1
|
Fajardo-Despaigne JE, Lombard-Vadnais F, Pelletier AN, Olazabal A, Boutin L, Pasquin S, Janelle V, Legault L, Delisle JS, Hillhouse EE, Coderre L, Lesage S. Characterization and effective expansion of CD4 -CD8 - TCRαβ + T cells from individuals living with type 1 diabetes. Mol Ther Methods Clin Dev 2025; 33:101400. [PMID: 39877593 PMCID: PMC11772147 DOI: 10.1016/j.omtm.2024.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 01/31/2025]
Abstract
CD4-CD8- TCRαβ+ (double-negative [DN]) T cells represent a rare T cell population that promotes immunological tolerance through various cytotoxic mechanisms. In mice, autologous transfer of DN T cells has shown protective effects against autoimmune diabetes and graft-versus-host disease. Here, we characterized human DN T cells from people living with type 1 diabetes (PWT1D) and healthy controls. We found that while DN T cells and CD8+ T cells share many similarities, DN T cells are a unique T cell population, both at the transcriptomic and protein levels. We also show that by using various cytokine combinations, human DN T cells can be expanded in vitro up to 1,000-fold (mean >250-fold) and remain functional post-expansion. In addition, we report that DN T cells from PWT1D display a phenotype comparable to that of healthy controls, efficiently expand, and are highly functional. As DN T cells are immunoregulatory and can prevent T1D in various mouse models, these observations suggest that autologous DN T cells may be amenable to therapy for the prevention or treatment of T1D.
Collapse
Affiliation(s)
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | | | - Aïnhoa Olazabal
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Lucie Boutin
- Département de Recherche Clinique, CIUSSS de l’Est-de-l’Île-de-Montréal, Montréal, QC, Canada
| | - Sarah Pasquin
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Valérie Janelle
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Laurent Legault
- Département de Recherche Clinique, CIUSSS de l’Est-de-l’Île-de-Montréal, Montréal, QC, Canada
- Department of Pediatrics, Montreal Children’s Hospital, Montreal, QC, Canada
| | - Jean-Sébastien Delisle
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Erin E. Hillhouse
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Lise Coderre
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Immunologie-Oncologie, Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Jin H, Li M, Wang X, Yang L, Zhong X, Zhang Z, Han X, Zhu J, Li M, Wang S, Robson SC, Sun G, Zhang D. Purinergic signaling by TCRαβ + double-negative T regulatory cells ameliorates liver ischemia-reperfusion injury. Sci Bull (Beijing) 2025; 70:241-254. [PMID: 39658411 PMCID: PMC11749161 DOI: 10.1016/j.scib.2024.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is an important cause of liver injury following liver transplantation and major resections, and neutrophils are the key effector cells in HIRI. Double-negative T regulatory cells (DNT) are increasingly recognized as having critical regulatory functions in the immune system. Whether DNT expresses distinct immunoregulatory mechanisms to modulate neutrophils, as in HIRI, remains largely unknown. In this study, we found that murine and human DNT highly expressed CD39 that protected DNT from extracellular ATP-induced apoptosis and generated adenosine in tandem with CD73, to induce high levels of neutrophil apoptosis. Furthermore, extracellular adenosine enhanced DNT survival and suppressive function by upregulating survivin and NKG2D expression via the A2AR/pAKT/FOXO1 signaling pathway. Adoptive transfer of DNT ameliorated HIRI in mice through the inhibition of neutrophils in a CD39-dependent manner. Lastly, the adoptive transfer of A2ar-/- DNT validated the importance of adenosine/A2AR signaling, in promoting DNT survival and immunomodulatory function to protect against HIRI in vivo. In conclusion, purinergic signaling is crucial for DNT homeostasis in HIRI. Augmentation of CD39 or activation of A2AR signaling in DNT may provide novel therapeutic strategies to target innate immune disorders.
