1
|
Iijima N, Yamaguchi M, Hayashi T, Rui Y, Ohira Y, Miyamoto Y, Niino M, Okuno T, Suzuki O, Oka M, Ishii KJ. miR-147-3p in pathogenic CD4 T cells controls chemokine receptor expression for the development of experimental autoimmune diseases. J Autoimmun 2024; 149:103319. [PMID: 39395343 DOI: 10.1016/j.jaut.2024.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024]
Abstract
Incomplete Freund's adjuvant (IFA) has long been used to trigger autoimmune diseases in animal models, such as experimental autoimmune encephalitis and collagen-induced arthritis. However, the molecular mechanisms that control CD4 T cell effector functions and lead to the development of autoimmune diseases are not well understood. A self-antigen and heat-killed Mycobacterium tuberculosis emulsified in IFA augmented the activation of CD4 T cells, leading to the differentiation of pathogenic CD4 T cells in the draining lymph nodes. In contrast, IFA emulsification did not elicit Foxp3+ regulatory T cell expansion. We found that pathogenic Th1 cells expressed miR-147-3p, which targets multiple genes to affect T cell function. Finally, miR-147-3p expressed in CXCR6+SLAMF6- Th1 cells was required for the onset of neurological symptoms through the control of CXCR3 expression. Our findings demonstrate that miR-147-3p expressed in pathogenic CD4 T cells regulates the migratory potential in peripheral tissues and impacts the development of autoimmune diseases.
Collapse
MESH Headings
- Animals
- MicroRNAs/genetics
- Mice
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Disease Models, Animal
- Gene Expression Regulation
- Autoimmune Diseases/immunology
- Autoimmune Diseases/genetics
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/genetics
- Th1 Cells/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice, Inbred C57BL
- Lymphocyte Activation/immunology
- Lymphocyte Activation/genetics
Collapse
Affiliation(s)
- Norifumi Iijima
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan; Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan.
| | - Masaya Yamaguchi
- Bioinformatics Research Unit, Osaka University Graduate School of Dentistry, Suita Osaka, Japan; Bioinformatics Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Department of Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan; Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
| | - Tomoya Hayashi
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuxiang Rui
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan
| | - Yuta Ohira
- Central Research Laboratories, Zeria Pharmaceutical Co, Ltd, Kumagaya-shi, Saitama, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan
| | - Masaaki Niino
- Department of Clinical Research, National Hospital Organization Hokkaido Medical Center, Sapporo, Hokkaido, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Osamu Suzuki
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Asagi Saito, Ibaraki, Osaka, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Saito Asagi, Ibaraki, Osaka, Japan; Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; WPI Immunology Frontier Research Center (IFReC), Osaka Univerisity, Suita, Osaka, Japan.
| |
Collapse
|
2
|
Jiang L, Duan R, Yu X, Huang Z, Peng X, Wang T, Li Z, Liu X, Wang M, Su W. An analysis of single-cell data reveals therapeutic effects of AMG487 in experimental autoimmune uveitis. Biochem Pharmacol 2024; 232:116671. [PMID: 39615601 DOI: 10.1016/j.bcp.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024]
Abstract
Uveitis, an ocular autoimmune disease that poses a significant threat to vision, is caused by immune cells erroneously attacking retinal cells and currently lacks specific and effective therapeutic interventions. The CXC chemokine receptor 3 (CXCR3) facilitates the migration of immune cells to sites of inflammation. AMG487, a CXCR3 antagonist, holds potential for treating autoimmune diseases by blocking immunes cells chemotaxis. However, its effects and mechanisms in uveitis remain unclear. Using single-cell assay for transposase-accessible chromatin sequencing and RNA sequencing, we observed increased expression of CXCR3 and chemotactic pathways in peripheral blood of Vogt-Koyanagi-Harada patients and cervical lymph nodes of experimental autoimmune uveitis mice. AMG487 treatment in experimental autoimmune uveitis was shown to be therapeutically effective. Analysis of flow cytometry and single-cell RNA sequencing in AMG487-treated mice revealed reduced expression of inflammatory genes in immune cells. Specifically, AMG487 decreased the proportion of plasma cell in B cells, restored the ratio between effector T cells and regulatory T cells, and diminished T helper (Th) 17 cell pathogenicity by suppressing highly inflammatory granulocyte-macrophage colony-stimulating factor-producing Th17 cells while enhancing anti-inflammatory interleukin-10-producing Th17 cells. Our study presents an exhaustive single-cell transcriptional analysis of immune cells under AMG487 treatment, thereby elucidating potential mechanisms and providing a potential reference for the development of novel therapeutic strategies for autoimmune diseases.
Collapse
Affiliation(s)
- Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyang Yu
- Guangzhou University of Chinese Medicine, Guangzhou 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Leonard MR, Jones DM, Read KA, Pokhrel S, Tuazon JA, Warren RT, Yount JS, Oestreich KJ. Aiolos promotes CXCR3 expression on Th1 cells via positive regulation of IFN-γ/STAT1 signaling. JCI Insight 2024; 10:e180287. [PMID: 39560988 PMCID: PMC11721307 DOI: 10.1172/jci.insight.180287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
CD4+ T helper 1 (Th1) cells coordinate adaptive immune responses to intracellular pathogens, including viruses. Key to this function is the ability of Th1 cells to migrate within secondary lymphoid tissues, as well as to sites of inflammation, which relies on signals received through the chemokine receptor CXCR3. CXCR3 expression is driven by the Th1 lineage-defining transcription factor T-bet and the cytokine-responsive STAT family members STAT1 and STAT4. Here, we identify the Ikaros zinc finger (IkZF) transcription factor Aiolos (Ikzf3) as an additional positive regulator of CXCR3 both in vitro and in vivo using a murine model of influenza virus infection. Mechanistically, we found that Aiolos-deficient CD4+ T cells exhibited decreased expression of key components of the IFN-γ/STAT1 signaling pathway, including JAK2 and STAT1. Consequently, Aiolos deficiency resulted in decreased levels of STAT1 tyrosine phosphorylation and reduced STAT1 enrichment at the Cxcr3 promoter. We further found that Aiolos and STAT1 formed a positive feedback loop via reciprocal regulation of each other downstream of IFN-γ signaling. Collectively, our study demonstrates that Aiolos promotes CXCR3 expression on Th1 cells by propagating the IFN-γ/STAT1 cytokine signaling pathway.
Collapse
Affiliation(s)
- Melissa R. Leonard
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Combined Anatomic Pathology Residency/PhD Program, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA
| | - Devin M. Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program and
| | - Kaitlin A. Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program and
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Jasmine A. Tuazon
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Biomedical Sciences Graduate Program and
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Robert T. Warren
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
4
|
Buzzelli AA, McWilliams IL, Shin B, Bryars MT, Harrington LE. Intrinsic STAT4 Expression Controls Effector CD4 T Cell Migration and Th17 Pathogenicity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1667-1676. [PMID: 37093664 PMCID: PMC11302403 DOI: 10.4049/jimmunol.2200606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Effector CD4 T cells are central to the development of autoimmune chronic inflammatory diseases, yet factors that mediate pathogenicity remain ill-defined. Single-nucleotide polymorphisms in the human STAT4 locus are associated with susceptibility to multiple autoimmune disorders, and Stat4 is linked to the pathogenic Th17 gene signature; however, Th17 cells differentiate independently of STAT4. Hence the interplay between STAT4 and CD4 T cell function, especially Th17 cells, during autoimmune disease is unclear. In this article, we demonstrate that CD4 T cell-intrinsic STAT4 expression is essential for the induction of autoimmune CNS inflammation in mice, in part by regulating the migration of CD4 T cells to the inflamed CNS. Moreover, unbiased transcriptional profiling revealed that STAT4 controls the expression of >200 genes in Th17 cells and is important for the upregulation of genes associated with IL-23-stimulated, pathogenic Th17 cells. Importantly, we show that Th17 cells specifically require STAT4 to evoke autoimmune inflammation, highlighting, to our knowledge, a novel function for STAT4 in Th17 pathogenicity.
Collapse
Affiliation(s)
- Ashlyn A. Buzzelli
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Ian L. McWilliams
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Boyoung Shin
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Morgan T. Bryars
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| | - Laurie E. Harrington
- * Departments of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham. Birmingham, AL 35294
| |
Collapse
|
5
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
IL-6R/Signal Transducer and Activator of Transcription 3 Signaling in Keratinocytes rather than in T Cells Induces Psoriasis-Like Dermatitis in Mice. J Invest Dermatol 2021; 142:1126-1135.e4. [PMID: 34626614 PMCID: PMC8957489 DOI: 10.1016/j.jid.2021.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is important for psoriasis pathogenesis because STAT3 signaling downstream of IL-6, IL-21, IL-22, and IL-23 contributes to T helper type 17 cell development and because transgenic mice with keratinocyte (KC) STAT3 expression (K14-Stat3C mice) develop psoriasis-like dermatitis. In this study, the relative contribution of STAT3 signaling in KCs versus in T cells was evaluated in the imiquimod model of psoriasis-like dermatitis. Mice with STAT3-inducible deletion in KCs (K5-Stat3-/- mice) had decreased psoriasis-like dermatitis and epidermal STAT3 phosphorylation compared with wild-type mice, whereas mice with constitutive deletion of STAT3 in all T cells were similar to wild-type mice. Interestingly, mice with KC-inducible deletion of IL-6Rα had similar findings to those of K5-Stat3-/- mice, identifying IL-6/IL-6R as a predominant upstream signal for KC STAT3-induced psoriasis-like dermatitis. Moreover, psoriasis-like dermatitis inversely associated with type 1 immune gene products, especially CXCL10, whereas CXCL10 limited psoriasis-like dermatitis, suggesting that KC STAT3 signaling promoted psoriasis-like dermatitis by restricting downstream CXCL10 expression. Finally, treatment of mice with the pan-Jak inhibitor, tofacitinib, reduced psoriasis-like dermatitis and epidermal STAT3 phosphorylation. Taken together, STAT3 signaling in KCs rather than in T cells was a more important determinant for psoriasis-like dermatitis in a mechanism that involved upstream KC IL-6R signaling and downstream inhibition of type 1 immunity‒associated CXCL10 responses.
