1
|
Lino CNR, Ghosh S. Epstein-Barr Virus in Inborn Immunodeficiency-More Than Infection. Cancers (Basel) 2021; 13:cancers13194752. [PMID: 34638238 PMCID: PMC8507541 DOI: 10.3390/cancers13194752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Epstein–Barr Virus (EBV) is a common virus that is readily controlled by a healthy immune system and rarely causes serious problems in infected people. However, patients with certain genetic defects of their immune system might have difficulties controlling EBV and often develop severe and life-threatening conditions, such as severe inflammation and malignancies. In this review, we provide a summary of inherited immune diseases that lead to a high susceptibility to EBV infection and discuss how this infection is associated with cancer development. Abstract Epstein–Barr Virus (EBV) is a ubiquitous virus affecting more than 90% of the world’s population. Upon infection, it establishes latency in B cells. It is a rather benign virus for immune-competent individuals, in whom infections usually go unnoticed. Nevertheless, EBV has been extensively associated with tumorigenesis. Patients suffering from certain inborn errors of immunity are at high risk of developing malignancies, while infection in the majority of immune-competent individuals does not seem to lead to immune dysregulation. Herein, we discuss how inborn mutations in TNFRSF9, CD27, CD70, CORO1A, CTPS1, ITK, MAGT1, RASGRP1, STK4, CARMIL2, SH2D1A, and XIAP affect the development, differentiation, and function of key factors involved in the immunity against EBV, leading to increased susceptibility to lymphoproliferative disease and lymphoma.
Collapse
Affiliation(s)
| | - Sujal Ghosh
- Correspondence: ; Tel.: +49-211-811-6224; Fax: +49-211-811-6191
| |
Collapse
|
2
|
Yigit B, Wang N, Herzog RW, Terhorst C. SLAMF6 in health and disease: Implications for therapeutic targeting. Clin Immunol 2018; 204:3-13. [PMID: 30366106 DOI: 10.1016/j.clim.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Ghosh S, Drexler I, Bhatia S, Adler H, Gennery AR, Borkhardt A. Interleukin-2-Inducible T-Cell Kinase Deficiency-New Patients, New Insight? Front Immunol 2018; 9:979. [PMID: 29867957 PMCID: PMC5951928 DOI: 10.3389/fimmu.2018.00979] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/20/2018] [Indexed: 12/02/2022] Open
Abstract
Patients with primary immunodeficiency can be prone to severe Epstein–Barr virus (EBV) associated immune dysregulation. Individuals with mutations in the interleukin-2-inducible T-cell kinase (ITK) gene experience Hodgkin and non-Hodgkin lymphoma, EBV lymphoproliferative disease, hemophagocytic lymphohistiocytosis, and dysgammaglobulinemia. In this review, we give an update on further reported patients. We believe that current clinical data advocate early definitive treatment by hematopoietic stem cell transplantation, as transplant outcome in primary immunodeficiency disorders in general has gradually improved in recent years. Furthermore, we summarize experimental data in the murine model to provide further insight of pathophysiology in ITK deficiency.
Collapse
Affiliation(s)
- Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ingo Drexler
- Institute for Virology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Comprehensive Pneumology Center, Helmholtz Zentrum München—Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Munich, Germany,University Hospital Grosshadern, Ludwig-Maximilians-Universität München, Munich, Germany,German Center for Lung Research (DZL), Giessen, Germany
| | - Andrew R Gennery
- Paediatric Immunology and HSCT, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Huang YH, Tsai K, Tan SY, Kang S, Ford ML, Harder KW, Priatel JJ. 2B4-SAP signaling is required for the priming of naive CD8 + T cells by antigen-expressing B cells and B lymphoma cells. Oncoimmunology 2016; 6:e1267094. [PMID: 28344876 DOI: 10.1080/2162402x.2016.1267094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022] Open
Abstract
Mutations in SH2D1A gene that encodes SAP (SLAM-associated protein) result in X-linked lymphoproliferative disease (XLP), a rare primary immunodeficiency disease defined by exquisite sensitivity to the B-lymphotropic Epstein-Barr virus (EBV) and B cell lymphomas. However, the precise mechanism of how the loss of SAP function contributes to extreme vulnerability to EBV and the development of B cell lymphomas remains unclear. Here, we investigate the hypothesis that SAP is critical for CD8+ T cell immune surveillance of antigen (Ag)-expressing B cells or B lymphoma cells under conditions of defined T cell receptor (TCR) signaling. Sh2d1a-/- CD8+ T cells exhibited greatly diminished proliferation relative to wild type when Ag-presenting-B cells or -B lymphoma cells served as the primary Ag-presenting cell (APC). By contrast, Sh2d1a-/- CD8+ T cells responded equivalently to wild-type CD8+ T cells when B cell-depleted splenocytes, melanoma cells or breast carcinoma cells performed Ag presentation. Through application of signaling lymphocyte activation molecule (SLAM) family receptor blocking antibodies or SLAM family receptor-deficient CD8+ T cells and APCs, we found that CD48 engagement on the B cell surface by 2B4 is crucial for initiating SAP-dependent signaling required for the Ag-driven CD8+ T cell proliferation and differentiation. Altogether, a pivotal role for SAP in promoting the expansion and differentiation of B cell-primed viral-specific naive CD8+ T cells may explain the selective immune deficiency of XLP patients to EBV and B cell lymphomas.
Collapse
Affiliation(s)
- Yu-Hsuan Huang
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Tsai
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara Y Tan
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sohyeong Kang
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mandy L Ford
- Department of Surgery, Emory University , Atlanta, GA, USA
| | - Kenneth W Harder
- Department of Microbiology and Immunology, University of British Columbia , Vancouver, British Columbia, Canada
| | - John J Priatel
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
van Driel BJ, Liao G, Engel P, Terhorst C. Responses to Microbial Challenges by SLAMF Receptors. Front Immunol 2016; 7:4. [PMID: 26834746 PMCID: PMC4718992 DOI: 10.3389/fimmu.2016.00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 12/24/2022] Open
Abstract
The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glycoproteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development, and T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils, and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive immune responses to microbes.
