1
|
Matsuda M, Shimora H, Nagatani Y, Nishikawa K, Takamori I, Haguchi T, Kitatani K, Kaminuma O, Nabe T. Involvement of CCR5 on interstitial macrophages in the development of lung fibrosis in severe asthma. Int Immunopharmacol 2024; 135:112331. [PMID: 38795597 DOI: 10.1016/j.intimp.2024.112331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
CCR5 may be involved in the pathogenesis of asthma; however, the underlying mechanisms remain unclear. In comparison with a mild asthma model, subepithelial fibrosis was more severe and CCR5 gene expression in the lungs was significantly higher in our recently developed murine model of steroid-resistant severe asthma. Treatment with the CCR5 antagonist, maraviroc, significantly suppressed the development of subepithelial fibrosis in bronchi, whereas dexamethasone did not. On the other hand, increases in leukocytes related to type 2 inflammation, eosinophils, Th2 cells, and group 2 innate lymphoid cells in the lungs were not affected by the treatment with maraviroc. Increases in neutrophils and total macrophages were also not affected by the CCR5 antagonist. However, increases in transforming growth factor (TGF)-β-producing interstitial macrophages (IMs) were significantly reduced by maraviroc. The present results confirmed increases in CCR5-expressing IMs in the lungs of the severe asthma model. In conclusion, CCR5 on IMs plays significant roles in the development of subepithelial fibrosis in severe asthma through TGF-β production in the lungs.
Collapse
Affiliation(s)
- Masaya Matsuda
- Laboratory Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Hayato Shimora
- Laboratory Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Yukino Nagatani
- Laboratory Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Keitaro Nishikawa
- Laboratory Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Itomi Takamori
- Laboratory Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Tenta Haguchi
- Laboratory Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Kazuyuki Kitatani
- Laboratory Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan
| | - Osamu Kaminuma
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takeshi Nabe
- Laboratory Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka 573-0101, Japan.
| |
Collapse
|
2
|
Liang J, Zhuang R, Sun X, Zhang F, Zou B. Apremilast mitigates interleukin (IL)-13-induced inflammatory response and mucin production in human nasal epithelial cells (hNECs). Bioengineered 2021; 12:8583-8593. [PMID: 34607526 PMCID: PMC8806939 DOI: 10.1080/21655979.2021.1987818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL)-13-associated inflammatory response is important for the pathogenesis of allergic rhinitis (AR). Apremilast is a phosphodiesterase-4 (PDE4) inhibitor approved for psoriasis treatment. Here, we investigated the potential effects of Apremilast against IL-13-induced injury in human nasal epithelial cells (hNECs). Firstly, Apremilast ameliorated oxidative stress in IL-13-challenged cells by decreasing the levels of reactive oxygen species (ROS) and the production of malondialdehyde (MDA). Secondly, Apremilast inhibited the expressions of IL-6 and IL-8. Moreover, Apremilast inhibited the expressions of the chemokines colony-stimulating factor 2 (CSF2) and chemokine ligand 11 (CCL11). Interestingly, exposure to IL-13 increased the expressions of mucin 4 and mucin 5AC (MUC5AC), which was ameliorated by treatment with Apremilast. Interestingly, we found that Apremilast inhibited the phosphorylation of c-Jun-N-terminal kinase (JNK). Importantly, Apremilast reduced the levels of c-fos and c-Jun, the two AP-1 subfamilies. The luciferase reporter assay demonstrates that Apremilast reduced the transcriptional activity of activator protein 1 (AP-1). Lastly, we found that Apremilast prevented the activation of nuclear factor kappa-B (NF-κB) by decreasing the levels of nuclear NF-κB p65 and the luciferase activity of the NF-κB reporter. In summary, we conclude that Apremilast possesses a protective effect against IL-13-induced inflammatory response and mucin production in hNECs by inhibiting the activity of AP-1 and NF-κB.
Collapse
Affiliation(s)
- Jia Liang
- Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - RuoXiao Zhuang
- Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - XueYao Sun
- Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Feng Zhang
- Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Bin Zou
- Department of Otorhinolaryngology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,National Clinical Research Center for Child Health and Diseases, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| |
Collapse
|
3
|
Majumder N, Goldsmith WT, Kodali VK, Velayutham M, Friend SA, Khramtsov VV, Nurkiewicz TR, Erdely A, Zeidler-Erdely PC, Castranova V, Harkema JR, Kelley EE, Hussain S. Oxidant-induced epithelial alarmin pathway mediates lung inflammation and functional decline following ultrafine carbon and ozone inhalation co-exposure. Redox Biol 2021; 46:102092. [PMID: 34418598 PMCID: PMC8385153 DOI: 10.1016/j.redox.2021.102092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Environmental inhalation exposures are inherently mixed (gases and particles), yet regulations are still based on single toxicant exposures. While the impacts of individual components of environmental pollution have received substantial attention, the impact of inhalation co-exposures is poorly understood. Here, we mechanistically investigated pulmonary inflammation and lung function decline after inhalation co-exposure and individual exposures to ozone (O3) and ultrafine carbon black (CB). Environmentally/occupationally relevant lung deposition levels in mice were achieved after inhalation of stable aerosols with similar aerodynamic and mass median distributions. X-ray photoemission spectroscopy detected increased surface oxygen contents on particles in co-exposure aerosols. Compared with individual exposures, co-exposure aerosols produced greater acellular and cellular oxidants detected by electron paramagnetic resonance (EPR) spectroscopy, and in vivo immune-spin trapping (IST), as well as synergistically increased lavage neutrophils, lavage proteins and inflammation related gene/protein expression. Co-exposure induced a significantly greater respiratory function decline compared to individual exposure. A synthetic catalase-superoxide dismutase mimetic (EUK-134) significantly blunted lung inflammation and respiratory function decline confirming the role of oxidant imbalance. We identified a significant induction of epithelial alarmin (thymic stromal lymphopoietin-TSLP)-dependent interleukin-13 pathway after co-exposure, associated with increased mucin and interferon gene expression. We provided evidence of interactive outcomes after air pollution constituent co-exposure and identified a key mechanistic pathway that can potentially explain epidemiological observation of lung function decline after an acute peak of air pollution. Developing and studying the co-exposure scenario in a standardized and controlled fashion will enable a better mechanistic understanding of how environmental exposures result in adverse outcomes. Interaction with O3 mediates free radical production on the surface of carbon black (CB) particles. Oxidants mediate co-exposure (CB + O3)-induced lung function decline. EUK-134 (a synthetic superoxide-catalase mimetic) abrogates CB + O3-induced lung inflammation. CB + O3 co-exposure induces greater lung inflammation than individual exposures. Epithelial alarmin (TSLP) contributes significantly to the CB + O3 toxicity.