Collapse
|
7
|
Li L, Liu Y, Chiu C, Jin Y, Zhou W, Peng M, Chen LC, Sun Q, Gao J. A Regulatory Role of Chemokine Receptor CXCR3 in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Emphysema. Inflammation 2021; 44:985-998. [PMID: 33415536 DOI: 10.1007/s10753-020-01393-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/11/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD)/pulmonary emphysema is driven by the dysregulated airway inflammation and primarily influenced by the interaction between cigarette smoking (CS) and the individual's susceptibility. The inflammation in COPD involves both innate and adaptive immunity. By binding to its specific ligands, chemokine receptor CXCR3 plays an important role in regulating tissue inflammation and damage. In acute animal model challenged with either CS or pathogens, CXCR3 knockout (KO) attenuated lung inflammation and pathology. However, the role of CXCR3 in CS-induced chronic airway inflammation and pulmonary emphysema remains unknown. In this present study, we investigated the effect of CXCR3 in CS-induced pulmonary emphysema in an animal model, and the association between CXCR3 single nucleotide polymorphisms (SNPs) and COPD susceptibility in human subjects. We found that after chronic exposure to side stream CS (SSCS) for 24 weeks, CXCR3 KO mice demonstrated significant airspace enlargement expressed by mean linear intercept (Lm) compared with the wild-type (WT) mice. Consistently, CXCR3 KO mice had significantly higher BAL fluid macrophages and neutrophils, TNFα, and lung homogenate MMP-9 and MMP-12. Through genetic analysis of CXCR3 polymorphisms in a cohort of COPD patients with Han Chinese ethnicity, one CXCR3 SNP, rs2280964, was found to be genetically related to COPD susceptibility. Furthermore, CXCR3 SNP rs2280964 was significantly associated with the levels of serum MMP-9 in COPD patients. Our data from both animal and human studies revealed a novel role of CXCR3 possibly via influencing MMP9 production in the pathogenesis and progression of CS-associated COPD/pulmonary emphysema.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Case-Control Studies
- China
- Disease Models, Animal
- Female
- Genetic Association Studies
- Genetic Predisposition to Disease
- Humans
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Male
- Matrix Metalloproteinase 12/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Neutrophils/immunology
- Neutrophils/metabolism
- Phenotype
- Polymorphism, Single Nucleotide
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Emphysema/genetics
- Pulmonary Emphysema/immunology
- Pulmonary Emphysema/metabolism
- Pulmonary Emphysema/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Mice
Collapse
Affiliation(s)
- Lun Li
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of Respiratory Medicine, Civil Aviation General Hospital, Beijing, 100123, China
| | - Chin Chiu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Min Peng
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, the Ohio State University, Columbus, OH, USA
| | - Jinming Gao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
8
|
Karpus WJ. Cytokines and Chemokines in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2020; 204:316-326. [PMID: 31907274 DOI: 10.4049/jimmunol.1900914] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022]
Abstract
Experimental autoimmune encephalomyelitis is a CD4+ T cell-mediated demyelinating disease of the CNS that serves as a model for multiple sclerosis. Cytokines and chemokines shape Th1 and Th17 effector responses as well as regulate migration of leukocytes to the CNS during disease. The CNS cellular infiltrate consists of Ag-specific and nonspecific CD4+ and CD8+ T cells, neutrophils, B cells, monocytes, macrophages, and dendritic cells. The mechanism of immune-mediated inflammation in experimental autoimmune encephalomyelitis has been extensively studied in an effort to develop therapeutic modalities for multiple sclerosis and, indeed, has provided insight in modern drug discovery. The present Brief Review highlights critical pathogenic aspects of cytokines and chemokines involved in generation of effector T cell responses and migration of inflammatory cells to the CNS. Select cytokines and chemokines are certainly important in the regulatory response, which involves T regulatory, B regulatory, and myeloid-derived suppressor cells. However, that discussion is beyond the scope of this brief review.
Collapse
Affiliation(s)
- William J Karpus
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
9
|
Karin N. CXCR3 Ligands in Cancer and Autoimmunity, Chemoattraction of Effector T Cells, and Beyond. Front Immunol 2020; 11:976. [PMID: 32547545 PMCID: PMC7274023 DOI: 10.3389/fimmu.2020.00976] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
CXCR3 is a chemokine receptor with three ligands; CXCL9, CXCL10, and CXCL11. CXCL11 binds CXCR3 with a higher affinity than the other ligands leading to receptor internalization. Long ago we reported that one of these chemokines, CXCL10, not only attracts CXCR3+ CD4+ and CD8+ effector T cells to sites of inflammation, but also direct their polarization into highly potent effector T cells. Later we showed that CXCL11 directs the linage development of T-regulatory-1 cells (Tr1). We also observed that CXCL11 and CXCL10 induce different signaling cascades via CXCR3. Collectively this suggests that CXCR3 ligands differentially regulate the biological function of T cells via biased signaling. It is generally accepted that tumor cells evolved to express several chemokine receptors and secrete their ligands. Vast majority of these chemokines support tumor growth by different mechanisms that are discussed. We suggest that CXCL10 and possibly CXCL9 differ from other chemokines by their ability to restrain tumor growth and enhance anti-tumor immunity. Along with this an accumulating number of studies showed in various human cancers a clear association between poor prognosis and low expression of CXCL10 at tumor sites, and vice versa. Finally, we discuss the possibility that CXCL9 and CXCL10 may differ in their biological function via biased signaling and its possible relevance to cancer immunotherapy. The current mini review focuses on exploring the role of CXCR3 ligands in directing the biological properties of CD4+ and CD8+ T cells in the context of cancer and autoimmunity. We believe that the combined role of these chemokines in attracting T cells and also directing their biological properties makes them key drivers of immune function.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
10
|
Hadley T, Gillespie S, Espinoza H, Prince J, Gronbaek H, Chandrakasan S, Kuguthasan S, Kolachala VL, Gupta NA. Soluble PD1 levels are increased with disease activity in paediatric onset autoimmune hepatitis and inflammatory bowel disease. Autoimmunity 2020; 53:253-260. [PMID: 32370568 DOI: 10.1080/08916934.2020.1755964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Immune mediated liver diseases entail a broad category which are associated with increased morbidity and mortality amongst the paediatric population. Programmed Death 1 (PD1) is an inhibitory receptor mainly expressed by T cells, and when activated shed into plasma as soluble PD1(sPD1). The AIM of this study was to evaluate sPD1 levels in plasma of paediatric patients with Autoimmune Hepatitis (AIH), Primary Sclerosing Cholangitis (PSC), AIH and PSC overlap, Inflammatory Bowel Disease (IBD) alone, and concurrent PSC/IBD and AIH/IBD in order to identify a biomarker to response or predict relapse verses remission.Methods: Plasma samples were collected from 41 paediatric patients. AIH patients were further categorized into active, incomplete responders and responders, based on response to standard therapy. sPD1 levels were measured and compared between PSC, PSC/AIH, IBD alone, PSC/IBD and AIH/IBD patients and between active AIH, incomplete responders and responders. Flow cytometry was performed to further analyze CD45RA+, CD3CD4, CD8, CCR7, CXCR3, CD38 and PD1.Results: In the AIH group, those with active disease demonstrated a significantly higher sPD1 levels in comparison to responders (*p > .001). However, the incomplete responders didn't show a reduction in sPD1 in comparison to active AIH and patients with IBD alone. Interestingly, patients with PSC showed significantly lower level of sPD1 compared to active AIH (*p < .002), whereas, patients with PSC in conjunction with AIH (*p < .006) or IBD (*p < .02) demonstrated a significant increase in sPD1. In addition, we have observed increased levels of circulating CD4 and CD8 bound PD1 in active AIH but not in PSC or responders suggesting T cells activation. CD4+ PD1 double positive cells demonstrated increased expression of CXCR3. Thus, suggesting the activation of PD1 + T cells is mediating through CXCR3 in Autoimmune hepatitis.Conclusions: Our study demonstrates that sPD1 levels correlate with active disease state of AIH and IBD. sPD1 levels did not correlate with PSC. However, PSC in conjunction with AIH or IBD showed higher levels of sPD1. This suggests that T cell activation plays a critical role in active AIH and IBD but not in PSC. Soluble PDI levels could be used as a clinical biomarker to assess response in patients with AIH and for prospectively monitoring PSC patients for development of IBD or AIH.
Collapse
Affiliation(s)
- Timothy Hadley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Transplant Services, Children's Healthcare of Atlanta (CHOA), Atlanta, GA, USA
| | - Scott Gillespie
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hillary Espinoza
- Transplant Services, Children's Healthcare of Atlanta (CHOA), Atlanta, GA, USA
| | - Jarod Prince
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Subra Kuguthasan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Nitika A Gupta
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Transplant Services, Children's Healthcare of Atlanta (CHOA), Atlanta, GA, USA
| |
Collapse
|
11
|
Ji Z, Wu S, Xu Y, Qi J, Su X, Shen L. Obesity Promotes EAE Through IL-6 and CCL-2-Mediated T Cells Infiltration. Front Immunol 2019; 10:1881. [PMID: 31507583 PMCID: PMC6718738 DOI: 10.3389/fimmu.2019.01881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Growing evidence suggests that obesity is associated with the susceptibility and disease severity of multiple sclerosis. The chronic inflammation induced by obesity is believed to contribute to this process. However, the immune mechanisms connecting obesity to the prevalence and pathogenesis of MS are poorly defined. In this study, we show that high fat diet (HFD)-induced obese mice developed an exacerbated EAE as indicated by higher clinical scores and more severe pathological changes in spinal cord than the control mice fed with normal diet (ND), following immunization with myelin oligodendrocyte glycoprotein (MOG) 35–55 peptide. The exacerbation of EAE in HFD mice was associated with enhanced microglial activation and increased expansion of Th1 and Th17 cells. The HFD mice also showed aggravated disease in an adoptive T cell transfer EAE model. Mechanistically, HFD augmented the expression level of IL-6 and CCL-2 both in serum and brain, and blockade of IL-6 and CCL-2 signal ameliorated EAE with reduced T cells infiltration in CNS. Taken together, our results suggest that obesity promotes CNS inflammation in EAE through IL-6 and CCL-2 mediated the inflammatory cells infiltration.
Collapse
Affiliation(s)
- Zhe Ji
- Translational Medicine Research Center, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaru Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Qi
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Shen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Pontes Ferreira C, Cariste LM, Ferri Moraschi B, Ferrarini Zanetti B, Won Han S, Araki Ribeiro D, Vieira Machado A, Lannes-Vieira J, Gazzinelli RT, Vasconcelos JRC. CXCR3 chemokine receptor guides Trypanosoma cruzi-specific T-cells triggered by DNA/adenovirus ASP2 vaccine to heart tissue after challenge. PLoS Negl Trop Dis 2019; 13:e0007597. [PMID: 31356587 PMCID: PMC6687206 DOI: 10.1371/journal.pntd.0007597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/08/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
CD8+ T lymphocytes play an important role in controlling infections by intracellular pathogens. Chemokines and their receptors are crucial for the migration of CD8+ T-lymphocytes, which are the main IFNγ producers and cytotoxic effectors cells. Although the participation of chemokine ligands and receptors has been largely explored in viral infection, much less is known in infection by Trypanosoma cruzi, the causative agent of Chagas disease. After T. cruzi infection, CXCR3 chemokine receptor is highly expressed on the surface of CD8+ T-lymphocytes. Here, we hypothesized that CXCR3 is a key molecule for migration of parasite-specific CD8+ T-cells towards infected tissues, where they may play their effector activities. Using a model of induction of resistance to highly susceptible A/Sn mice using an ASP2-carrying DNA/adenovirus prime-boost strategy, we showed that CXCR3 expression was upregulated on CD8+ T-cells, which selectively migrated towards its ligands CXCL9 and CXCL10. Anti-CXCR3 administration reversed the vaccine-induced resistance to T. cruzi infection in a way associated with hampered cytotoxic activity and increased proapoptotic markers on the H2KK-restricted TEWETGQI-specific CD8+ T-cells. Furthermore, CXCR3 receptor critically guided TEWETGQI-specific effector CD8+ T-cells to the infected heart tissue that express CXCL9 and CXCL10. Overall, our study pointed CXCR3 and its ligands as key molecules to drive T. cruzi-specific effector CD8+ T-cells into the infected heart tissue. The unveiling of the process driving cell migration and colonization of infected tissues by pathogen-specific effector T-cells is a crucial requirement to the development of vaccine strategies.
