1
|
Wang S, Liu H, Zhang Z, He T, Wei X, Zhang Y, Chen Y, Li X, Wang W. A novel complement C1q A chain from marbled flounder, Pseudopleuronectes yokohamae: genome characterization, expression and potential role in antibacterial immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 167:105389. [PMID: 40349809 DOI: 10.1016/j.dci.2025.105389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/26/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
This study systematically analyzed the molecular characteristics, tissue expression, and function of the marbled flounder (Pseudopleuronectes yokohamae) C1qA protein (PyC1qA) in fish immunity. PyC1qA contains a signal peptide, collagen-like region, and globular head. Its amino acid sequence and globular structure are highly conserved among multiple species, especially at key sites for pathogen recognition. Phylogenetic analysis showed that PyC1qA has a close evolutionary relationship with other marine fish (such as marbled flounder and European flounder) but is different from freshwater fish. Tissue expression analysis showed that PyC1qA is highly expressed in the skin, and pathogen stimulation experiments showed that its expression changes dynamically in multiple immune-related tissues, indicating that it plays an important role in humoral immunity. Functional studies have shown that recombinant PyC1qA (rPyC1qA) can bind to a variety of fish pathogens and significantly enhance the hemolytic and bactericidal abilities of fish serum. Co-immunoprecipitation experiments verified the specific interaction between PyC1qA and IgM, further supporting its role in regulating humoral immunity through the classical complement pathway. In addition, in vivo experiments showed that rPyC1qA inhibited the proliferation of pathogens in immune-related tissues, demonstrating its potential anti-infection ability. This study revealed for the first time the molecular and functional characteristics of marbled flounder C1qA protein, expanded our understanding of the fish complement system in immune defense, and provided an important theoretical basis for the prevention and control of aquaculture diseases.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zheng Zhang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Tingting He
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - XuYa Wei
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yaming Zhang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Schulz K, Trendelenburg M. C1q as a target molecule to treat human disease: What do mouse studies teach us? Front Immunol 2022; 13:958273. [PMID: 35990646 PMCID: PMC9385197 DOI: 10.3389/fimmu.2022.958273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system is a field of growing interest for pharmacological intervention. Complement protein C1q, the pattern recognition molecule at the start of the classical pathway of the complement cascade, is a versatile molecule with additional non-canonical actions affecting numerous cellular processes. Based on observations made in patients with hereditary C1q deficiency, C1q is protective against systemic autoimmunity and bacterial infections. Accordingly, C1q deficient mice reproduce this phenotype with susceptibility to autoimmunity and infections. At the same time, beneficial effects of C1q deficiency on disease entities such as neurodegenerative diseases have also been described in murine disease models. This systematic review provides an overview of all currently available literature on the C1q knockout mouse in disease models to identify potential target diseases for treatment strategies focusing on C1q, and discusses potential side-effects when depleting and/or inhibiting C1q.
Collapse
Affiliation(s)
- Kristina Schulz
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- *Correspondence: Kristina Schulz,
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Atosuo J, Karhuvaara O, Suominen E, Vilén L, Nuutila J, Putus T. Indoor-related microbe damage induces complement system activation in building users. Innate Immun 2020; 27:15-22. [PMID: 33287602 PMCID: PMC7780350 DOI: 10.1177/1753425920966641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this comparative study, serum complement system antimicrobial activity was measured from 159 serum samples, taken from individuals from microbe-damaged (70 samples) and from reference buildings (89 samples). Antimicrobial activity was assessed using a probe-based bacterial Escherichia coli-lux bioluminescence system and comparison was made at a group level between the experimental and reference group. The complement activity was higher in users of microbe-damaged buildings compared with the reference group and the significant (P < 0.001) increase in activity was found in the classical reaction pathway. This study strengthens our notion that exposure to indoor-related microbe damage increases the risk for systemic subclinical inflammation and creates a health risk for building users.
Collapse
Affiliation(s)
- Janne Atosuo
- The Laboratory of Immunochemistry, Department of Biochemistry, Faculty of Science and Engineering, University of Turku, Finland.,Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Finland
| | - Outi Karhuvaara
- The Laboratory of Immunochemistry, Department of Biochemistry, Faculty of Science and Engineering, University of Turku, Finland.,Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Finland
| | - Eetu Suominen
- The Laboratory of Immunochemistry, Department of Biochemistry, Faculty of Science and Engineering, University of Turku, Finland.,Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Finland
| | - Liisa Vilén
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Finland
| | - Jari Nuutila
- The Laboratory of Immunochemistry, Department of Biochemistry, Faculty of Science and Engineering, University of Turku, Finland
| | - Tuula Putus
- Environmental Medicine and Occupational Health, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Finland
| |
Collapse
|
4
|
Alves LA, de Carli TR, Harth-Chu EN, Mariano FS, Höfling JF, Stipp RN, Mattos-Graner RO. Oral streptococci show diversity in resistance to complement immunity. J Med Microbiol 2019; 68:600-608. [PMID: 30843785 DOI: 10.1099/jmm.0.000955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Mechanisms underlying systemic infections by oral species of Mitis (Streptococcus mitis, Streptococcus oralis) and Sanguinis (Streptococcus gordonii, Streptococcus sanguinis) commensal streptococci are poorly understood. This study investigates profiles of susceptibility to complement-mediated host immunity in representative strains of these four species, which were isolated from oral sites or from the bloodstream. METHODOLOGY Deposition of complement opsonins (C3b/iC3b), and surface binding to C-reactive protein (CRP) and to IgG antibodies were quantified by flow cytometry in 34 strains treated with human serum (HS), and compared to rates of opsonophagocytosis by human PMN mediated by complement (CR1/3) and/or IgG Fc (FcγRII/III) receptors. RESULTS S. sanguinis strains showed reduced susceptibility to complement opsonization and low binding to CRP and to IgG compared to other species. Surface levels of C3b/iC3b in S. sanguinis strains were 4.5- and 7.8-fold lower than that observed in S. gordonii and Mitis strains, respectively. Diversity in C3b/iC3b deposition was evident among Mitis species, in which C3b/iC3b deposition was significantly associated with CR/FcγR-dependent opsonophagocytosis by PMN (P<0.05). Importantly, S. gordonii and Mitis group strains isolated from systemic infections showed resistance to complement opsonization when compared to oral isolates of the respective species (P<0.05). CONCLUSIONS This study establishes species-specific profiles of susceptibility to complement immunity in Mitis and Sanguinis streptococci, and indicates that strains associated with systemic infections have increased capacity to evade complement immunity. These findings highlight the need for studies identifying molecular functions involved in complement evasion in oral streptococci.
