosi CA, Pelletier JH, Nelson HM, Gosse JA. Inorganic arsenite inhibits IgE receptor-mediated degranulation of mast cells. J Appl Toxicol 2010; 31:231-41. [PMID: 20842677 DOI: 10.1002/jat.1585] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 11/10/2022]
Abstract
Millions of people worldwide are exposed to arsenic (As), a toxicant which increases the risk of various cancers, cardiovascular disease and several other health problems. Arsenic is a potent endocrine disruptor, including of the estrogen receptor. It was recently shown that environmental estrogen-receptor disruptors can affect the signaling of mast cells, which are important players in parasite defense, asthma and allergy. Antigen (Ag) or allergen crosslinking of IgE-bound receptors on mast cells leads to signaling, culminating in degranulation, the release of histamine and other mediators. Because As is an endocrine disruptor and because endocrine disruptors have been found to affect degranulation, here we have tested whether sodium arsenite affects degranulation. Using the rat basophilic leukemia (RBL) mast cell model, we have measured degranulation in a fluorescence assay. Arsenic alone had no effect on basal levels of degranulation. However, As strongly inhibited Ag-stimulated degranulation at environmentally relevant concentrations, in a manner that is very dependent on concentrations of both As and Ag. The concentrations of As effective at inhibiting degranulation were not cytotoxic. This inhibition may be a mechanism underlying the traditional Chinese medicinal use of As to treat asthma. These data indicate that As may inhibit the ability of humans to fight off parasitic disease.
Collapse
Affiliation(s)
- Lee M Hutchinson
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE. The optimal antigen response of chimeric antigen receptors harboring the CD3zeta transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. THE JOURNAL OF IMMUNOLOGY 2010; 184:6938-49. [PMID: 20483753 DOI: 10.4049/jimmunol.0901766] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chimeric Ag receptors (CARs) expressed in T cells permit the redirected lysis of tumor cells in an MHC-unrestricted manner. In the Jurkat T cell model system, expression of a carcinoembryonic Ag-specific CD3zeta CAR (MFEzeta) resulted in an increased sensitivity of the transduced Jurkat cell to generate cytokines when stimulated through the endogenous TCR complex. This effect was driven through two key characteristics of the MFEzeta CAR: 1) receptor dimerization and 2) the interaction of the CAR with the endogenous TCR complex. Mutations of the CAR transmembrane domain that abrogated these interactions resulted in a reduced functional capacity of the MFEzeta CAR to respond to carcinoembryonic Ag protein Ag. Taken together, these results indicate that CARs containing the CD3zeta transmembrane domain can form a complex with the endogenous TCR that may be beneficial for optimal T cell activation. This observation has potential implications for the future design of CARs for cancer therapy.
Collapse
Affiliation(s)
- John S Bridgeman
- Cell Therapy Group, Cancer Research UK Department of Medical Oncology, Paterson Institute for Cancer Research, Manchester, UK
| | | | | | | | | | | |
Collapse
|
31
|
Calloway N, Holowka D, Baird B. A basic sequence in STIM1 promotes Ca2+ influx by interacting with the C-terminal acidic coiled coil of Orai1. Biochemistry 2010; 49:1067-71. [PMID: 20073506 DOI: 10.1021/bi901936q] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is a ubiquitous signaling process in eukaryotic cells in which the endoplasmic reticulum (ER)-localized Ca(2+) sensor, STIM1, activates the plasma membrane-localized Ca(2+) release-activated Ca(2+) (CRAC) channel, Orai1, in response to emptying of ER Ca(2+) stores. In efforts to understand this activation mechanism, we recently identified an acidic coiled-coil region in the C-terminus of Orai1 that contributes to physical association between these two proteins, as measured by fluorescence resonance energy transfer, and is necessary for Ca(2+) influx, as measured by an intracellular Ca(2+) indicator. Here, we present evidence that a positively charged sequence of STIM1 in its CRAC channel activating domain, human residues 384-386, is necessary for activation of SOCE, most likely because this sequence interacts directly with the acidic coiled coil of Orai1 to gate Ca(2+) influx. We find that mutation to remove positive charges in these residues in STIM1 prevents its stimulated association with wild-type Orai1. However, association does occur between this mutant STIM1 and Orai1 that is mutated to remove negative charges in its C-terminal coiled coil, indicating that other structural features are sufficient for this interaction. Despite this physical association, we find that thapsigargin fails to activate SOCE following coexpression of mutant STIM1 with either wild type or mutant Orai1, implicating STIM1 residues 384-386 in transmission of the Ca(2+) gating signal to Orai1 following store depletion.
