1
|
Martínez-Méndez D, Mendoza L, Villarreal C, Huerta L. Continuous Modeling of T CD4 Lymphocyte Activation and Function. Front Immunol 2021; 12:743559. [PMID: 34804023 PMCID: PMC8602102 DOI: 10.3389/fimmu.2021.743559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
T CD4+ cells are central to the adaptive immune response against pathogens. Their activation is induced by the engagement of the T-cell receptor by antigens, and of co-stimulatory receptors by molecules also expressed on antigen presenting cells. Then, a complex network of intracellular events reinforce, diversify and regulate the initial signals, including dynamic metabolic processes that strongly influence both the activation state and the differentiation to effector cell phenotypes. The regulation of cell metabolism is controlled by the nutrient sensor adenosine monophosphate-activated protein kinase (AMPK), which drives the balance between oxidative phosphorylation (OXPHOS) and glycolysis. Herein, we put forward a 51-node continuous mathematical model that describes the temporal evolution of the early events of activation, integrating a circuit of metabolic regulation into the main routes of signaling. The model simulates the induction of anergy due to defective co-stimulation, the CTLA-4 checkpoint blockade, and the differentiation to effector phenotypes induced by external cytokines. It also describes the adjustment of the OXPHOS-glycolysis equilibrium by the action of AMPK as the effector function of the T cell develops. The development of a transient phase of increased OXPHOS before induction of a sustained glycolytic phase during differentiation to the Th1, Th2 and Th17 phenotypes is shown. In contrast, during Treg differentiation, glycolysis is subsequently reduced as cell metabolism is predominantly polarized towards OXPHOS. These observations are in agreement with experimental data suggesting that OXPHOS produces an ATP reservoir before glycolysis boosts the production of metabolites needed for protein synthesis, cell function, and growth.
Collapse
Affiliation(s)
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Osafo N, Antwi AO, Mante PK, Osei YA, Yeboah OK, Otu-Boakye S. Cutaneous and systemic anti-allergic potential of xylopic acid in rodents. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Thomann AS, Schneider T, Cyran L, Eckert IN, Kerstan A, Lutz MB. Conversion of Anergic T Cells Into Foxp3 - IL-10 + Regulatory T Cells by a Second Antigen Stimulus In Vivo. Front Immunol 2021; 12:704578. [PMID: 34249012 PMCID: PMC8267912 DOI: 10.3389/fimmu.2021.704578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
T cell anergy is a common mechanism of T cell tolerance. However, although anergic T cells are retained for longer time periods in their hosts, they remain functionally passive. Here, we describe the induction of anergic CD4+ T cells in vivo by intravenous application of high doses of antigen and their subsequent conversion into suppressive Foxp3- IL-10+ Tr1 cells but not Foxp3+ Tregs. We describe the kinetics of up-regulation of several memory-, anergy- and suppression-related markers such as CD44, CD73, FR4, CD25, CD28, PD-1, Egr-2, Foxp3 and CTLA-4 in this process. The conversion into suppressive Tr1 cells correlates with the transient intracellular CTLA-4 expression and required the restimulation of anergic cells in a short-term time window. Restimulation after longer time periods, when CTLA-4 is down-regulated again retains the anergic state but does not lead to the induction of suppressor function. Our data require further functional investigations but at this stage may suggest a role for anergic T cells as a circulating pool of passive cells that may be re-activated into Tr1 cells upon short-term restimulation with high and systemic doses of antigen. It is tentative to speculate that such a scenario may represent cases of allergen responses in non-allergic individuals.
Collapse
Affiliation(s)
- Anna Sophie Thomann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Theresa Schneider
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Laura Cyran
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Ina Nathalie Eckert
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Li Y, Tunbridge HM, Britton GJ, Hill EV, Sinai P, Cirillo S, Thompson C, Fallah-Arani F, Dovedi SJ, Wraith DC, Wülfing C. A LAT-Based Signaling Complex in the Immunological Synapse as Determined with Live Cell Imaging Is Less Stable in T Cells with Regulatory Capability. Cells 2021; 10:418. [PMID: 33671236 PMCID: PMC7921939 DOI: 10.3390/cells10020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
Peripheral immune regulation is critical for the maintenance of self-tolerance. Here we have investigated signaling processes that distinguish T cells with regulatory capability from effector T cells. The murine Tg4 T cell receptor recognizes a peptide derived from the self-antigen myelin basic protein. T cells from Tg4 T cell receptor transgenic mice can be used to generate effector T cells and three types of T cells with regulatory capability, inducible regulatory T cells, T cells tolerized by repeated in vivo antigenic peptide exposure or T cells treated with the tolerogenic drug UCB9608 (a phosphatidylinositol 4 kinase IIIβ inhibitor). We comparatively studied signaling in all of these T cells by activating them with the same antigen presenting cells presenting the same myelin basic protein peptide. Supramolecular signaling structures, as efficiently detected by large-scale live cell imaging, are critical mediators of T cell activation. The formation of a supramolecular signaling complex anchored by the adaptor protein linker for activation of T cells (LAT) was consistently terminated more rapidly in Tg4 T cells with regulatory capability. Such termination could be partially reversed by blocking the inhibitory receptors CTLA-4 and PD-1. Our work suggests that attenuation of proximal signaling may favor regulatory over effector function in T cells.
Collapse
Affiliation(s)
- Yikui Li
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen M Tunbridge
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Graham J Britton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elaine V Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Parisa Sinai
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Silvia Cirillo
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | - Simon J Dovedi
- R&D Oncology, AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - David C Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
5
|
Martínez-Méndez D, Villarreal C, Mendoza L, Huerta L. An Integrative Network Modeling Approach to T CD4 Cell Activation. Front Physiol 2020; 11:380. [PMID: 32425809 PMCID: PMC7212416 DOI: 10.3389/fphys.2020.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
The adaptive immune response is initiated by the interaction of the T cell antigen receptor/CD3 complex (TCR) with a cognate peptide bound to a MHC molecule. This interaction, along with the activity of co-stimulatory molecules and cytokines in the microenvironment, enables cells to proliferate and produce soluble factors that stimulate other branches of the immune response for inactivation of infectious agents. The intracellular activation signals are reinforced, amplified and diversified by a complex network of biochemical interactions, and includes the activity of molecules that modulate the activation process and stimulate the metabolic changes necessary for fulfilling the cell energy demands. We present an approach to the analysis of the main early signaling events of T cell activation by proposing a concise 46-node hybrid Boolean model of the main steps of TCR and CD28 downstream signaling, encompassing the activity of the anergy factor Ndrg1, modulation of activation by CTLA-4, and the activity of the nutrient sensor AMPK as intrinsic players of the activation process. The model generates stable states that reflect the overcoming of activation signals and induction of anergy by the expression of Ndrg1 in the absence of co-stimulation. The model also includes the induction of CTLA-4 upon activation and its competition with CD28 for binding to the co-stimulatory CD80/86 molecules, leading to stable states that reflect the activation arrest. Furthermore, the model integrates the activity of AMPK to the general pathways driving differentiation to functional cell subsets (Th1, Th2, Th17, and Treg). Thus, the network topology incorporates basic mechanism associated to activation, regulation and induction of effector cell phenotypes. The model puts forth a conceptual framework for the integration of functionally relevant processes in the analysis of the T CD4 cell function.