Collapse
Affiliation(s)
- Lívia A Alves
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Thaís R de Carli
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Erika N Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Flávia S Mariano
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - José F Höfling
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Rafael N Stipp
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| | - Renata O Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School - State University of Campinas, Piracicaba, SP, Brazil
| |
Collapse
|
5
|
Jaffar N, Okinaga T, Nishihara T, Maeda T. Enhanced phagocytosis of Aggregatibacter actinomycetemcomitans cells by macrophages activated by a probiotic Lactobacillus strain. J Dairy Sci 2018; 101:5789-5798. [DOI: 10.3168/jds.2017-14355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/23/2018] [Indexed: 12/22/2022]
|
6
|
Zhang L, Bell BA, Li Y, Caspi RR, Lin F. Complement Component C4 Regulates the Development of Experimental Autoimmune Uveitis through a T Cell-Intrinsic Mechanism. Front Immunol 2017; 8:1116. [PMID: 28955337 PMCID: PMC5601957 DOI: 10.3389/fimmu.2017.01116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
Abstract
In addition to its conventional roles in the innate immune system, complement has been found to directly regulate T cells in the adaptive immune system. Complement components, including C3, C5, and factor D, are important in regulating T cell responses. However, whether complement component C4 is involved in regulating T cell responses remains unclear. In this study, we used a T cell-dependent model of autoimmunity, experimental autoimmune uveitis (EAU) to address this issue. We compared disease severity in wild-type (WT) and C4 knockout (KO) mice using indirect ophthalmoscopy, scanning laser ophthalmoscopy, spectral-domain optical coherence tomography, and histopathological analysis. We also explored the underlying mechanism by examining T cell responses in ex vivo antigen-specific recall assays and in in vitro T cell priming assays using bone marrow-derived dendritic cells, splenic dendritic cells, and T cells from WT or C4 KO mice. We found that C4 KO mice develop less severe retinal inflammation than WT mice in EAU and show reduced autoreactive T cell responses and decreased retinal T cell infiltration. We also found that T cells, but not dendritic cells, from C4 KO mice have impaired function. These results demonstrate a previously unknown role of C4 in regulating T cell responses, which affects the development of T cell-mediated autoimmunity, as exemplified by EAU. Our data could shed light on the pathogenesis of autoimmune uveitis in humans.
Collapse
Affiliation(s)
- Lingjun Zhang
- Department of Immunology, Cleveland Clinic, Cleveland, OH, United States
| | - Brent A Bell
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Yan Li
- Department of Immunology, Cleveland Clinic, Cleveland, OH, United States
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Feng Lin
- Department of Immunology, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
7
|
Khan N, Jan AT. Towards Identifying Protective B-Cell Epitopes: The PspA Story. Front Microbiol 2017; 8:742. [PMID: 28512452 PMCID: PMC5411445 DOI: 10.3389/fmicb.2017.00742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/10/2017] [Indexed: 01/15/2023] Open
Abstract
Pneumococcal surface protein A (PspA) is one of the most abundant cell surface protein of Streptococcus pneumoniae (S. pneumoniae). PspA variants are structurally and serologically diverse and help evade complement-mediated phagocytosis of S. pneumoniae, which is essential for its survival in the host. PspA is currently been screened for employment in the generation of more effective (serotype independent) vaccine to overcome the limitations of polysaccharide based vaccines, providing serotype specific immune responses. The cross-protection eliciting regions of PspA localize to the α-helical and proline rich regions. Recent data indicate significant variation in the ability of antibodies induced against the recombinant PspA variants to recognize distinct S. pneumoniae strains. Hence, screening for the identification of the topographical repertoire of B-cell epitopes that elicit cross-protective immune response seems essential in the engineering of a superior PspA-based vaccine. Herein, we revisit epitope identification in PspA and the utility of hybridoma technology in directing the identification of protective epitope regions of PspA that can be used in vaccine research.
Collapse
Affiliation(s)
- Naeem Khan
- Glycobiology Group, Max Planck Institute of Colloids and Interfaces (MPG)Potsdam, Germany
| | - Arif T Jan
- Department of Medical Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
8
|
Swe PM, Christian LD, Lu HC, Sriprakash KS, Fischer K. Complement inhibition by Sarcoptes scabiei protects Streptococcus pyogenes - An in vitro study to unravel the molecular mechanisms behind the poorly understood predilection of S. pyogenes to infect mite-induced skin lesions. PLoS Negl Trop Dis 2017; 11:e0005437. [PMID: 28278252 PMCID: PMC5360341 DOI: 10.1371/journal.pntd.0005437] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/21/2017] [Accepted: 02/25/2017] [Indexed: 02/01/2023] Open
Abstract
Background On a global scale scabies is one of the most common dermatological conditions, imposing a considerable economic burden on individuals, communities and health systems. There is substantial epidemiological evidence that in tropical regions scabies is often causing pyoderma and subsequently serious illness due to invasion by opportunistic bacteria. The health burden due to complicated scabies causing cellulitis, bacteraemia and sepsis, heart and kidney diseases in resource-poor communities is extreme. Co-infections of group A streptococcus (GAS) and scabies mites is a common phenomenon in the tropics. Both pathogens produce multiple complement inhibitors to overcome the host innate defence. We investigated the relative role of classical (CP), lectin (LP) and alternative pathways (AP) towards a pyodermic GAS isolate 88/30 in the presence of a scabies mite complement inhibitor, SMSB4. Methodology/Principal findings Opsonophagocytosis assays in fresh blood showed baseline immunity towards GAS. The role of innate immunity was investigated by deposition of the first complement components of each pathway, specifically C1q, FB and MBL from normal human serum on GAS. C1q deposition was the highest followed by FB deposition while MBL deposition was undetectable, suggesting that CP and AP may be mainly activated by GAS. We confirmed this result using sera depleted of either C1q or FB, and serum deficient in MBL. Recombinant SMSB4 was produced and purified from Pichia pastoris. SMSB4 reduced the baseline immunity against GAS by decreasing the formation of CP- and AP-C3 convertases, subsequently affecting opsonisation and the release of anaphylatoxin. Conclusions/Significance Our results indicate that the complement-inhibitory function of SMSB4 promotes the survival of GAS in vitro and inferably in the microenvironment of the mite-infested skin. Understanding the tripartite interactions between host, parasite and microbial pathogens at a molecular level may serve as a basis to develop improved intervention strategies targeting scabies and associated bacterial infections. The molecular mechanisms that underpin the link between scabies and bacterial pathogens were unknown. We proposed that scabies mites play a role in the establishment, proliferation and transmission of opportunistic pathogens. We investigated here the synergy between mites and one of the most recognised mite associated pathogens, Streptococcus pyogenes. As part of the innate immune response mammals have a pre-programmed ability to recognise and immediately act against substances derived from fungal and bacterial microorganisms. This is mediated through a sequential biochemical cascade involving over 30 different proteins (complement system) which as a result of signal amplification triggers a rapid killing response. The complement cascade produces peptides that attract immune cells, increases vascular permeability, coats (opsonises) the surfaces of a pathogen, marking it for destruction, and directly disrupts foreign plasma membranes. To prevent complement mediated damage of their gut cells, scabies mites secrete several classes of complement inhibiting proteins into the mite gut and excrete them into the epidermal mite burrows. Furthermore, these inhibitors also provide protection for S. pyogenes. We verified here specifically the impact of the mite complement inhibitor SMSB4, to identify the molecular mechanisms behind the long recognised tendency of S. pyogenes to infect mite-induced skin lesions.