Collapse
Affiliation(s)
- Boaz Job van Driel
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona , Barcelona , Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
6
|
Abstract
Neurotropic strains of the mouse hepatitis virus (MHV) cause a range of diseases in infected mice ranging from mild encephalitis with clearance of the virus followed by demyelination to rapidly fatal encephalitis. This chapter discusses the structure, life cycle, transmission, and pathology of neurotropic coronaviruses, as well as the immune response to coronavirus infection. Mice infected with neurotropic strains of MHV have provided useful systems in which to study processes of virus- and immune-mediated demyelination and virus clearance and/or persistence in the CNS, and the mechanisms of virus evasion of the immune system.
Collapse
|
7
|
Hemophagocytic lymphohistiocytosis (HLH): A heterogeneous spectrum of cytokine-driven immune disorders. Cytokine Growth Factor Rev 2014; 26:263-80. [PMID: 25466631 DOI: 10.1016/j.cytogfr.2014.10.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/17/2014] [Indexed: 01/02/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) comprises a group of life-threatening immune disorders classified into primary or secondary HLH. The former is caused by mutations in genes involved in granule-mediated cytotoxicity, the latter occurs in a context of infections, malignancies or autoimmune/autoinflammatory disorders. Both are characterized by systemic inflammation, severe cytokine storms and immune-mediated organ damage. Despite recent advances, the pathogenesis of HLH remains incompletely understood. Animal models resembling different subtypes of HLH are therefore of great value to study this disease and to uncover novel treatment strategies. In this review, all known animal models of HLH will be discussed, highlighting findings on cell types, cytokines and signaling pathways involved in disease pathogenesis and extrapolating therapeutic implications for the human situation.
Collapse
|
8
|
Collins CM, Speck SH. Expansion of murine gammaherpesvirus latently infected B cells requires T follicular help. PLoS Pathog 2014; 10:e1004106. [PMID: 24789087 PMCID: PMC4006913 DOI: 10.1371/journal.ppat.1004106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
X linked lymphoproliferative disease (XLP) is an inherited immunodeficiency resulting from mutations in the gene encoding the slam associated protein (SAP). One of the defining characteristics of XLP is extreme susceptibility to infection with Epstein-Barr virus (EBV), a gammaherpesvirus belonging to the genus Lymphocryptovirus, often resulting in fatal infectious mononucleosis (FIM). However, infection of SAP deficient mice with the related Murine gammaherpesvirus 68 (MHV68), a gammaherpesvirus in the genus Rhadinovirus, does not recapitulate XLP. Here we show that MHV68 inefficiently establishes latency in B cells in SAP deficient mice due to insufficient CD4 T cell help during the germinal center response. Although MHV68 infected B cells can be found in SAP-deficient mice, significantly fewer of these cells had a germinal center phenotype compared to SAP-sufficient mice. Furthermore, we show that infected germinal center B cells in SAP-deficient mice fail to proliferate. This failure to proliferate resulted in significantly lower viral loads, and likely accounts for the inability of MHV68 to induce a FIM-like syndrome. Finally, inhibiting differentiation of T follicular helper (TFH) cells in SAP-sufficient C57Bl/6 mice resulted in decreased B cell latency, and the magnitude of the TFH response directly correlated with the level of infection in B cells. This requirement for CD4 T cell help during the germinal center reaction by MHV68 is in contrast with EBV, which is thought to be capable of bypassing this requirement by expressing viral proteins that mimic signals provided by TFH cells. In conclusion, the outcome of MHV68 infection in mice in the setting of loss of SAP function is distinct from that observed in SAP-deficient patients infected with EBV, and may identify a fundamental difference between the strategies employed by the rhadinoviruses and lymphocryptoviruses to expand B cell latency during the early phase of infection. During an immune response, B cells respond to invading pathogens by undergoing massive expansion during the germinal center reaction. This proliferation requires signals from CD4 T cells, with some B cells then maturing into antibody secreting plasma cells, while others mature into memory B cells that may persist for the life of the host. Gammaherpesviruses take advantage of this immune response by infecting B cells, resulting in expansion of the pool of infected cells during the germinal center reaction. The human gammaherpesvirus Epstein-Barr virus (EBV) is thought to be able to accomplish this without the need for CD4 T cell help by expressing viral proteins that mimic signals from CD4 T cells. Here we show in a mouse model of gammaherpesvirus infection that infected B cells require signals from CD4 T cells for proliferation. Since the mouse gammaherpesvirus and EBV belong to different subgroups of gammaherpesviruses, this suggests that these subgroups utilize fundamentally different strategies to expand the pool of infected B cells during the establishment of latency. These different strategies may explain the different outcome of infection by these different subgroups of gammaherpesviruses in the context of defective germinal center responses that result from defective CD4 T cell help.
Collapse
Affiliation(s)
- Christopher M. Collins
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H. Speck
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
9
|
Dervovic DD, Liang HCY, Cannons JL, Elford AR, Mohtashami M, Ohashi PS, Schwartzberg PL, Zúñiga-Pflücker JC. Cellular and molecular requirements for the selection of in vitro-generated CD8 T cells reveal a role for Notch. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1704-15. [PMID: 23851691 PMCID: PMC3801448 DOI: 10.4049/jimmunol.1300417] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Differentiation of CD8 single-positive (SP) T cells is predicated by the ability of lymphocyte progenitors to integrate multiple signaling cues provided by the thymic microenvironment. In the thymus and the OP9-DL1 system for T cell development, Notch signals are required for progenitors to commit to the T cell lineage and necessary for their progression to the CD4(+)CD8(+) double-positive (DP) stage of T cell development. However, it remains unclear whether Notch is a prerequisite for the differentiation of DP cells to the CD8 SP stage of development. In this study, we demonstrate that Notch receptor-ligand interactions allow for efficient differentiation and selection of conventional CD8 T cells from bone marrow-derived hematopoietic stem cells. However, bone marrow-derived hematopoietic stem cells isolated from Itk(-/-)Rlk(-/-) mice gave rise to T cells with decreased IFN-γ production, but gained the ability to produce IL-17. We further reveal that positive and negative selection in vitro are constrained by peptide-MHC class I expressed on OP9 cells. Finally, using an MHC class I-restricted TCR-transgenic model, we show that the commitment of DP precursors to the CD8 T cell lineage is dependent on Notch signaling. Our findings further establish the requirement for Notch receptor-ligand interactions throughout T cell differentiation, including the final step of CD8 SP selection.