Collapse
Affiliation(s)
- Hua Jin
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Mingyang Li
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Lu Yang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xinjie Zhong
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zihan Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaotong Han
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jingjing Zhu
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Mengyi Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine, and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Guangyong Sun
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China.
| |
Collapse
|
3
|
Yero A, Shi T, Clain JA, Zghidi-Abouzid O, Racine G, Costiniuk CT, Routy JP, Estaquier J, Jenabian MA. Double-Negative T-Cells during Acute Human Immunodeficiency Virus and Simian Immunodeficiency Virus Infections and Following Early Antiretroviral Therapy Initiation. Viruses 2024; 16:1609. [PMID: 39459942 PMCID: PMC11512404 DOI: 10.3390/v16101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
HIV infection significantly affects the frequencies and functions of immunoregulatory CD3+CD4-CD8- double-negative (DN) T-cells, while the effect of early antiretroviral therapy (ART) initiation on these cells remains understudied. DN T-cell subsets were analyzed prospectively in 10 HIV+ individuals during acute infection and following early ART initiation compared to 20 HIV-uninfected controls. In this study, 21 Rhesus macaques (RMs) were SIV-infected, of which 13 were assessed during acute infection and 8 following ART initiation four days post-infection. DN T-cells and FoxP3+ DN Treg frequencies increased during acute HIV infection, which was not restored by ART. The expression of activation (HLA-DR/CD38), immune checkpoints (PD-1/CTLA-4), and senescence (CD28-CD57+) markers by DN T-cells and DN Tregs increased during acute infection and was not normalized by ART. In SIV-infected RMs, DN T-cells remained unchanged despite infection or ART, whereas DN Treg frequencies increased during acute SIV infection and were not restored by ART. Finally, frequencies of CD39+ DN Tregs increased during acute HIV and SIV infections and remained elevated despite ART. Altogether, acute HIV/SIV infections significantly changed DN T-cell and DN Treg frequencies and altered their immune phenotype, while these changes were not fully normalized by early ART, suggesting persistent HIV/SIV-induced immune dysregulation despite early ART initiation.
Collapse
Affiliation(s)
- Alexis Yero
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC H2X 3X8, Canada; (A.Y.); (T.S.)
| | - Tao Shi
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC H2X 3X8, Canada; (A.Y.); (T.S.)
| | - Julien A. Clain
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (O.Z.-A.); (G.R.); (J.E.)
| | - Ouafa Zghidi-Abouzid
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (O.Z.-A.); (G.R.); (J.E.)
| | - Gina Racine
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (O.Z.-A.); (G.R.); (J.E.)
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H3H 2R9, Canada; (C.T.C.); (J.-P.R.)
- Chronic Viral Illness Service, Division of Infectious Disease, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC H3H 2R9, Canada; (C.T.C.); (J.-P.R.)
- Chronic Viral Illness Service, Division of Infectious Disease, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Jérôme Estaquier
- Centre Hospitalier Universitaire (CHU) de Québec Centre de Recherche, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (J.A.C.); (O.Z.-A.); (G.R.); (J.E.)
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal (UQAM), Montreal, QC H2X 3X8, Canada; (A.Y.); (T.S.)
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
4
|
Chen X, Hu G, Ning D, Wang D. Exploring gut microbiota's role in rheumatic valve disease: insights from a Mendelian randomization study and mediation analysis. Front Immunol 2024; 15:1362753. [PMID: 38895120 PMCID: PMC11183100 DOI: 10.3389/fimmu.2024.1362753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Background Investigating the relationship between gut microbiota and Rheumatic Valve Disease (RVD) is crucial for understanding the disease's etiology and developing effective interventions. Our study adopts a novel approach to examine the potential causal connections between these factors. Methods Utilizing a two-sample Mendelian Randomization (MR) framework, we incorporated a multi-variable MR (MVMR) strategy to assess the mediatory mechanisms involved. This approach involved analyzing data from the MiBioGen consortium for gut microbiota and the FinnGen for RVD, among other sources. Instrumental variables (IVs) were carefully selected based on rigorous MR principles, and statistical analysis was conducted using bidirectional two-sample MR, such as inverse variance-weighted (IVW), weighted median, MR-Egger regression and MR Steiger Test methods. The MR-PRESSO strategy was employed for outlier detection, and MVMR was used to untangle the complex relationships between multiple microbiota and RVD. Results Our analysis highlighted several gut microbiota classes and families with potential protective effects against RVD, including Lentisphaerae, Alphaproteobacteria, and Streptococcaceae. In contrast, certain genera, such as Eubacterium eligens and Odoribacter, were identified as potential risk factors. The MVMR analysis revealed significant mediation effects of various immune cell traits and biomarkers, such as CD4-CD8- T cells, CD3 on Terminally Differentiated CD8+ T cell and Pentraxin-related protein PTX, elucidating the complex pathways linking gut microbiota to RVD. Conclusion This study underscores the intricate and potentially causal relationship between gut microbiota and RVD, mediated through a range of immune and hormonal factors. The use of MVMR in our methodological approach provides a more comprehensive understanding of these interactions, highlighting the gut microbiota's potential as therapeutic targets in RVD management. Our findings pave the way for further research to explore these complex relationships and develop targeted interventions for RVD.