Collapse
Affiliation(s)
- Pearl M. Swe
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, Herston, Brisbane, Australia
| | - Lindsay D. Christian
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, Herston, Brisbane, Australia
| | - Hieng C. Lu
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, Herston, Brisbane, Australia
| | - Kadaba S. Sriprakash
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, Herston, Brisbane, Australia
| | - Katja Fischer
- QIMR Berghofer Medical Research Institute, Infectious Diseases Department, Herston, Brisbane, Australia
- * E-mail:
| |
Collapse
|
9
|
Honda-Ogawa M, Sumitomo T, Mori Y, Hamd DT, Ogawa T, Yamaguchi M, Nakata M, Kawabata S. Streptococcus pyogenes Endopeptidase O Contributes to Evasion from Complement-mediated Bacteriolysis via Binding to Human Complement Factor C1q. J Biol Chem 2017; 292:4244-4254. [PMID: 28154192 DOI: 10.1074/jbc.m116.749275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/18/2017] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pyogenes secretes various virulence factors for evasion from complement-mediated bacteriolysis. However, full understanding of the molecules possessed by this organism that interact with complement C1q, an initiator of the classical complement pathway, remains elusive. In this study, we identified an endopeptidase of S. pyogenes, PepO, as an interacting molecule, and investigated its effects on complement immunity and pathogenesis. Enzyme-linked immunosorbent assay and surface plasmon resonance analysis findings revealed that S. pyogenes recombinant PepO bound to human C1q in a concentration-dependent manner under physiological conditions. Sites of inflammation are known to have decreased pH levels, thus the effects of PepO on bacterial evasion from complement immunity was analyzed in a low pH condition. Notably, under low pH conditions, PepO exhibited a higher affinity for C1q as compared with IgG, and PepO inhibited the binding of IgG to C1q. In addition, pepO deletion rendered S. pyogenes more susceptible to the bacteriocidal activity of human serum. Also, observations of the morphological features of the pepO mutant strain (ΔpepO) showed damaged irregular surfaces as compared with the wild-type strain (WT). WT-infected tissues exhibited greater severity and lower complement activity as compared with those infected by ΔpepO in a mouse skin infection model. Furthermore, WT infection resulted in a larger accumulation of C1q than that with ΔpepO. Our results suggest that interaction of S. pyogenes PepO with C1q interferes with the complement pathway, which enables S. pyogenes to evade complement-mediated bacteriolysis under acidic conditions, such as seen in inflammatory sites.
Collapse
Affiliation(s)
- Mariko Honda-Ogawa
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Tomoko Sumitomo
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Yasushi Mori
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry.,Division of Special Care Dentistry, Osaka University Dental Hospital, and
| | - Dalia Talat Hamd
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Taiji Ogawa
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaya Yamaguchi
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Masanobu Nakata
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry
| | - Shigetada Kawabata
- From the Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry,
| |
Collapse
|
10
|
CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood. Infect Immun 2016; 84:3206-3219. [PMID: 27572331 DOI: 10.1128/iai.00406-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/20/2016] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization.
Collapse
|
11
|
Pekkala S, Munukka E, Kong L, Pöllänen E, Autio R, Roos C, Wiklund P, Fischer-Posovszky P, Wabitsch M, Alen M, Huovinen P, Cheng S. Toll-like receptor 5 in obesity: the role of gut microbiota and adipose tissue inflammation. Obesity (Silver Spring) 2015; 23:581-90. [PMID: 25611816 DOI: 10.1002/oby.20993] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed at establishing bacterial flagellin-recognizing toll-like receptor 5 (TLR5) as a novel link between gut microbiota composition, adipose tissue inflammation, and obesity. METHODS An adipose tissue microarray database was used to compare women having the highest (n = 4, H-TLR) and lowest (n = 4, L-TLR) expression levels of TLR5-signaling pathway genes. Gut microbiota composition was profiled using flow cytometry and FISH. Standard laboratory techniques were used to determine anthropometric and clinical variables. In vivo results were verified using cultured human adipocytes. RESULTS The H-TLR group had higher flagellated Clostridium cluster XIV abundance and Firmicutes-to-Bacteroides ratio. H-TLR subjects had obese phenotype characterized by greater waist circumference, fat %, and blood pressure (P < 0.05 for all). They also had higher leptin and lower adiponectin levels (P < 0.05 for both). Six hundred and sixty-eight metabolism- and inflammation-related adipose tissue genes were differentially expressed between the groups. In vitro studies confirmed that flagellin activated TLR5 inflammatory pathways, decreased insulin signaling, and increased glycerol secretion. CONCLUSIONS The in vivo findings suggest that flagellated Clostridium cluster XIV bacteria contribute to the development of obesity through distorted adipose tissue metabolism and inflammation. The in vitro studies in adipocytes show that the underlying mechanisms of the human findings may be due to flagellin-activated TLR5 signaling.
Collapse
Affiliation(s)
- Satu Pekkala
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jusko M, Potempa J, Kantyka T, Bielecka E, Miller HK, Kalinska M, Dubin G, Garred P, Shaw LN, Blom AM. Staphylococcal proteases aid in evasion of the human complement system. J Innate Immun 2013; 6:31-46. [PMID: 23838186 DOI: 10.1159/000351458] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/15/2013] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that presents severe health care concerns due to the prevalence of multiple antibiotic-resistant strains. New treatment strategies are urgently needed, which requires an understanding of disease causation mechanisms. Complement is one of the first lines of defense against bacterial pathogens, and S. aureus expresses several specific complement inhibitors. The effect of extracellular proteases from this bacterium on complement, however, has been the subject of limited investigation, except for a recent report regarding cleavage of the C3 component by aureolysin (Aur). We demonstrate here that four major extracellular proteases of S. aureus are potent complement inhibitors. Incubation of human serum with the cysteine proteases staphopain A and staphopain B, the serine protease V8 and the metalloproteinase Aur resulted in a drastic decrease in the hemolytic activity of serum, whereas two staphylococcal serine proteases D and E, had no effect. These four proteases were found to inhibit all pathways of complement due to the efficient degradation of several crucial components. Furthermore, S. aureus mutants lacking proteolytic enzymes were found to be more efficiently killed in human blood. Taken together, the major proteases of S. aureus appear to be important for pathogen-mediated evasion of the human complement system.
Collapse
Affiliation(s)
- Monika Jusko
- Section of Medical Protein Chemistry, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Basavanna S, Chimalapati S, Maqbool A, Rubbo B, Yuste J, Wilson RJ, Hosie A, Ogunniyi AD, Paton JC, Thomas G, Brown JS. The effects of methionine acquisition and synthesis on Streptococcus pneumoniae growth and virulence. PLoS One 2013; 8:e49638. [PMID: 23349662 PMCID: PMC3551916 DOI: 10.1371/journal.pone.0049638] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens need to acquire nutrients from the host, but for many nutrients their importance during infection remain poorly understood. We have investigated the importance of methionine acquisition and synthesis for Streptococcus pneumoniae growth and virulence using strains with gene deletions affecting a putative methionine ABC transporter lipoprotein (Sp_0149, metQ) and/or methionine biosynthesis enzymes (Sp_0585 - Sp_0586, metE and metF). Immunoblot analysis confirmed MetQ was a lipoprotein and present in all S. pneumoniae strains investigated. However, vaccination with MetQ did not prevent fatal S. pneumoniae infection in mice despite stimulating a strong specific IgG response. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry demonstrated that MetQ has both a high affinity and specificity for L-methionine with a KD of ∼25 nM, and a ΔmetQ strain had reduced uptake of C14-methionine. Growth of the ΔmetQ/ΔmetEF strain was greatly impaired in chemically defined medium containing low concentrations of methionine and in blood but was partially restored by addition of high concentrations of exogenous methionine. Mixed infection models showed no attenuation of the ΔmetQ, ΔmetEF and ΔmetQ/ΔmetEF strains in their ability to colonise the mouse nasopharnyx. In a mouse model of systemic infection although significant infection was established in all mice, there were reduced spleen bacterial CFU after infection with the ΔmetQ/ΔmetEF strain compared to the wild-type strain. These data demonstrate that Sp_0149 encodes a high affinity methionine ABC transporter lipoprotein and that Sp_0585 – Sp_0586 are likely to be required for methionine synthesis. Although Sp_0149 and Sp_0585-Sp_0586 make a contribution towards full virulence, neither was essential for S. pneumoniae survival during infection.