Collapse
Affiliation(s)
- Camila Pontes Ferreira
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Barbara Ferri Moraschi
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Sang Won Han
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Ricardo Tostes Gazzinelli
- René Rachou Research Center, Fiocruz, Minas Gerais, Brazil
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, United States ofAmerica
| | - José Ronnie Carvalho Vasconcelos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
- Department of Biosciences, Federal University of São Paulo, Santos, Brazil
- * E-mail:
| |
Collapse
|
13
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Xing C, Ye DW, Tian YK. The Role of CXCR3 in Neurological Diseases. Curr Neuropharmacol 2019; 17:142-150. [PMID: 29119926 PMCID: PMC6343204 DOI: 10.2174/1570159x15666171109161140] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neurological diseases have become an obvious challenge due to insufficient therapeutic intervention. Therefore, novel drugs for various neurological disorders are in desperate need. Recently, compelling evidence has demonstrated that chemokine receptor CXCR3, which is a G protein-coupled receptor in the CXC chemokine receptor family, may play a pivotal role in the development of neurological diseases. The aim of this review is to provide evidence for the potential of CXCR3 as a therapeutic target for neurological diseases. METHODS English journal articles that focused on the invovlement of CXCR3 in neurological diseases were searched via PubMed up to May 2017. Moreover, reference lists from identified articles were included for overviews. RESULTS The expression level of CXCR3 in T cells was significantly elevated in several neurological diseases, including multiple sclerosis (MS), glioma, Alzheimer's disease (AD), chronic pain, human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and bipolar disorder. CXCR3 antagonists showed therapeutic effects in these neurological diseases. CONCLUSION These studies provided hard evidence that CXCR3 plays a vital role in the pathogenesis of MS, glioma, AD, chronic pain, HAM/TSP and bipolar disorder. CXCR3 is a crucial molecule in neuroinflammatory and neurodegenerative diseases. It regulates the activation of infiltrating cells and resident immune cells. However, the exact functions of CXCR3 in neurological diseases are inconclusive. Thus, it is important to understand the topic of chemokines and the scope of their activity in neurological diseases.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Rong Zhou
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui Xing
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Karin N, Razon H. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. Cytokine 2018; 109:24-28. [DOI: 10.1016/j.cyto.2018.02.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/25/2018] [Accepted: 02/06/2018] [Indexed: 01/07/2023]
|
15
|
Nastase MV, Zeng-Brouwers J, Beckmann J, Tredup C, Christen U, Radeke HH, Wygrecka M, Schaefer L. Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney. Matrix Biol 2018; 68-69:293-317. [DOI: 10.1016/j.matbio.2017.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
|
16
|
Karin N. Chemokines and cancer: new immune checkpoints for cancer therapy. Curr Opin Immunol 2018; 51:140-145. [PMID: 29579623 DOI: 10.1016/j.coi.2018.03.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/29/2018] [Accepted: 03/01/2018] [Indexed: 02/08/2023]
Abstract
The current review focuses on two chemokine-chemokine receptor interactions: CXCL10-CXCR3 and CCL1-CCR8. We show that CXCL10 acts on CD4+ and CD8+ T cells to enhance anti-tumor immunity, and explore the translational perspectives of these findings. As for CCR8 very recently, we identified a novel subset of CCR8+CD4+FOXp3+ regulatory T cells (Treg) that are major drivers of immune regulation. We observed that one of the four CCR8 ligands, CCL1, produced by these cells, potentiates their suppressive activity via induction of CCR8, FOXp3, CD39, Granzyme-B, and IL-10 in a positive feedback mechanism, making them master drivers of immune regulation. Collectively, this suggests blocking the CCR8-CCL1 interaction, alone or combined with other immune checkpoint inhibitors, as an approach to treat malignant diseases.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion - Israel Institute of Technology, P.O.B. 9697, Haifa 31096, Israel.
| |
Collapse
|
17
|
Gregor CE, Foeng J, Comerford I, McColl SR. Chemokine-Driven CD4 + T Cell Homing: New Concepts and Recent Advances. Adv Immunol 2017; 135:119-181. [DOI: 10.1016/bs.ai.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Chen Q, Liu Y, Lu A, Ni K, Xiang Z, Wen K, Tu W. Influenza virus infection exacerbates experimental autoimmune encephalomyelitis disease by promoting type I T cells infiltration into central nervous system. J Autoimmun 2016; 77:1-10. [PMID: 28341037 DOI: 10.1016/j.jaut.2016.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 11/28/2022]
Abstract
Multiple sclerosis starts with increased migration of auto-reactive lymphocytes across the blood-brain barrier, resulting in persistent neurodegeneration. Clinical and epidemiological studies indicated upper respiratory viral infections are associated with clinical exacerbation of multiple sclerosis. However, so far there is no any direct evidence to support it. Using the experimental autoimmune encephalomyelitis mice as the model for multiple sclerosis, we demonstrated that mice experienced with influenza virus infection were unable to recover from experimental autoimmune encephalomyelitis with a long-term exacerbation. The exacerbated disease was due to more type I T cells, such as CD45highCD4+CD44high, CD45highCD4+CCR5+, CD45high IFNγ+CD4+, MOG35-55-specific IFNγ+CD4+ and influenza virus-specific IFNγ+CD4+ T cells, infiltrating central nervous system in mice with prior influenza virus infection. Influenza virus infection created a notable inflammatory environment in lung and mediastinal lymph node after influenza virus inoculation, suggesting the lung may constitute an inflammatory niche in which auto-aggressive T cells gain the capacity to enter CNS. Indeed, the early stage of EAE disease was accompanied by increased CCR5+CD4+, CXCR3+CD4+ T cell and MOG35-55 specific CD4+ T cells localized in the lung in influenza virus-infected mice. CCL5/CCR5 might mediate the infiltration of type I T cells into CNS during the disease development after influenza infection. Administration of CCR5 antagonist could significantly attenuate the exacerbated disease. Our study provided the evidence that the prior influenza virus infection may promote the type I T cells infiltration into the CNS, and subsequently cause a long-term exacerbation of experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Qingyun Chen
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Yinping Liu
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Aizhen Lu
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Ke Ni
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Zheng Xiang
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Kun Wen
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Wenwei Tu
- Department of Paediatrics & Adolescent Medicine, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Bonecchi R, Garlanda C, Mantovani A, Riva F. Cytokine decoy and scavenger receptors as key regulators of immunity and inflammation. Cytokine 2016; 87:37-45. [PMID: 27498604 DOI: 10.1016/j.cyto.2016.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/16/2022]
Abstract
IL-1R2 was the first decoy receptor to be described. Subsequently receptors which act as pure decoys or scavengers or trigger dampening of cytokine signaling have been described for cytokines and chemokines. Here we review the current understanding of the mode of action and significance in pathology of the chemokine atypical receptor ACKR2, the IL-1 decoy receptor IL-1R2 and the atypical IL-1 receptor family IL-1R8. Decoy and scavenger receptors with no or atypical signaling have emerged as a general strategy conserved in evolution to tune the action of cytokines, chemokines and growth factors.
Collapse
Affiliation(s)
- Raffaella Bonecchi
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| | - Cecilia Garlanda
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy.
| | - Federica Riva
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Milan, Italy
| |
Collapse
|
20
|
Chheda ZS, Sharma RK, Jala VR, Luster AD, Haribabu B. Chemoattractant Receptors BLT1 and CXCR3 Regulate Antitumor Immunity by Facilitating CD8+ T Cell Migration into Tumors. THE JOURNAL OF IMMUNOLOGY 2016; 197:2016-26. [PMID: 27465528 DOI: 10.4049/jimmunol.1502376] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 06/26/2016] [Indexed: 12/29/2022]
Abstract
Immunotherapies have shown considerable efficacy for the treatment of various cancers, but a multitude of patients remain unresponsive for various reasons, including poor homing of T cells into tumors. In this study, we investigated the roles of the leukotriene B4 receptor, BLT1, and CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, under endogenous as well as vaccine-induced antitumor immune response in a syngeneic murine model of B16 melanoma. Significant accelerations in tumor growth and reduced survival were observed in both BLT1(-/-) and CXCR3(-/-) mice as compared with wild-type (WT) mice. Analysis of tumor-infiltrating leukocytes revealed significant reduction of CD8(+) T cells in the tumors of BLT1(-/-) and CXCR3(-/-) mice as compared with WT tumors, despite their similar frequencies in the periphery. Adoptive transfer of WT but not BLT1(-/-) or CXCR3(-/-) CTLs significantly reduced tumor growth in Rag2(-/-) mice, a function attributed to reduced infiltration of knockout CTLs into tumors. Cotransfer experiments suggested that WT CTLs do not facilitate the infiltration of knockout CTLs to tumors. Anti-programmed cell death-1 (PD-1) treatment reduced the tumor growth rate in WT mice but not in BLT1(-/-), CXCR3(-/-), or BLT1(-/-)CXCR3(-/-) mice. The loss of efficacy correlated with failure of the knockout CTLs to infiltrate into tumors upon anti-PD-1 treatment, suggesting an obligate requirement for both BLT1 and CXCR3 in mediating anti-PD-1 based antitumor immune response. These results demonstrate a critical role for both BLT1 and CXCR3 in CTL migration to tumors and thus may be targeted to enhance efficacy of CTL-based immunotherapies.