Collapse
Affiliation(s)
- Nathaniel Calloway
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
32
|
Growth hormone receptor targeting to lipid rafts requires extracellular subdomain 2. Biochem Biophys Res Commun 2010; 391:414-8. [DOI: 10.1016/j.bbrc.2009.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Accepted: 11/10/2009] [Indexed: 11/21/2022]
|
33
|
Cohen R, Torres A, Ma HT, Holowka D, Baird B. Ca2+ waves initiate antigen-stimulated Ca2+ responses in mast cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:6478-88. [PMID: 19864608 DOI: 10.4049/jimmunol.0901615] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ca(2+) mobilization is central to many cellular processes, including stimulated exocytosis and cytokine production in mast cells. Using single cell stimulation by IgE-specific Ag and high-speed imaging of conventional or genetically encoded Ca(2+) sensors in rat basophilic leukemia and bone marrow-derived rat mast cells, we observe Ca(2+) waves that originate most frequently from the tips of extended cell protrusions, as well as Ca(2+) oscillations throughout the cell that usually follow the initiating Ca(2+) wave. In contrast, Ag conjugated to the tip of a micropipette stimulates local, repetitive Ca(2+) puffs at the region of cell contact. Initiating Ca(2+) waves are observed in most rat basophilic leukemia cells stimulated with soluble Ag and are sensitive to inhibitors of Ca(2+) release from endoplasmic reticulum stores and to extracellular Ca(2+), but they do not depend on store-operated Ca(2+) entry. Knockdown of transient receptor potential channel (TRPC)1 and TRPC3 channel proteins by short hairpin RNA reduces the sensitivity of these cells to Ag and shifts the wave initiation site from protrusions to the cell body. Our results reveal spatially encoded Ca(2+) signaling in response to immunoreceptor activation that utilizes TRPC channels to specify the initiation site of the Ca(2+) response.
Collapse
Affiliation(s)
- Roy Cohen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | |
Collapse
|
34
|
Han X, Smith NL, Sil D, Holowka DA, McLafferty FW, Baird BA. IgE receptor-mediated alteration of membrane-cytoskeleton interactions revealed by mass spectrometric analysis of detergent-resistant membranes. Biochemistry 2009; 48:6540-50. [PMID: 19496615 DOI: 10.1021/bi900181w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We use electrospray ionization mass spectrometry to quantify >100 phospholipid (PL) components in detergent-resistant membrane (DRM) domains that are related to ordered membrane compartments commonly known as lipid rafts. We previously compared PL compositions of DRMs with plasma membrane vesicles and whole cell lipid extracts from RBL mast cells, and we made the initial observation that antigen stimulation of IgE receptors (FcepsilonRI) causes a significant change in the PL composition of DRMs [Fridriksson, E. K., et al. (1999) Biochemistry 38, 8056-8063]. We now characterize the signaling requirements and time course for this change, which is manifested as an increase in the recovery of polyunsaturated PL in DRM, particularly in phosphatidylinositol species. We find that this change is largely independent of tyrosine phosphorylation, stimulated by engagement of FcepsilonRI, and can be activated by Ca(2+) ionophore in a manner independent of antigen stimulation. Unexpectedly, we found that inhibitors of actin polymerization (cytochalasin D and latrunculin A) cause a similar, but more rapid, change in the PL composition of DRMs in the absence of FcepsilonRI activation, indicating that perturbations in the actin cytoskeleton affect the organization of plasma membrane domains. Consistent with this interpretation, a membrane-permeable stabilizer of F-actin, jasplakinolide, prevents antigen-stimulated changes in DRM PL composition. These results are confirmed by a detailed analysis of multiple experiments, showing that receptor and cytochalasin D-stimulated changes in DRM lipid composition follow first-order kinetics. Analysis in terms of the number of double bonds in the fatty acid chains is valid for total PL of the major headgroups and for headgroups individually. In this manner, we show that, on average, concentrations of saturated or monounsaturated PL decrease in the DRM, whereas concentrations of PL with two or more double bonds (polyunsaturated PL) increase due to cytoskeletal perturbation. We find that these changes are independent of fatty acid chain length. Our mass spectrometric analyses provide a detailed accounting of receptor-activated alterations in the plasma membrane that are regulated by the actin cytoskeleton.