Collapse
Affiliation(s)
- David Martínez-Méndez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonor Huerta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Masat E, Laforêt P, De Antonio M, Corre G, Perniconi B, Taouagh N, Mariampillai K, Amelin D, Mauhin W, Hogrel JY, Caillaud C, Ronzitti G, Puzzo F, Kuranda K, Colella P, Mallone R, Benveniste O, Mingozzi F. Long-term exposure to Myozyme results in a decrease of anti-drug antibodies in late-onset Pompe disease patients. Sci Rep 2016; 6:36182. [PMID: 27812025 PMCID: PMC5096052 DOI: 10.1038/srep36182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
Immunogenicity of recombinant human acid-alpha glucosidase (rhGAA) in enzyme replacement therapy (ERT) is a safety and efficacy concern in the management of late-onset Pompe disease (LOPD). However, long-term effects of ERT on humoral and cellular responses to rhGAA are still poorly understood. To better understand the impact of immunogenicity of rhGAA on the efficacy of ERT, clinical data and blood samples from LOPD patients undergoing ERT for >4 years (n = 28) or untreated (n = 10) were collected and analyzed. In treated LOPD patients, anti-rhGAA antibodies peaked within the first 1000 days of ERT, while long-term exposure to rhGAA resulted in clearance of antibodies with residual production of non-neutralizing IgG. Analysis of T cell responses to rhGAA showed detectable T cell reactivity only after in vitro restimulation. Upregulation of several cytokines and chemokines was detectable in both treated and untreated LOPD subjects, while IL2 secretion was detectable only in subjects who received ERT. These results indicate that long-term ERT in LOPD patients results in a decrease in antibody titers and residual production of non-inhibitory IgGs. Immune responses to GAA following long-term ERT do not seem to affect efficacy of ERT and are consistent with an immunomodulatory effect possibly mediated by regulatory T cells.
Collapse
Affiliation(s)
- Elisa Masat
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Pascal Laforêt
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | | | - Barbara Perniconi
- Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Nadjib Taouagh
- Paris-Est neuromuscular center, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Kuberaka Mariampillai
- Department of Internal Medicine and Clinical Immunology, DHUI2B, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Damien Amelin
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Wladimir Mauhin
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | - Jean-Yves Hogrel
- Neuromuscular Physiology and Evaluation Lab, Institute of Myology, Paris, France
| | | | | | | | - Klaudia Kuranda
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France
| | | | - Roberto Mallone
- Institute Cochin, INSERM U1016, CNRS UMR8104, Paris, France.,University Paris Descartes, Faculty of Medicine, Paris, France.,Department of diabetology, Cochin Hospital, AP-HP, Paris, France
| | - Olivier Benveniste
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Department of Internal Medicine and Clinical Immunology, DHUI2B, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Federico Mingozzi
- University Pierre and Marie Curie, INSERM, UMR974, Paris, France.,Genethon, INSERM, UMR951, Evry, France
| | | |
Collapse
|
7
|
Lutz MB. Induction of CD4(+) Regulatory and Polarized Effector/helper T Cells by Dendritic Cells. Immune Netw 2016; 16:13-25. [PMID: 26937228 PMCID: PMC4770096 DOI: 10.4110/in.2016.16.1.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4(+) T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4(+) T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4(+) T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4(+) T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3(-) regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3(+) Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
8
|
Askenasy N. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation. Immunology 2016; 147:377-88. [PMID: 26749404 DOI: 10.1111/imm.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
9
|
Maggi J, Schafer C, Ubilla-Olguín G, Catalán D, Schinnerling K, Aguillón JC. Therapeutic Potential of Hyporesponsive CD4(+) T Cells in Autoimmunity. Front Immunol 2015; 6:488. [PMID: 26441992 PMCID: PMC4585084 DOI: 10.3389/fimmu.2015.00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/07/2015] [Indexed: 01/31/2023] Open
Abstract
The interaction between dendritic cells (DCs) and T cells is crucial on immunity or tolerance induction. In an immature or semi-mature state, DCs induce tolerance through T-cell deletion, generation of regulatory T cells, and/or induction of T-cell anergy. Anergy is defined as an unresponsive state that retains T cells in an “off” mode under conditions in which immune activation is undesirable. This mechanism is crucial for the control of T-cell responses against self-antigens, thereby preventing autoimmunity. Tolerogenic DCs (tDCs), generated in vitro from peripheral blood monocytes of healthy donors or patients with autoimmune pathologies, were shown to modulate immune responses by inducing T-cell hyporesponsiveness. Animal models of autoimmune diseases confirmed the impact of T-cell anergy on disease development and progression in vivo. Thus, the induction of T-cell hyporesponsiveness by tDCs has become a promising immunotherapeutic strategy for the treatment of T-cell-mediated autoimmune disorders. Here, we review recent findings in the area and discuss the potential of anergy induction for clinical purposes.
Collapse
Affiliation(s)
- Jaxaira Maggi
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy , Santiago , Chile
| | - Carolina Schafer
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy , Santiago , Chile
| | - Gabriela Ubilla-Olguín
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy , Santiago , Chile
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy , Santiago , Chile
| | - Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy , Santiago , Chile
| | - Juan C Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile , Santiago , Chile ; Millennium Institute on Immunology and Immunotherapy , Santiago , Chile
| |
Collapse
|
10
|
Malek Abrahimians E, Carlier VA, Vander Elst L, Saint-Remy JMR. MHC Class II-Restricted Epitopes Containing an Oxidoreductase Activity Prompt CD4(+) T Cells with Apoptosis-Inducing Properties. Front Immunol 2015; 6:449. [PMID: 26388872 PMCID: PMC4556975 DOI: 10.3389/fimmu.2015.00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Abrogating an unwanted immune response toward a specific antigen without compromising the entire immune system is a hoped-for goal in immunotherapy. Instead of manipulating dendritic cells and suppressive regulatory T cells, depleting effector T cells or blocking their co-stimulatory pathways, we describe a method to specifically inhibit the presentation of an antigen eliciting an unwanted immune reaction. Inclusion of an oxidoreductase motif within the flanking residues of MHC class II epitopes polarizes CD4(+) T cells to cytolytic cells capable of inducing apoptosis in antigen presenting cells (APCs) displaying cognate peptides through MHC class II molecules. This novel function results from an increased synapse formation between both cells. Moreover, these cells eliminate by apoptosis bystander CD4(+) T cells activated at the surface of the APC. We hypothesize that they would thereby block the recruitment of cells of alternative specificity for the same autoantigen or cells specific for another antigen associated with the pathology, providing a system by which response against multiple antigens linked with the same disease can be suppressed. These findings open the way toward a novel form of antigen-specific immunosuppression.