Collapse
Affiliation(s)
- Zinal S Chheda
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville Health Sciences, Louisville, KY 40202
| | - Rajesh K Sharma
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Division of Medical Oncology, Department of Medicine, University of Louisville Health Sciences, Louisville, KY 40202; and
| | - Venkatakrishna R Jala
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville Health Sciences, Louisville, KY 40202
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139
| | - Bodduluri Haribabu
- James Graham Brown Cancer Center, University of Louisville Health Sciences, Louisville, KY 40202; Department of Microbiology and Immunology, University of Louisville Health Sciences, Louisville, KY 40202;
| |
Collapse
|
21
|
Barthelmes J, Tafferner N, Kurz J, de Bruin N, Parnham MJ, Geisslinger G, Schiffmann S. Induction of Experimental Autoimmune Encephalomyelitis in Mice and Evaluation of the Disease-dependent Distribution of Immune Cells in Various Tissues. J Vis Exp 2016. [PMID: 27214391 DOI: 10.3791/53933] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis is presumed to be an inflammatory autoimmune disease, which is characterized by lesion formation in the central nervous system (CNS) resulting in cognitive and motor impairment. Experimental autoimmune encephalomyelitis (EAE) is a useful animal model of MS, because it is also characterized by lesion formation in the CNS, motor impairment and is also driven by autoimmune and inflammatory reactions. One of the EAE models is induced with a peptide derived from the myelin oligodendrocyte protein (MOG)35-55 in mice. The EAE mice develop a progressive disease course. This course is divided into three phases: the preclinical phase (day 0 - 9), the disease onset (day 10 - 11) and the acute phase (day 12 - 14). MS and EAE are induced by autoreactive T cells that infiltrate the CNS. These T cells secrete chemokines and cytokines which lead to the recruitment of further immune cells. Therefore, the immune cell distribution in the spinal cord during the three disease phases was investigated. To highlight the time point of the disease at which the activation/proliferation/accumulation of T cells, B cells and monocytes starts, the immune cell distribution in lymph nodes, spleen and blood was also assessed. Furthermore, the levels of several cytokines (IL-1β, IL-6, IL-23, TNFα, IFNγ) in the three disease phases were determined, to gain insight into the inflammatory processes of the disease. In conclusion, the data provide an overview of the functional profile of immune cells during EAE pathology.
Collapse
Affiliation(s)
- Julia Barthelmes
- Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt
| | - Nadja Tafferner
- Project Group for Translational Medicine & Pharmacology, Fraunhofer IME
| | - Jennifer Kurz
- Project Group for Translational Medicine & Pharmacology, Fraunhofer IME
| | - Natasja de Bruin
- Project Group for Translational Medicine & Pharmacology, Fraunhofer IME
| | - Michael J Parnham
- Project Group for Translational Medicine & Pharmacology, Fraunhofer IME
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University Hospital Frankfurt
| | - Susanne Schiffmann
- Project Group for Translational Medicine & Pharmacology, Fraunhofer IME;
| |
Collapse
|
22
|
Chung CY, Liao F. CXCR3 signaling in glial cells ameliorates experimental autoimmune encephalomyelitis by restraining the generation of a pro-Th17 cytokine milieu and reducing CNS-infiltrating Th17 cells. J Neuroinflammation 2016; 13:76. [PMID: 27068264 PMCID: PMC4828793 DOI: 10.1186/s12974-016-0536-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/30/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS). It has been shown that Th17 cells are critical for EAE pathogenesis. Mice lacking CXCR3 develop aggravated EAE compared with wild-type (WT) mice. This study investigated the effect of CXCR3 on Th17 expansion during EAE and further addressed the underlying mechanism. METHODS Both active EAE and adoptive-transfer EAE experiments were employed for studying EAE pathogenesis in WT and CXCR3(-/-) mice. Demyelination and leukocyte infiltration in the spinal cord of mice were analyzed by luxol fast blue staining and flow cytometry analysis, respectively. Glial cells expressing CXCR3 in the spinal cord were analyzed by immunofluorescence staining. Cytokine and chemokine levels in the spinal cord were analyzed using quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA). The glial cell line U87MG was employed for studying the CXCR3 signaling-mediated mechanism regulating Th17 expansion. RESULTS CXCR3(-/-) mice exhibited more severe EAE and had significantly increased central nervous system (CNS)-infiltrating Th17 cells compared with WT mice. Adoptive-transfer experiments showed that CXCR3(-/-) recipient mice that received Th17 cells polarized from splenocytes of myelin oligodendrocyte glycoprotein (MOG)-immunized CXCR3(-/-) mice or MOG-immunized WT mice always developed more severe EAE and had significantly increased CNS-infiltrating Th17 cells compared with WT recipient mice that received Th17 cells from the same origin. Furthermore, during EAE, the number of activated glial cells was increased in the CNS of MOG-immunized CXCR3(-/-) mice, and CXCR3-deficient glial cells expressed increased levels of cytokine genes required for Th17 expansion and recruitment. Finally, we found that extracellular signal-regulated kinase (ERK) activation elicited by CXCR3 signaling in U87MG cells attenuated the activation of NF-κB, a key transcription factor critical for the induction of IL-23 and CCL20, which are required for Th17 cell expansion and recruitment, respectively. CONCLUSIONS This study demonstrates a previously unrecognized role of CXCR3 signaling in glial cells in negatively regulating Th17 cell expansion during EAE. Our results demonstrate that, in addition to its well-known role in the recruitment of immune cells, CXCR3 in CNS glial cells plays a critical role in restraining the pro-Th17 cytokine/chemokine milieu during EAE, thereby diminishing Th17 cell expansion in the CNS and suppressing disease development.
Collapse
Affiliation(s)
- Chen-Yen Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Fang Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
23
|
Benvenuto F, Voci A, Carminati E, Gualandi F, Mancardi G, Uccelli A, Vergani L. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation. Stem Cell Res Ther 2015; 6:245. [PMID: 26651832 PMCID: PMC4676115 DOI: 10.1186/s13287-015-0222-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022] Open
Abstract
Introduction Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. Methods We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Results Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3+-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3+ cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Conclusions Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.
Collapse
Affiliation(s)
- Federica Benvenuto
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS-AUO San Martino-IST, Largo Paolo Daneo 3, 16132, Genova, Italy. .,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 7, 16132, Genova, Italy.
| | - Adriana Voci
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy.
| | - Enrico Carminati
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy.
| | - Francesca Gualandi
- Division of Hematology and Bone Marrow Transplant Unit, IRCCS-AUO San Martino-IST, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Gianluigi Mancardi
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS-AUO San Martino-IST, Largo Paolo Daneo 3, 16132, Genova, Italy. .,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 7, 16132, Genova, Italy.
| | - Antonio Uccelli
- Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, IRCCS-AUO San Martino-IST, Largo Paolo Daneo 3, 16132, Genova, Italy. .,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 7, 16132, Genova, Italy.
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
24
|
Karin N, Wildbaum G, Thelen M. Biased signaling pathways via CXCR3 control the development and function of CD4+ T cell subsets. J Leukoc Biol 2015; 99:857-62. [PMID: 26657511 DOI: 10.1189/jlb.2mr0915-441r] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022] Open
Abstract
Structurally related chemotactic cytokines (chemokines) regulate cell trafficking through interactions with 7-transmembrane domain, G protein-coupled receptors. Biased signaling or functional selectivity is a concept that describes a situation where a 7-transmembrane domain receptor preferentially activates one of several available cellular signaling pathways. It can be divided into 3 distinct cases: ligand bias, receptor bias, and tissue or cell bias. Many studies, including those coming from our lab, have shown that only a limited number of chemokines are key drivers of inflammation. We have referred to them as "driver chemokines." They include the CXCR3 ligands CXCL9 and CXCL10, the CCR2 ligand CCL2, all 3 CCR5 ligands, and the CCR9 ligand CCL25. As for CXCR3, despite the proinflammatory nature of CXCL10 and CXCL9, transgenic mice lacking CXCR3 display an aggravated manifestation of different autoimmune disease, including Type I diabetes and experimental autoimmune encephalomyelitis. Recently, we showed that whereas CXCL9 and CXCL10 induce effector Th1/Th17 cells to promote inflammation, CXCL11, with a relatively higher binding affinity to CXCR3, drives the development of the forkhead box P3-negative IL-10(high) T regulatory 1 cell subset and hence, dampens inflammation. We also showed that CXCL9/CXCL10 activates a different signaling cascade than CXCL11, despite binding to the same receptor, CXCR3, which results in these diverse biologic activities. This provides new evidence for the role of biased signaling in regulating biologic activities, in which CXCL11 induces ligand bias at CXCR3 and receptor-biased signaling via atypical chemokine receptor 3.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Rappaport Family Institute for Research in the Medical Sciences and Bruce Rappaport Faculty of Medicine, Haifa, Israel; and
| | - Gizi Wildbaum
- Department of Immunology, Rappaport Family Institute for Research in the Medical Sciences and Bruce Rappaport Faculty of Medicine, Haifa, Israel; and
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
25
|
Karin N, Wildbaum G. The Role of Chemokines in Shaping the Balance Between CD4(+) T Cell Subsets and Its Therapeutic Implications in Autoimmune and Cancer Diseases. Front Immunol 2015; 6:609. [PMID: 26648938 PMCID: PMC4663243 DOI: 10.3389/fimmu.2015.00609] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 11/16/2015] [Indexed: 12/17/2022] Open
Abstract
Chemokines are the key activators of adhesion molecule and also drivers of leukocyte migration to inflammatory sites and are therefore mostly considered as proinflammatory mediators. Many studies, including ours, imply that targeting the function of several key chemokines, but not many others, could effectively suppress inflammatory responses and inflammatory autoimmunity. Along with this, a single chemokine named CXCL10 could be used to induce antitumor immunity, and thereby suppress myeloma. Our working hypothesis is that some chemokines differ from others as aside from being chemoattractants for leukocytes and effective activators of adhesion receptors that possess additional biological properties making them "driver chemokines." We came up with this notion when studying the interlay between CXCR4 and CXCL12 and between CXCR3 and its three ligands: CXCL9, CXCL10, and CXCL11. The current mini-review focuses on these ligands and their biological properties. First, we elaborate the role of cytokines in directing the polarization of effector and regulatory T cell subset and the plasticity of this process. Then, we extend this notion to chemokines while focusing on CXCL 12 and the CXCR3 ligands. Finally, we elaborate the potential clinical implications of these studies for therapy of autoimmunity, graft-versus-host disease, and cancer.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology and Rappaport Family Institute for Research in the Medical Sciences Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa , Israel
| | - Gizi Wildbaum
- Department of Immunology and Rappaport Family Institute for Research in the Medical Sciences Rappaport Faculty of Medicine, Technion - Israel Institute of Technology , Haifa , Israel
| |
Collapse
|
26
|
The role of chemokines in adjusting the balance between CD4+ effector T cell subsets and FOXp3-negative regulatory T cells. Int Immunopharmacol 2015; 28:829-35. [DOI: 10.1016/j.intimp.2015.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
27
|
Roberts WK, Blachère NE, Frank MO, Dousmanis A, Ransohoff RM, Darnell RB. A destructive feedback loop mediated by CXCL10 in central nervous system inflammatory disease. Ann Neurol 2015. [PMID: 26224283 PMCID: PMC4583819 DOI: 10.1002/ana.24494] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective Paraneoplastic neurologic disorders (PND) are autoimmune diseases associated with cancer and ectopic expression of a neuronal antigen in a peripheral tumor. Patients with PND harbor high‐titer antibodies and T cells in their serum and cerebrospinal fluid (CSF) that are specific to the tumor antigen, and treatment with the immunosuppressant FK506 (tacrolimus) decreases CSF white blood cell counts. The objective of this study was to determine the effect of FK506 on CSF chemokine levels in PND patients. Methods CSF samples before and after FK506 treatment were tested by multiplex assay for the presence of 27 cytokines. Follow‐up in vitro experiments aimed to determine whether T cells secrete CXCL10 in response to cognate antigen. Results Here we report that PND patients harbor high levels of the chemokine CXCL10 in their CSF. CXCL10 is a cytokine that recruits CXCR3+ cells such as activated T cells, and we found that FK506 treatment specifically decreased CSF CXCL10 from among 27 cytokines tested. In vitro, CXCL10 was only produced during antigen‐specific cognate interactions between T cells and antigen‐presenting cells (APCs) when interferon‐γ (IFNγ) receptors were present on the T cell. Interpretation These results support a model in which antigen‐specific T cell stimulation by PND APCs triggers IFNγ, followed by CXCL10 production and further lymphocyte recruitment, suggesting that treatments targeting T cells or CXCL10 in the central nervous system (CNS) may interrupt a destructive positive feedback loop present in CNS inflammation. Ann Neurol 2015;78:619–629
Collapse
Affiliation(s)
- Wendy K Roberts
- Laboratory of Molecular Neuro-oncology, Rockefeller University, New York, NY
| | - Nathalie E Blachère
- Laboratory of Molecular Neuro-oncology, Rockefeller University, New York, NY.,Howard Hughes Medical Institute, Rockefeller University, New York, NY
| | - Mayu O Frank
- Laboratory of Molecular Neuro-oncology, Rockefeller University, New York, NY
| | | | | | - Robert B Darnell
- Laboratory of Molecular Neuro-oncology, Rockefeller University, New York, NY.,Howard Hughes Medical Institute, Rockefeller University, New York, NY.,New York Genome Center, New York, NY
| |
Collapse
|
28
|
Miller NM, Wang J, Tan Y, Dittel BN. Anti-inflammatory mechanisms of IFN-γ studied in experimental autoimmune encephalomyelitis reveal neutrophils as a potential target in multiple sclerosis. Front Neurosci 2015; 9:287. [PMID: 26347600 PMCID: PMC4539553 DOI: 10.3389/fnins.2015.00287] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 07/30/2015] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) mediated by T helper (h)1 and/or Th17 CD4 T cells that drive inflammatory lesion development along with demyelination and neuronal damage. Defects in immune regulatory mechanisms are thought to play a role in the pathogenesis of MS. While an early clinical trial indicated that IFN-γ administration was detrimental to MS, studies in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE), indicated that IFN-γ exhibits a number of anti-inflammatory properties within the CNS. These mechanisms include inhibition of IL-17 production, induction of regulatory T cells, T cell apoptosis and regulation of chemokine production. Mice deficient in IFN-γ or its receptor were instrumental in deciphering the anti-inflammatory properties of IFN-γ in the CNS. In particular, they revealed that IFN-γ is a major regulator of neutrophil recruitment into the CNS, which by a variety of mechanisms including disruption of the blood-brain-barrier (BBB) and production of reactive oxygen species are thought to contribute to the onset and progression of EAE. Neutrophils were also shown to be instrumental in EAE relapses. To date neutrophils have not been appreciated as a driver of MS, but more recently based largely on strong EAE data this view is being reevaluated by some investigators in the field.