Collapse
MESH Headings
- Actins/immunology
- Animals
- Antigens, Viral/immunology
- CD4 Antigens/analysis
- CD8 Antigens/analysis
- CD8-Positive T-Lymphocytes/immunology
- Calcium-Binding Proteins
- Cell Lineage
- Cells, Cultured
- Cellular Microenvironment
- Clonal Selection, Antigen-Mediated
- Coculture Techniques
- Crosses, Genetic
- H-2 Antigens/immunology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Histocompatibility Antigen H-2D/immunology
- Intercellular Signaling Peptides and Proteins/immunology
- Lymphopoiesis/immunology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/immunology
- Receptors, Notch/physiology
- Signal Transduction/immunology
- Specific Pathogen-Free Organisms
- Stromal Cells/cytology
- Stromal Cells/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Dzana D. Dervovic
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Haydn C-Y. Liang
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Jennifer L. Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Alisha R. Elford
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Pamela S. Ohashi
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
10
|
Waggoner SN, Kumar V. Evolving role of 2B4/CD244 in T and NK cell responses during virus infection. Front Immunol 2012; 3:377. [PMID: 23248626 PMCID: PMC3518765 DOI: 10.3389/fimmu.2012.00377] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/26/2012] [Indexed: 01/22/2023] Open
Abstract
The signaling lymphocyte activation molecule (SLAM) family receptor, 2B4/CD244, was first implicated in anti-viral immunity by the discovery that mutations of the SLAM-associated protein, SAP/SH2D1A, impaired 2B4-dependent stimulation of T and natural killer (NK) cell anti-viral functions in X-linked lymphoproliferative syndrome patients with uncontrolled Epstein-Barr virus infections. Engagement of 2B4 has been variably shown to either activate or inhibit lymphocytes which express this receptor. While SAP expression is required for stimulatory functions of 2B4 on lymphocytes, it remains unclear whether inhibitory signals derived from 2B4 can predominate even in the presence of SAP. Regardless, mounting evidence suggests that 2B4 expression by NK and CD8 T cells is altered by virus infection in mice as well as in humans, and 2B4-mediated signaling may be an important determinant of effective immune control of chronic virus infections. In this review, recent findings regarding the expression and function of 2B4 as well as SAP on T and NK cells during virus infection is discussed, with a focus on the role of 2B4-CD48 interactions in crosstalk between innate and adaptive immunity.
Collapse
Affiliation(s)
- Stephen N Waggoner
- Department of Pathology, University of Massachusetts Medical School Worcester, MA, USA ; Program in Immunology and Virology, University of Massachusetts Medical School Worcester, MA, USA
| | | |
Collapse
|
11
|
Kageyama R, Cannons JL, Zhao F, Yusuf I, Lao C, Locci M, Schwartzberg PL, Crotty S. The receptor Ly108 functions as a SAP adaptor-dependent on-off switch for T cell help to B cells and NKT cell development. Immunity 2012; 36:986-1002. [PMID: 22683125 DOI: 10.1016/j.immuni.2012.05.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/17/2012] [Accepted: 05/08/2012] [Indexed: 01/01/2023]
Abstract
Humans and mice deficient in the adaptor protein SAP (Sh2d1a) have a major defect in humoral immunity, resulting from a lack of T cell help for B cells. The role of SAP in this process is incompletely understood. We found that deletion of receptor Ly108 (Slamf6) in CD4(+) T cells reversed the Sh2d1a(-/-) phenotype, eliminating the SAP requirement for germinal centers. This potent negative signaling by Ly108 required immunotyrosine switch motifs (ITSMs) and SHP-1 recruitment, resulting in high amounts of SHP-1 at the T cell:B cell synapse, limiting T cell:B cell adhesion. Ly108-negative signaling was important not only in CD4(+) T cells; we found that NKT cell differentiation was substantially restored in Slamf6(-/-)Sh2d1a(-/-) mice. The ability of SAP to regulate both positive and negative signals in T cells can explain the severity of SAP deficiency and highlights the importance of SAP and SHP-1 competition for Ly108 ITSM binding as a rheostat for the magnitude of T cell help to B cells.
Collapse
Affiliation(s)
- Robin Kageyama
- Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Palendira U, Low C, Bell AI, Ma CS, Abbott RJM, Phan TG, Riminton DS, Choo S, Smart JM, Lougaris V, Giliani S, Buckley RH, Grimbacher B, Alvaro F, Klion AD, Nichols KE, Adelstein S, Rickinson AB, Tangye SG. Expansion of somatically reverted memory CD8+ T cells in patients with X-linked lymphoproliferative disease caused by selective pressure from Epstein-Barr virus. ACTA ACUST UNITED AC 2012; 209:913-24. [PMID: 22493517 PMCID: PMC3348103 DOI: 10.1084/jem.20112391] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In patients with XLP, a primary immunodeficiency caused by mutations in SH2D1A, EBV infection can lead to somatic reversion of the disease-causing mutation selectively in effector memory CD8 T cells; reverted CD8 cells are better able to respond to and kill EBV-infected cells. Patients with the primary immunodeficiency X-linked lymphoproliferative disease (XLP), which is caused by mutations in SH2D1A, are highly susceptible to Epstein-Barr virus (EBV) infection. Nonetheless, some XLP patients demonstrate less severe clinical manifestations after primary infection. SH2D1A encodes the adaptor molecule SLAM-associated protein (SAP), which is expressed in T and natural killer cells and is required for cytotoxicity against B cells, the reservoir for EBV. It is not known why the clinical presentation of XLP is so variable. In this study, we report for the first time the occurrence of somatic reversion in XLP. Reverted SAP-expressing cells resided exclusively within the CD8+ T cell subset, displayed a CD45RA−CCR7− effector memory phenotype, and were maintained at a stable level over time. Importantly, revertant CD8+ SAP+ T cells, but not SAP− cells, proliferated in response to EBV and killed EBV-infected B cells. As somatic reversion correlated with EBV infection, we propose that the virus exerts a selective pressure on the reverted cells, resulting in their expansion in vivo and host protection against ongoing infection.