Collapse
Affiliation(s)
- Elin Malek Abrahimians
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| | - Vincent A Carlier
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| | - Luc Vander Elst
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| | - Jean-Marie R Saint-Remy
- Center for Molecular and Vascular Biology, University of Leuven , Leuven , Belgium ; ImCyse SA , Leuven , Belgium
| |
Collapse
|
11
|
Baker CAR, Swainson L, Lin DL, Wong S, Hartigan-O'Connor DJ, Lifson JD, Tarantal AF, McCune JM. Exposure to SIV in utero results in reduced viral loads and altered responsiveness to postnatal challenge. Sci Transl Med 2015; 7:300ra125. [PMID: 26268312 PMCID: PMC5100009 DOI: 10.1126/scitranslmed.aac5547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HIV disease progression appears to be driven by increased immune activation. Given observations that fetal exposure to infectious pathogens in utero can result in reduced immune responses, or tolerance, to those pathogens postnatally, we hypothesized that fetal exposure to HIV may render the fetus tolerant to the virus, thus reducing damage caused by immune activation during infection later in life. To test this hypothesis, fetal rhesus macaques (Macaca mulatta) were injected with the attenuated virus SIVmac1A11 in utero and challenged with pathogenic SIVmac239 1 year after birth. SIVmac1A11-injected animals had significantly reduced plasma RNA viral loads (P < 0.02) up to 35 weeks after infection. Generalized estimating equations analysis was performed to identify immunologic and clinical measurements associated with plasma RNA viral load. A positive association with plasma RNA viral load was observed with the proportion of CD8(+) T cells expressing the transcription factor, FoxP3, and the proportion of CD4(+) T cells producing the lymphoproliferative cytokine, IL-2. In contrast, an inverse relationship was found with the frequencies of circulating CD4(+) and CD8(+) T cells displaying intermediate expression of the proliferation marker, Ki-67. Animals exposed to simian immunodeficiency virus (SIV) in utero appeared to have enhanced SIV-specific immune responses, a lower proportion of CD8(+) T cells expressing the exhaustion marker PD-1, and more circulating TH17 cells than controls. Although the development of tolerance was not demonstrated, these data suggest that rhesus monkeys exposed to SIVmac1A11 in utero had distinct immune responses associated with the control of viral replication after postnatal challenge.
Collapse
Affiliation(s)
- Chris A R Baker
- Graduate Group in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA. Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Louise Swainson
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Din L Lin
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Samson Wong
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Dennis J Hartigan-O'Connor
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA. Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA. California National Primate Research Center, Davis, CA 95616, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD 21702, USA
| | - Alice F Tarantal
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, California National Primate Research Center, Davis, CA 95616, USA. Department of Pediatrics, University of California, Davis, Davis, CA 95616, USA. Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95616, USA
| | - Joseph M McCune
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA 94110, USA.
| |
Collapse
|
12
|
Sawant DV, Hamilton K, Vignali DAA. Interleukin-35: Expanding Its Job Profile. J Interferon Cytokine Res 2015; 35:499-512. [PMID: 25919641 DOI: 10.1089/jir.2015.0015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Counter-regulation afforded by specialized regulatory cell populations and immunosuppressive cytokines is critical for balancing immune outcome. The inhibitory potential of the established suppressive cytokines, IL-10 and TGFβ, has been well elucidated in diverse inflammatory scenarios in conjunction with their key roles in Treg development and function. Despite the early predictions for an immunomodulatory role for the Ebi3/p35 heterodimer in placental trophoblasts, IL-35 biology remained elusive until 2007 when it was established as a Treg-restricted inhibitory cytokine. Since then, Treg-derived IL-35 has been shown to exhibit its suppressive activities in a range of autoimmune diseases and cancer models. Recent studies are beginning to explore other cellular sources of IL-35, such as Bregs and CD8(+) Tregs. Despite these new cellular sources and targets, the mode of IL-35 suppression remains restricted to inhibition of proliferation and induction of an IL-35-producing induced regulatory T cell population referred to as iTr35. In this review, we explore the early beginnings, status quo, and future prospects of IL-35 biology. The unparalleled opportunity of targeting multiple immunosuppressive populations (Tregs, Bregs, CD8(+) Tregs) through IL-35 is highly exciting and offers tremendous promise from a translational standpoint, particularly for cancer immunotherapies.
Collapse
Affiliation(s)
- Deepali V Sawant
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Kristia Hamilton
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Pletinckx K, Vaeth M, Schneider T, Beyersdorf N, Hünig T, Berberich-Siebelt F, Lutz MB. Immature dendritic cells convert anergic nonregulatory T cells into Foxp3- IL-10+ regulatory T cells by engaging CD28 and CTLA-4. Eur J Immunol 2014; 45:480-91. [PMID: 25382658 DOI: 10.1002/eji.201444991] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/29/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022]
Abstract
Anergic T cells can survive for long time periods passively in a hyporesponsive state without obvious active functions. Thus, the immunological reason for their maintenance is unclear. Here, we induced peptide-specific anergy in T cells from mice by coculturing these cells with immature murine dendritic cells (DCs). We found that these anergic, nonsuppressive IL-10(-) Foxp3(-) CTLA-4(+) CD25(low) Egr2(+) T cells could be converted into suppressive IL-10(+) Foxp3(-) CTLA-4(+) CD25(high) Egr2(+) cells resembling type-1 Treg cells (Tr1) when stimulated a second time by immature DCs in vitro. Addition of TGF-β during anergy induction favored Foxp3(+) Treg-cell induction, while TGF-β had little effect when added to the second stimulation. Expression of both CD28 and CTLA-4 molecules on anergic T cells was required to allow their conversion into Tr1-like cells. Suppressor activity was enabled via CD28-mediated CD25 upregulation, acting as an IL-2 sink, together with a CTLA-4-mediated inhibition of NFATc1/α activation to shut down IL-2-mediated proliferation. Together, these data provide evidence and mechanistical insights into how persistent anergic T cells may serve as a resting memory pool for Tr1-like cells.
Collapse
Affiliation(s)
- Katrien Pletinckx
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Delgoffe GM, Vignali DAA. Interleukin-35: A Novel Mediator of Peripheral Tolerance. CYTOKINE FRONTIERS 2014. [PMCID: PMC7120654 DOI: 10.1007/978-4-431-54442-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Interleukin-35 is a potent suppressive cytokine of the IL-12 family. Although other members of the IL-12 family are produced mainly by antigen-presenting cells (APCs), IL-35 is produced by regulatory T (Treg) cells and suppresses cell proliferation. It has been shown to play an important role in many disease models and has been recently shown to have additional functions aside from inhibition of proliferation, including inducing its own expression in non-Treg cells. In this chapter, we discuss the history and current status of IL-35 biology, as well as suggest where the field might move in the future.
Collapse
|
15
|
Tle4 regulates epigenetic silencing of gamma interferon expression during effector T helper cell tolerance. Mol Cell Biol 2013; 34:233-45. [PMID: 24190972 DOI: 10.1128/mcb.00902-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In response to suboptimal activation, T cells become hyporesponsive, with a severely reduced capacity to proliferate and produce cytokines upon reencounter with antigen. Chromatin analysis of T cells made tolerant by use of different in vitro and in vivo approaches reveals that the expression of gamma interferon (IFN-γ) is epigenetically silenced in anergic effector TH1 cells. In those T cells, calcium signaling triggers the expression of Tle4, a member of the Groucho family of corepressors, which is then recruited to a distal regulatory element in the Ifng locus and causes the establishment of repressive epigenetic marks at the Ifng gene regulatory elements. Consequently, impaired Tle4 activity results in a markedly reduced capacity to inhibit IFN-γ production in tolerized T cells. We propose that Blimp1-dependent recruitment of Tle4 to the Ifng locus causes epigenetic silencing of the expression of the Ifng gene in anergic TH1 cells. These results define a novel function of Groucho family corepressors in peripheral T cells and demonstrate that specific mechanisms are activated in tolerant T helper cells to directly repress expression of effector cytokines, supporting the hypothesis that stable epigenetic imprinting contributes to the maintenance of the tolerance-associated hyporesponsive phenotype in T cells.