Collapse
Affiliation(s)
- Nichole M Miller
- BloodCenter of Wisconsin, Blood Research Institute Milwaukee, WI, USA
| | - Jun Wang
- BloodCenter of Wisconsin, Blood Research Institute Milwaukee, WI, USA
| | - Yanping Tan
- BloodCenter of Wisconsin, Blood Research Institute Milwaukee, WI, USA
| | - Bonnie N Dittel
- BloodCenter of Wisconsin, Blood Research Institute Milwaukee, WI, USA
| |
Collapse
|
29
|
Barthelmes J, de Bazo AM, Pewzner-Jung Y, Schmitz K, Mayer CA, Foerch C, Eberle M, Tafferner N, Ferreirós N, Henke M, Geisslinger G, Futerman AH, Grösch S, Schiffmann S. Lack of ceramide synthase 2 suppresses the development of experimental autoimmune encephalomyelitis by impairing the migratory capacity of neutrophils. Brain Behav Immun 2015; 46:280-92. [PMID: 25697397 DOI: 10.1016/j.bbi.2015.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/28/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022] Open
Abstract
Ceramide synthases (CerS) synthesise ceramides of defined acyl chain lengths, which are thought to mediate cellular processes in a chain length-dependent manner. In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), we observed a significant elevation of CerS2 and its products, C24-ceramides, in CD11b(+) cells (monocytes and neutrophils) isolated from blood. This result correlates with the clinical finding that CerS2 mRNA expression and C24-ceramide levels were significantly increased by 2.2- and 1.5-fold, respectively, in white blood cells of MS patients. The increased CerS2 mRNA/C24-ceramide expression in neutrophils/monocytes seems to mediate pro-inflammatory effects, since a specific genetic deletion of CerS2 in blood cells or a total genetic deletion of CerS2 significantly delayed the onset of clinical symptoms, due to a reduced infiltration of immune cells, in particular neutrophils, into the central nervous system. CXCR2 chemokine receptors, expressed on neutrophils, promote the migration of neutrophils into the central nervous system, which is a prerequisite for the recruitment of further immune cells and the inflammatory process that leads to the development of MS. Interestingly, neutrophils isolated from CerS2 null EAE mice, as opposed to WT EAE mice, were characterised by significantly lower CXCR2 receptor mRNA expression resulting in their reduced migratory capacity towards CXCL2. Most importantly, G-CSF-induced CXCR2 expression was significantly reduced in CerS2 null neutrophils and their migratory capacity was significantly impaired. In conclusion, our data strongly indicate that G-CSF-induced CXCR2 expression is regulated in a CerS2-dependent manner and that CerS2 thereby promotes the migration of neutrophils, thus, contributing to inflammation and the development of EAE and MS.
Collapse
Affiliation(s)
- Julia Barthelmes
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Anika Männer de Bazo
- Department of Neurology, Goethe-University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt/Main, Germany
| | - Yael Pewzner-Jung
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Katja Schmitz
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Christoph A Mayer
- Department of Neurology, Goethe-University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt/Main, Germany
| | - Christian Foerch
- Department of Neurology, Goethe-University Frankfurt, Schleusenweg 2-16, 60528 Frankfurt/Main, Germany
| | - Max Eberle
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Nadja Tafferner
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Nerea Ferreirós
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Marina Henke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sabine Grösch
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Susanne Schiffmann
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
30
|
Zhai D, Lee FHF, D'Souza C, Su P, Zhang S, Jia Z, Zhang L, Wong AHC, Liu F. Blocking GluR2-GAPDH ameliorates experimental autoimmune encephalomyelitis. Ann Clin Transl Neurol 2015; 2:388-400. [PMID: 25909084 PMCID: PMC4402084 DOI: 10.1002/acn3.182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is the most common disabling neurological disease of young adults. The pathophysiological mechanism of MS remains largely unknown and no cure is available. Current clinical treatments for MS modulate the immune system, with the rationale that autoimmunity is at the core of MS pathophysiology. METHODS Experimental autoimmune encephalitis (EAE) was induced in mice with MOG35-55 and clinical scoring was performed to monitor signs of paralysis. EAE mice were injected intraperitoneally with TAT-fusion peptides daily from day 10 until day 30 after immunization, and their effects were measured at day 17 or day 30. RESULTS We report a novel target for the development of MS therapy, which aimed at blocking glutamate-mediated neurotoxicity through targeting the interaction between the AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid) receptor and an interacting protein. We found that protein complex composed of the GluR2 subunit of AMPA receptors and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was present at significantly higher levels in postmortem tissue from MS patients and in EAE mice, an animal model for MS. Next, we developed a peptide that specifically disrupts the GluR2 -GAPDH complex. This peptide greatly improves neurological function in EAE mice, reduces neuron death, rescues demyelination, increases oligodendrocyte survival, and reduces axonal damage in the spinal cords of EAE mice. More importantly, our peptide has no direct suppressive effect on naive T-cell responses or basal neurotransmission. INTERPRETATION The GluR2 -GAPDH complex represents a novel therapeutic target for the development of medications for MS that work through a different mechanism than existing treatments.
Collapse
Affiliation(s)
- Dongxu Zhai
- Department of Neuroscience, Centre for Addiction and Mental HealthToronto, Ontario, Canada, M5T 1R8
| | - Frankie H F Lee
- Department of Neuroscience, Centre for Addiction and Mental HealthToronto, Ontario, Canada, M5T 1R8
| | - Cheryl D'Souza
- Toronto General Research Institute, University Health NetworkToronto, Ontario, Canada
| | - Ping Su
- Department of Neuroscience, Centre for Addiction and Mental HealthToronto, Ontario, Canada, M5T 1R8
| | - Shouping Zhang
- Neuroscience & Mental Health, The Hospital for Sick ChildrenToronto, Ontario, Canada
| | - Zhengping Jia
- Neuroscience & Mental Health, The Hospital for Sick ChildrenToronto, Ontario, Canada
| | - Li Zhang
- Toronto General Research Institute, University Health NetworkToronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of TorontoOntario, Canada
| | - Albert H C Wong
- Department of Neuroscience, Centre for Addiction and Mental HealthToronto, Ontario, Canada, M5T 1R8
- Department of Psychiatry, University of TorontoOntario, Canada
| | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental HealthToronto, Ontario, Canada, M5T 1R8
- Department of Psychiatry, University of TorontoOntario, Canada
| |
Collapse
|
31
|
McPherson RC, Turner DG, Mair I, O’Connor RA, Anderton SM. T-bet Expression by Foxp3(+) T Regulatory Cells is Not Essential for Their Suppressive Function in CNS Autoimmune Disease or Colitis. Front Immunol 2015; 6:69. [PMID: 25741342 PMCID: PMC4332357 DOI: 10.3389/fimmu.2015.00069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 12/14/2022] Open
Abstract
Accumulation of T regulatory (Treg) cells within the central nervous system (CNS) during experimental autoimmune encephalomyelitis (EAE) is essential for the resolution of disease. CNS Treg cells have been shown to uniformly express the Th1-associated molecules, T-bet and CXCR3. Here, we report that the expression of T-bet is not required for the function of these Treg within the CNS. Using mice that lacked T-bet expression specifically within the Treg compartment, we demonstrate that there was no deficit in Treg recruitment into the CNS during EAE and no difference in the resolution of disease compared to control mice. T-bet deficiency did not impact on the in vitro suppressive capacity of Treg. Transfer of T-bet-deficient Treg was able to suppress clinical signs of either EAE or colitis. These observations demonstrate that, although Treg can acquire characteristics associated with pathogenic T effector cells, this process is not necessarily required for their suppressive capacity and the resolution of autoimmune inflammation.