Collapse
Affiliation(s)
- Umaimainthan Palendira
- Immunology Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Palendira U, Low C, Chan A, Hislop AD, Ho E, Phan TG, Deenick E, Cook MC, Riminton DS, Choo S, Loh R, Alvaro F, Booth C, Gaspar HB, Moretta A, Khanna R, Rickinson AB, Tangye SG. Molecular pathogenesis of EBV susceptibility in XLP as revealed by analysis of female carriers with heterozygous expression of SAP. PLoS Biol 2011; 9:e1001187. [PMID: 22069374 PMCID: PMC3206011 DOI: 10.1371/journal.pbio.1001187] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 09/16/2011] [Indexed: 11/18/2022] Open
Abstract
X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency caused by mutations in SH2D1A which encodes SAP. SAP functions in signalling pathways elicited by the SLAM family of leukocyte receptors. A defining feature of XLP is exquisite sensitivity to infection with EBV, a B-lymphotropic virus, but not other viruses. Although previous studies have identified defects in lymphocytes from XLP patients, the unique role of SAP in controlling EBV infection remains unresolved. We describe a novel approach to this question using female XLP carriers who, due to random X-inactivation, contain both SAP(+) and SAP(-) cells. This represents the human equivalent of a mixed bone marrow chimera in mice. While memory CD8(+) T cells specific for CMV and influenza were distributed across SAP(+) and SAP(-) populations, EBV-specific cells were exclusively SAP(+). The preferential recruitment of SAP(+) cells by EBV reflected the tropism of EBV for B cells, and the requirement for SAP expression in CD8(+) T cells for them to respond to Ag-presentation by B cells, but not other cell types. The inability of SAP(-) clones to respond to Ag-presenting B cells was overcome by blocking the SLAM receptors NTB-A and 2B4, while ectopic expression of NTB-A on fibroblasts inhibited cytotoxicity of SAP(-) CD8(+) T cells, thereby demonstrating that SLAM receptors acquire inhibitory function in the absence of SAP. The innovative XLP carrier model allowed us to unravel the mechanisms underlying the unique susceptibility of XLP patients to EBV infection in the absence of a relevant animal model. We found that this reflected the nature of the Ag-presenting cell, rather than EBV itself. Our data also identified a pathological signalling pathway that could be targeted to treat patients with severe EBV infection. This system may allow the study of other human diseases where heterozygous gene expression from random X-chromosome inactivation can be exploited.
Collapse
MESH Headings
- Antigens, CD/immunology
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- CD48 Antigen
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/virology
- Dendritic Cells/immunology
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- Female
- Genotype
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/pathogenicity
- Humans
- Immunoglobulin Class Switching
- Influenza, Human/immunology
- Influenza, Human/virology
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Leukocytes, Mononuclear/virology
- Lymphoproliferative Disorders/genetics
- Lymphoproliferative Disorders/immunology
- Lymphoproliferative Disorders/pathology
- Lymphoproliferative Disorders/virology
- Orthomyxoviridae/immunology
- Orthomyxoviridae/pathogenicity
- Receptors, Cell Surface/immunology
- Receptors, Immunologic/immunology
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Associated Protein
- Signaling Lymphocytic Activation Molecule Family
- Signaling Lymphocytic Activation Molecule Family Member 1
- X Chromosome Inactivation
Collapse
Affiliation(s)
- Umaimainthan Palendira
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Carol Low
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anna Chan
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Andrew D. Hislop
- School of Cancer Sciences and MRC Centre for Immune Regulation, University of Birmingham, Edgbaston, United Kingdom
| | - Edwin Ho
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Elissa Deenick
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Matthew C. Cook
- Australian National University Medical School, Canberra, Australian Capital Territory, Australia
- John Curtin School of Medical Research, Canberra, Australian Capital Territory, Australia
- Department of Immunology, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - D. Sean Riminton
- Department of Immunology, Concord Hospital, Sydney, New South Wales, Australia
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Richard Loh
- Department of Clinical Immunology, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Frank Alvaro
- Pediatric Hematology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Claire Booth
- Centre for Immunodeficiency, Molecular Immunology Unit, UCL Institute of Child Health, London, United Kingdom
| | - H. Bobby Gaspar
- Centre for Immunodeficiency, Molecular Immunology Unit, UCL Institute of Child Health, London, United Kingdom
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Rajiv Khanna
- Tumour Immunology Laboratory, Division of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Alan B. Rickinson
- School of Cancer Sciences and MRC Centre for Immune Regulation, University of Birmingham, Edgbaston, United Kingdom
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
- * E-mail:
| |
Collapse
|
14
|
Abstract
The signaling lymphocyte activation molecule (SLAM)-associated protein, SAP, was first identified as the protein affected in most cases of X-linked lymphoproliferative (XLP) syndrome, a rare genetic disorder characterized by abnormal responses to Epstein-Barr virus infection, lymphoproliferative syndromes, and dysgammaglobulinemia. SAP consists almost entirely of a single SH2 protein domain that interacts with the cytoplasmic tail of SLAM and related receptors, including 2B4, Ly108, CD84, Ly9, and potentially CRACC. SLAM family members are now recognized as important immunomodulatory receptors with roles in cytotoxicity, humoral immunity, autoimmunity, cell survival, lymphocyte development, and cell adhesion. In this review, we cover recent findings on the roles of SLAM family receptors and the SAP family of adaptors, with a focus on their regulation of the pathways involved in the pathogenesis of XLP and other immune disorders.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
15
|
Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood 2010; 117:1522-9. [PMID: 21119115 DOI: 10.1182/blood-2010-07-298372] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
X-linked lymphoproliferative syndromes (XLP) are primary immunodeficiencies characterized by a particular vulnerability toward Epstein-Barr virus infection, frequently resulting in hemophagocytic lymphohistiocytosis (HLH). XLP type 1 (XLP-1) is caused by mutations in the gene SH2D1A (also named SAP), whereas mutations in the gene XIAP underlie XLP type 2 (XLP-2). Here, a comparison of the clinical phenotypes associated with XLP-1 and XLP-2 was performed in cohorts of 33 and 30 patients, respectively. HLH (XLP-1, 55%; XLP-2, 76%) and hypogammaglobulinemia (XLP-1, 67%; XLP-2, 33%) occurred in both groups. Epstein-Barr virus infection in XLP-1 and XLP-2 was the common trigger of HLH (XLP-1, 92%; XLP-2, 83%). Survival rates and mean ages at the first HLH episode did not differ for both groups, but HLH was more severe with lethal outcome in XLP-1 (XLP-1, 61%; XLP-2, 23%). Although only XLP-1 patients developed lymphomas (30%), XLP-2 patients (17%) had chronic hemorrhagic colitis as documented by histopathology. Recurrent splenomegaly often associated with cytopenia and fever was preferentially observed in XLP-2 (XLP-1, 7%; XLP-2, 87%) and probably represents minimal forms of HLH as documented by histopathology. This first phenotypic comparison of XLP subtypes should help to improve the diagnosis and the care of patients with XLP conditions.