Collapse
|
16
|
Abstract
Anergy is a long-term stable state of T-lymphocyte unresponsiveness to antigenic stimulation associated with the blockade of IL-2 production and proliferation. Anergy is a pathway of peripheral tolerance formation. In this review, mechanisms underlying T-cell tolerization are considered in a classical in vitro model of clonal anergy, and these mechanisms are compared with different pathways of anergy induction in vivo. Special attention is given to regulatory T-lymphocytes because, on one hand, anergy is a specific feature of these cells, and on the other hand anergy is also a mechanism of their action on target cells - effector T-lymphocytes. The role of this phenomenon in the differentiation of regulatory T-cells and also in the development of activation-induced apoptosis in effector T-lymphocytes is discussed.
Collapse
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, 614081 Perm, Russia.
| |
Collapse
|
17
|
Yuan J, Muljo SA. Exploring the RNA world in hematopoietic cells through the lens of RNA-binding proteins. Immunol Rev 2013; 253:290-303. [PMID: 23550653 DOI: 10.1111/imr.12048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery of microRNAs has renewed interest in posttranscriptional modes of regulation, fueling an emerging view of a rich RNA world within our cells that deserves further exploration. Much work has gone into elucidating genetic regulatory networks that orchestrate gene expression programs and direct cell fate decisions in the hematopoietic system. However, the focus has been to elucidate signaling pathways and transcriptional programs. To bring us one step closer to reverse engineering the molecular logic of cellular differentiation, it will be necessary to map posttranscriptional circuits as well and integrate them in the context of existing network models. In this regard, RNA-binding proteins (RBPs) may rival transcription factors as important regulators of cell fates and represent a tractable opportunity to connect the RNA world to the proteome. ChIP-seq has greatly facilitated genome-wide localization of DNA-binding proteins, helping us to understand genomic regulation at a systems level. Similarly, technological advances such as CLIP-seq allow transcriptome-wide mapping of RBP binding sites, aiding us to unravel posttranscriptional networks. Here, we review RBP-mediated posttranscriptional regulation, paying special attention to findings relevant to the immune system. As a prime example, we highlight the RBP Lin28B, which acts as a heterochronic switch between fetal and adult lymphopoiesis.
Collapse
Affiliation(s)
- Joan Yuan
- Integrative Immunobiology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | |
Collapse
|
18
|
Eric Gershwin M, Shoenfeld Y. Abul Abbas: An epitome of scholarship. J Autoimmun 2013; 45:1-6. [DOI: 10.1016/j.jaut.2013.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 11/29/2022]
|
19
|
Knoechel B, Lohr JG. Genomics of lymphoid malignancies reveal major activation pathways in lymphocytes. J Autoimmun 2013; 45:15-23. [PMID: 23880067 DOI: 10.1016/j.jaut.2013.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 01/21/2023]
Abstract
Breakdown of tolerance leads to autoimmunity due to emergence of autoreactive T or B cell clones. Autoimmune diseases predispose to lymphoid malignancies and lymphoid malignancies, conversely, can manifest as autoimmune diseases. While it has been clear for a long time that a competitive advantage and uncontrolled growth of lymphocytes contribute to the pathogenesis of both lymphoid malignancies as well as autoimmune diseases, the overlap of the underlying mechanisms has been less well described. Next generation sequencing has led to massive expansion of the available genomic data in many diseases over the last five years. These data allow for comparison of the molecular pathogenesis between autoimmune diseases and lymphoid malignancies. Here, we review the similarities between autoimmune diseases and lymphoid malignancies: 1) Both, autoimmune diseases and lymphoid malignancies are characterized by activation of the same T and B cell signaling pathways, and dysregulation of these pathways can occur through genetic or epigenetic events. 2) In both scenarios, clonal and subclonal evolution of lymphocytes contribute to disease. 3) Development of both diseases not only depends on T or B cell intrinsic factors, such as germline or somatic mutations, but also on environmental factors. These include infections, the presence of other immune cells in the microenvironment, and the cytokine milieu. A better mechanistic understanding of the parallels between lymphomagenesis and autoimmunity may help the development of precision treatment strategies with rationally designed therapeutic agents.
Collapse
Affiliation(s)
- Birgit Knoechel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
20
|
Up-regulation of FOXP3 and induction of suppressive function in CD4+ Jurkat T-cells expressing hepatitis C virus core protein. Clin Sci (Lond) 2012; 123:15-27. [DOI: 10.1042/cs20110631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HCV (hepatitis C virus) infection is a serious health care problem that affects more than 170 million people worldwide. Viral clearance depends on the development of a successful cellular immune response against the virus. Interestingly, such a response is altered in chronically infected patients, leading to chronic hepatitis that can result in liver fibrosis, cirrhosis and hepatocellular carcinoma. Among the mechanisms that have been described as being responsible for the immune suppression caused by the virus, Treg-cells (regulatory T-cells) are emerging as an essential component. In the present work we aim to study the effect of HCV-core protein in the development of T-cells with regulatory-like function. Using a third-generation lentiviral system to express HCV-core in CD4+ Jurkat T-cells, we describe that HCV-core-expressing Jurkat cells show an up-regulation of FOXP3 (forkhead box P3) and CTLA-4 (cytotoxic T-lymphocyte antigen-4). Moreover, we show that HCV-core-transduced Jurkat cells are able to suppress CD4+ and CD8+ T-cell responses to anti-CD3 plus anti-CD28 stimulation.
Collapse
|
21
|
Williams KM, Dotson AL, Otto AR, Kohlmeier JE, Benedict SH. Choice of resident costimulatory molecule can influence cell fate in human naïve CD4+ T cell differentiation. Cell Immunol 2011; 271:418-27. [PMID: 21943647 DOI: 10.1016/j.cellimm.2011.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 01/13/2023]
Abstract
With antigen stimulation, naïve CD4+ T cells differentiate to several effector or memory cell populations, and cytokines contribute to differentiation outcome. Several proteins on these cells receive costimulatory signals, but a systematic comparison of their differential effects on naïve T cell differentiation has not been conducted. Two costimulatory proteins, CD28 and ICAM-1, resident on human naïve CD4+ T cells were compared for participation in differentiation. Under controlled conditions, and with no added cytokines, costimulation through either CD3+CD28 or CD3+CAM-1 induced differentiation to T effector and T memory cells. In contrast, costimulation through CD3+ICAM-1 induced differentiation to Treg cells whereas costimulation through CD3+CD28 did not.
Collapse
Affiliation(s)
- Kelli M Williams
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
22
|
Villarino AV, Katzman SD, Gallo E, Miller O, Jiang S, McManus MT, Abbas AK. Posttranscriptional silencing of effector cytokine mRNA underlies the anergic phenotype of self-reactive T cells. Immunity 2011; 34:50-60. [PMID: 21236706 DOI: 10.1016/j.immuni.2010.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/21/2010] [Accepted: 11/10/2010] [Indexed: 12/20/2022]
Abstract
Self-reactive T cell clones that escape negative selection are either deleted or rendered functionally unresponsive (anergic), thus preventing them from propagating host tissue damage. By using an in vivo model, we investigated molecular mechanisms for T cell tolerance, finding that despite a characteristic inability to generate effector cytokine proteins, self-reactive T cells express large amounts of cytokine mRNAs. This disconnect between cytokine message and protein was not observed in T cells mounting productive responses to foreign antigens but, instead, was seen only in those responding to self, where the block in protein translation was shown to involve conserved AU-rich elements within cytokine 3'UTRs. These studies reveal that translation of abundant cytokine mRNAs is limited in self-reactive T cells and, thus, identify posttranscriptional silencing of antigen-driven gene expression as a key mechanism underlying the anergic phenotype of self-reactive T cells.