Collapse
Affiliation(s)
- Xiwei Chen
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Guangwen Hu
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| | - Dong Ning
- Department of Physiology, Human Biology Building, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| | - Daxin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People's Hospital), Taizhou, Jiangsu, China
| |
Collapse
|
5
|
Wei Y, Sun G, Yang Y, Li M, Zheng S, Wang X, Zhong X, Zhang Z, Han X, Cheng H, Zhang D, Mei X. Double-negative T cells ameliorate psoriasis by selectively inhibiting IL-17A-producing γδ low T cells. J Transl Med 2024; 22:328. [PMID: 38566145 PMCID: PMC10988838 DOI: 10.1186/s12967-024-05132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin condition. Although biologic treatments are effective in controlling psoriasis, some patients do not respond or lose response to these therapies. Thus, new strategies for psoriasis treatment are still urgently needed. Double-negative T cells (DNT) play a significant immunoregulatory role in autoimmune diseases. In this study, we aimed to evaluate the protective effect of DNT in psoriasis and explore the underlying mechanism. METHODS We conducted a single adoptive transfer of DNT into an imiquimod (IMQ)-induced psoriasis mouse model through tail vein injection. The skin inflammation and IL-17A producing γδ T cells were evaluated. RESULTS DNT administration significantly reduced the inflammatory response in mouse skin, characterized by decreased skin folds, scales, and red patches. After DNT treatment, the secretion of IL-17A by RORc+ γδlow T cells in the skin was selectively suppressed, resulting in an amelioration of skin inflammation. Transcriptomic data suggested heightened expression of NKG2D ligands in γδlow T cells within the mouse model of psoriasis induced by IMQ. When blocking the NKG2D ligand and NKG2D (expressed by DNT) interaction, the cytotoxic efficacy of DNT against RORc+IL17A+ γδlow T cells was attenuated. Using Ccr5-/- DNT for treatment yielded evidence that DNT migrates into inflamed skin tissue and fails to protect IMQ-induced skin lesions. CONCLUSIONS DNT could migrate to inflamed skin tissue through CCR5, selectively inhibit IL-17-producing γδlow T cells and finally ameliorate mouse psoriasis. Our study provides feasibility for using immune cell therapy for the prevention and treatment of psoriasis in the clinic.
Collapse
Affiliation(s)
- Yunxiong Wei
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guangyong Sun
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yang Yang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Mingyang Li
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Shimeng Zheng
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiyu Wang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xinjie Zhong
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zihan Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaotong Han
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haiyan Cheng
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dong Zhang
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
- Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, 100069, China.
| | - Xueling Mei
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
6
|
Li J, Gong Y, Wang Y, Huang H, Du H, Cheng L, Ma C, Cai Y, Han H, Tao J, Li G, Cheng P. Classification of regulatory T cells and their role in myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2024; 186:94-106. [PMID: 38000204 DOI: 10.1016/j.yjmcc.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is closely related to the final infarct size in acute myocardial infarction (AMI). Therefore, reducing MIRI can effectively improve the prognosis of AMI patients. At the same time, the healing process after AMI is closely related to the local inflammatory microenvironment. Regulatory T cells (Tregs) can regulate various physiological and pathological immune inflammatory responses and play an important role in regulating the immune inflammatory response after AMI. However, different subtypes of Tregs have different effects on MIRI, and the same subtype of Tregs may also have different effects at different stages of MIRI. This article systematically reviews the classification and function of Tregs, as well as the role of various subtypes of Tregs in MIRI. A comprehensive understanding of the role of each subtype of Tregs can help design effective methods to control immune reactions, reduce MIRI, and provide new potential therapeutic options for AMI.