Collapse
Affiliation(s)
- Shilpa Basavanna
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, Texas, United States of America
| | - Suneeta Chimalapati
- Department of Medicine, Centre for Inflammation and Tissue Repair, University College Medical School, Rayne Institute, London, United Kingdom
| | - Abbas Maqbool
- Department of Biology (Area 10), University of York, York, United Kingdom
| | - Bruna Rubbo
- Department of Medicine, Centre for Inflammation and Tissue Repair, University College Medical School, Rayne Institute, London, United Kingdom
| | - Jose Yuste
- Centro de Investigaciones Biologicas, CSIC and CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Robert J. Wilson
- Department of Medicine, Centre for Inflammation and Tissue Repair, University College Medical School, Rayne Institute, London, United Kingdom
| | - Arthur Hosie
- Division of Science, University of Bedfordshire, Park Square, Luton, Bedfordshire, United Kingdom
| | - Abiodun D. Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Gavin Thomas
- Department of Biology (Area 10), University of York, York, United Kingdom
| | - Jeremy S. Brown
- Department of Medicine, Centre for Inflammation and Tissue Repair, University College Medical School, Rayne Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Mukerji R, Mirza S, Roche AM, Widener RW, Croney CM, Rhee DK, Weiser JN, Szalai AJ, Briles DE. Pneumococcal surface protein A inhibits complement deposition on the pneumococcal surface by competing with the binding of C-reactive protein to cell-surface phosphocholine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:5327-35. [PMID: 23105137 PMCID: PMC3517878 DOI: 10.4049/jimmunol.1201967] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the presence of normal serum, complement component C3 is deposited on pneumococci primarily via the classical pathway. Pneumococcal surface protein A (PspA), a major virulence factor of pneumococci, effectively inhibits C3 deposition. PspA's C terminus has a choline-binding domain that anchors PspA to the phosphocholine (PC) moieties on the pneumococcal surface. C-reactive protein (CRP), another important host defense molecule, also binds to PC, and CRP binding to pneumococci enhances complement C3 deposition through the classical pathway. Using flow cytometry of PspA(+) and PspA(-) strains, we observed that the absence of PspA led to exposure of PC, enhanced the surface binding of CRP, and increased the deposition of C3. Moreover, when the PspA(-) mutant was incubated with a pneumococcal eluate containing native PspA, there was decreased deposition of CRP and C3 on the pneumococcal surface compared with incubation with an eluate from a PspA(-) strain. This inhibition was not observed when a recombinant PspA fragment, which lacks the choline-binding region of PspA, was added to the PspA(-) mutant. Also, there was much greater C3 deposition onto the PspA(-) pneumococcus when exposed to normal mouse serum from wild-type mice as compared with that from CRP knockout mice. Furthermore, when CRP knockout mouse serum was replenished with CRP, there was a dose-dependent increase in C3 deposition. The combined data reveal a novel mechanism of complement inhibition by a bacterial protein: inhibition of CRP surface binding and, thus, diminution of CRP-mediated complement deposition.
Collapse
Affiliation(s)
- Reshmi Mukerji
- Department of Microbiology, University of Alabama at Birmingham
| | - Shaper Mirza
- University of Texas School of Public Health Division of Epidemiology Brownsville regional campus Brownsville TX
| | - Aoife M. Roche
- Department of Microbiology, School of Medicine, University of Pennsylvania
| | | | | | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jeffrey N. Weiser
- Department of Microbiology, School of Medicine, University of Pennsylvania
| | - Alexander J. Szalai
- Department of Microbiology, University of Alabama at Birmingham
- Division of Immunology Department of Medicine, University of Alabama at Birmingham
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham
- Department of Pediatrics, University of Alabama at Birmingham
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
15
|
The absence of PspA or presence of antibody to PspA facilitates the complement-dependent phagocytosis of pneumococci in vitro. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1574-82. [PMID: 22855389 DOI: 10.1128/cvi.00393-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pneumococcal surface protein A (PspA) is a surface molecule on pneumococci that is required for full virulence in mouse models of infection. PspA has been reported to inhibit complement deposition on the pneumococcal surface. It has been assumed that this decreased complement deposition results in the inefficient phagocytosis of wild-type pneumococci. However, an effect of PspA on phagocytosis had not been shown. Our present studies demonstrated that a loss of PspA by capsular type 3 strains WU2 and A66.1 led to enhanced complement-dependent phagocytosis of the pneumococci by the mouse macrophage cell line J774A.1. This observation was made using human complement as well as mouse complement. Since this enhanced phagocytosis could be blocked by antibody to complement receptor CR3 on J774A.1, it was concluded that PspA's effect on phagocytosis was due to its effect on the amount of deposited complement, which in turn helped opsonize the pneumococci for phagocytosis. Since these studies included new independent mutants lacking PspA, the results provide solid confirmation of the previously reported effects of PspA on pneumococcal virulence and complement deposition. Finally, we showed that antibody to PspA, which is also known to enhance complement deposition, also enhances the phagocytosis of pneumococci in a largely complement-dependent manner.
Collapse
|
16
|
Mika A, Reynolds SL, Pickering D, McMillan D, Sriprakash KS, Kemp DJ, Fischer K. Complement inhibitors from scabies mites promote streptococcal growth--a novel mechanism in infected epidermis? PLoS Negl Trop Dis 2012; 6:e1563. [PMID: 22815998 PMCID: PMC3398963 DOI: 10.1371/journal.pntd.0001563] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/27/2012] [Indexed: 12/15/2022] Open
Abstract
Background Scabies is highly prevalent in socially disadvantaged communities such as indigenous populations and in developing countries. Generalized itching causes discomfort to the patient; however, serious complications can occur as a result of secondary bacterial pyoderma, commonly caused by Streptococcus pyogenes (GAS) or Staphylococcus aureus. In the tropics, skin damage due to scabies mite infestations has been postulated to be an important link in the pathogenesis of disease associated with acute rheumatic fever and heart disease, poststreptococcal glomerulonephritis and systemic sepsis. Treatment of scabies decreases the prevalence of infections by bacteria. This study aims to identify the molecular mechanisms underlying the link between scabies and GAS infections. Methodology/Principal Findings GAS bacteria were pre-incubated with blood containing active complement, phagocytes and antibodies against the bacteria, and subsequently tested for viability by plate counts. Initial experiments were done with serum from an individual previously exposed to GAS with naturally acquired anti-GAS antibodies. The protocol was optimized for large-scale testing of low-opsonic whole blood from non-exposed human donors by supplementing with a standard dose of heat inactivated human sera previously exposed to GAS. This allowed an extension of the dataset to two additional donors and four proteins tested at a range of concentrations. Shown first is the effect of scabies mite complement inhibitors on human complement using ELISA-based complement activation assays. Six purified recombinant mite proteins tested at a concentration of 50 µg/ml blocked all three complement activation pathways. Further we demonstrate in human whole blood assays that each of four scabies mite complement inhibitors tested increased GAS survival rates by 2–15 fold. Conclusions/Significance We propose that local complement inhibition plays an important role in the development of pyoderma in scabies infested skin. This molecular link between scabies and bacterial infections may provide new avenues to develop alternative treatment options against this neglected disease. Australian Aborigines experience streptococcal invasive diseases at a five times greater rate than the general Australian population [1], contributing to an estimated life expectancy gap of currently 13 years [2] with infectious diseases being the major cause in remote areas. Alternative approaches to control skin infection and associated complications in Aboriginal communities are imperative [3]. A clear link between scabies and bacterial pyoderma has been recognised as an underlying factor of Aboriginal cases of rheumatic fever and heart disease (RF/RHD), skin sepsis and renal disease [4]. Aiming to elucidate the causal molecular mechanisms we identified multiple scabies intestinal protein families functioning as inhibitors of human complement pathways, thereby preventing complement-mediated gut damage. The work presented here is at the forefront of a new agenda, looking at the interactions between scabies mites, bacteria and the host. We show that scabies mite proteins act as complement inhibitors and enhance GAS growth in whole blood assays, presumably by inhibition of host innate immunity. Based on this groundwork data we hypothesize that the complement-inhibitory functions of excreted gut molecules promote the growth of bacterial pathogens in the microenvironment of the epidermal burrows.