Collapse
Affiliation(s)
- Alejandro V Villarino
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Xia Y, Zhang Y, Jiang S, Cheng H. CD4+ T-cell anergy induced by lin- CD117(c-kit)+ stem cell-derived immature dendritic cells loaded with nuclear antigen derived from Trypanosoma equiperdum. Autoimmunity 2010; 43:664-71. [PMID: 20370574 DOI: 10.3109/08916931003674691] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, which have the extraordinary capacity to initiate naïve T-cell-mediated primary immune responses. To investigate the role of DCs in the induction of antigen-specific tolerance, the immature DCs (imDCs) and mature DCs (mDCs) were generated in vitro from lin(-)CD117(c-kit)(+) stem cells isolated from mice bone marrow. Flow cytometry and confocal microscopy were used to characterize the phenotypes of DCs. These cells were loaded with nuclear antigen derived from Trypanosoma equiperdum and then co-cultured with naïve CD4(+) T cells. It was found that imDC-treated T cells had lower proliferation level and cytokine expression of interleukin (IL)-2, IL-4, IL-12, and interferon-γ compared with mDC-treated T cells. These results demonstrated that the maturation status of DCs is critical for preventing the production of autoantibodies.
Collapse
Affiliation(s)
- Yumin Xia
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.
| | | | | | | |
Collapse
|
24
|
Kruse N, Neumann K, Schrage A, Derkow K, Schott E, Erben U, Kühl A, Loddenkemper C, Zeitz M, Hamann A, Klugewitz K. Priming of CD4+ T cells by liver sinusoidal endothelial cells induces CD25low forkhead box protein 3- regulatory T cells suppressing autoimmune hepatitis. Hepatology 2009; 50:1904-13. [PMID: 19787806 DOI: 10.1002/hep.23191] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Elucidating cellular mechanisms that maintain the intrahepatic immune balance is crucial to our understanding of viral or autoimmune liver diseases and allograft acceptance. Liver sinusoidal endothelial cells (LSECs) play an important role in modifying local immune responses to tolerance in major histocompatibility complex (MHC) I-restricted models, whereas their contribution in the MHCII context is still controversial. In an MHCII chimeric mouse model that excludes MHCII-mediated antigen presentation by professional antigen-presenting cells, we demonstrated that LSECs prime CD4(+) T cells to a CD45RB(low) memory phenotype lacking marker cytokine production for effector cells that was stable in vivo following immunogenic antigen re-encounter. Although these cells, which we term T(LSEC), had the capacity to enter lymph nodes and the liver, they did not function as effector cells either in a delayed-type hypersensitivity reaction or in a hepatitis model. T(LSEC) inhibited the proliferation of naïve CD4(+) T cells in vitro although being CD25(low) and lacking expression of forkhead box protein (FoxP)3. Furthermore, these cells suppressed hepatic inflammation as monitored by alanine aminotransferase levels and cellular infiltrates in a T cell-mediated autoimmune hepatitis model in vivo. CONCLUSION T(LSEC) first described here might belong to the expanding group of FoxP3(-) regulatory T cells. Our findings strengthen the previously discussed assumption that CD4(+) T cell priming by nonprofessional antigen-presenting cells induces anti-inflammatory rather than proinflammatory phenotypes. Because recruitment of CD4(+) T cells is increased upon hepatic inflammation, T(LSEC) might contribute to shifting antigen-dependent immune responses to tolerance toward exogenous antigens or toward endogenous self-antigens, especially under inflammatory conditions.
Collapse
Affiliation(s)
- Nils Kruse
- Medical Clinic I, Charité Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Baine I, Abe BT, Macian F. Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol Rev 2009; 231:225-40. [PMID: 19754900 DOI: 10.1111/j.1600-065x.2009.00817.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cells that escape negative selection in the thymus must be inactivated or eliminated in the periphery through a series of mechanisms that include the induction of anergy, dominant suppression by regulatory T cells, and peripheral deletion of self-reactive T cells. Calcium signaling plays a central role in the induction of anergy in T cells, which become functionally inactivated and incapable of proliferating and expressing cytokines following antigen re-encounter. Suboptimal stimulation of T cells results in the activation of a calcium/calcineurin/nuclear factor of activated T cells-dependent cell-intrinsic program of self-inactivation. The proteins encoded by those genes are required to impose a state of functional unresponsiveness through different mechanisms that include downregulation of T-cell receptor signaling and inhibition of cytokine transcription.
Collapse
Affiliation(s)
- Ian Baine
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
26
|
Kuczma M, Podolsky R, Garge N, Daniely D, Pacholczyk R, Ignatowicz L, Kraj P. Foxp3-deficient regulatory T cells do not revert into conventional effector CD4+ T cells but constitute a unique cell subset. THE JOURNAL OF IMMUNOLOGY 2009; 183:3731-41. [PMID: 19710455 DOI: 10.4049/jimmunol.0800601] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Homeostasis in the immune system is maintained by specialized regulatory CD4(+) T cells (T(reg)) expressing transcription factor Foxp3. According to the current paradigm, high-affinity interactions between TCRs and class II MHC-peptide complexes in thymus "instruct" developing thymocytes to up-regulate Foxp3 and become T(reg) cells. However, the loss or down-regulation of Foxp3 does not disrupt the development of T(reg) cells but abrogates their suppressor function. In this study, we show that Foxp3-deficient T(reg) cells in scurfy mice harboring a null mutation of the Foxp3 gene retained cellular features of T(reg) cells including in vitro anergy, impaired production of inflammatory cytokines, and dependence on exogenous IL-2 for proliferation and homeostatic expansion. Foxp3-deficient T(reg) cells expressed a low level of activation markers, did not expand relative to other CD4(+) T cells, and produced IL-4 and immunomodulatory cytokines IL-10 and TGF-beta when stimulated. Global gene expression profiling revealed significant similarities between T(reg) cells expressing and lacking Foxp3. These results argue that Foxp3 deficiency alone does not convert T(reg) cells into conventional effector CD4(+) T cells but rather these cells constitute a distinct cell subset with unique features.
Collapse
Affiliation(s)
- Michal Kuczma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Jailwala P, Waukau J, Glisic S, Jana S, Ehlenbach S, Hessner M, Alemzadeh R, Matsuyama S, Laud P, Wang X, Ghosh S. Apoptosis of CD4+ CD25(high) T cells in type 1 diabetes may be partially mediated by IL-2 deprivation. PLoS One 2009; 4:e6527. [PMID: 19654878 PMCID: PMC2716541 DOI: 10.1371/journal.pone.0006527] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/02/2009] [Indexed: 01/26/2023] Open
Abstract
Background Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease targeting the insulin-producing pancreatic β cells. Naturally occurring FOXP3+CD4+CD25high regulatory T cells (Tregs) play an important role in dominant tolerance, suppressing autoreactive CD4+ effector T cell activity. Previously, in both recent-onset T1D patients and β cell antibody-positive at-risk individuals, we observed increased apoptosis and decreased function of polyclonal Tregs in the periphery. Our objective here was to elucidate the genes and signaling pathways triggering apoptosis in Tregs from T1D subjects. Principal Findings Gene expression profiles of unstimulated Tregs from recent-onset T1D (n = 12) and healthy control subjects (n = 15) were generated. Statistical analysis was performed using a Bayesian approach that is highly efficient in determining differentially expressed genes with low number of replicate samples in each of the two phenotypic groups. Microarray analysis showed that several cytokine/chemokine receptor genes, HLA genes, GIMAP family genes and cell adhesion genes were downregulated in Tregs from T1D subjects, relative to control subjects. Several downstream target genes of the AKT and p53 pathways were also upregulated in T1D subjects, relative to controls. Further, expression signatures and increased apoptosis in Tregs from T1D subjects partially mirrored the response of healthy Tregs under conditions of IL-2 deprivation. CD4+ effector T-cells from T1D subjects showed a marked reduction in IL-2 secretion. This could indicate that prior to and during the onset of disease, Tregs in T1D may be caught up in a relatively deficient cytokine milieu. Conclusions In summary, expression signatures in Tregs from T1D subjects reflect a cellular response that leads to increased sensitivity to apoptosis, partially due to cytokine deprivation. Further characterization of these signaling cascades should enable the detection of genes that can be targeted for restoring Treg function in subjects predisposed to T1D.