Collapse
Affiliation(s)
- Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Cardiology, The Second People's Hospital of Neijiang, Neijiang 641100, China
| | - Yajun Gong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China.
| |
Collapse
|
7
|
Sun X, Zhang C, Sun F, Li S, Wang Y, Wang T, Li L. IL-33 promotes double negative T cell survival via the NF-κB pathway. Cell Death Dis 2023; 14:242. [PMID: 37019882 PMCID: PMC10076344 DOI: 10.1038/s41419-023-05766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
IL-33, which is a crucial modulator of adaptive immune responses far beyond type 2 response, can enhance the function of several T cell subsets and maintain the immune homeostasis. However, the contribution of IL-33 to double negative T (DNT) cell remains unappreciated. Here, we demonstrated that the IL-33 receptor ST2 was expressed on DNT cells, and that IL-33 stimulation increased DNT cells proliferation and survival in vivo and in vitro. Transcriptome sequencing analysis also demonstrated that IL-33 enhanced the biological function of DNT cells, especially effects on proliferation and survival. IL-33 promoted DNT cells survival by regulating Bcl-2, Bcl-xl and Survivin expression. IL-33-TRAF4/6-NF-κB axis activation promoted the transmission of essential division and survival signals in DNT cells. However, IL-33 failed to enhance the expression of immunoregulatory molecules in DNT cells. DNT cells therapy combined with IL-33 inhibited T cells survival and further ameliorated ConA-induced liver injury, which mainly depended on the proliferative effect of IL-33 on DNT cells in vivo. Finally, we stimulated human DNT cells with IL-33, and similar results were observed. In conclusion, we revealed a cell intrinsic role of IL-33 in the regulation of DNT cells, thereby identifying a previously unappreciated pathway supporting the expansion of DNT cells in the immune environment.
Collapse
Affiliation(s)
- Xiaojing Sun
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunpan Zhang
- Department of Infectious Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fanqi Sun
- Capital Medical University Forth Clinical School, Beijing, China
| | - Shuxiang Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medical On Liver Cirrhosis, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yaning Wang
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Wang
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Li Li
- Department of International Medical Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Zhang L, Wei Y, Wang D, Du J, Wang X, Li B, Jiang M, Zhang M, Chen N, Deng M, Song C, Chen D, Wu L, Xiao J, Liang H, Zhao H, Kong Y. Elevated Foxp3+ double-negative T cells are associated with disease progression during HIV infection. Front Immunol 2022; 13:947647. [PMID: 35967422 PMCID: PMC9365964 DOI: 10.3389/fimmu.2022.947647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
Persistent immune activation, which occurs during the whole course of HIV infection, plays a pivotal role in CD4+ T cells depletion and AIDS progression. Furthermore, immune activation is a key factor that leads to impaired immune reconstitution after long-term effective antiretroviral therapy (ART), and is even responsible for the increased risk of developing non-AIDS co-morbidities. Therefore, it’s imperative to identify an effective intervention targeting HIV-associated immune activation to improve disease management. Double negative T cells (DNT) were reported to provide immunosuppression during HIV infection, but the related mechanisms remained puzzled. Foxp3 endows Tregs with potent suppressive function to maintain immune homeostasis. However, whether DNT cells expressed Foxp3 and the accurate function of these cells urgently needed to be investigated. Here, we found that Foxp3+ DNT cells accumulated in untreated people living with HIV (PLWH) with CD4+ T cell count less than 200 cells/µl. Moreover, the frequency of Foxp3+ DNT cells was negatively correlated with CD4+ T cell count and CD4/CD8 ratio, and positively correlated with immune activation and systemic inflammation in PLWH. Of note, Foxp3+ DNT cells might exert suppressive regulation by increased expression of CD39, CD25, or vigorous proliferation (high levels of GITR and ki67) in ART-naive PLWH. Our study underlined the importance of Foxp3+ DNT cells in the HIV disease progression, and suggest that Foxp3+ DNT may be a potential target for clinical intervention for the control of immune activation during HIV infection.