Collapse
Affiliation(s)
- Nairrita Majumder
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Vamsi K Kodali
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | | | - Sherri A Friend
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Valery V Khramtsov
- Department of Biochemistry, School of Medicine, West Virginia University, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Aaron Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Patti C Zeidler-Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Vince Castranova
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, School of Veterinary Medicine, Michigan State University, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA.
| |
Collapse
|
4
|
Devadoss D, Singh SP, Acharya A, Do KC, Periyasamy P, Manevski M, Mishra N, Tellez CS, Ramakrishnan S, Belinsky SA, Byrareddy SN, Buch S, Chand HS, Sopori M. HIV-1 Productively Infects and Integrates in Bronchial Epithelial Cells. Front Cell Infect Microbiol 2021; 10:612360. [PMID: 33614527 PMCID: PMC7890076 DOI: 10.3389/fcimb.2020.612360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of lung epithelial cells in HIV-1-related lung comorbidities remains unclear, and the major hurdle in curing HIV is the persistence of latent HIV reservoirs in people living with HIV (PLWH). The advent of combined antiretroviral therapy has considerably increased the life span; however, the incidence of chronic lung diseases is significantly higher among PLWH. Lung epithelial cells orchestrate the respiratory immune responses and whether these cells are productively infected by HIV-1 is debatable. METHODS Normal human bronchial epithelial cells (NHBEs) grown on air-liquid interface were infected with X4-tropic HIV-1LAV and examined for latency using latency-reversing agents (LRAs). The role of CD4 and CXCR4 HIV coreceptors in NHBEs were tested, and DNA sequencing analysis was used to analyze the genomic integration of HIV proviral genes, Alu-HIVgag-pol, HIV-nef, and HIV-LTR. Lung epithelial sections from HIV-infected humans and SHIV-infected macaques were analyzed by FISH for HIV-gag-pol RNA and epithelial cell-specific immunostaining. RESULTS AND DISCUSSION NHBEs express CD4 and CXCR4 at higher levels than A549 cells. NHBEs are infected with HIV-1 basolaterally, but not apically, by X4-tropic HIV-1LAV in a CXCR4/CD4-dependent manner leading to HIV-p24 antigen production; however, NHBEs are induced to express CCR5 by IL-13 treatment. In the presence of cART, HIV-1 induces latency and integration of HIV provirus in the cellular DNA, which is rescued by the LRAs (endotoxin/vorinostat). Furthermore, lung epithelial cells from HIV-infected humans and SHIV-infected macaques contain HIV-specific RNA transcripts. Thus, lung epithelial cells are targeted by HIV-1 and could serve as potential HIV reservoirs that may contribute to the respiratory comorbidities in PLWH.
Collapse
Affiliation(s)
- Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Shashi P. Singh
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Arpan Acharya
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kieu Chinh Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Palsamy Periyasamy
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Marko Manevski
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Neerad Mishra
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Carmen S. Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Steven A. Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hitendra S. Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mohan Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| |
Collapse
|
5
|
Hossain FMA, Park SO, Kim HJ, Eo JC, Choi JY, Uyangaa E, Kim B, Kim K, Eo SK. CCR5 attenuates neutrophilic airway inflammation exacerbated by infection with rhinovirus. Cell Immunol 2020; 351:104066. [PMID: 32089258 DOI: 10.1016/j.cellimm.2020.104066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/13/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Human rhinovirus (hRV) is the most common cause of asthma exacerbation characterized by clinical and pathophysiological heterogeneity. Steroid-sensitive, Th2 type-eosinophilic asthma has been somewhat studied, but hRV-induced neutrophilic asthma exacerbation is poorly understood. Here, CCR5 was found to play a role in attenuating neutrophilic airway inflammation in hRV-induced asthma exacerbation using chicken ovalbumin (OVA)-based model. CCR5 deficiency resulted in exacerbated neutrophilic asthmatic responses in airways following hRV infection. CCR5-deficient mice showed enhanced mucus expression and altered expression of tight junction proteins in lung tissues. CCR5-deficient mice were also manifested with influx of CD45+CD11b+Siglec-F+Gr-1+ neutrophils, along with enhanced production of IL-17A, IFN-γ, IL-6, IL-1β cytokines in inflamed tissues. In contrast, CCR5-deficient mice elicited down-regulation of Th2-related cytokine proteins following hRV infection. More interestingly, the lack of CCR5 altered the equilibrium of CD4+FoxP3+ Tregs and IL-17+CD4+ Th17 in inflamed tissues. CCR5-deficient mice showed increased frequency and absolute number of IL-17-producing CD4+ Th17 cells in lung tissues compared to wild-type mice, whereas the reduced infiltration of CD4+FoxP3+ Treg cells was observed. CCR5 deficiency resulted in the skewed production of Th17 and Th1 cytokines in lymph nodes and lungs upon OVA stimulation. Likewise, CCR5-deficient mice showed enhanced expression of Th17-inducing cytokines (IL-1β, IL-6, and TNF-α) in lung tissues. These results imply that CCR5 deficiency facilitates Th17 airway inflammation during hRV-induced asthma exacerbation, along with suppressing Th2 responses. Furthermore, our results suggest that CCR5 attenuates hRV-induced neutrophilic airway inflammation through conserving the equilibrium of CD4+Foxp3+ Treg cells and IL-17+CD4+ Th17 cells in hRV-induced asthma exacerbation.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Hyo Jin Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Jun Cheol Eo
- Division of Biotechnology, College of Environmental & Biosource Science, Jeonbuk National University, Iksan 54596, South Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea.