Collapse
Affiliation(s)
- Parthav Jailwala
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jill Waukau
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sanja Glisic
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Srikanta Jana
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sarah Ehlenbach
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Martin Hessner
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramin Alemzadeh
- Children's Hospital of Wisconsin Diabetes Center, Pediatric Endocrinology and Metabolism, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Shigemi Matsuyama
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Purushottam Laud
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- Department of Physics & the Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Soumitra Ghosh
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
28
|
Noël G, Brinster C, Semana G, Bruniquel D. Modulation of the TCR stimulation strength can render human activated CD4+ T cells suppressive. Int Immunol 2009; 21:1025-36. [PMID: 19625380 DOI: 10.1093/intimm/dxp068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, we explored the potential of human naive CD4(+) T cells to acquire regulatory properties upon stimulation. We demonstrated that, in vitro, pre-activated naive CD4(+)CD25(-)CD45RA(+) T cells could become anergic and suppressive CD4(+)CD25(+) T cells upon lower intensity TCR stimulation. These CD4(+)CD25(+) T cells generated in vitro potently suppress the proliferation of allogenic CD4(+)CD25(-) T cells independently of cytokines and in a contact-dependent manner. Our data indicate that expression of Foxp3 is not necessary to induce the suppressive T cell activity. We demonstrate that these CD4(+)CD25(+) T cells are unresponsive upon re-stimulation and that their suppressive activity is transient. However, we showed that the anergy and the suppressive function could be reversed by increasing the stimulus and their level of activation. We concluded from our data that these anergy and suppressive activities are related to a fine tuning of TCR activation threshold.
Collapse
Affiliation(s)
- Grégory Noël
- UPRES 3889, Faculté de Médecine, Laboratoire d'Immuno-Hématologie, 2 avenue du Professeur Léon Bernard, 35043 Rennes cedex, France
| | | | | | | |
Collapse
|
29
|
Eroukhmanoff L, Oderup C, Ivars F. T-cell tolerance induced by repeated antigen stimulation: selective loss of Foxp3- conventional CD4 T cells and induction of CD4 T-cell anergy. Eur J Immunol 2009; 39:1078-87. [PMID: 19283777 DOI: 10.1002/eji.200838653] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Repeated immunization of mice with bacterial superantigens induces extensive deletion and anergy of reactive CD4 T cells. Here we report that the in vitro proliferation anergy of CD4 T cells from TCR transgenic mice immunized three times with staphylococcal enterotoxin B (SEB) (3 x SEB) is partially due to an increased frequency of Foxp3(+) CD4 T cells. Importantly, reduced number of conventional CD25(-) Foxp3(-) cells, rather than conversion of such cells to Foxp3(+) cells, was the cause of that increase and was also seen in mice repeatedly immunized with OVA (3 x OVA) and OVA-peptide (OVAp) (3 x OVAp). Cell-transfer experiments revealed profound but transient anergy of CD4 T cells isolated from 3 x OVAp and 3x SEB mice. However, the in vivo anergy was CD4 T-cell autonomous and independent of Foxp3(+) Treg. Finally, proliferation of transferred CD4 T cells was inhibited in repeatedly immunized mice but inhibition was lost when transfer was delayed, despite the maintenance of elevated frequency of Foxp3(+) cells. These data provide important implications for Foxp3(+) cell-mediated tolerance in situations of repeated antigen exposure such as human persistent infections.
Collapse
|
30
|
Lohr J, Knoechel B, Caretto D, Abbas AK. Balance of Th1 and Th17 effector and peripheral regulatory T cells. Microbes Infect 2009; 11:589-93. [PMID: 19376259 DOI: 10.1016/j.micinf.2009.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transfer of antigen-specific T cells into antigen-expressing lymphopenic recipients leads to the sequential generation of Th1 and Th17 effector and protective CD25(+)FoxP3(+) regulatory cells in the periphery with surprisingly different kinetics. Such an experimental model is potentially valuable for defining the stimuli that regulate lineage decision and plasticity of various T cell effectors and peripheral regulatory T cells. Our studies have shown that IL-17 production occurs rapidly and declines within the first week with the appearance of IFN-gamma producing T cells. Regulatory T cells appear during the recovery phase of the disease. The factors that mediate this complex differentiation originating from a starting naïve T cell population remain to be defined.
Collapse
Affiliation(s)
- Jens Lohr
- Department of Pathology, University of California, School of Medicine, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
31
|
Soto-Nieves N, Puga I, Abe BT, Bandyopadhyay S, Baine I, Rao A, Macian F. Transcriptional complexes formed by NFAT dimers regulate the induction of T cell tolerance. ACTA ACUST UNITED AC 2009; 206:867-76. [PMID: 19307325 PMCID: PMC2715123 DOI: 10.1084/jem.20082731] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In T cells, anergy can be induced after T cell receptor engagement in the absence of costimulation. Under these conditions, the expression of a specific set of anergy-associated genes is activated. Several lines of evidence suggest that nuclear factor of activated T cells (NFAT) proteins may regulate the expression of many of those genes; however, the nature of the complexes responsible for the induction of this new program of gene expression is unknown. Here, we show that transcriptional complexes formed by NFAT homodimers are directly responsible for the activation of at least two anergy-inducing genes, Grail and Caspase3. Our data shows that Grail expression is activated by direct binding of NFAT dimers to the Grail promoter at two different sites. Consequently, a mutant NFAT protein with impaired ability to dimerize is not able to induce an unresponsive state in T cells. Our results not only identify a new biological function for NFAT dimers but also reveal the different nature of NFAT-containing complexes that induce anergy versus those that are activated during a productive immune response. These data also establish a basis for the design of immunomodulatory strategies that specifically target each type of complex.
Collapse
Affiliation(s)
- Noemi Soto-Nieves
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Tolerance to self antigens is established in two ways: first in the thymus through the deletion of thymocytes expressing self-reactive T cell receptors; and second, in the periphery through multiple mechanisms involving deletion, anergy, and suppression. Dominant tolerance to self antigens in the periphery is primarily the function of the CD4(+)CD25(+)FOXP3(+) subset of T cells, which have the capability of suppressing autoreactive T cells that have escaped deletion during thymic selection. The essential role of the transcription factor FOXP3 in the development and function of these cells has been well documented. However, the underlying mechanisms by which FOXP3 controls this process are less well understood. This review will focus on the role of FOXP3 in regulating CD4 T cell function in both humans and mice, with an emphasis on recent work in human systems.