Collapse
Affiliation(s)
- Rhoanne C. McPherson
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Darryl G. Turner
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Iris Mair
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Richard A. O’Connor
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Stephen M. Anderton
- MRC Centre for Inflammation Research, Centre for Multiple Sclerosis Research and Centre for Immunity Infection and Evolution, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Ji Z, Fan Z, Zhang Y, Yu R, Yang H, Zhou C, Luo J, Ke ZJ. Thiamine deficiency promotes T cell infiltration in experimental autoimmune encephalomyelitis: the involvement of CCL2. THE JOURNAL OF IMMUNOLOGY 2014; 193:2157-67. [PMID: 25063874 DOI: 10.4049/jimmunol.1302702] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is a complex multifactorial disease that results from the interplay between environmental factors and a susceptible genetic background. Experimental autoimmune encephalomyelitis (EAE) has been widely used to investigate the mechanisms underlying MS pathogenesis. Chemokines, such as CCL2, are involved in the development of EAE. We have previously shown that thiamine deficiency (TD) induced CCL2 in neurons. We hypothesized that TD may affect the pathogenesis of EAE. In this study, EAE was induced in C57BL/6J mice by the injection of myelin oligodendroglial glycoprotein (MOG) peptides 35-55 with or without TD. TD aggravated the development of EAE, which was indicated by clinical scores and pathologic alterations in the spinal cord. TD also accelerated the development of EAE in an adoptive transfer EAE model. TD caused microglial activation and a drastic increase (up 140%) in leukocyte infiltration in the spinal cord of the EAE mice; specifically, TD increased Th1 and Th17 cells. TD upregulated the expression of CCL2 and its receptor CCR2 in the spinal cord of EAE mice. Cells in peripheral lymph node and spleen isolated from MOG-primed TD mice showed much stronger proliferative responses to MOG. CCL2 stimulated the proliferation and migration of T lymphocytes in vitro. Our results suggested that TD exacerbated the development of EAE through activating CCL2 and inducing pathologic inflammation.
Collapse
Affiliation(s)
- Zhe Ji
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiqin Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Zhang
- Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Ronghuan Yu
- Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Haihua Yang
- Shanghai Clinical Center, Chinese Academy of Sciences/Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Chenghua Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Luo
- Department of Molecular and Biochemical Pharmacology, University of Kentucky College of Medicine, Lexington, KY 40536; and
| | - Zun-Ji Ke
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
33
|
Filiou MD, Arefin AS, Moscato P, Graeber MB. 'Neuroinflammation' differs categorically from inflammation: transcriptomes of Alzheimer's disease, Parkinson's disease, schizophrenia and inflammatory diseases compared. Neurogenetics 2014; 15:201-12. [PMID: 24928144 DOI: 10.1007/s10048-014-0409-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 12/30/2022]
Abstract
'Neuroinflammation' has become a widely applied term in the basic and clinical neurosciences but there is no generally accepted neuropathological tissue correlate. Inflammation, which is characterized by the presence of perivascular infiltrates of cells of the adaptive immune system, is indeed seen in the central nervous system (CNS) under certain conditions. Authors who refer to microglial activation as neuroinflammation confuse this issue because autoimmune neuroinflammation serves as a synonym for multiple sclerosis, the prototypical inflammatory disease of the CNS. We have asked the question whether a data-driven, unbiased in silico approach may help to clarify the nomenclatorial confusion. Specifically, we have examined whether unsupervised analysis of microarray data obtained from human cerebral cortex of Alzheimer's, Parkinson's and schizophrenia patients would reveal a degree of relatedness between these diseases and recognized inflammatory conditions including multiple sclerosis. Our results using two different data analysis methods provide strong evidence against this hypothesis demonstrating that very different sets of genes are involved. Consequently, the designations inflammation and neuroinflammation are not interchangeable. They represent different categories not only at the histophenotypic but also at the transcriptomic level. Therefore, non-autoimmune neuroinflammation remains a term in need of definition.
Collapse
Affiliation(s)
- Michaela D Filiou
- Max Planck Institute of Psychiatry, Kraepelinstraße 2, 80804, Munich, Germany
| | | | | | | |
Collapse
|
34
|
Chai Q, He WQ, Zhou M, Lu H, Fu ZF. Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol 2014; 88:4698-710. [PMID: 24522913 PMCID: PMC3993813 DOI: 10.1128/jvi.03149-13] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/05/2014] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Infection with laboratory-attenuated rabies virus (RABV) enhances blood-brain barrier (BBB) permeability, which has been demonstrated to be an important factor for host survival, since it allows immune effectors to enter the central nervous system (CNS) and clear RABV. To probe the mechanism by which RABV infection enhances BBB permeability, the expression of tight junction (TJ) proteins in the CNS was investigated following intracranial inoculation with laboratory-attenuated or wild-type (wt) RABV. BBB permeability was significantly enhanced in mice infected with laboratory-attenuated, but not wt, RABV. The expression levels of TJ proteins (claudin-5, occludin, and zonula occludens-1) were decreased in mice infected with laboratory-attenuated, but not wt, RABV, suggesting that enhancement of BBB permeability is associated with the reduction of TJ protein expression in RABV infection. RABV neither infects the brain microvascular endothelial cells (BMECs) nor modulates the expression of TJ proteins in BMECs. However, brain extracts prepared from mice infected with laboratory-attenuated, but not wt, RABV reduced TJ protein expression in BMECs. It was found that brain extracts from mice infected with laboratory-attenuated RABV contained significantly higher levels of inflammatory chemokines/cytokines than those from mice infected with wt RABV. Pathway analysis indicates that gamma interferon (IFN-γ) is located in the center of the cytokine network in the RABV-infected mouse brain, and neutralization of IFN-γ reduced both the disruption of BBB permeability in vivo and the downregulation of TJ protein expression in vitro. These findings indicate that the enhancement of BBB permeability and the reduction of TJ protein expression are due not to RABV infection per se but to virus-induced inflammatory chemokines/cytokines. IMPORTANCE Previous studies have shown that infection with only laboratory-attenuated, not wild-type, rabies virus (RABV) enhances blood-brain barrier (BBB) permeability, allowing immune effectors to enter the central nervous system (CNS) and clear RABV from the CNS. This study investigated the mechanism by which RABV infection enhances BBB permeability. It was found that RABV infection enhances BBB permeability by downregulation of tight junction (TJ) protein expression in the brain microvasculature. It was further found that it is not RABV infection per se but the chemokines/cytokines induced by RABV infection that downregulate the expression of TJ proteins and enhance BBB permeability. Blocking some of these cytokines, such as IFN-γ, ameliorated both the disruption of BBB permeability and the downregulation of TJ protein expression. These studies may provide a foundation for developing therapeutics for clinical rabies, such as medication that could be used to enhance BBB permeability.
Collapse
Affiliation(s)
- Qingqing Chai
- State-Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Wen Q. He
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ming Zhou
- State-Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Huijun Lu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Zhen F. Fu
- State-Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
35
|
Zohar Y, Wildbaum G, Novak R, Salzman AL, Thelen M, Alon R, Barsheshet Y, Karp CL, Karin N. CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. J Clin Invest 2014; 124:2009-22. [PMID: 24713654 DOI: 10.1172/jci71951] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/13/2014] [Indexed: 12/24/2022] Open
Abstract
A single G protein-coupled receptor (GPCR) can activate multiple signaling cascades based on the binding of different ligands. The biological relevance of this feature in immune regulation has not been evaluated. The chemokine-binding GPCR CXCR3 is preferentially expressed on CD4+ T cells, and canonically binds 3 structurally related chemokines: CXCL9, CXCL10, and CXCL11. Here we have shown that CXCL10/CXCR3 interactions drive effector Th1 polarization via STAT1, STAT4, and STAT5 phosphorylation, while CXCL11/CXCR3 binding induces an immunotolerizing state that is characterized by IL-10(hi) (Tr1) and IL-4(hi) (Th2) cells, mediated via p70 kinase/mTOR in STAT3- and STAT6-dependent pathways. CXCL11 binds CXCR3 with a higher affinity than CXCL10, suggesting that CXCL11 has the potential to restrain inflammatory autoimmunity. We generated a CXCL11-Ig fusion molecule and evaluated its use in the EAE model of inflammatory autoimmune disease. Administration of CXCL11-Ig during the first episode of relapsing EAE in SJL/J mice not only led to rapid remission, but also prevented subsequent relapse. Using GFP-expressing effector CD4+ T cells, we observed that successful therapy was associated with reduced accumulation of these cells at the autoimmune site. Finally, we showed that very low doses of CXCL11 rapidly suppress signs of EAE in C57BL/6 mice lacking functional CXCL11.
Collapse
MESH Headings
- Animals
- Chemokine CXCL11/genetics
- Chemokine CXCL11/immunology
- Chemokine CXCL11/pharmacology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/pharmacology
- Mice
- Mice, Knockout
- Receptors, CXCR3/genetics
- Receptors, CXCR3/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- STAT Transcription Factors/genetics
- STAT Transcription Factors/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/pathology
Collapse
|
36
|
The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:173-89. [PMID: 24507518 DOI: 10.1016/b978-0-444-52001-2.00008-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While no single model can exactly recapitulate all aspects of multiple sclerosis (MS), animal models are essential in understanding the induction and pathogenesis of the disease and to develop therapeutic strategies that limit disease progression and eventually lead to effective treatments for the human disease. Several different models of MS exist, but by far the best understood and most commonly used is the rodent model of experimental autoimmune encephalomyelitis (EAE). This model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. Mouse models are most frequently used because of the inbred genotype of laboratory mice, their rapid breeding capacity, the ease of genetic manipulation, and availability of transgenic and knockout mice to facilitate mechanistic studies. Although not all therapeutic strategies for MS have been developed in EAE, all of the current US Food and Drug Administration (FDA)-approved immunomodulatory drugs are effective to some degree in treating EAE, a strong indicator that EAE is an extremely useful model to study potential treatments for MS. Several therapies, such as glatiramer acetate (GA: Copaxone), and natalizumab (Tysabri), were tested first in the mouse model of EAE and then went on to clinical trials. Here we discuss the usefulness of the EAE model in understanding basic disease pathophysiology and developing treatments for MS as well as the potential drawbacks of this model.
Collapse
|
37
|
Comerford I, Kara EE, McKenzie DR, McColl SR. Advances in understanding the pathogenesis of autoimmune disorders: focus on chemokines and lymphocyte trafficking. Br J Haematol 2013; 164:329-41. [PMID: 24164387 DOI: 10.1111/bjh.12616] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lymphocyte trafficking is a key step in the pathogenesis of various autoimmune diseases. Recruitment of autoreactive lymphocytes to inflamed tissues is a defining feature of numerous persistent organ-specific autoimmune conditions and various therapies are now used in several of these diseases which appear to specifically block lymphocyte migration. Thus, better understanding of the molecular events involved in homing of autoreactive pathogenic lymphocytes may present novel opportunities for pharmacological intervention in autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, type-1 diabetes and psoriasis. This review describes recent progress in understanding lymphocyte trafficking in autoimmunity, focusing on the involvement of the chemokine and chemokine receptor superfamily. Possible strategies to improve therapeutics for autoimmune diseases arising from these studies are discussed.