Collapse
Affiliation(s)
- Angela Mika
- Infectious Diseases Program, Biology Department, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Simone L. Reynolds
- Infectious Diseases Program, Biology Department, Queensland Institute of Medical Research, Herston, Brisbane, Australia
- School of Veterinary Sciences, The University of Queensland, Gatton, Australia
| | - Darren Pickering
- Infectious Diseases Program, Biology Department, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - David McMillan
- Infectious Diseases Program, Biology Department, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Kadaba S. Sriprakash
- Infectious Diseases Program, Biology Department, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - David J. Kemp
- Infectious Diseases Program, Biology Department, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Katja Fischer
- Infectious Diseases Program, Biology Department, Queensland Institute of Medical Research, Herston, Brisbane, Australia
- * E-mail:
| |
Collapse
|
17
|
Hyams C, Opel S, Hanage W, Yuste J, Bax K, Henriques-Normark B, Spratt BG, Brown JS. Effects of Streptococcus pneumoniae strain background on complement resistance. PLoS One 2011; 6:e24581. [PMID: 22022358 PMCID: PMC3192701 DOI: 10.1371/journal.pone.0024581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 08/15/2011] [Indexed: 01/04/2023] Open
Abstract
Background Immunity to infections caused by Streptococcus pneumoniae is dependent on complement. There are wide variations in sensitivity to complement between S. pneumoniae strains that could affect their ability to cause invasive infections. Although capsular serotype is one important factor causing differences in complement resistance between strains, there is also considerable other genetic variation between S. pneumoniae strains that may affect complement-mediated immunity. We have therefore investigated whether genetically distinct S. pneumoniae strains with the same capsular serotype vary in their sensitivity to complement mediated immunity. Methodology and Principal Findings C3b/iC3b deposition and neutrophil association were measured using flow cytometry assays for S. pneumoniae strains with different genetic backgrounds for each of eight capsular serotypes. For some capsular serotypes there was marked variation in C3b/iC3b deposition between different strains that was independent of capsule thickness and correlated closely to susceptibility to neutrophil association. C3b/iC3b deposition results also correlated weakly with the degree of IgG binding to each strain. However, the binding of C1q (the first component of the classical pathway) correlated more closely with C3b/iC3b deposition, and large differences remained in complement sensitivity between strains with the same capsular serotype in sera in which IgG had been cleaved with IdeS. Conclusions These data demonstrate that bacterial factors independent of the capsule and recognition by IgG have strong effects on the susceptibility of S. pneumoniae to complement, and could therefore potentially account for some of the differences in virulence between strains.
Collapse
Affiliation(s)
- Catherine Hyams
- Centre for Respiratory Research, Department of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - Sophia Opel
- Centre for Respiratory Research, Department of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
| | - William Hanage
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Jose Yuste
- Spanish Pneumococcal Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Katie Bax
- Department of Anatomy, University College London, London, United Kingdom
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and the Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | - Brian G. Spratt
- Department of Infectious Disease Epidemiology, St. Mary's Hospital Campus, Imperial College London, London, United Kingdom
| | - Jeremy S. Brown
- Centre for Respiratory Research, Department of Medicine, University College Medical School, Rayne Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Dahlke K, Wrann CD, Sommerfeld O, Sossdorf M, Recknagel P, Sachse S, Winter SW, Klos A, Stahl GL, Ma YX, Claus RA, Reinhart K, Bauer M, Riedemann NC. Distinct different contributions of the alternative and classical complement activation pathway for the innate host response during sepsis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3066-75. [PMID: 21263075 DOI: 10.4049/jimmunol.1002741] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Complement activation represents a crucial innate defense mechanism to invading microorganisms, but there is an eminent lack of understanding of the separate contribution of the different complement activation pathways to the host response during sepsis. We therefore investigated different innate host immune responses during cecal ligation and puncture (CLP)-induced sepsis in mice lacking either the alternative (fD(-/-)) or classical (C1q(-/-)) complement activation pathway. Both knockout mice strains showed a significantly reduced survival and increased organ dysfunction when compared with control mice. Surprisingly, fD(-/-) mice demonstrated a compensated bacterial clearance capacity as control mice at 6 h post CLP, whereas C1q(-/-) mice were already overwhelmed by bacterial growth at this time point. Interestingly, at 24 h after CLP, fD(-/-) mice failed to clear bacteria in a way comparable to control mice. However, both knockout mice strains showed compromised C3 cleavage during sepsis. Investigating potential causes for this discrepancy, we were able to demonstrate that despite normal bacterial clearance capacity early during the onset of sepsis, fD(-/-) mice displayed increased inflammatory cytokine generation and neutrophil recruitment into lungs and blood when compared with both control- and C1q(-/-) mice, indicating a potential loss of control over these immune responses. Further in vitro experiments revealed a strongly increased Nf-κB activation capacity in isolated neutrophils from fD(-/-) mice, supporting this hypothesis. Our results provide evidence for the new concept that the alternative complement activation pathway exerts a distinctly different contribution to the innate host response during sepsis when compared with the classical pathway.
Collapse
Affiliation(s)
- Katja Dahlke
- Department of Anesthesiology and Intensive Care Therapy, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Hajishengallis G. Complement and periodontitis. Biochem Pharmacol 2010; 80:1992-2001. [PMID: 20599785 PMCID: PMC2955993 DOI: 10.1016/j.bcp.2010.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/31/2022]
Abstract
Although the complement system is centrally involved in host defense, its overactivation or deregulation (e.g., due to inherent host genetic defects or due to pathogen subversion) may excessively amplify inflammation and contribute to immunopathology. Periodontitis is an oral infection-driven chronic inflammatory disease which exerts a systemic impact on health. This paper reviews evidence linking complement to periodontal inflammation and pathogenesis. Clinical and histological observations show a correlation between periodontal inflammatory activity and local complement activation. Certain genetic polymorphisms or deficiencies in specific complement components appear to predispose to increased susceptibility to periodontitis. Animal model studies and in vitro experiments indicate that periodontal bacteria can either inhibit or activate distinct components of the complement cascade. Porphyromonas gingivalis, a keystone species in periodontitis, subverts complement receptor 3 and C5a anaphylatoxin receptor signaling in ways that promote its adaptive fitness in the presence of non-productive inflammation. Overall, available evidence suggests that complement activation or subversion contributes to periodontal pathogenesis, although not all complement pathways or functions are necessarily destructive. Effective complement-targeted therapeutic intervention in periodontitis would require determining the precise roles of the various inductive or effector complement pathways. This information is essential as it may reveal which specific pathways need to be blocked to counteract microbial evasion and inflammatory pathology or, conversely, kept intact to promote host immunity.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology and Immunology, University of Louisville School of Dentistry, Loueisville, KY 40292, USA.