Collapse
Affiliation(s)
- Jane H Buckner
- Translational Research, Benaroya Research Institute, Seattle, WA 98101, USA
| | | |
Collapse
|
33
|
Barron L, Knoechel B, Lohr J, Abbas AK. Cutting edge: contributions of apoptosis and anergy to systemic T cell tolerance. THE JOURNAL OF IMMUNOLOGY 2008; 180:2762-6. [PMID: 18292495 DOI: 10.4049/jimmunol.180.5.2762] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiple pathways can induce and maintain peripheral T cell tolerance. The goal of this study was to define the contributions of apoptosis and anergy to the maintenance of self-tolerance to a systemic Ag. Upon transfer into mice expressing OVA systemically, OVA-specific DO11 CD4+ T cells are activated transiently, cease responding, and die. Bim is the essential apoptosis-inducing trigger and apoptosis proceeds despite increased expression of Bcl-2 and Bcl-x. However, preventing apoptosis by eliminating Bim does not restore proliferation or cytokine production by DO11 cells. While Foxp3 is transiently induced, anergy is not associated with the stable development of regulatory T cells. Thus, apoptosis is dispensable for tolerance to a systemic self-Ag and cell-intrinsic anergy is sufficient to tolerize T cells.
Collapse
Affiliation(s)
- Luke Barron
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
34
|
Gibbons C, Sykes M. Manipulating the immune system for anti-tumor responses and transplant tolerance via mixed hematopoietic chimerism. Immunol Rev 2008; 223:334-60. [PMID: 18613846 PMCID: PMC2680695 DOI: 10.1111/j.1600-065x.2008.00636.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SUMMARY Stem cells (SCs) with varying potentiality have the capacity to repair injured tissues. While promising animal data have been obtained, allogeneic SCs and their progeny are subject to immune-mediated rejection. Here, we review the potential of hematopoietic stem cells (HSCs) to promote immune tolerance to allogeneic and xenogeneic organs and tissues, to reverse autoimmunity, and to be used optimally to cure hematologic malignancies. We also review the mechanisms by which hematopoietic cell transplantation (HCT) can promote anti-tumor responses and establish donor-specific transplantation tolerance. We discuss the barriers to clinical translation of animal studies and describe some recent studies indicating how they can be overcome. The recent achievements of durable mixed chimerism across human leukocyte antigen barriers without graft-versus-host disease and of organ allograft tolerance through combined kidney and bone marrow transplantation suggest that the potential of this approach for use in the treatment of many human diseases may ultimately be realized.
Collapse
Affiliation(s)
- Carrie Gibbons
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | |
Collapse
|
35
|
Hansen W, Westendorf AM, Reinwald S, Bruder D, Deppenmeier S, Groebe L, Probst-Kepper M, Gruber AD, Geffers R, Buer J. Chronic antigen stimulation in vivo induces a distinct population of antigen-specific Foxp3 CD25 regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2008; 179:8059-68. [PMID: 18056346 DOI: 10.4049/jimmunol.179.12.8059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The concept of immune regulation/suppression has been well-established and, besides thymus-derived CD4+CD25+ regulatory T (TR) cells, it became clear that a variety of additional peripherally induced TR cells play vital roles in protection from many harmful immune responses including intestinal inflammation. In the present study, we have analyzed in vivo-induced Ag-specific CD4+ TR cells with respect to their molecular and functional phenotype. By comparative genomics we could show that these Ag-specific TR cells induced by chronic Ag stimulation in vivo clearly differ in their genetic program from naturally occurring thymus-derived CD4+CD25+ TR cells. This distinct population of induced TR cells express neither CD25 nor the TR-associated transcription factor Foxp3. Strikingly, CD25 is not even up-regulated upon stimulation. Despite the lack in Foxp3 expression, these in vivo-induced CD25- TR cells are able to interfere with an Ag-specific CD8+ T cell-mediated intestinal inflammation without significant increase in CD25 and Foxp3 expression. Thus, our results demonstrate that in vivo-induced Ag-specific TR cells represent a distinct population of Foxp3-CD25- TR cells with regulatory capacity both in vitro and in vivo.
Collapse
Affiliation(s)
- Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vojdani A, O'Bryan T, Kellermann G. The Immunology of Immediate and Delayed Hypersensitivity Reaction to Gluten. EUR J INFLAMM 2008. [DOI: 10.1177/1721727x0800600101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immunology of gluten hypersensitivity and celiac disease has been pursued with significant interest in the past 20 years. For the prevention of systemic diseases, most pathogens that gain entry into our bodies must be met with an effective immune response, yet in the gastrointestinal tract it is equally important that commensal bacteria and a diverse collection of dietary proteins and peptides be recognized without eliciting an active immune response or constant activation of the inflammatory pathway. This phenomenon of hyporesponsiveness to food antigens is known as oral tolerance. This oral tolerance to dietary antigens is maintained by three different mechanisms: anergy, cell deletion and immune suppression. However, in the presence of mechanical/chemical stressors and infections, this tolerance may break down, and gut associated lymphoid tissues (GALT) will react to different luminal antigens. The reaction of GALT to these antigens may lead to the production of pro-inflammatory cytokines, opening of tight junctions, entry of undigested antigens into the circulation, and the subsequent production of IgA, IgG, IgM and IgE antibodies in blood and secretory components. Like any other food hypersensitivity reaction, gluten sensitivity can be divided into immediate and delayed hypersensitivities. In this review an attempt is made first to differentiate immediate hypersensitivity to gliadin, mediated by IgE, from delayed hypersensitivity, which is mediated by IgA and IgG. Furthermore, we attempt to differentiate between gluten hypersensitivity with enteropathy (celiac disease) and gluten hypersensitivity without enteropathy.
Collapse
|
37
|
The sound of silence: modulating anergy in T lymphocytes. Curr Opin Immunol 2007; 19:658-64. [PMID: 17949964 DOI: 10.1016/j.coi.2007.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/31/2007] [Indexed: 01/22/2023]
Abstract
Understanding the intercellular and intracellular mechanisms that maintain anergy and prevent the induction of full effector function is one avenue that may allow us to manipulate immune responses. Recent studies of T cell receptor (TCR)-proximal signaling events in different models of T cell unresponsiveness have suggested that biochemically distinct forms of anergy may exist in vivo. T cell responsiveness can be altered through the control of the intracellular pool of key second messengers, such as diacylglycerol (DAG) or the lipid modification of signaling molecules, such as the Linker for activated T cells (LAT). Studies on the molecule programmed death-1 (PD-1) and its ligands have revealed that tissue-resident signals are essential in the maintenance of T cell unresponsiveness. Thus, the emerging view is that T cell anergy is a dynamic state whose establishment and maintenance can be influenced by numerous different signaling pathways.
Collapse
|
38
|
Abstract
The achievement of immune tolerance, a state of specific unresponsiveness to the donor graft, has the potential to overcome the current major limitations to progress in organ transplantation, namely late graft loss, organ shortage and the toxicities of chronic nonspecific immumnosuppressive therapy. Advances in our understanding of immunological processes, mechanisms of rejection and tolerance have led to encouraging developments in animal models, which are just beginning to be translated into clinical pilot studies. These advances are reviewed here and the appropriate timing for clinical trials is discussed.