Collapse
|
16
|
Veillette A. SLAM-family receptors: immune regulators with or without SAP-family adaptors. Cold Spring Harb Perspect Biol 2010; 2:a002469. [PMID: 20300214 DOI: 10.1101/cshperspect.a002469] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM) family of receptors and the SLAM-associated protein (SAP) family of intracellular adaptors are expressed in immune cells. By way of their cytoplasmic domain, SLAM-related receptors physically associate with SAP-related adaptors. Evidence is accumulating that the SLAM and SAP families play crucial roles in multiple immune cell types. Moreover, the prototype of the SAP family, that is SAP, is mutated in a human immunodeficiency, X-linked lymphoproliferative (XLP) disease. In the presence of SAP-family adaptors, the SLAM family usually mediates stimulatory signals that promote immune cell activation or differentiation. In the absence of SAP-family adaptors, though, the SLAM family undergoes a "switch-of-function," thereby mediating inhibitory signals that suppress immune cell functions. The molecular basis and significance of this mechanism are discussed herein.
Collapse
Affiliation(s)
- André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Montréal, Québec, Canada.
| |
Collapse
|
17
|
Detre C, Keszei M, Romero X, Tsokos GC, Terhorst C. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Semin Immunopathol 2010; 32:157-71. [PMID: 20146065 DOI: 10.1007/s00281-009-0193-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/30/2009] [Indexed: 01/05/2023]
Abstract
One or more of the signaling lymphocytic activation molecule (SLAM) family (SLAMF) of cell surface receptors, which consists of nine transmembrane proteins, i.e., SLAMF1-9, are expressed on most hematopoietic cells. While most SLAMF receptors serve as self-ligands, SLAMF2 and SLAMF4 use each other as counter structures. Six of the receptors carry one or more copies of a unique intracellular tyrosine-based switch motif, which has high affinity for the single SH2-domain signaling molecules SLAM-associated protein and EAT-2. Whereas SLAMF receptors are costimulatory molecules on the surface of CD4+, CD8+, and natural killer (NK) T cells, they also involved in early phases of lineage commitment during hematopoiesis. SLAMF receptors regulate T lymphocyte development and function and modulate lytic activity, cytokine production, and major histocompatibility complex-independent cell inhibition of NK cells. Furthermore, they modulate B cell activation and memory generation, neutrophil, dendritic cell, macrophage and eosinophil function, and platelet aggregation. In this review, we will discuss the role of SLAM receptors and their adapters in T cell function, and we will examine the role of these receptors and their adapters in X-linked lymphoproliferative disease and their contribution to disease susceptibility in systemic lupus erythematosus.
Collapse
Affiliation(s)
- Cynthia Detre
- BIDMC Division of Immunology, Harvard Center for Life Sciences, Rm. CLS 938, 3 Blackfan Circle, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
18
|
Snow AL, Marsh RA, Krummey SM, Roehrs P, Young LR, Zhang K, van Hoff J, Dhar D, Nichols KE, Filipovich AH, Su HC, Bleesing JJ, Lenardo MJ. Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J Clin Invest 2009; 119:2976-89. [PMID: 19759517 DOI: 10.1172/jci39518] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 07/22/2009] [Indexed: 12/12/2022] Open
Abstract
X-linked lymphoproliferative disease (XLP) is a rare congenital immunodeficiency that leads to an extreme, usually fatal increase in the number of lymphocytes upon infection with EBV. It is most commonly defined molecularly by loss of expression of SLAM-associated protein (SAP). Despite this, there is little understanding of how SAP deficiency causes lymphocytosis following EBV infection. Here we show that T cells from individuals with XLP are specifically resistant to apoptosis mediated by TCR restimulation, a process that normally constrains T cell expansion during immune responses. Expression of SAP and the SLAM family receptor NK, T, and B cell antigen (NTB-A) were required for TCR-induced upregulation of key pro-apoptotic molecules and subsequent apoptosis. Further, SAP/NTB-A signaling augmented the strength of the proximal TCR signal to achieve the threshold required for restimulation-induced cell death (RICD). Strikingly, TCR ligation in activated T cells triggered increased recruitment of SAP to NTB-A, dissociation of the phosphatase SHP-1, and colocalization of NTB-A with CD3 aggregates. In contrast, NTB-A and SHP-1 contributed to RICD resistance in XLP T cells. Our results reveal what we believe to be novel roles for NTB-A and SAP in regulating T cell homeostasis through apoptosis and provide mechanistic insight into the pathogenesis of lymphoproliferative disease in XLP.