| |
Collapse
|
21
|
Yuste J, Sen A, Truedsson L, Jönsson G, Hyams C, Cohen JM, Camberlein E, Sriskandan S, Brown JS. Impaired opsonization with complement and phagocytosis of Streptococcus pyogenes in sera from subjects with inherited C2 deficiency. Microbes Infect 2010; 12:626-34. [PMID: 20417301 DOI: 10.1016/j.micinf.2010.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/23/2010] [Accepted: 04/09/2010] [Indexed: 01/08/2023]
Abstract
Although subjects with inherited defects of the classical complement pathway component C2 are at increased risk of infection, there are few experimental data available on which bacterial pathogens they might be susceptible to. In order to investigate whether patients with inherited C2 deficiency may have increased susceptibility to Streptococcus pyogenes infection we have analysed opsonization with C3b/iC3b and phagocytosis of three different strains of S. pyogenes in serum from 8 C2(-/-) subjects using flow cytometry assays. Sera from patients with C2 deficiency had a markedly reduced ability to opsonise S. pyogenes with C3b/iC3b. In addition, phagocytosis of all three S. pyogenes strains was impaired in sera from C2(-/-) subjects. Both the reduced opsonisation with C3b/iC3b and phagocytosis in C2(-/-) sera were markedly improved by addition of exogenous C2 protein. Neutrophil dependent killing was also reduced, confirming the functional importance of C2 deficiency for immunity to S. pyogenes. Impaired opsonisation with C3b/iC3b and phagocytosis was not related to reduced recognition of the bacteria by antibody. These data suggest that patients with C2 deficiency are at increased risk of S. pyogenes infections.
Collapse
Affiliation(s)
- Jose Yuste
- Centre for Respiratory Research, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yuste J, Khandavilli S, Ansari N, Muttardi K, Ismail L, Hyams C, Weiser J, Mitchell T, Brown JS. The effects of PspC on complement-mediated immunity to Streptococcus pneumoniae vary with strain background and capsular serotype. Infect Immun 2010; 78:283-92. [PMID: 19884335 PMCID: PMC2798213 DOI: 10.1128/iai.00541-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/20/2009] [Accepted: 10/22/2009] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae may evade complement activity by binding of factor H (FH), a negative regulator of the alternative pathway, to the surface protein PspC. However, existing data on the effects of FH binding to PspC on complement activity are conflicting, and there is also considerable allelic variation in PspC structure between S. pneumoniae strains that may influence PspC-dependent effects on complement. We have investigated interactions with complement for several S. pneumoniae strains in which the gene encoding PspC has been deleted. The degree of FH binding varied between strains and was entirely dependent on PspC for seven strains. Data obtained with TIGR4 strains expressing different capsular serotypes suggest that FH binding is affected by capsular serotype. Results of immunoblot analysis for C3 degradation products and iC3b deposition assays suggested that FH bound to PspC retained functional activity, but loss of PspC had strikingly varied effects on C3b/iC3b deposition on S. pneumoniae, with large increases on serotype 4, 6A, 6B, and 9V strains but only small increases or even decreases on serotype 2, 3, 17, and 23F strains. Repeating C3b/iC3b assays with TIGR4 strains expressing different capsular serotypes suggested that differences in the effect of PspC on C3b/iC3b deposition were largely independent of capsular serotype and depend on strain background. However, data obtained from infection in complement-deficient mice demonstrated that differences between strains in the effects of PspC on complement surprisingly did not influence the development of septicemia.
Collapse
Affiliation(s)
- Jose Yuste
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Suneeta Khandavilli
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Naadir Ansari
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Kairya Muttardi
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Laura Ismail
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - C. Hyams
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jeffrey Weiser
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Timothy Mitchell
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jeremy S. Brown
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London WC1E 6JJ, United Kingdom, Departments of Microbiology and Pediatrics, University of Pennsylvania, 402A Johnson Pavilion, Philadelphia, Pennsylvania 19104-6076, Division of Infection and Immunity, IBLS, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
23
|
Poon IKH, Hulett MD, Parish CR. Molecular mechanisms of late apoptotic/necrotic cell clearance. Cell Death Differ 2009; 17:381-97. [PMID: 20019744 DOI: 10.1038/cdd.2009.195] [Citation(s) in RCA: 257] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phagocytosis serves as one of the key processes involved in development, maintenance of tissue homeostasis, as well as in eliminating pathogens from an organism. Under normal physiological conditions, dying cells (e.g., apoptotic and necrotic cells) and pathogens (e.g., bacteria and fungi) are rapidly detected and removed by professional phagocytes such as macrophages and dendritic cells (DCs). In most cases, specific receptors and opsonins are used by phagocytes to recognize and bind their target cells, which can trigger the intracellular signalling events required for phagocytosis. Depending on the type of target cell, phagocytes may also release both immunomodulatory molecules and growth factors to orchestrate a subsequent immune response and wound healing process. In recent years, evidence is growing that opsonins and receptors involved in the removal of pathogens can also aid the disposal of dying cells at all stages of cell death, in particular plasma membrane-damaged cells such as late apoptotic and necrotic cells. This review provides an overview of the molecular mechanisms and the immunological outcomes of late apoptotic/necrotic cell removal and highlights the striking similarities between late apoptotic/necrotic cell and pathogen clearance.
Collapse
Affiliation(s)
- I K H Poon
- John Curtin School of Medical Research, Australian National University, Canberra, 2601, Australia
| | | | | |
Collapse
|
24
|
Taris N, Lang RP, Reno PW, Camara MD. Transcriptome response of the Pacific oyster (Crassostrea gigas) to infection with Vibrio tubiashii using cDNA AFLP differential display. Anim Genet 2009; 40:663-77. [PMID: 19456319 DOI: 10.1111/j.1365-2052.2009.01894.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We used qualitative complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) differential display analysis and real-time, quantitative PCR (RT-qPCR) to identify genes in the Pacific oyster Crassostrea gigas, whose transcription either changes in response to exposure to a pathogenic bacterium (Vibrio tubiashii) or varies between families known to differ in sensitivity to heat stress, before and at 12 and 36 h after bacterial exposure at a temperature of 25 degrees C. These conditions simulate those associated with summer mortality syndrome, a poorly understood cause of massive mortalities in cultured Pacific oysters in North America, Asia and Europe. Using 32 AFLP primer pairs, we identified 92 transcript-derived fragments that are qualitatively differentially expressed. We then cloned and sequenced 14 of these fragments, designed fragment-specific primers and quantified their transcription patterns using RT-qPCR. Most of the differences in transcription patterns between stress-tolerant and stress-sensitive families were evident before bacterial exposure, and genes that responded to bacterial exposure did so in parallel between stress-sensitive and stress-tolerant families. Blast searches of sequence databases revealed that these fragments represent genes involved in immune response as well as genes related to metabolic processes. Our data support the hypothesis that family level differences in resistance to stress in Pacific oysters are largely attributable to constitutive differences in gene transcription or 'general vigour' that are detectable before and maintained after infection, rather than being due to induced responses at the transcriptome level.