| |
Collapse
|
6
|
Ogata H, Zhang X, Yamasaki R, Fujii T, Machida A, Morimoto N, Kaida K, Masuda T, Ando Y, Kuwahara M, Kusunoki S, Nakamura Y, Matsushita T, Isobe N, Kira JI. Intrathecal cytokine profile in neuropathy with anti-neurofascin 155 antibody. Ann Clin Transl Neurol 2019; 6:2304-2316. [PMID: 31657126 PMCID: PMC6856599 DOI: 10.1002/acn3.50931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
Objective To characterize the CSF cytokine profile in chronic inflammatory demyelinating polyneuropathy (CIDP) patients with IgG4 anti‐neurofascin 155 (NF155) antibodies (NF155+ CIDP) or those lacking anti‐NF155 antibodies (NF155− CIDP). Methods Twenty‐eight CSF cytokines/chemokines/growth factors were measured by multiplexed fluorescent immunoassay in 35 patients with NF155+ CIDP, 36 with NF155− CIDP, and 28 with non‐inflammatory neurological disease (NIND). Results CSF CXCL8/IL‐8, IL‐13, TNF‐α, CCL11/eotaxin, CCL2/MCP‐1, and IFN‐γ were significantly higher, while IL‐1β, IL‐1ra, and G‐CSF were lower, in NF155+ CIDP than in NIND. Compared with NF155− CIDP, CXCL8/IL‐8 and IL‐13 were significantly higher, and IL‐1β, IL‐1ra, and IL‐6 were lower, in NF155+ CIDP. CXCL8/IL‐8, IL‐13, CCL11/eotaxin, CXCL10/IP‐10, CCL3/MIP‐1α, CCL4/MIP‐1β, and TNF‐α levels were positively correlated with markedly elevated CSF protein, while IL‐13, CCL11/eotaxin, and IL‐17 levels were positively correlated with increased CSF cell counts. IL‐13, CXCL8/IL‐8, CCL4/MIP‐1β, CCL3/MIP‐1α, and CCL5/RANTES were decreased by combined immunotherapies in nine NF155+ CIDP patients examined longitudinally. By contrast, NF155− CIDP had significantly increased IFN‐γ compared with NIND, and exhibited positive correlations of IFN‐γ, CXCL10/IP‐10, and CXCL8/IL‐8 with CSF protein. Canonical discriminant analysis of cytokines/chemokines revealed that NF155+ and NF155− CIDP were separable, and that IL‐4, IL‐10, and IL‐13 were the three most significant discriminators. Interpretation Intrathecal upregulation of type 2 helper T (Th2) cell cytokines is characteristic of IgG4 NF155+ CIDP, while type 1 helper T cell cytokines are increased in CIDP regardless of the presence or absence of anti‐NF155 antibodies, suggesting that overproduction of Th2 cell cytokines is unique to NF155+ CIDP.
Collapse
Affiliation(s)
- Hidenori Ogata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xu Zhang
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayuki Fujii
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Machida
- Department of Neurology, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Nobutoshi Morimoto
- Department of Neurology, Kagawa Prefectural Central Hospital, Kagawa, Japan
| | - Kenichi Kaida
- Department of Neurology, Anti-aging and Vascular Medicine, National Defense Medical College, Saitama, Japan
| | - Teruaki Masuda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoi Kuwahara
- Department of Neurology, School of Medicine, Kinki University, Osaka, Japan
| | - Susumu Kusunoki
- Department of Neurology, School of Medicine, Kinki University, Osaka, Japan
| | - Yuri Nakamura
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Matsushita
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurological Therapeutics, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Magalhães GS, Rodrigues-Machado MG, Motta-Santos D, Alenina N, Bader M, Santos RA, Barcelos LS, Campagnole-Santos MJ. Chronic allergic pulmonary inflammation is aggravated in angiotensin-(1-7) Mas receptor knockout mice. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1141-L1148. [PMID: 27815255 DOI: 10.1152/ajplung.00029.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
The angiotensin-(1-7) [ANG-(1-7)]/Mas receptor pathway is currently recognized as a counterbalancing mechanism of the renin-angiotensin system in different pathophysiological conditions. We have previously described that treatment with ANG-(1-7) attenuates lung inflammation and remodeling in an experimental model of asthma. In the present study, we investigated whether lack of the Mas receptor could alter the inflammatory response in a model of chronic allergic lung inflammation induced by ovalbumin (OVA). Mas receptor wild-type (MasWT) and knockout (MasKO) mice were subjected to four doses of OVA (20 μg/mice ip) with a 14-day interval. At the 21st day, nebulization with OVA (1%) was started, three times per week until the 46th day. Control groups received saline (0.9% ip) and were nebulized with saline (0.9%). MasWT-OVA developed a modest inflammatory response and minor pulmonary remodeling to OVA challenge. Strikingly, MasKO-OVA presented a significant increase in inflammatory cell infiltrate, increase in extracellular matrix deposition, increase in thickening of the alveolar parenchyma, increase in thickening of the smooth muscle layer of the pulmonary arterioles, increase in proinflammatory cytokine and chemokine levels in the lungs, characteristic of chronic asthma. Additionally, MasKO-OVA presented an increase in ERK1/2 phosphorylation compared with MasWT-OVA. Furthermore, MasKO-OVA showed a worse performance in a test of maximum physical exercise compared with MasWT-OVA. Our study shows that effects triggered by the Mas receptor are important to attenuate the inflammatory and remodeling processes in a model of allergic lung inflammation in mice. Our data indicate that impairment of the ANG-(1-7)/Mas receptor pathway may lead to worsening of the pathophysiological changes of asthma.