Collapse
Affiliation(s)
- Iain Comerford
- Chemokine Biology Laboratory, School of Molecular and Biomedical Science, Centre for Molecular Pathology, The University of Adelaide, Adelaide, SA, Australia
| | | | | | | |
Collapse
|
38
|
Lalor SJ, Segal BM. Th1-mediated experimental autoimmune encephalomyelitis is CXCR3 independent. Eur J Immunol 2013; 43:2866-74. [PMID: 23873018 DOI: 10.1002/eji.201343499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/05/2013] [Accepted: 07/16/2013] [Indexed: 01/07/2023]
Abstract
Drugs that block leukocyte trafficking ameliorate multiple sclerosis (MS). Occurrences of opportunistic infection, however, highlight the need for novel drugs that modulate more restricted subsets of T cells. In this context, chemokines and their receptors are attractive therapeutic targets. CXCR3, a Th1-associated chemokine receptor, is preferentially expressed on T cells that accumulate in MS lesions and central nervous system (CNS) infiltrates of mice with experimental autoimmune encephalomyelitis (EAE). Surprisingly, mice genetically deficient in either CXCR3 or CXCL10 succumb to EAE following active immunization with myelin antigens. EAE is mediated by a heterogeneous population of T cells in myelin-immunized mice. Hence, disease might develop in the absence of CXCR3 secondary to the compensatory action of encephalitogenic CCR6(+) Th17 cells. However, in the current study, we show for the first time that blockade or genetic deficiency of either CXCR3 or of its primary ligand has no impact on clinical EAE induced by the adoptive transfer of highly polarized Th1 effector cells. Our data illustrate the fact that, although highly targeted immunotherapies might have more favorable side effect profiles, they are also more likely to be rendered ineffective by inherent redundancies in chemokine and cytokine networks that arise at sites of neuroinflammation.
Collapse
Affiliation(s)
- Stephen J Lalor
- Department of Neurology, Holtom-Garrett Program in Neuroimmunology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
39
|
Schmitz K, Pickert G, Wijnvoord N, Häussler A, Tegeder I. Dichotomy of CCL21 and CXCR3 in nerve injury-evoked and autoimmunity-evoked hyperalgesia. Brain Behav Immun 2013; 32:186-200. [PMID: 23643685 DOI: 10.1016/j.bbi.2013.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023] Open
Abstract
The chemokine CCL21 is released from injured neurons and acts as a ligand of the chemokine receptor, CXCR3, which likely contributes to pro-inflammatory adaptations and secondary neuronal damage. CCL21-CXCR3 signalling may therefore impact on the development of neuropathic pain. By using the respective knockout mice we show that deficiency of CCL19/21 in plt/plt mice attenuates nerve injury evoked pain but not the hyperalgesia evoked by autoimmune encephalomyelitis (EAE). Oppositely, CXCR3-deficiency had no protective effect after traumatic nerve injury but reduced EAE-evoked hyperalgesia and was associated with reduced clinical EAE scores, a reduction of the pro-inflammatory cell infiltration and reduced upregulation of interferon gamma and interleukin-17 in the spinal cord. In contrast, microglia activation in the spinal cord after traumatic sciatic nerve injury was neither attenuated in CXCR3(-/-) nor plt/plt mice, nor in double knockouts. However, the severity of EAE, but not the hyperalgesia, was also reduced in plt/plt mice, which was associated with reduced infiltration of the spinal cord with CCR7+ T-cells, an increase of CD25+ T-cells and reduced upregulation of CXCL9 and 10, CCL11 and 12. The data show that CCL21 and CXCR3 have dichotomous functions in traumatic and EAE-evoked neuropathic pain suggesting diverse mechanisms likely requiring diverse treatments although both types of neuropathic pain are mediated in part through the immune activation.
Collapse
Affiliation(s)
- Katja Schmitz
- Pharmazentrum Frankfurt, Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
40
|
Kan QC, Zhu L, Liu N, Zhang GX. Matrine suppresses expression of adhesion molecules and chemokines as a mechanism underlying its therapeutic effect in CNS autoimmunity. Immunol Res 2013; 56:189-96. [DOI: 10.1007/s12026-013-8393-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Abstract
Despite significant advances in prevention and management, graft versus host disease (GVHD) is still a leading complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although skin, gut, liver, thymus, and lung are GVHD targets, neurological complications (NC) have also been reported following allo-HSCT. We demonstrate that the central nervous system (CNS) can be a direct target of alloreactive T cells following allo-HSCT in mice. We found significant infiltration of the CNS with donor T lymphocytes and cell death of neurons and neuroglia in allo-HSCT recipients with GVHD. We also found that allo-HSCT recipients with GVHD had deficits in spatial learning/memory and demonstrated increased anxious behavior. These findings highlight CNS sensitivity to damage caused by alloreactive donor T cells and represent the first characterization of target cell subsets and NC during GVHD. Therefore, these clinically relevant studies offer a novel and rational explanation for the well-described neurological symptoms observed after allo-HSCT.
Collapse
|
42
|
Li N, Hu Q, Jiang C, Guo F, Munnee K, Jian X, Hu Y, Tang Z. Cys-X-Cys ligand 9 might be an immunological factor in the pathogenesis of oral submucous fibrosis and its concomitant oral lichenoid lesion. Clin Oral Investig 2012; 17:1251-8. [PMID: 22821431 DOI: 10.1007/s00784-012-0799-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/13/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Oral submucous fibrosis (OSF) is a chronic oral precancerous disease primarily caused by betel quid chewing. Some OSF patients are concomitant with oral lichenoid lesion (OLL), a white-streak lesion with a higher risk for cancerization, in OSF mucosa. Immunological reaction has been considered as one of their common pathogenic mechanisms. Cys-X-Cys ligand 9 (CXCL9) is an important factor to recruit effector neutrophils and lymphocytes in immunological reactions. However, the expression levels of CXCL9 in OSF and OLL remain unclear. MATERIALS AND METHODS We investigated the expression levels of CXCL9 in 10 normal buccal mucosa (NBM) samples and 56 OSF concomitant with OLL patients, and evaluated the possible mechanism of CXCL9 on their pathogenesis. RESULTS Our results showed NBM demonstrated negative CXCL9 expression. OSF stained positive CXCL9 mainly in the cytoplasm of inflammatory cells and endothelial cells throughout the superficial layer of connective tissue, while its concomitant OLL showed much stronger CXCL9 in all mononuclear cells of subepithelial inflammatory infiltration (p = 0.0006). There was an upregulated trend of CXCL9 expression from NBM to OSF to OLL. However, no significant association between CXCL9 expression and clinicopathologic parameters of patients was found. CONCLUSIONS In conclusion, CXCL9 was found for the first time to contribute to the immunological pathogenesis for both OSF and its concomitant OLL, indicating a continuously enhanced intensity of immunoreactivity in their pathogenic process. CLINICAL RELEVANCE CXCL9 might be a useful tool to monitor the phase and disease severity of OSF and OLL, and a potential target for further clinical therapy for both lesions.
Collapse
Affiliation(s)
- Ning Li
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Xiangya Road, Changsha, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tirotta E, Kirby LA, Hatch MN, Lane TE. IFN-γ-induced apoptosis of human embryonic stem cell derived oligodendrocyte progenitor cells is restricted by CXCR2 signaling. Stem Cell Res 2012; 9:208-17. [PMID: 22885102 DOI: 10.1016/j.scr.2012.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 12/01/2022] Open
Abstract
Engraftment of human embryonic stem cell (hESC)-derived OPCs in animal models of demyelination results in remyelination and clinical recovery, supporting the feasibility of cell replacement therapies in promoting repair of damaged neural tissue. A critical gap in our understanding of the mechanisms associated with repair revolves around the effects of the local microenvironment on transplanted cell survival. We have determined that treatment of human ESC-derived OPCs with the pleiotropic cytokine IFN-γ promotes apoptosis that is associated with mitochondrial cytochrome c released into the cytosol with subsequent caspase 3 activation. IFN-γ-induced apoptosis is mediated, in part, by secretion of the CXC chemokine ligand 10 (CXCL10) from IFN-γ-treated cells. Signaling through the chemokine receptor CXCR2 by the ligand CXCL1 functions in a tonic manner by muting apoptosis and this is associated with reduced levels of cytosolic cytochrome c and impaired cleavage of caspase 3. These findings support a role for both IFN-γ and CXCL10 in contributing to neuropathology by promoting OPC apoptosis. In addition, these data suggest that hOPCs used for therapeutic treatment for human neurologic disease/damage are susceptible to death through exposure to local inflammatory cytokines present within the inflammatory milieu.
Collapse
Affiliation(s)
- Emanuele Tirotta
- Department of Molecular Biology and Biochemistry, Multiple Sclerosis Research Center, Sue and Bill Gross Stem Cell Center, University of California, Irvine, CA 92697-3900, USA
| | | | | | | |
Collapse
|
44
|
Du C, Xie X. G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res 2012; 22:1108-28. [PMID: 22664908 DOI: 10.1038/cr.2012.87] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate most of our physiological responses to hormones, neurotransmitters and environmental stimulants. They are considered as the most successful therapeutic targets for a broad spectrum of diseases. Multiple sclerosis (MS) is an inflammatory disease that is characterized by immune-mediated demyelination and degeneration of the central nervous system (CNS). It is the leading cause of non-traumatic disability in young adults. Great progress has been made over the past few decades in understanding the pathogenesis of MS. Numerous data from animal and clinical studies indicate that many GPCRs are critically involved in various aspects of MS pathogenesis, including antigen presentation, cytokine production, T-cell differentiation, T-cell proliferation, T-cell invasion, etc. In this review, we summarize the recent findings regarding the expression or functional changes of GPCRs in MS patients or animal models, and the influences of GPCRs on disease severity upon genetic or pharmacological manipulations. Hopefully some of these findings will lead to the development of novel therapies for MS in the near future.