Collapse
Affiliation(s)
- N Taris
- USDA-Agricultural Research Service, Hatfield Marine Science Center, 2030 SE Marine Science Drive, Newport, OR 97365, USA
| | | | | | | |
Collapse
|
25
|
Payne D, Houtman P, Browning M. Acute post-streptococcal glomerulonephritis associated with prolonged hypocomplementaemia. J Clin Pathol 2008; 61:1133-5. [PMID: 18820103 DOI: 10.1136/jcp.2008.056705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The case of a 6-year-old boy who presented with acute post-streptococcal glomerulonephritis is reported. C3 levels and complement alternative pathway activity remained low for at least 10 months after presentation, before returning to normal. There was no evidence of other renal disease. This case highlights that hypocomplementaemia in acute post-streptococcal glomerulonephritis may persist for several months, and that prolonged hypocomplementaemia does not exclude this diagnosis.
Collapse
Affiliation(s)
- D Payne
- Department of Immunology, Leicester Royal Infirmary, Leicester, UK.
| | | | | |
Collapse
|
26
|
Impaired opsonization with C3b and phagocytosis of Streptococcus pneumoniae in sera from subjects with defects in the classical complement pathway. Infect Immun 2008; 76:3761-70. [PMID: 18541650 DOI: 10.1128/iai.00291-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Results from studies using mice deficient in specific complement factors and clinical data on patients with an inherited deficiency of the classical complement pathway component C2 suggest that the classical pathway is vital for immunity to Streptococcus pneumoniae. However, the consequences of defects in classical pathway activity for opsonization with C3b and the phagocytosis of different S. pneumoniae serotypes in human serum are not known, and there has not been a systematic analysis of the abilities of sera from subjects with a C2 deficiency to opsonize S. pneumoniae. Hence, to investigate the role of the classical pathway in immunity to S. pneumoniae in more detail, flow cytometry assays of opsonization with C3b and the phagocytosis of three capsular serotypes of S. pneumoniae were performed using human sera depleted of the complement factor C1q or B or sera obtained from C2-deficient subjects. The results demonstrate that, in human serum, the classical pathway is vital for C3b-iC3b deposition onto cells of all three serotypes of S. pneumoniae and seems to be more important than the alternative pathway for phagocytosis. Compared to the results for sera from normal subjects, C3b-iC3b deposition and total anti-S. pneumoniae antibody activity levels in sera obtained from C2(-/-) subjects were reduced and the efficiency of phagocytosis of all three S. pneumoniae strains was impaired. Anticapsular antibody levels did not correlate with phagocytosis or C3b-iC3b deposition. These data confirm that the classical pathway is vital for complement-mediated phagocytosis of S. pneumoniae and demonstrate why subjects with a C2 deficiency have a marked increase in susceptibility to S. pneumoniae infections.
Collapse
|
27
|
Edwards AM, Manetti AGO, Falugi F, Zingaretti C, Capo S, Buccato S, Bensi G, Telford JL, Margarit I, Grandi G. Scavenger receptor gp340 aggregates group A streptococci by binding pili. Mol Microbiol 2008; 68:1378-94. [PMID: 18452511 DOI: 10.1111/j.1365-2958.2008.06220.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Group A streptococci (GAS) are the most frequent cause of bacterial pharyngitis. The first obstacle to GAS colonization of the pharynx is saliva. As well as forming a physical barrier, saliva contains components of innate and acquired immunity. Previous work has shown that saliva induces bacterial aggregation, which may serve as a clearance mechanism. As the aggregation of some oral streptococci in saliva is mediated by long proteinaceous appendages, we hypothesized that pili of GAS might behave similarly. Wild-type GAS M1 strain SF370 aggregated in saliva, while pilus-defective mutants did not. Similarly, heterologous expression of diverse GAS pili on the surface of Lactococcus lactis induced aggregation in saliva, while control strains were unaffected. Further studies revealed that aggregating bacteria bound salivary component gp340. Purified gp340 aggregated wild-type GAS and L. lactis expressing GAS pili, but not control strains. GAS pilus-defective mutants were abrogated in gp340 binding and aggregation. Furthermore, gp340-mediated aggregation reduced bacterial adhesion to human epithelial cells, suggesting a role in host defence.
Collapse
|
28
|
Ochs MM, Bartlett W, Briles DE, Hicks B, Jurkuvenas A, Lau P, Ren B, Millar A. Vaccine-induced human antibodies to PspA augment complement C3 deposition on Streptococcus pneumoniae. Microb Pathog 2008; 44:204-14. [PMID: 18006268 PMCID: PMC2288783 DOI: 10.1016/j.micpath.2007.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 01/09/2023]
Abstract
Pneumococcal surface protein (PspA) is a virulence factor expressed by all clinical isolates of Streptococcus pneumoniae. PspAs are variable in structure and have been grouped into clades and cross-reacting families based on sequence similarities and immunologic cross-reactivity. At least 98% of PspAs are found in PspA families 1 or 2. PspA has been shown to interfere with complement deposition on pneumococci, thus reducing opsonization and clearance of bacteria by the host immune system. Prior studies using pooled human sera have shown that PspA interferes with C3 deposition on a single strain of S. pneumoniae, WU2, and that mouse antibody to PspA can enhance the deposition of C3 on WU2. The present studies have demonstrated that these previous findings are representative of most normal human sera and each of seven different strains of S. pneumoniae. It was observed that PspAs of PspA families 1 and 2 could inhibit C3 deposition in the presence of immunoglobulin present in all but 3 of 22 normal human sera. These studies have also demonstrated that rabbit and human antibody to PspA can enhance the deposition of C3 on pneumococci expressing either family 1 or 2 PspAs and either capsular types 2, 3, or 11. A vaccine candidate that can elicit immunity that neutralizes or compensates for S. pneumoniae's ability to thwart host immunity would be of value.
Collapse
Affiliation(s)
| | | | - David E. Briles
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Peggy Lau
- Sanofi Pasteur, Toronto, Ontario, Canada
| | - Bing Ren
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
29
|
Terao Y, Mori Y, Yamaguchi M, Shimizu Y, Ooe K, Hamada S, Kawabata S. Group A Streptococcal Cysteine Protease Degrades C3 (C3b) and Contributes to Evasion of Innate Immunity. J Biol Chem 2008; 283:6253-60. [DOI: 10.1074/jbc.m704821200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
30
|
Abstract
Sepsis, the systemic inflammatory response to infection, is considered the major cause of death among critically ill patients in the developed world. While there is a general view that this reflects contributions from both the pathogen and the host with respect to an inappropriate inflammatory response, there is a lack of agreement as to the key immune mechanisms. This has been reflected in the diverse range of immunotherapies tested in clinical trials, often with rather marginal effects. The case has been made for a pathogenic role of excessive immunity, the so-called 'cytokine storm', and for a role of too little immunity through immune paralysis. Apoptosis is implicated as a key mechanism in both this immune paralysis and the multi-organ failure that is a feature of severe sepsis. A number of polymorphisms have been implicated in susceptibility to sepsis, including cytokine genes, HLA class II and caspase-12. In this review we focus in particular on the role of group A streptococci in severe sepsis. Here the effect of bacterial superantigens appears to be a correlate of inflammatory activation, although the precise evolutionary role of the superantigens remains unclear.