Collapse
Affiliation(s)
- Giselle S Magalhães
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-NANOBIOFAR) and Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and
| | - Maria Glória Rodrigues-Machado
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-NANOBIOFAR) and Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-NANOBIOFAR) and Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and
| | | | - Michael Bader
- Max-Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Robson A Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-NANOBIOFAR) and Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and
| | - Lucíola S Barcelos
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-NANOBIOFAR) and Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and
| | - Maria José Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (INCT-NANOBIOFAR) and Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and
| |
Collapse
|
8
|
Chapmana AM, Malkin DJ, Camacho J, Schiestl RH. IL-13 overexpression in mouse lungs triggers systemic genotoxicity in peripheral blood. Mutat Res 2015; 769:100-7. [PMID: 25400503 DOI: 10.1016/j.mrfmmm.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Asthma is a common heterogeneous disease with both genetic and environmental factors that affects millions of individuals worldwide. Activated type 2 helper T cells secrete a panel of cytokines, including IL-13, a central immune regulator of many of the hallmark type 2 disease characteristics found in asthma. IL-13 has been directly implicated as a potent stimulator of asthma induced airway remodeling. Although IL-13 is known to play a major role in the development and persistence of asthma, the complex combination of environmental and genetic origin of the disease obfuscate the solitary role of IL-13 in the disease. We therefore, used a genetically modified mouse model which conditionally overexpresses IL-13 in the lungs to study the independent role of IL-13 in the progression of asthma. Our results demonstrate IL-13 is associated with a systemic induction of genotoxic parameters such as oxidative DNA damage, single and double DNA strand breaks, micronucleus formation, and protein nitration. Furthermore we show that inflammation induced genotoxicity found in asthma extends beyond the primary site of the lung to circulating leukocytes and erythroblasts in the bone marrow eliciting systemic effects driven by IL-13 over-expression.
Collapse
|
9
|
Common mechanisms in neurodegeneration and neuroinflammation: a BrainNet Europe gene expression microarray study. J Neural Transm (Vienna) 2014; 122:1055-68. [DOI: 10.1007/s00702-014-1293-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/06/2014] [Indexed: 11/27/2022]
|
10
|
Agrawal S, Townley RG. Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma. Expert Opin Biol Ther 2013; 14:165-81. [PMID: 24283478 DOI: 10.1517/14712598.2014.859673] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Asthma markedly diminishes quality of life due to limited activity, absences from work or school and hospitalizations. Patients with severe asthma which are not controlled despite taking effective therapy are most in need of new treatment approaches. IL-13 was demonstrated as 'central mediator of allergic asthma'. AREAS COVERED IL-13 has been implicated in the pathogenesis of asthma, idiopathic pulmonary fibrosis and COPD. IL-13 levels in the sputum and bronchial biopsy samples remain elevated in severe asthma despite the use of inhaled and systemic corticosteroids. Thus, IL-13 is a mediator involved in corticosteroid resistance. Periostin enhances profibrotic TGF-β signaling in subepithelial fibrosis associated with asthma. IL-13 induces bronchial epithelial cells to secrete periostin. Periostin may be a biomarker for Th2 induced airway inflammation. Lebrikizumab is a monoclonal antibody against IL-13. Lebrikizumab improved lung function in asthmatics who were symptomatic despite treatment with long acting beta agonist and inhaled corticosteroids and provided benefit in the treatment of severe uncontrolled asthma. EXPERT OPINION Lebrikizumab block IL-13 signaling through the IL-13Rα1/IL-4Rα receptor. There was a larger reduction in FENO in the high periostin subgroup than in the low periostin subgroup (34.4 vs 4.3%). Serum CCL17, CCL13 and total IgE levels decreased in the lebrikizumab group.
Collapse
Affiliation(s)
- Swati Agrawal
- Creighton University, Internal Medicine/Allergy , 601 N 30th Street, Omaha, NE 68131 , USA
| | | |
Collapse
|
11
|
Gittler JK, Shemer A, Suárez-Fariñas M, Fuentes-Duculan J, Gulewicz KJ, Wang CQ, Mitsui H, Cardinale I, de Guzman Strong C, Krueger JG, Guttman-Yassky E. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol 2012; 130:1344-54. [PMID: 22951056 PMCID: PMC3991245 DOI: 10.1016/j.jaci.2012.07.012] [Citation(s) in RCA: 649] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common disease with an increasing prevalence. The primary pathogenesis of the disease is still elusive, resulting in the lack of specific treatments. AD is currently considered a biphasic disease, with T(H)2 predominating in acute disease and a switch to T(H)1 characterizing chronic disease. Elucidation of the molecular factors that participate in the onset of new lesions and maintenance of chronic disease is critical for the development of targeted therapeutics. OBJECTIVES We sought to characterize the mechanisms underlying the onset and maintenance of AD. METHODS We investigated intrapersonal sets of transcriptomes from nonlesional skin and acute and chronic lesions of 10 patients with AD through genomic, molecular, and cellular profiling. RESULTS Our study associated the onset of acute lesions with a striking increase in a subset of terminal differentiation proteins, specifically the cytokine-modulated S100A7, S100A8, and S100A9. Acute disease was also associated with significant increases in gene expression levels of major T(H)22 and T(H)2 cytokines and smaller increases in IL-17 levels. A lesser induction of T(H)1-associated genes was detected in acute disease, although some were significantly upregulated in chronic disease. Further significant intensification of major T(H)22 and T(H)2 cytokines was observed between acute and chronic lesions. CONCLUSIONS Our data identified increased S100A7, S100A8, and S100A9 gene expression with AD initiation and concomitant activation of T(H)2 and T(H)22 cytokines. Our findings support a model of progressive activation of T(H)2 and T(H)22 immune axes from the acute to chronic phases, expanding the prevailing view of pathogenesis with important therapeutic implications.