Collapse
Affiliation(s)
- Xuemei Han
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | | | | | |
Collapse
|
35
|
Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis. J Struct Biol 2009; 168:161-7. [PMID: 19427382 DOI: 10.1016/j.jsb.2009.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/20/2022]
Abstract
In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.
Collapse
|
36
|
The first transmembrane region of the beta-chain stabilizes the tetrameric Fc epsilon RI complex. Mol Immunol 2009; 46:2333-9. [PMID: 19406478 DOI: 10.1016/j.molimm.2009.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 03/28/2009] [Indexed: 12/26/2022]
Abstract
The family of activating immune receptors stabilizes via the 3-helix assembly principle. A charged basic transmembrane residue interacts with two charged acidic transmembrane residues and forms a 3-helix interface to stabilize receptor complexes in the lipid bilayer. One family member, the high affinity receptor for IgE, Fc epsilon RI, is a key regulator of immediate allergic responses. Tetrameric Fc epsilon RI consists of the IgE-binding alpha-chain, the multimembrane-spanning beta-chain and a dimer of the gamma-subunit (Fc epsilon R gamma). Comparative analysis of these seven transmembrane regions indicates that Fc epsilon RI does not meet the charge requirements for the 3-helix assembly mechanism. We performed alanine mutagenesis to show that the only basic amino acid in the transmembrane regions, beta K97, is not involved in Fc epsilon RI stabilization or surface upregulation, a hallmark function of the beta-chain. Even a beta K97E mutant is functional despite four negatively charged acidic amino acids in the transmembrane regions. Using truncation mutants, we demonstrate that the first uncharged transmembrane domain of the beta-chain contains the interface for receptor stabilization. In vitro translation experiments depict the first transmembrane region as the internal signal peptide of the beta-chain. We also show that this beta-chain domain can function as a cleavable signal peptide when used as a leader peptide for a Type I protein. Our results provide evidence that tetrameric Fc epsilon RI does not assemble according to the 3-helix assembly principle. We conclude that receptors formed with multispanning proteins use different mechanisms of shielding transmembrane charged amino acids.
Collapse
|
37
|
Min CK, Bang SY, Cho BA, Choi YH, Yang JS, Lee SH, Seong SY, Kim KW, Kim S, Jung JU, Choi MS, Kim IS, Cho NH. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation. PLoS Pathog 2008; 4:e1000209. [PMID: 19023411 PMCID: PMC2581436 DOI: 10.1371/journal.ppat.1000209] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 10/16/2008] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip) of T lymphotropic Herpesvirus saimiri (HVS) is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM) domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.
Collapse
Affiliation(s)
- Chan-Ki Min
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Sun-Young Bang
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Bon-A Cho
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Yun-Hui Choi
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Jae-Seong Yang
- Department of Life Science and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | - Sun-Hwa Lee
- Seoul National University Hospital, Innovative Research Institute for Cell Therapy, Chongno-Gu, Seoul, Korea
| | - Seung-Yong Seong
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
- Seoul National University Hospital, Innovative Research Institute for Cell Therapy, Chongno-Gu, Seoul, Korea
| | - Ki Woo Kim
- National Instrumentation Center for Environmental Management, Seoul National University, Gwanak-Gu, Seoul, Korea
| | - Sanguk Kim
- Department of Life Science and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungbuk, Korea
| | - Jae Ung Jung
- Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, California, United States of America
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Ik-Sang Kim
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
38
|
Calloway N, Vig M, Kinet JP, Holowka D, Baird B. Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol Biol Cell 2008; 20:389-99. [PMID: 18987344 DOI: 10.1091/mbc.e07-11-1132] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Activation of store operated Ca(2+) entry involves stromal interaction molecule 1 (STIM1), localized to the endoplasmic reticulum (ER), and calcium channel subunit (Orai1/CRACM1), localized to the plasma membrane. Confocal microscopy shows that thapsigargin-mediated depletion of ER Ca(2+) stores in RBL mast cells causes a redistribution of STIM1, labeled with monomeric red fluorescent protein (mRFP), to micrometer-scale ER-plasma membrane junctions that contain Orai1/CRACM1, labeled with monomeric Aequorea coerulescens green fluorescent protein (AcGFP). Using fluorescence resonance energy transfer (FRET), we determine that this visualized coredistribution is accompanied by nanoscale interaction of STIM1-mRFP and AcGFP-Orai1/CRACM1. We find that antigen stimulation of immunoglobulin E receptors causes much less Orai1/CRACM1 and STIM1 association, but strong interaction is observed under conditions that prevent refilling of ER stores. Stimulated association monitored by FRET is inhibited by sphingosine derivatives in parallel with inhibition of Ca(2+) influx. Similar structural and functional effects are caused by mutation of acidic residues in the cytoplasmic segment of Orai1/CRACM1, suggesting a role for electrostatic interactions via these residues in the coupling of Orai1/CRACM1 to STIM1. Our results reveal dynamic molecular interactions between STIM1 and Orai1/CRACM1 that depend quantitatively on electrostatic interactions and on the extent of store depletion.