Collapse
Affiliation(s)
- Changsheng Du
- Laboratory of Receptor-Based BioMedicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | | |
Collapse
|
45
|
O'Connor RA, Li X, Blumerman S, Anderton SM, Noelle RJ, Dalton DK. Adjuvant immunotherapy of experimental autoimmune encephalomyelitis: immature myeloid cells expressing CXCL10 and CXCL16 attract CXCR3+CXCR6+ and myelin-specific T cells to the draining lymph nodes rather than the central nervous system. THE JOURNAL OF IMMUNOLOGY 2012; 188:2093-101. [PMID: 22287719 DOI: 10.4049/jimmunol.1101118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CFA is a strong adjuvant capable of stimulating cellular immune responses. Paradoxically, adjuvant immunotherapy by prior exposure to CFA or live mycobacteria suppresses the severity of experimental autoimmune encephalomyelitis (EAE) and spontaneous diabetes in rodents. In this study, we investigated immune responses during adjuvant immunotherapy of EAE. Induction of EAE in CFA-pretreated mice resulted in a rapid influx into the draining lymph nodes (dLNs) of large numbers of CD11b(+)Gr-1(+) myeloid cells, consisting of immature cells with ring-shaped nuclei, macrophages, and neutrophils. Concurrently, a population of mycobacteria-specific IFN-γ-producing T cells appeared in the dLNs. Immature myeloid cells in dLNs expressed the chemokines CXCL10 and CXCL16 in an IFN-γ-dependent manner. Subsequently, CD4(+) T cells coexpressing the cognate chemokine receptors CXCR3 and CXCR6 and myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+) T cells accumulated within the chemokine-expressing dLNs, rather than within the CNS. Migration of CD4(+) T cells toward dLN cells was abolished by depleting the CD11b(+) cells and was also mediated by the CD11b(+) cells alone. In addition to altering the distribution of MOG-specific T cells, adjuvant treatment suppressed development of MOG-specific IL-17. Thus, adjuvant immunotherapy of EAE requires IFN-γ, which suppresses development of the Th17 response, and diverts autoreactive T cells away from the CNS toward immature myeloid cells expressing CXCL10 and CXCL16 in the lymph nodes.
Collapse
Affiliation(s)
- Richard A O'Connor
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Jenh CH, Cox MA, Cui L, Reich EP, Sullivan L, Chen SC, Kinsley D, Qian S, Kim SH, Rosenblum S, Kozlowski J, Fine JS, Zavodny PJ, Lundell D. A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection. BMC Immunol 2012; 13:2. [PMID: 22233170 DOI: 10.1186/1471-2172-13-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The CXCR3 receptor and its three interferon-inducible ligands (CXCL9, CXCL10 and CXCL11) have been implicated as playing a central role in directing a Th1 inflammatory response. Recent studies strongly support that the CXCR3 receptor is a very attractive therapeutic target for treating autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and psoriasis, and to prevent transplant rejection. We describe here the in vitro and in vivo pharmacological characterizations of a novel and potent small molecule CXCR3 antagonist, SCH 546738. RESULTS In this study, we evaluated in vitro pharmacological properties of SCH 546738 by radioligand receptor binding and human activated T cell chemotaxis assays. In vivo efficacy of SCH 546738 was determined by mouse collagen-induced arthritis, rat and mouse experimental autoimmune encephalomyelitis, and rat cardiac transplantation models. We show that SCH 546738 binds to human CXCR3 with a high affinity of 0.4 nM. In addition, SCH 546738 displaces radiolabeled CXCL10 and CXCL11 from human CXCR3 with IC50 ranging from 0.8 to 2.2 nM in a non-competitive manner. SCH 546738 potently and specifically inhibits CXCR3-mediated chemotaxis in human activated T cells with IC90 about 10 nM. SCH 546738 attenuates the disease development in mouse collagen-induced arthritis model. SCH 546738 also significantly reduces disease severity in rat and mouse experimental autoimmune encephalomyelitis models. Furthermore, SCH 546738 alone achieves dose-dependent prolongation of rat cardiac allograft survival. Most significantly, SCH 546738 in combination with CsA supports permanent engraftment. CONCLUSIONS SCH 546738 is a novel, potent and non-competitive small molecule CXCR3 antagonist. It is efficacious in multiple preclinical disease models. These results demonstrate that therapy with CXCR3 antagonists may serve as a new strategy for treatment of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, and to prevent transplant rejection.
Collapse
Affiliation(s)
- Chung-Her Jenh
- Department of Respiratory and Immunology, Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Natural killer (NK) cells can be swiftly mobilized by danger signals and are among the earliest arrivals in target organs of disease. However, the role of NK cells in regulating inflammatory responses is far from completely understood in different organs. It is often complex and sometimes paradoxical. The phenotypes and functions of NK cells in the liver, mucosal tissues, uterus, pancreas, joints and brain are influenced by the unique cellular interactions and the local microenvironment within each organ. Hepatic NK cells exhibit an activated phenotype with high levels of cytotoxic effector molecules. These cells have been implicated in promoting liver injury and inhibiting liver fibrosis and regeneration. The liver is also enriched in NK cells with memory-like adaptive immune features. NK cells are detected in healthy lymphoid tissues of the lung, skin and gut, and are recruited to these tissues during infection or inflammation. In the gastrointestinal tract, classical NK cells and a variety of innate lymphoid cells, such as the family of lymphoid tissue-inducer (LTi) cells, are likely to have crucial roles in controlling inflammatory responses. NK cells represent the major lymphocyte subset in the pregnant uterus, with a unique phenotype resembling an early developmental state. Emerging evidence indicates that these cells play a crucial part in mediating the uterine vascular adaptations to pregnancy and promoting the maintenance of healthy pregnancy. In non-obese diabetic (NOD) mice, NK cells are recruited early to the pancreas, become locally activated and then adopt a hyporesponsive phenotype. Although NK cells have a pathogenic role in the natural progression of diabetes in NOD mice, they contribute to diabetes protection induced by complete Freund's adjuvant and to islet allograft tolerance induced by co-stimulatory blockade. NK cells in the inflamed joint uniquely express receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF), which promote osteoclast differentiation. Although NK cells have a pathogenic role in collagen-induced arthritis in mice, they are also crucial for protection against antibody-induced arthritis mediated by CpG oligonucleotides. Studies in a mouse model of multiple sclerosis have shown that NK cells arrive in the central nervous system (CNS) before pathogenic T cells and have a protective role in the development of CNS inflammation, probably by killing CNS-resident microglia that prime effector T cells. During evolution, different organs might have evolved distinct ways to recruit and influence the effector functions of NK cells. Once we understand these mechanisms, the next challenge will be to exploit this information for harnessing NK cells to develop prophylactic and therapeutic measures against infectious agents, tumours and inflammatory diseases.
Each tissue in our body contains a unique microenvironment that can differentially shape immune reactivity. In this Review article, Shiet al. describe how organ-specific factors influence natural killer cell homing and phenotype, and discuss the local molecular and cellular interactions that determine the protective or pathogenic functions of natural killer cells in the different tissues. Natural killer (NK) cells can be swiftly mobilized by danger signals and are among the earliest arrivals at target organs of disease. However, the role of NK cells in mounting inflammatory responses is often complex and sometimes paradoxical. Here, we examine the divergent phenotypic and functional features of NK cells, as deduced largely from experimental mouse models of pathophysiological responses in the liver, mucosal tissues, uterus, pancreas, joints and brain. Moreover, we discuss how organ-specific factors, the local microenvironment and unique cellular interactions may influence the organ-specific properties of NK cells.
Collapse
|
48
|
Krauthausen M, Ellis SL, Zimmermann J, Sarris M, Wakefield D, Heneka MT, Campbell IL, Müller M. Opposing roles for CXCR3 signaling in central nervous system versus ocular inflammation mediated by the astrocyte-targeted production of IL-12. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2346-59. [PMID: 21925471 DOI: 10.1016/j.ajpath.2011.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 06/17/2011] [Accepted: 07/18/2011] [Indexed: 12/26/2022]
Abstract
CXCR3 and its ligands are important for the trafficking of activated CD4(+) T(H)1 T cells, CD8(+) T cells, and natural killer cells during inflammation. Recent functional studies demonstrate a more diverse role of CXCR3 in inflammatory diseases of the central nervous system (CNS). We examined the impact of CXCR3 on a less complex interferon-γ-dependent, type 1 cell-mediated immune response in the CNS, induced in mice by the transgenic production of glial fibrillary acidic protein IL-12 (GF-IL12) by astrocytes and retinal Müller cells. GF-IL12 mice develop ataxia because of severe cerebellar inflammation but have little overt ocular disease. Surprisingly, CXCR3-deficient GF-IL12 mice (GF-IL12/CXCR3KO) have drastically reduced ataxia but developed cataracts, severe ocular inflammation, and eye atrophy. Most GF-IL12/CXCR3KO mice had minimal cerebellar inflammation but severe retinal disorganization, loss of photoreceptors, and lens destruction in the eye. The number of CD3(+), CD11b(+), and natural killer 1.1(+) cells were reduced in the CNS but highly increased in the eyes of GF-IL12/CXCR3KO compared with GF-IL12 mice. High levels of interferon-γ, IL-1, tumor necrosis factor α, CXCL9, CXCL10, and CCL5 were found in GF-IL12 cerebelli and GF-IL12/CXCR3KO eyes. Our findings demonstrate key but paradoxical functions for CXCR3 in IL-12-induced immune disease in the CNS, promoting inflammation in the brain yet restricting it in the eye. We conclude that the function of CXCR3 in cellular immune disease is driven by a common trigger and is controlled by tissue-specific factors.
Collapse
|
49
|
Hertenstein A, Schumacher T, Litzenburger U, Opitz CA, Falk CS, Serafini T, Wick W, Platten M. Suppression of human CD4+ T cell activation by 3,4-dimethoxycinnamonyl-anthranilic acid (tranilast) is mediated by CXCL9 and CXCL10. Biochem Pharmacol 2011; 82:632-41. [DOI: 10.1016/j.bcp.2011.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
50
|
Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol 2011; 74:1-13. [PMID: 21338381 DOI: 10.1111/j.1365-3083.2011.02536.x] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by recurrent episodes of demyelination and axonal lesion mediated by CD4(+) T cells with a proinflammatory Th1 and Th17 phenotype, macrophages, and soluble inflammatory mediators. Identification of Th17 cells led to breaking the dichotomy of Th1/Th2 axis in immunopathogenesis of autoimmune diseases such as MS, and its experimental model, experimental autoimmune encephalomyelitis (EAE). Th17 cells are characterized by expression of retinoic acid-related orphan receptor (ROR)γt and signal transducer and activator of transcription 3 (STAT3) factors. Th17-produced cytokine profile including interleukin (IL)-17, IL-6, IL-21, IL-22, IL-23 and tumour necrosis factor (TNF)-α, which have proinflammatory functions, suggests it as an important factor in immunopathogenesis of MS, because the main feature of MS pathophysiology is the neuroinflammatory reaction. The blood brain barrier (BBB) disruption is an early and central event in MS pathogenesis. Autoreactive Th17 cells can migrate through the BBB by the production of cytokines such as IL-17 and IL-22, which disrupt tight junction proteins in the central nervous system (CNS) endothelial cells. Consistent with this observation and regarding the wide range production of proinflammatory cytokines and chemokines by Th17 cells, it is expected that Th17 cell to be as a potent pathogenic factor in disease immunopathophysiology. Th17-mediated inflammation is characterized by neutrophil recruitment into the CNS and neurons killing. However, the majority of our knowledge about the role of Th17 in MS pathogenesis is resulted in investigation into EAE animal models. In this review, we intend to focus on the newest information regarding the precise role of Th17 cells in immunopathogenesis of MS, and its animal model, EAE.
Collapse
Affiliation(s)
- F Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|