Collapse
Affiliation(s)
- Julia K. Gittler
- Albert Einstein College of Medicine, Bronx, NY, USA
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Avner Shemer
- Department of Dermatology, Tel-Hashomer Hospital and Tel-Aviv University, Tel-Aviv, Israel
| | - Mayte Suárez-Fariñas
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
- Center for Clinical and Translational Science, Rockefeller University, New York, NY, USA
| | | | - Kara J. Gulewicz
- Division of Dermatology, The Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Claire Q.F. Wang
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Irma Cardinale
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Cristina de Guzman Strong
- Division of Dermatology, The Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - James G. Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY, USA
- Department of Dermatology, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Chang LY, Lin YC, Kang CW, Hsu CY, Chu YY, Huang CT, Day YJ, Chen TC, Yeh CT, Lin CY. The indispensable role of CCR5 for in vivo suppressor function of tumor-derived CD103+ effector/memory regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:567-74. [PMID: 22664873 DOI: 10.4049/jimmunol.1200266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD103 is a marker for identification of effector/memory regulatory T cells (Tregs). CD103(+) Tregs are potent suppressors of tissue inflammation in several infectious diseases, autoimmune diseases, and cancers. However, the underlying mechanisms for this potent suppression ability remain unclear. The current study was designed to clarify this issue. Unexpectedly, we found both CD103(+) and CD103(-) Tregs had similar suppression capacity in vitro. We then chose a murine tumor model for investigation of the in vivo behavior of these Tregs. The suppression ability in vivo against the anti-tumor ability of CD8(+) T cells was restricted to CD103(+) Tregs although both Tregs had equal in vitro suppression ability. In addition, CD103(+) Tregs expressed significantly higher levels of CCR5 than those of CD103(-) Tregs and accumulated more in tumors than did CD103(-) Tregs. Furthermore, blockade of CCR5 signaling, either by CCR5(-/-)CD103(+) Tregs or by CCL5 knockdown tumor, could reduce the migration of CD103(+) Tregs into tumors and impair their in vivo suppression ability. In conclusion, these results indicate that the potent in vivo suppression ability of CD103(+) Tregs is due to the tissue-migration ability through CCR5 expression.
Collapse
Affiliation(s)
- Li-Yuan Chang
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chang LY, Lin YC, Mahalingam J, Huang CT, Chen TW, Kang CW, Peng HM, Chu YY, Chiang JM, Dutta A, Day YJ, Chen TC, Yeh CT, Lin CY. Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res 2012; 72:1092-102. [PMID: 22282655 DOI: 10.1158/0008-5472.can-11-2493] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chemokine CCL5/RANTES is highly expressed in cancer where it contributes to inflammation and malignant progression. In this study, we show that CCL5 plays a critical role in immune escape in colorectal cancer. We found that higher levels of CCL5 expression in human and murine colon tumor cells correlated with higher levels of apoptosis of CD8+ T cells and infiltration of T-regulatory cells (T(reg)). In mouse cells, RNA interference (RNAi)-mediated knockdown of CCL5 delayed tumor growth in immunocompetent syngeneic hosts but had no effect on tumor growth in immunodeficient hosts. Reduced tumor growth was correlated with a reduction in T(reg) infiltration and CD8(+) T-cell apoptosis in tumors. Notably, we found that CCL5 enhanced the cytotoxicity of T(reg) against CD8(+) T cells. We also found tumor growth to be diminished in mice lacking CCR5, a CCL5 receptor, where a similar decrease in both T(reg) cell infiltration and CD8(+) T-cell apoptosis was noted. TGF-β signaling blockade diminished apoptosis of CD8(+) T cells, implicating TGF-β as an effector of CCL5 action. In support of this concept, CCL5 failed to enhance the production of TGF-β by CCR5-deficient T(reg) or to enhance their cytotoxic effects against CD8(+) T cells. CCR5 signaling blockade also diminished the in vivo suppressive capacity of T(reg) in inhibiting the antitumor responses of CD8(+) T cells, in the same way as CCL5 signaling blockade. Together, our findings establish that CCL5/CCR5 signaling recruits T(reg) to tumors and enhances their ability to kill antitumor CD8(+) T cells, thereby defining a novel mechanism of immune escape in colorectal cancer.
Collapse
Affiliation(s)
- Li-Yuan Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Homer RJ, Elias JA, Lee CG, Herzog E. Modern concepts on the role of inflammation in pulmonary fibrosis. Arch Pathol Lab Med 2011; 135:780-8. [PMID: 21631273 DOI: 10.5858/2010-0296-ra.1] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Idiopathic pulmonary fibrosis is a uniformly lethal disease with limited biomarkers and no proven therapeutic intervention short of lung transplantation. Pulmonary fibrosis at one time was thought to be a result of inflammation in the lung. Although some forms of pulmonary fibrosis may result from inflammation, idiopathic pulmonary fibrosis is currently thought to result from cell death primarily and inflammation secondarily. OBJECTIVE To determine the role of inflammation in pulmonary fibrosis in light of our laboratory's published and unpublished research and published literature. DATA SOURCES Review based on our laboratory's published and unpublished experimental data with relevant background and clinical context provided. CONCLUSIONS Although cell death is central to pulmonary fibrosis, the proper cytokine environment leading to macrophage polarization is also critical. Evaluation of this environment is promising both for the development of disease biomarkers and for targets for therapeutic intervention.