Collapse
Affiliation(s)
- Nathaniel Calloway
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Zhang M, Murphy RF, Agrawal DK. Decoding IgE Fc receptors. Immunol Res 2007; 37:1-16. [PMID: 17496343 DOI: 10.1007/bf02686092] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/22/2022]
Abstract
Immunoglobulin E (IgE) plays a central role in the pathogenesis of allergic diseases by interacting with two membrane receptors: high-affinity FcepsilonRI and low-affinity FcepsilonRII (CD23). Allergeninduced IgE-occupied FcepsilonRI aggregation on the mast cell or basophil cell surface leads to the activation of intracellular signaling events and eventually the release of pre-formed and de novo synthesized inflammatory mediators. The role of FcepsilonRII in allergic diseases has been proposed to include regulation of IgE synthesis, enhanced histamine release from basophils, and a contribution to Ag-IgE complex presentation but the exact function of CD23 remains poorly understood. This review summarizes some new developments in IgE Fc-receptor studies with an emphasis on regulation of FcepsilonRI expression and signal transduction, including monomeric IgE, lipid raft segregation, and some recently identified negative regulators. A better understanding of signaling events following IgE FcR aggregation will shed new light on how allergy patients might be treated more safely and effectively.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
41
|
Holowka D, Sil D, Torigoe C, Baird B. Insights into immunoglobulin E receptor signaling from structurally defined ligands. Immunol Rev 2007; 217:269-79. [PMID: 17498065 DOI: 10.1111/j.1600-065x.2007.00517.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The asymmetrical structure of bent immunoglobulin E (IgE) bound to its high-affinity receptor, Fc epsilon RI, suggests a possible role for this configuration in the regulation of signaling mediated by cross-linking of Fc epsilon RI on the surface of mast cells and basophils. Indeed, the presence of bound IgE strongly influences the capacity of cross-linked Fc epsilon RI dimers to trigger mast cell degranulation, implicating orientational constraints by bound IgE. Bivalent ligands that cross-link by binding to bivalent IgE can form linear and cyclic chains of IgE/Fc epsilon RI complexes, and these exhibit only limited capacity to stimulate downstream signaling and degranulation, whereas structurally analogous trivalent ligands, which can form branched networks of cross-linked IgE/Fc epsilon RI complexes, are more effective at cell activation. Long bivalent ligands with flexible spacers can form intramolecular cross-links with IgE, and these stable 1:1 complexes are very potent inhibitors of mast cell degranulation stimulated by multivalent antigen. In contrast, trivalent ligands with rigid double-stranded DNA spacers effectively stimulate degranulation responses in a length-dependent manner, providing direct evidence for receptor transphosphorylation as a key step in the mechanism of signaling by Fc epsilon RI. Thus, studies with chemically defined oligovalent ligands show important features of IgE receptor cross-linking that regulate signaling, leading to mast cell activation.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA.