Collapse
Affiliation(s)
- Andrew L Snow
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases/NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rumble JM, Oetjen KA, Stein PL, Schwartzberg PL, Moore BB, Duckett CS. Phenotypic differences between mice deficient in XIAP and SAP, two factors targeted in X-linked lymphoproliferative syndrome (XLP). Cell Immunol 2009; 259:82-9. [PMID: 19595300 PMCID: PMC2744477 DOI: 10.1016/j.cellimm.2009.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/22/2009] [Indexed: 12/14/2022]
Abstract
Mutations in the X-linked inhibitor of apoptosis (XIAP) have recently been identified in patients with the rare genetic disease, X-linked lymphoproliferative syndrome (XLP), which was previously thought to be solely attributable to mutations in a distinct gene, SAP. To further understand the roles of these two factors in the pathogenesis of XLP, we have compared mice deficient in Xiap with known phenotypes of Sap-null mice. We show here that in contrast to Sap-deficient mice, animals lacking Xiap have apparently normal NKT cell development and no apparent defect in humoral responses to T cell-dependent antigens. However, Xiap-deficient cells were more susceptible to death upon infection with the murine herpesvirus MHV-68 and gave rise to more infectious virus. These differences could be rescued by restoration of XIAP. These data provide insight into the differing roles of XIAP and SAP in the pathogenesis of XLP.
Collapse
Affiliation(s)
- Julie M. Rumble
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, 48109
| | - Karolyn A. Oetjen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109
| | - Paul L. Stein
- Departments of Microbiology/Immunology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Pamela L. Schwartzberg
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, 20892
| | - Bethany B. Moore
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109
| | - Colin S. Duckett
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109
| |
Collapse
|
20
|
Calpe S, Wang N, Romero X, Berger SB, Lanyi A, Engel P, Terhorst C. The SLAM and SAP gene families control innate and adaptive immune responses. Adv Immunol 2008; 97:177-250. [PMID: 18501771 DOI: 10.1016/s0065-2776(08)00004-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nine SLAM-family genes, SLAMF1-9, a subfamily of the immunoglobulin superfamily, encode differentially expressed cell-surface receptors of hematopoietic cells. Engagement with their ligands, which are predominantly homotypic, leads to distinct signal transduction events, for instance those that occur in the T or NK cell immune synapse. Upon phosphorylation of one or more copies of a unique tyrosine-based signaling motif in their cytoplasmic tails, six of the SLAM receptors recruit the highly specific single SH2-domain adapters SLAM-associated protein (SAP), EAT-2A, and/or EAT-2B. These adapters in turn bind to the tyrosine kinase Fyn and/or other protein tyrosine kinases connecting the receptors to signal transduction networks. Individuals deficient in the SAP gene, SH2D1A, develop an immunodeficiency syndrome: X-linked lympho-proliferative disease. In addition to operating in the immune synapse, SLAM receptors initiate or partake in multiple effector functions of hematopoietic cells, for example, neutrophil and macrophage killing and platelet aggregation. Here we discuss the current understanding of the structure and function of these recently discovered receptors and adapter molecules in the regulation of adaptive and innate immune responses.
Collapse
Affiliation(s)
- Silvia Calpe
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Evans AG, Moser JM, Krug LT, Pozharskaya V, Mora AL, Speck SH. A gammaherpesvirus-secreted activator of Vbeta4+ CD8+ T cells regulates chronic infection and immunopathology. J Exp Med 2008; 205:669-84. [PMID: 18332178 PMCID: PMC2275388 DOI: 10.1084/jem.20071135] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 02/07/2008] [Indexed: 11/23/2022] Open
Abstract
Little is known about herpesvirus modulation of T cell activation in latently infected individuals or the implications of such for chronic immune disorders. Murine gammaherpesvirus 68 (MHV68) elicits persistent activation of CD8(+) T cells bearing a Vbeta4(+) T cell receptor (TCR) by a completely unknown mechanism. We show that a novel MHV68 protein encoded by the M1 gene is responsible for Vbeta4(+) CD8(+) T cell stimulation in a manner reminiscent of a viral superantigen. During infection, M1 expression induces a Vbeta4(+) effector T cell response that resists functional exhaustion and appears to suppress virus reactivation from peritoneal cells by means of long-term interferon-gamma (IFNgamma) production. Mice lacking an IFNgamma receptor (IFNgammaR(-/-)) fail to control MHV68 replication, and Vbeta4(+) and CD8(+) T cell activation by M1 instead contributes to severe inflammation and multiorgan fibrotic disease. Thus, M1 manipulates the host CD8(+) T cell response in a manner that facilitates latent infection in an immunocompetent setting, but promotes disease during a dysregulated immune response. Identification of a viral pathogenecity determinant with superantigen-like activity for CD8(+) T cells broadens the known repertoire of viral immunomodulatory molecules, and its function illustrates the delicate balance achieved between persistent viruses and the host immune response.
Collapse
Affiliation(s)
- Andrew G Evans
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
22
|
Fuse S, Usherwood E. Simultaneous analysis of in vivo CD8+ T cell cytotoxicity against multiple epitopes using multicolor flow cytometry. Immunol Invest 2008; 36:829-45. [PMID: 18161531 DOI: 10.1080/08820130701683753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD8+ T cells play a critical role in host defense against infections and tumors. Analysis of cytotoxic function of antigen-specific CD8+ T cells in animal models would be important in optimizing vaccine design against infections and tumors. In vivo cytotoxicity assays using fluorescent cellular dyes have been used as a popular alternative to traditionally used in vitro (51)Cr-release assays. With the identification of multiple epitopes in various pathogen models, methods to simultaneously analyze cytotoxicity of CD8+ T cells to multiple epitopes in vivo would assist studies which aim to generate protective CD8+ T cell immunity to multiple epitopes. In this study, we evaluate the use of multiple fluorescent cellular dyes for the in vivo cytotoxicity assay. The use of 3 dyes allowed us to analyze the cytotoxicity of antigen-specific CD8+ T cell populations to multiple epitopes generated by virus infections, as well as their functional avidity, in vivo. Our studies extend the use of in vivo cytotoxicity assays to allow direct comparisons of cytotoxicity to various epitopes in the same animal and may also be applicable to assessment of in vitro cytotoxicity of human CD8+ T cells specific for multiple viral or tumor antigens in clinical settings.