Collapse
Affiliation(s)
- Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520-8070, USA.
| | | | | | | |
Collapse
|
15
|
Dela Cruz CS, Kang MJ, Cho WK, Lee CG. Transgenic modelling of cytokine polarization in the lung. Immunology 2010; 132:9-17. [PMID: 21091906 DOI: 10.1111/j.1365-2567.2010.03376.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The lung is one of the commonest sites of exposure to environmental allergen or pathogen, so the expression of a variety of cytokines in the lung is dynamically regulated by inflammatory or structural cells in the lung. In the last decades, characterization of the local lung cytokine milieu in allergic or injury models has identified a collective role of certain cytokines, such as type 1 or type 2 cytokines, driving polarized inflammatory and tissue phenotypes. With the development of transgenic mouse modelling systems, the effector function of individual cytokine and the pathophysiological consequences of cytokine polarization in the lung have been effectively evaluated. Here, we present an overview of the transgenic systems currently used to assess the biological function of cytokine or other mediators in the lung. We discuss the inflammatory and tissue phenotypes detected in the lungs of transgenic mice over-expressing representative T helper type 1 (interferon-γ, interleukin-12), T helper type 2 (interleukins -4, -5, -9, -10 and -13), and T helper type 17 cytokines. The effects of genetic modification of cytokine receptors or transcriptional factors such as GATA-3 and T-bet in pulmonary inflammation and remodelling tissue responses are also discussed because these transcription factors are regarded as essential regulators of cytokine polarization. Finally, we discuss the limitations and future application of transgenic approaches in the studies of human lung diseases characterized by cytokine polarization.
Collapse
Affiliation(s)
- Charles S Dela Cruz
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, Department of Internal Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
16
|
Murine lung eosinophil activation and chemokine production in allergic airway inflammation. Cell Mol Immunol 2010; 7:361-74. [PMID: 20622891 DOI: 10.1038/cmi.2010.31] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eosinophils play important roles in asthma and lung infections. Murine models are widely used for assessing the functional significance and mechanistic basis for eosinophil involvements in these diseases. However, little is known about tissue eosinophils in homeostasis. In addition, little data on eosinophil chemokine production during allergic airway inflammation are available. In this study, the properties and functions of homeostatic and activated eosinophils were compared. Eosinophils from normal tissues expressed costimulation and adhesion molecules B7-1, B7-2 and ICAM-1 for Ag presentation but little major histocompatibility complex (MHC) class II, and were found to be poor stimulators of T-cell proliferation. However, these eosinophils expressed high levels of chemokine mRNA including C10, macrophage inflammatory protein (MIP)-1alpha, MIP-1gamma, MIP-2, eotaxin and monocyte chemoattractant protein-5 (MCP-5), and produced chemokine proteins. Eosinophil intracellular chemokines decreased rapidly with concomitant surface marker downregulation upon in vitro culturing consistent with piecemeal degranulation. Lung eosinophils from mice with induced allergic airway inflammation exhibited increased chemokines mRNA expression and chemokines protein production and upregulated MHC class II and CD11c expression. They were also found to be the predominant producers of the CCR1 ligands CCL6/C10 and CCL9/MIP-1gamma in inflamed lungs. Eosinophil production of C10 and MIP-1gamma correlated with the marked influx of CD11b(high) lung dendritic cells during allergic airway inflammation and the high expression of CCR1 on these dendritic cells (DCs). The study provided baseline information on tissue eosinophils, documented the upregulation of activation markers and chemokine production in activated eosinophils, and indicated that eosinophils were a key chemokine-producing cell type in allergic lung inflammation.
Collapse
|
17
|
Abstract
The histologic distinction between bronchioloalveolar carcinoma and other adenocarcinomas is tissue invasion. The clinical importance of lung adenocarcinoma invasion is supported by several recent studies indicating that the risk of death in nonmucinous bronchioloalveolar carcinoma is significantly lower than that of pure invasive tumors and in tumors with greater than 0.5 cm of fibrosis or linear invasion. Using microarray gene expression profiling of human tumors, dysregulation of transforming growth factor-beta signaling was identified as an important mediator of tumor invasion. Subsequent studies showed that the CC chemokine regulated on activation, normal T cell expressed, and presumably secreted was up-regulated in invasive tumors and was required for invasion in cells with repressed levels of the transforming growth factor-beta type II receptor. Taken together, these studies illustrate how information gained from global expression profiling of tumors can be used to identify key pathways and genes mediating tumor growth, invasion, and metastasis.
Collapse
|
18
|
Abstract
This review focuses on recent research using genomics to examine lung carcinogenesis, histologic differentiation, and progression.
Collapse
|
19
|
Effect of interleukin 13 on bronchial hyperresponsiveness and the bronchoprotective effect of beta-adrenergic bronchodilators and corticosteroids. Ann Allergy Asthma Immunol 2009; 102:190-7. [PMID: 19354064 DOI: 10.1016/s1081-1206(10)60080-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Fluticasone affects airway bronchial hyperresponsiveness (BHR) and enhances bronchodilation and bronchoprotection induced by beta-adrenergic agonists. Interleukin 13 (IL-13), however, induces BHR. OBJECTIVE To test the hypotheses that fluticasone inhibits BHR after either allergen sensitization or IL-13 administration and that fluticasone restores the bronchodilation and bronchoprotective effects of beta-agonists. METHODS The BHR to methacholine induced by IL-13 or ovalbumin was determined in BALB/c mice, and the provocation concentration of methacholine that caused an increase in enhanced pause in expiration of 200% (PC200) was calculated. We compared this response to methacholine in control mice with the response after treatment with IL-13 receptor alpha 2-IgGFc fusion protein (IL-13R alpha 2) (an IL-13 blocker), fluticasone, albuterol, salmeterol, fluticasone-albuterol, and fluticasone-salmeterol. RESULTS IL-13R alpha 2 (PC200, 17.59) completely blocks the BHR-induced effects of IL-13 (PC200, 7.28; P < .005). After IL-13 therapy (PC200, 5.90; P < .005), 1 mg/mL of albuterol (PC200, 3.38; P = .33), fluticasone (PC200, 4.59; P = .40), or fluticasone plus 50 microg/mL of salmeterol (PC200, 5.59; P = .11) showed no significant bronchoprotection. In nonsensitized mice, fluticasone plus 0.25 microg/mL of salmeterol (PC200, 25.90; P < .005) showed significantly greater bronchoprotection than did salmeterol alone (PC200, 11.08; P = .26). Fluticasone plus 0.3 mg/mL of albuterol and fluticasone plus 1 mg/mL of albuterol were significantly more protective than was fluticasone or albuterol alone in ovalbumin-sensitized mice. CONCLUSIONS The protective effects of fluticasone, beta-agonists, and fluticasone plus beta-agonists are significantly less in IL-13-treated mice than in nonsensitized or ovalbumin-sensitized mice.