Collapse
Affiliation(s)
- M Sykes
- Transplantation Biology Research Center, Bone Marrow Transplantation Section, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
39
|
Chaturvedi UC, Shrivastava R, Tripathi RK, Nagar R. Dengue virus-specific suppressor T cells: current perspectives. ACTA ACUST UNITED AC 2007; 50:285-99. [PMID: 17573929 DOI: 10.1111/j.1574-695x.2007.00273.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dengue virus was the first microorganism that was shown to induce generation of antigen-specific suppressor T (TS) cells in mice. The cascade of the three generations of TS cells (TS1, TS2, TS3) and their secretary products, the suppressor factors (SF1, SF2), was delineated. The TS pathway was proposed to be protective through inhibition of the production of enhancing antibody, which may enhance the severity of dengue disease. The currently second most favoured mechanism of severe dengue disease is the 'cytokine tsunami'. During the last decade, suppressor/regulatory T cells have been studied in greater detail using modern techniques in various diseases, including viral infections. This brief review discusses the role of dengue-specific suppressor T cells in protection and/or induction of severe dengue disease in view of our current understanding of suppressor/regulatory T cells.
Collapse
|
40
|
Campbell DJ, Ziegler SF. FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 2007; 7:305-10. [PMID: 17380159 DOI: 10.1038/nri2061] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the periphery, tolerance to self antigens is mainly mediated by the CD4(+)CD25(+)FOXP3(+) subset of regulatory T cells, which can suppress the activity of autoreactive T cells that have escaped deletion in the thymus. The essential role of the transcription factor FOXP3 (forkhead box P3) in the development and function of these regulatory T cells has been well documented. It is also clear that regulatory T cells and effector T cells respond differently to T-cell receptor stimulation. In this Opinion article, we propose that these differences in responses are mediated by FOXP3, and are manifested by alterations in biochemical signalling pathways, patterns of gene expression and the appearance of cell-surface homing receptors.
Collapse
Affiliation(s)
- Daniel J Campbell
- Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101, USA
| | | |
Collapse
|
41
|
Joosten SA, van Meijgaarden KE, Savage NDL, de Boer T, Triebel F, van der Wal A, de Heer E, Klein MR, Geluk A, Ottenhoff THM. Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A 2007; 104:8029-34. [PMID: 17483450 PMCID: PMC1876566 DOI: 10.1073/pnas.0702257104] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Regulatory T cells (Treg) comprise multiple subsets and are important in controlling immunity and inflammation. However, the induction and mode of action of the various distinct Treg subsets remain ill defined, particularly in humans. Here, we describe a human CD8+ lymphocyte activation gene-3 (LAG-3)+CD25+FoxP3+ Treg subset, which suppresses T cells partly through the secretion of CC chemokine ligand 4 (CCL4), which can inhibit T cell activation by interfering with T cell receptor signaling. CD8+ Tregs are expanded by antigen in in vivo-primed donors, and can be detected in pathogen-infected human tissue. This CD8+LAG-3+CD25+FoxP3+CCL4+ Treg subset thus may play a role in immunoregulation in humans, including infectious diseases.
Collapse
Affiliation(s)
- Simone A. Joosten
- Departments of *Immunohematology and Blood Transfusion
- Infectious Diseases, and
| | | | - Nigel D. L. Savage
- Departments of *Immunohematology and Blood Transfusion
- Infectious Diseases, and
| | - Tjitske de Boer
- Departments of *Immunohematology and Blood Transfusion
- Infectious Diseases, and
| | - Frédéric Triebel
- Immutep S.A., Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | | | - Emile de Heer
- Pathology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands; and
| | - Michèl R. Klein
- Departments of *Immunohematology and Blood Transfusion
- Infectious Diseases, and
| | - Annemieke Geluk
- Departments of *Immunohematology and Blood Transfusion
- Infectious Diseases, and
| | - Tom H. M. Ottenhoff
- Departments of *Immunohematology and Blood Transfusion
- Infectious Diseases, and
- To whom correspondence should be addressed at:
Department of Immunohematology and Blood Transfusion, E3Q, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. E-mail:
| |
Collapse
|
42
|
Bandyopadhyay S, Soto-Nieves N, Macián F. Transcriptional regulation of T cell tolerance. Semin Immunol 2007; 19:180-7. [PMID: 17387022 PMCID: PMC1978193 DOI: 10.1016/j.smim.2007.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 02/16/2007] [Indexed: 01/16/2023]
Abstract
Self-reactive T cells that escape negative selection in the thymus must be kept under control in the periphery. Mechanisms of peripheral tolerance include deletion or functional inactivation of self-reactive T cells and mechanisms of dominant tolerance mediated by regulatory T cells. In the absence of costimulation, T cell receptor (TCR) engagement results in unopposed calcium signaling that leads to the activation of a cell-intrinsic program of inactivation, which makes T cells hyporesponsive to subsequent stimulations. The activation of this program in anergic T cells is a consequence of the induction of a nuclear factor of activated T cells (NFAT)-dependent program of gene expression. Recent studies have offered new insights into the mechanisms responsible for the implementation and maintenance of T cell anergy and have provided evidence that the proteins encoded by the genes upregulated in anergic T cells are responsible for the implementation of anergy by interfering with TCR signaling or directly inhibiting cytokine gene transcription.
Collapse
Affiliation(s)
- Sanmay Bandyopadhyay
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
43
|
Abstract
A finely orchestrated balance between activating and inhibitory signals is fundamental for the ability of the immune system to effectively attack and eliminate pathogenic microbes but to not react against self-antigens. Derangements of this balance underlie the pathogenesis of autoimmune diseases. Conversely, elucidating the mechanisms of this balance may provide rational strategies for manipulating it in order to enhance the efficacy of vaccines and tumor immunotherapy. One of the clearest illustrations of precise regulation is in the generation of effector and regulatory T cells. In order to analyze the mechanisms of this regulation, we have developed a transgenic mouse model in which a single population of T cells reacts against its known cognate antigen in vivo. Here we summarize our studies with this experimental model, illustrating the sequence of T cell responses that develop and attempting to dissect the stimuli that control these responses.
Collapse
Affiliation(s)
- Abul K Abbas
- Department of Pathology, University of California, San Francisco, CA 94143-0511, USA.
| | | | | |
Collapse
|
44
|
Lohr J, Knoechel B, Wang JJ, Villarino AV, Abbas AK. Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. ACTA ACUST UNITED AC 2006; 203:2785-91. [PMID: 17130300 PMCID: PMC2118184 DOI: 10.1084/jem.20061341] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To explore the interactions between regulatory T cells and pathogenic effector cytokines, we have developed a model of a T cell–mediated systemic autoimmune disorder resembling graft-versus-host disease. The cytokine responsible for tissue inflammation in this disorder is interleukin (IL)-17, whereas interferon (IFN)-γ produced by Th1 cells has a protective effect in this setting. Because of the interest in potential therapeutic approaches utilizing transfer of regulatory T cells and inhibition of the IL-2 pathway, we have explored the roles of these in the systemic disease. We demonstrate that the production of IL-17 and tissue infiltration by IL-17–producing cells occur and are even enhanced in the absence of IL-2. Regulatory T cells favor IL-17 production but prevent the disease when administered early in the course by suppressing expansion of T cells. Thus, the pathogenic or protective effects of cytokines and the therapeutic capacity of regulatory T cells are crucially dependent on the timing and the nature of the disease.
Collapse
Affiliation(s)
- Jens Lohr
- Department of Pathology, University of California, San Francisco School of Medicine, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Numerous T cell subpopulations have now been claimed to exhibit regulatory activity. Shevach discusses the current understanding of the different subsets of T regulatory cells and provides a perspective on the current areas of uncertainly and controversy in the field.
Collapse
Affiliation(s)
- Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|