Collapse
Affiliation(s)
- Shinichiro Fuse
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | | |
Collapse
|
23
|
Consequence of the SLAM-SAP Signaling Pathway in Innate-like and Conventional Lymphocytes. Immunity 2007; 27:698-710. [DOI: 10.1016/j.immuni.2007.11.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Piskin AK, Akpinar P, Muftuoglu S, Anlar B. Signaling lymphocyte activating molecule (SLAM) expression in subacute sclerosing panencephalitis. Brain Dev 2007; 29:439-42. [PMID: 17208401 DOI: 10.1016/j.braindev.2006.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 11/12/2006] [Accepted: 11/17/2006] [Indexed: 12/24/2022]
Abstract
Signaling lymphocyte activating molecule (SLAM) is a receptor for measles virus which also has immunomodulatory activity. We analyzed SLAM expression in mononuclear cells (MNC) of patients with SSPE (n=7) and control subjects (n=7) from the same population. Native 10% PAGE analysis in cell and brain tissue extracts followed by Western blotting using monoclonal anti-human SLAM showed four types of bands. Differences in the type and amount of SLAM expression were observed between SSPE and control cases. Lymphocytes of SSPE patients showed two types of SLAM bands in comparison to only one in control lymphocytes. Stimulation of cells with lipopolysaccharide (80 u/ml) and concanavalin A (1 microg/ml) in vitro led to the appearance of a second isoform in both groups. Brain homogenates of SSPE patients (n=2) displayed all four types of SLAM isoforms at significantly higher levels than those of control brains (n=2). Our results show native PAGE enables the detection of all SLAM isotypes. The expression of SLAM is increased in lymphocytes, monocytes, and brain tissues of SSPE patients.
Collapse
Affiliation(s)
- A Kevser Piskin
- Hacettepe University, Faculty of Medicine, Department of Biochemistry, Turkey
| | | | | | | |
Collapse
|
25
|
Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 2007; 25:337-79. [PMID: 17201683 DOI: 10.1146/annurev.immunol.25.022106.141651] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
SAP (SLAM-associated protein) was identified in 1998 as an adaptor molecule involved in the intracellular signaling pathways elicited through the cell surface receptor SLAM and as the protein defective in the human immunodeficiency X-linked lymphoproliferative disease (XLP). During the past eight years, it has been established that the SLAM family of cell surface receptors (SLAM, 2B4, NTB-A, Ly9, CD84) and the SAP family of adaptors (SAP, EAT-2, ERT) play critical roles in lymphocyte development, differentiation, and acquisition of effector functions. Studies of these proteins have shown unexpected roles in cytokine production by T cells and myeloid cells, T cell-dependent humoral immune responses, NK cell-mediated cytotoxicity, and NKT cell development. This review highlights recent findings that have improved our understanding of the roles of the SLAM and SAP families of molecules in immune regulation and discusses how perturbations in the signaling pathways involving these proteins can result in different disease states.
Collapse
Affiliation(s)
- Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, 2010, New South Wales, Australia.
| | | | | |
Collapse
|
26
|
Chen G, Tai AK, Lin M, Chang F, Terhorst C, Huber BT. Increased proliferation of CD8+ T cells in SAP-deficient mice is associated with impaired activation-induced cell death. Eur J Immunol 2007; 37:663-74. [PMID: 17266174 DOI: 10.1002/eji.200636417] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Defective signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is responsible for the human X-linked lymphoproliferative syndrome. Defects in T helper 2, natural killer, natural killer T and B cells have been demonstrated in SAP-deficient humans and mice, and increased proliferation of CD8+ T cells has been observed. In the current study, we investigated the properties of CD8+ T cell proliferation and activation-induced cell death (AICD), using OT-I T cell receptor (TCR)-transgenic mice on either wild-type (WT) or SAP-/- background. Interestingly, we found that ovalbumin peptide-activated SAP-/- CD8+ T cells have lower AICD compared to their WT counterparts. Furthermore, the induction of p73, a key mediator of TCR-induced apoptosis through the mitochondrial apoptotic pathway, was significantly reduced at both the mRNA and protein levels in the activated mutant cells. Meanwhile, a reduced level of activated caspase 9 was observed in the mutant cells. We conclude that reduced AICD in activated SAP-/- CD8+ T cells is associated with impaired p73 induction, indicating that the initiation of the mitochondrial apoptotic pathway might be impaired. Our data demonstrate an intrinsic defect in SAP-/- CD8+ T cells and shed light on the increased responsiveness of CD8+ T cells in SAP-/- mice.
Collapse
Affiliation(s)
- Gang Chen
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kim IJ, Burkum CE, Cookenham T, Schwartzberg PL, Woodland DL, Blackman MA. Perturbation of B cell activation in SLAM-associated protein-deficient mice is associated with changes in gammaherpesvirus latency reservoirs. THE JOURNAL OF IMMUNOLOGY 2007; 178:1692-701. [PMID: 17237419 DOI: 10.4049/jimmunol.178.3.1692] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP)) interactions with SLAM family proteins play important roles in immune function. SAP-deficient mice have defective B cell function, including impairment of germinal center formation, production of class-switched Ig, and development of memory B cells. B cells are the major reservoir of latency for both EBV and the homologous murine gammaherpesvirus, gammaherpesvirus 68. There is a strong association between the B cell life cycle and viral latency in that the virus preferentially establishes latency in activated germinal center B cells, which provides access to memory B cells, a major reservoir of long-term latency. In the current studies, we have analyzed the establishment and maintenance of gammaHV68 latency in wild-type and SAP-deficient mice. The results show that, despite SAP-associated defects in germinal center and memory B cell formation, latency was established and maintained in memory B cells at comparable frequencies to wild-type mice, although the paucity of memory B cells translated into a 10-fold reduction in latent load. Furthermore, there were defects in normal latency reservoirs within the germinal center cells and IgD(+)"naive" B cells in SAP-deficient mice, showing a profound effect of the SAP mutation on latency reservoirs.