Collapse
|
20
|
Kohlmeier JE, Miller SC, Smith J, Lu B, Gerard C, Cookenham T, Roberts AD, Woodland DL. The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity 2008; 29:101-13. [PMID: 18617426 DOI: 10.1016/j.immuni.2008.05.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/24/2008] [Accepted: 05/01/2008] [Indexed: 11/18/2022]
Abstract
Innate recognition of invading pathogens in peripheral tissues results in the recruitment of circulating memory CD8(+) T cells to sites of localized inflammation during the early phase of a recall response. However, the mechanisms that control the rapid recruitment of these cells to peripheral sites are poorly understood, particularly in relation to influenza and parainfluenza infections of the respiratory tract. In this study, we demonstrate a crucial role for C-C chemokine receptor 5 (CCR5) in the accelerated recruitment of memory CD8(+) T cells to the lung airways during virus challenge. Most importantly, CCR5 deficiency resulted in decreased recruitment of memory T cells expressing key effector molecules and impaired control of virus replication during the initial stages of a secondary response. These data highlight the critical importance of early memory T cell recruitment for the efficacy of cellular immunity in the lung.
Collapse
|
21
|
Zheng T, Liu W, Oh SY, Zhu Z, Hu B, Homer RJ, Cohn L, Grusby MJ, Elias JA. IL-13 receptor alpha2 selectively inhibits IL-13-induced responses in the murine lung. THE JOURNAL OF IMMUNOLOGY 2008; 180:522-9. [PMID: 18097054 DOI: 10.4049/jimmunol.180.1.522] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IL-13 is a critical cytokine at sites of Th2 inflammation. In these locations it mediates its effects via a receptor complex, which contains IL-4Ralpha and IL-13Ralpha1. A third, high-affinity IL-13 receptor, IL-13Ralpha2, also exists. Although it was initially felt to be a decoy receptor, this has not been formally demonstrated and the role(s) of this receptor has recently become controversial. To define the role(s) of IL-13Ralpha2 in IL-13-induced pulmonary inflammation and remodeling, we compared the effects of lung-targeted transgenic IL-13 in mice with wild-type and null IL-13Ralpha2 loci. We also investigated the effect of IL-13Ralpha2 deficiency on the OVA-induced inflammatory response. In this study, we show that in the absence of IL-13Ralpha2, IL-13-induced pulmonary inflammation, mucus metaplasia, subepithelial fibrosis, and airway remodeling are significantly augmented. These changes were accompanied by increased expression and production of chemokines, proteases, mucin genes, and TGF-beta1. Similarly, an enhanced inflammatory response was observed in an OVA-induced phenotype. In contrast, disruption of IL-13Ralpha2 had no effect on the tissue effects of lung-targeted transgenic IL-4. Thus, IL-13Ralpha2 is a selective and powerful inhibitor of IL-13-induced inflammatory, remodeling, and physiologic responses in the murine lung.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Henson PM, Tuder RM. Apoptosis in the lung: induction, clearance and detection. Am J Physiol Lung Cell Mol Physiol 2008; 294:L601-11. [PMID: 18178675 DOI: 10.1152/ajplung.00320.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apoptosis and other forms of programmed cell death are important contributors to lung pathophysiology. In this brief review, we discuss some of the implications of finding apoptotic cells in the lung and methods for their detection. The balance between induction of apoptosis and the normally highly efficient clearance of such cells shows that these are highly dynamic processes and suggests that abnormalities of apoptotic cell clearance may be an alternative explanation for their detection. Because recognition of apoptotic cells by other lung cells has additional effects on inflammation, immunity, and tissue repair, local responses to the dying cells may also have important consequences in addition to the cell death itself.
Collapse
Affiliation(s)
- P M Henson
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| | | |
Collapse
|
23
|
Ma Y, Ma AG, Peng Z. A potential immunotherapy approach: mucosal immunization with an IL-13 peptide-based virus-like particle vaccine in a mouse asthma model. Vaccine 2007; 25:8091-9. [PMID: 17935839 DOI: 10.1016/j.vaccine.2007.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 08/30/2007] [Accepted: 09/03/2007] [Indexed: 01/17/2023]
Abstract
Interleukin (IL)-13 is critical in asthma pathogenesis. Previously, we have developed an IL-13 peptide-based vaccine and confirmed that subcutaneous immunization with the vaccine suppressed airway allergic inflammatory responses in a mouse asthma model. In the present study, we sought to test if mucosal immunization with the vaccine could be a potential approach, by inducing specific autoantibodies of both local IgA in the airway and systemic IgG in serum, to provide an overall suppression of redundant IL-13 effects. The results show that intranasal vaccination induces IL-13-specific IgA responses in multiple mucosal tissues and higher titers of IgG in serum than subcutaneous vaccination. This approach leads to a more effective suppression of ovalbumin-driven Th2 patterns of antibody responses and airway IL-13 and eosinophil accumulation than subcutaneous immunization, even when the induced IL-13 IgG responses were at a similar level. In conclusion, mucosal vaccination may be an innovative potential approach in the treatment of asthma.