Collapse
Affiliation(s)
- S Sriskandan
- Department of Infectious Diseases and Immunity, Imperial College, London, UK
| | | |
Collapse
|
31
|
Yuste J, Botto M, Bottoms SE, Brown JS. Serum amyloid P aids complement-mediated immunity to Streptococcus pneumoniae. PLoS Pathog 2007; 3:1208-19. [PMID: 17845072 PMCID: PMC1971117 DOI: 10.1371/journal.ppat.0030120] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/05/2007] [Indexed: 01/03/2023] Open
Abstract
The physiological functions of the acute phase protein serum amyloid P (SAP) component are not well defined, although they are likely to be important, as no natural state of SAP deficiency has been reported. We have investigated the role of SAP for innate immunity to the important human pathogen Streptococcus pneumoniae. Using flow cytometry assays, we show that SAP binds to S. pneumoniae, increases classical pathway–dependent deposition of complement on the bacteria, and improves the efficiency of phagocytosis. As a consequence, in mouse models of infection, mice genetically engineered to be SAP-deficient had an impaired early inflammatory response to S. pneumoniae pneumonia and were unable to control bacterial replication, leading to the rapid development of fatal infection. Complement deposition, phagocytosis, and control of S. pneumoniae pneumonia were all improved by complementation with human SAP. These results demonstrate a novel and physiologically significant role for SAP for complement-mediated immunity against an important bacterial pathogen, and provide further evidence for the importance of the classical complement pathway for innate immunity. Serum amyloid P (SAP) is a protein that is found in high concentrations in the blood, the exact function(s) of which are not clear. However, no known natural state of SAP deficiency has been identified, which suggests that SAP does have a vital role in human health. SAP can bind to molecular patterns found on the surface of bacteria, and it has been proposed that this may mark bacteria for attack by the immune system. We have investigated whether SAP helps protect against an important bacterial pathogen, Streptococcus pneumoniae. We show that SAP binds to different strains of S. pneumoniae, and that this leads to activation of an important component of the immune response called the complement system. Complement is particularly important for defence against S. pneumoniae infections, and using animal models of infection, we demonstrate that loss of SAP makes mice more susceptible to S. pneumoniae pneumonia. These results suggest that SAP helps the immune system to recognise invasion by bacteria and describe a new mechanism required for control of S. pneumoniae infections. This study may help the design of new therapeutic strategies to prevent or treat important bacterial diseases.
Collapse
Affiliation(s)
- Jose Yuste
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Marina Botto
- Molecular Genetics and Rheumatology Section, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Stephen E Bottoms
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | - Jeremy S Brown
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Kapetanovic R, Cavaillon JM. Early events in innate immunity in the recognition of microbial pathogens. Expert Opin Biol Ther 2007; 7:907-18. [PMID: 17555375 DOI: 10.1517/14712598.7.6.907] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immunity is characterised by a rapid action of host effector molecules and leukocytes aimed at limiting the multiplication of invading microbial organisms and destroying them. The recognition and destruction of microorganisms involves humoral factors (e.g., the complement system and natural antibodies) and different cell types (e.g., phagocytic cells, mast cells, natural killer cells). Microbial detection by cells involves germ line-encoded pattern-recognition receptors such as Toll-like receptors and nucleotide-binding oligomerization domain-like receptors. Cellular activation by pathogens leads to the release of antimicrobial peptides (e.g., defensins and peptidoglycan recognition proteins) and cytokines that orchestrate the anti-infectious response. Cytokines enhance phagocytosis and leukocyte microbicidal activity, allow cellular recruitment into the infectious focus, boost hematopoiesis, induce fever and lead to the production of acute phase proteins.
Collapse
Affiliation(s)
- Ronan Kapetanovic
- Department Infection and Epidemiology, Unit Cytokines & Inflammation, Institut Pasteur, Paris, France
| | | |
Collapse
|
33
|
Woodman ME, Cooley AE, Miller JC, Lazarus JJ, Tucker K, Bykowski T, Botto M, Hellwage J, Wooten RM, Stevenson B. Borrelia burgdorferi binding of host complement regulator factor H is not required for efficient mammalian infection. Infect Immun 2007; 75:3131-9. [PMID: 17420242 PMCID: PMC1932899 DOI: 10.1128/iai.01923-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The causative agent of Lyme disease, Borrelia burgdorferi, is naturally resistant to its host's alternative pathway of complement-mediated killing. Several different borrelial outer surface proteins have been identified as being able to bind host factor H, a regulator of the alternative pathway, leading to a hypothesis that such binding is important for borrelial resistance to complement. To test this hypothesis, the development of B. burgdorferi infection was compared between factor H-deficient and wild-type mice. Factor B- and C3-deficient mice were also studied to determine the relative roles of the alternative and classical/lectin pathways in B. burgdorferi survival during mammalian infection. While it was predicted that B. burgdorferi should be impaired in its ability to infect factor H-deficient animals, quantitative analyses of bacterial loads indicated that those mice were infected at levels similar to those of wild-type and factor B- and C3-deficient mice. Ticks fed on infected factor H-deficient or wild-type mice all acquired similar numbers of bacteria. Indirect immunofluorescence analysis of B. burgdorferi acquired by feeding ticks from the blood of infected mice indicated that none of the bacteria had detectable levels of factor H on their outer surfaces, even though such bacteria express high levels of surface proteins capable of binding factor H. These findings demonstrate that the acquisition of host factor H is not essential for mammalian infection by B. burgdorferi and indicate that additional mechanisms are employed by the Lyme disease spirochete to evade complement-mediated killing.
Collapse
Affiliation(s)
- Michael E Woodman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, MS421 W. R. Willard Medical Education Building, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Orzechowska B, Antoszków Z, Siemieniec I, Lorenc M, Jatczak B, Błach-Olszewska Z. Cytokine production by human leukocytes with different expressions of natural antiviral immunity and the effect of antibodies against interferons and TNF-alpha. Arch Immunol Ther Exp (Warsz) 2007; 55:111-7. [PMID: 17417691 PMCID: PMC2765630 DOI: 10.1007/s00005-007-0013-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 11/27/2006] [Indexed: 11/29/2022]
Abstract
Introduction: Two activities of innate antiviral immunity were studied: the resistance of human peripheral blood mononuclear cells (PMBCs) ex vivo to viral infection and the production of cytokines. Materials and Methods: Samples of blood were taken from healthy blood donors and from persons with frequent infections of the upper respiratory system. PMBCs were isolated by gradient centrifugation. Vesicular stomatitis virus (VSV) was used as the indicatory virus to infect PMBCs. The cytokines: IFN, TNF, and IL-6 were titrated by biological methods and IL-10 by ELISA. Results: Blood donors were divided for two groups: those with VSV-resistant and those with VSV-sensitive PMBCs and secretion of cytokines by them was compared. The resistant PMBCs produced more cytokines than the sensitive ones. A statistically significant difference, was found only in the case of the IFNs. To examine the contribution of IFNs and TNF in maintaining resistance, leukocytes from both groups were treated with specific anti-cytokine antibodies. The authors’ previous study showed that the elimination of spontaneous IFN-±, IFN-β, IFN-γ, and TNF-± from resistant leukocytes resulted in increased VSV replication This indicates the important role of cytokines. In VSV-sensitive PMBCs, anti-IFN-± showed the opposite effect (decreased virus replication). In the absence of spontaneous IFN-±, disturbances in cytokine production were observed. Conclusions: Complete resistance of PMBC to VSV infection is accompanied by higher cytokine release, The paradoxical effect of anti-IFN-± on virus replication in leukocytes sensitive to viral infection may be attributed to changes in the cytokine profile balance, i.e. high TNF production by VSV-infected leukocytes and a complete reduction of IL-6 production.
Collapse
Affiliation(s)
- Beata Orzechowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wrocław, Poland
| | - Zenon Antoszków
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wrocław, Poland
| | - Iwona Siemieniec
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wrocław, Poland
| | - Maria Lorenc
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wrocław, Poland
| | - Bogna Jatczak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wrocław, Poland
| | - Zofia Błach-Olszewska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|