Collapse
|
28
|
McCausland MM, Yusuf I, Tran H, Ono N, Yanagi Y, Crotty S. SAP regulation of follicular helper CD4 T cell development and humoral immunity is independent of SLAM and Fyn kinase. THE JOURNAL OF IMMUNOLOGY 2007; 178:817-28. [PMID: 17202343 DOI: 10.4049/jimmunol.178.2.817] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in SH2D1A resulting in lack of SLAM-associated protein (SAP) expression cause the human genetic immunodeficiency X-linked lymphoproliferative disease. A severe block in germinal center development and lack of long-term humoral immunity is one of the most prominent phenotypes of SAP(-) mice. We show, in this study, that the germinal center block is due to an essential requirement for SAP expression in Ag-specific CD4 T cells to develop appropriate follicular helper T cell functions. It is unknown what signaling molecules are involved in regulation of SAP-dependent CD4 T cell help functions. SAP binds to the cytoplasmic tail of SLAM, and we show that SLAM is expressed on resting and activated CD4 T cells, as well as germinal center B cells. In addition, SAP can recruit Fyn kinase to SLAM. We have now examined the role(s) of the SLAM-SAP-Fyn signaling axis in in vivo CD4 T cell function and germinal center development. We observed normal germinal center development, long-lived plasma cell development, and Ab responses in SLAM(-/-) mice after a viral infection (lymphocytic choriomeningitis virus). In a separate series of experiments, we show that SAP is absolutely required in CD4 T cells to drive germinal center development, and that requirement does not depend on SAP-Fyn interactions, because CD4 T cells expressing SAP R78A are capable of supporting normal germinal center development. Therefore, a distinct SAP signaling pathway regulates follicular helper CD4 T cell differentiation, separate from the SLAM-SAP-Fyn signaling pathway regulating Th1/Th2 differentiation.
Collapse
Affiliation(s)
- Megan M McCausland
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
29
|
Chan AY, Westcott JM, Mooney JM, Wakeland EK, Schatzle JD. The role of SAP and the SLAM family in autoimmunity. Curr Opin Immunol 2006; 18:656-64. [PMID: 17011767 DOI: 10.1016/j.coi.2006.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 09/19/2006] [Indexed: 01/20/2023]
Abstract
The signaling lymphocyte activation molecule (SLAM) family of receptors and their associated signaling adaptors play a pivotal role in the regulation of various stages of cellular immunity. They regulate lymphocyte-lymphocyte interactions involved in both cell-mediated and humoral immune responses. Recent evidence indicates that members of this family of receptors and signaling intermediates are also involved in autoimmunity. These include strictly correlative studies showing increased expression of various family members in immune effectors involved in rheumatoid arthritis and in inflammatory bowel disease, as well as more direct evidence (from various knockout strains of mice) for their role in autoimmune processes such as experimental allergic encephalomyelitis and lupus. Additional studies defining naturally occurring polymorphic variations in the SLAM family show a direct role in initiating the break in tolerance that is an essential step in the progression towards autoimmunity.
Collapse
Affiliation(s)
- Alice Y Chan
- Center for Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75235, USA
| | | | | | | | | |
Collapse
|
30
|
Crotty S, McCausland MM, Aubert RD, Wherry EJ, Ahmed R. Hypogammaglobulinemia and exacerbated CD8 T-cell–mediated immunopathology in SAP-deficient mice with chronic LCMV infection mimics human XLP disease. Blood 2006; 108:3085-93. [PMID: 16788096 DOI: 10.1182/blood-2006-04-018929] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractThe human genetic disease X-linked lymphoproliferative disease (XLP), which is caused by mutations in SH2D1A/SAP that encode SLAM-associated protein (SAP), is characterized by an inability to control Epstein-Barr virus (EBV) and hypogammaglobulinemia. It is unclear which aspects of XLP disease are specific to herpesvirus infection and which reflect general immunologic functions performed by SAP. We examined SAP– mice during a chronic LCMV infection, specifically to address the following question: Which SAP deficiency immunologic problems are general, and which are EBV specific? Illness, weight loss, and prolonged viral replication were much more severe in SAP– mice. Aggressive immunopathology was observed. This inability to control chronic LCMV was associated with both CD8 T-cell and B-cell response defects. Importantly, we demonstrate that SAP– CD8 T cells are the primary cause of the immunopathology and clinical illness, because depletion of CD8 T cells blocked disease. This is the first direct demonstration of SAP– CD8 T-cell–mediated immunopathology, confirming 30 years of XLP clinical observations and indirect experimentation. In addition, germinal center formation was extremely defective in chronically infected SAP– animals, and hypogammaglobulinemia was observed. These findings in a chronic viral infection mouse model recapitulate key features of human XLP and clarify SAP's critical role regulating both cellular and humoral immunity.
Collapse
Affiliation(s)
- Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
The signalling lymphocytic activation molecule (SLAM) family of receptors is expressed by a wide range of immune cells. Through their cytoplasmic domain, SLAM family receptors associate with SLAM-associated protein (SAP)-related molecules, a group of cytoplasmic adaptors composed almost exclusively of an SRC homology 2 domain. SAP, the prototype of the SAP family, is mutated in a human immunodeficiency named X-linked lymphoproliferative (XLP) disease. Recent observations indicate that SLAM family receptors, in association with SAP family adaptors, have crucial roles during normal immune reactions in innate and adaptive immune cells. The latest progress in this field is reviewed here.
Collapse
Affiliation(s)
- André Veillette
- Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, H2W 1R7, Canada.
| |
Collapse
|