Collapse
Affiliation(s)
- Yanbing Ma
- Department of Pediatrics and Child Health, University of Manitoba, 532-715 McDermot Avenue, Winnipeg, Canada R3E 3P4
| | | | | |
Collapse
|
24
|
Lee JS, Rosengart MR, Kondragunta V, Zhang Y, McMurray J, Branch RA, Choi AMK, Sciurba FC. Inverse association of plasma IL-13 and inflammatory chemokines with lung function impairment in stable COPD: a cross-sectional cohort study. Respir Res 2007; 8:64. [PMID: 17868461 PMCID: PMC2064925 DOI: 10.1186/1465-9921-8-64] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/14/2007] [Indexed: 11/10/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome characterized by varying degrees of airflow limitation and diffusion impairment. There is increasing evidence to suggest that COPD is also characterized by systemic inflammation. The primary goal of this study was to identify soluble proteins in plasma that associate with the severity of airflow limitation in a COPD cohort with stable disease. A secondary goal was to assess whether unique markers associate with diffusion impairment, based on diffusion capacity of carbon monoxide (DLCO), independent of the forced expiratory volume in 1 second (FEV1). Methods A cross sectional study of 73 COPD subjects was performed in order to examine the association of 25 different plasma proteins with the severity of lung function impairment, as defined by the baseline measurements of the % predicted FEV1 and the % predicted DLCO. Plasma protein concentrations were assayed using multiplexed immunobead-based cytokine profiling. Associations between lung function and protein concentrations were adjusted for age, gender, pack years smoking history, current smoking, inhaled corticosteroid use, systemic corticosteroid use and statin use. Results Plasma concentrations of CCL2/monocyte chemoattractant protein-1 (CCL2/MCP-1), CCL4/macrophage inflammatory protein-1β (CCL4/MIP -1β), CCL11/eotaxin, and interleukin-13 (IL-13) were inversely associated with the % FEV1. Plasma concentrations of soluble Fas were associated with the % DLCO, whereas CXCL9/monokine induced by interferon-γ (CXCL9/Mig), granulocyte- colony stimulating factor (G-CSF) and IL-13 showed inverse relationships with the % DLCO. Conclusion Systemic inflammation in a COPD cohort is characterized by cytokines implicated in inflammatory cell recruitment and airway remodeling. Plasma concentrations of IL-13 and chemoattractants for monocytes, T lymphocytes, and eosinophils show associations with increasing severity of disease. Soluble Fas, G-CSF and CXCL9/Mig may be unique markers that associate with disease characterized by disproportionate abnormalities in DLCO independent of the FEV1.
Collapse
Affiliation(s)
- Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Matthew R Rosengart
- Division of Trauma/General Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Venkateswarlu Kondragunta
- Division of Clinical Pharmacology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jessica McMurray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert A Branch
- Division of Trauma/General Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Augustine MK Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Frank C Sciurba
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
25
|
Yoshida T, Tuder RM. Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 2007; 87:1047-82. [PMID: 17615396 DOI: 10.1152/physrev.00048.2006] [Citation(s) in RCA: 375] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary diseases (COPD), comprised of pulmonary emphysema, chronic bronchitis, and structural and inflammatory changes of small airways, is a leading cause of morbidity and mortality in the world. A better understanding of the pathobiology of COPD is critical for the developing of novel therapies, as the majority of patients with the disease have little therapeutic options at the present time. The pathobiology of COPD encompasses multiple injurious processes including inflammation (excessive or inappropriate innate and adaptive immunity), cellular apoptosis, altered cellular and molecular alveolar maintenance program, abnormal cell repair, extracellular matrix destruction (protease and anti-protease imbalance), and oxidative stress (oxidant and antioxidant imbalance). These processes are triggered by urban and rural air pollutants and active and/or passive cigarette smoke and modified by cellular senescence and infection. A series of receptor-mediated signal transduction pathways are activated by reactive oxygen species and tobacco components, resulting in impairment of a variety of cell signaling and cytokine networks, subsequently leading to chronic airway responses with mucus production, airway remodeling, and alveolar destruction. The authors provide an updated insight into the molecular and cellular pathobiology of COPD based on human and/or animal data.
Collapse
Affiliation(s)
- Toshinori Yoshida
- Division of Cardiopulmonary Pathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
26
|
Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci U S A 2007; 104:4095-100. [PMID: 17360483 PMCID: PMC1820714 DOI: 10.1073/pnas.0608491104] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Silencing gene expression by RNAi is a powerful method for exploring gene function and validating drug targets and potentially for therapy. Lymphocytes and other primary blood cells are resistant to lipid-based transfection in vitro and are difficult to target in vivo. We show here that antibody-protamine fusion proteins targeting the human integrin lymphocyte function-associated antigen-1 (LFA-1) efficiently deliver siRNAs and specifically induce silencing in primary lymphocytes, monocytes, and dendritic cells. Moreover, a fusion protein constructed from an antibody that preferentially recognizes activation-dependent conformational changes in LFA-1 selectively targets activated leukocytes and can be used to suppress gene expression and cell proliferation only in activated lymphocytes. The siRNA-fusion protein complexes do not cause lymphocyte activation or induce IFN responses. K562 cells expressing latent WT or constitutively activated LFA-1 engrafted in the lungs of SCID mice are selectively targeted by intravenously injected fusion protein-siRNA complexes, demonstrating the potential in vivo applicability of LFA-1-directed siRNA delivery.
Collapse
Affiliation(s)
- Dan Peer
- *CBR Institute for Biomedical Research, and
- Departments of Anesthesia and
| | - Pengcheng Zhu
- *CBR Institute for Biomedical Research, and
- Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115; and
| | - Christopher V. Carman
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Judy Lieberman
- *CBR Institute for Biomedical Research, and
- Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115; and
- To whom correspondence may be addressed. E-mail:
and
| | - Motomu Shimaoka
- *CBR Institute for Biomedical Research, and
- Departments of Anesthesia and
- To whom correspondence may be addressed. E-mail:
and
| |
Collapse
|