| | | | | | | |
Collapse
|
42
|
García-García E, Brown EJ, Rosales C. Transmembrane Mutations to FcγRIIA Alter Its Association with Lipid Rafts: Implications for Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2007; 178:3048-58. [PMID: 17312151 DOI: 10.4049/jimmunol.178.5.3048] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Many immunoreceptors have been reported to associate with lipid rafts upon ligand binding. The way in which this association is regulated is still obscure. We investigated the roles for various domains of the human immunoreceptor FcgammaRIIA in regulating its association with lipid rafts by determining the resistance of unligated, or ligated and cross-linked, receptors to solubilization by the nonionic detergent Triton X-100, when expressed in RBL-2H3 cells. Deletion of the cytoplasmic domain, or destruction of the cytoplasmic palmitoylation site, had no effect on the association of the receptor with lipid rafts. A transmembrane mutant, A224S, lost the ability to associate with lipid rafts upon receptor cross-linking, whereas transmembrane mutants VA231-2MM and VVAL234-7GISF showed constitutive lipid raft association. Wild-type (WT) FcgammaRIIA and all transmembrane mutants activated Syk, regardless of their association with lipid rafts. WT FcgammaRIIA and mutants that associated with lipid rafts efficiently activated NF-kappaB, in an ERK-dependent manner. In contrast, WT FcgammaRIIA and the A224S mutant both presented efficient phagocytosis, while VA231-2MM and VVAL234-7GISF mutants presented lower phagocytosis, suggesting that phagocytosis may proceed independently of lipid raft association. These data identify the transmembrane domain of FcgammaRIIA as responsible for regulating its inducible association with lipid rafts and suggest that FcgammaRIIA-mediated responses, like NF-kappaB activation or phagocytosis, can be modulated by lipid raft association of the ligated receptor.
Collapse
Affiliation(s)
- Erick García-García
- Immunology Department, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City D.F.-04510, Mexico
| | | | | |
Collapse
|
43
|
Abstract
Lipid rafts are liquid-ordered (lo) phase microdomains proposed to exist in biological membranes. Rafts have been widely studied by isolating lo-phase detergent-resistant membranes (DRMs) from cells. Recent findings have shown that DRMs are not the same as preexisting rafts, prompting a major revision of the raft model. Nevertheless, raft-targeting signals identified by DRM analysis are often required for protein function, implicating rafts in a variety of cell processes.
Collapse
Affiliation(s)
- Deborah A Brown
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
44
|
Larson DR, Gosse JA, Holowka DA, Baird BA, Webb WW. Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. ACTA ACUST UNITED AC 2006; 171:527-36. [PMID: 16275755 PMCID: PMC2171255 DOI: 10.1083/jcb.200503110] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Upon cross-linking by antigen, the high affinity receptor for immunoglobulin E (IgE), FcɛRI, is phosphorylated by the Src family tyrosine kinase Lyn to initiate mast cell signaling, leading to degranulation. Using fluorescence correlation spectroscopy (FCS), we observe stimulation-dependent associations between fluorescently labeled IgE-FcɛRI and Lyn-EGFP on individual cells. We also simultaneously measure temporal variations in the lateral diffusion of these proteins. Antigen-stimulated interactions between these proteins detected subsequent to the initiation of receptor phosphorylation exhibit time-dependent changes, suggesting multiple associations between FcɛRI and Lyn-EGFP. During this period, we also observe a persistent decrease in Lyn-EGFP lateral diffusion that is dependent on Src family kinase activity. These stimulated interactions are not observed between FcɛRI and a chimeric EGFP that contains only the membrane-targeting sequence from Lyn. Our results reveal real-time interactions between Lyn and cross-linked FcɛRI implicated in downstream signaling events. They demonstrate the capacity of FCS cross-correlation analysis to investigate the mechanism of signaling-dependent protein–protein interactions in intact, living cells.
Collapse
Affiliation(s)
- Daniel R Larson
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
45
|
Holowka D, Gosse JA, Hammond AT, Han X, Sengupta P, Smith NL, Wagenknecht-Wiesner A, Wu M, Young RM, Baird B. Lipid segregation and IgE receptor signaling: A decade of progress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:252-9. [PMID: 16054713 DOI: 10.1016/j.bbamcr.2005.06.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/11/2005] [Accepted: 06/15/2005] [Indexed: 11/25/2022]
Abstract
Recent work to characterize the roles of lipid segregation in IgE receptor signaling has revealed a mechanism by which segregation of liquid ordered regions from disordered regions of the plasma membrane results in protection of the Src family kinase Lyn from inactivating dephosphorylation by a transmembrane tyrosine phosphatase. Antigen-mediated crosslinking of IgE receptors drives their association with the liquid ordered regions, commonly called lipid rafts, and this facilitates receptor phosphorylation by active Lyn in the raft environment. Previous work showed that the membrane skeleton coupled to F-actin regulates stimulated receptor phosphorylation and downstream signaling processes, and more recent work implicates cytoskeletal interactions with ordered lipid rafts in this regulation. These and other results provide an emerging view of the complex role of membrane structure in orchestrating signal transduction mediated by immune and other cell surface receptors.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853-1301, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|