Collapse
Affiliation(s)
- Leidan Zhang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiju Deng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liang Wu
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jiang Xiao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongyuan Liang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| |
Collapse
|
9
|
Han C, Sheng Y, Wang J, Zhou X, Li W, Zhang C, Guo L, Yang Y. Double-negative T cells mediate M1 polarization of microglial cells via TNF-α-NLRP3 to aggravate neuroinflammation and cognitive impairment in Alzheimer's disease mice. J Cell Physiol 2022; 237:3860-3871. [PMID: 35866513 DOI: 10.1002/jcp.30839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
We mainly study the role and regulatory mechanism of double-negative T cells (DNTs) in Alzheimer's disease (AD). The mice splenic DNTs were separated and amplified by Rosettesep antibody adsorption method and Easysep magnetic activated cell sorting. DNTs were intraperitoneally injected into the APP/PS1-AD mice model, which was found to aggravate cognitive impairment in mice. DNTs secreted tumor necrosis factor α (TNF-α) to promote the activation of NLRP3 and the M1 polarization of microglial cells, and silencing NLRP3 with small interfering RNA (siRNA) suppressed the effect of DNTs. DNTs were later cocultured with mice microglial cell line BV2, then fluorescence staining was conducted to detect NLRP3 expression, and enzyme-linked immunoassay was performed to measure the expression of inflammatory factors. Moreover, the levels of NLRP3, ASC, and TNFR1 proteins were detected by western-blot assay, and the proportion of F4/80 + CD11b + M1 cells was detected by flow cytometry. DNTs promoted the M1 polarization of BV2 cells and the activation of NLRP3 inflammasome. After treatment of BV2 cells with NLRP3 inhibitor, the effect of DNTs was weakened. Later, TNF-α siRNA was transfected into DNTs, and it was found that DNTs with TNF-α silencing had markedly weakened polarization effect on BV2 cells. We discovered that the proportion of DNTs increased in AD patients. DNTs secreted TNF-α to regulate the activation of NLRP3 inflammasome and the M1 polarization of microglial cells, thus promoting the central inflammatory response and aggravating the cognitive impairment in AD mice.
Collapse
Affiliation(s)
- Chenyang Han
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yongjia Sheng
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jin Wang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaohong Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Wenyan Li
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Caiqun Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Li Guo
- Department of Center Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yi Yang
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
10
|
Bafor EE, Valencia JC, Young HA. Double Negative T Regulatory Cells: An Emerging Paradigm Shift in Reproductive Immune Tolerance? Front Immunol 2022; 13:886645. [PMID: 35844500 PMCID: PMC9283768 DOI: 10.3389/fimmu.2022.886645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Immune regulation of female reproductive function plays a crucial role in fertility, as alterations in the relationship between immune and reproductive processes result in autoimmune subfertility or infertility. The breakdown of immune tolerance leads to ovulation dysfunction, implantation failure, and pregnancy loss. In this regard, immune cells with regulatory activities are essential to restore self-tolerance. Apart from regulatory T cells, double negative T regulatory cells (DNTregs) characterized by TCRαβ+/γδ+CD3+CD4–CD8– (and negative for natural killer cell markers) are emerging as effector cells capable of mediating immune tolerance in the female reproductive system. DNTregs are present in the female reproductive tract of humans and murine models. However, their full potential as immune regulators is evolving, and studies so far indicate that DNTregs exhibit features that can also maintain tolerance in the female reproductive microenvironment. This review describes recent progress on the presence, role and mechanisms of DNTregs in the female reproductive system immune regulation and tolerance. In addition, we address how DNTregs can potentially provide a paradigm shift from the known roles of conventional regulatory T cells and immune tolerance by maintaining and restoring balance in the reproductive microenvironment of female fertility.
Collapse
Affiliation(s)
- Enitome E Bafor
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Julio C Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Howard A Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
11
|
Lei H, Tian M, Zhang X, Liu X, Wang B, Wu R, Lv Y. Expansion of Double-Negative T Cells in Patients before Liver Transplantation Correlates with Post-Transplant Infections. J Clin Med 2022; 11:3502. [PMID: 35743569 PMCID: PMC9225480 DOI: 10.3390/jcm11123502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Liver transplantation (LTx) is currently the only effective therapy for patients with end-stage liver diseases, but post-transplant infection is a key issue for morbidity and mortality. In this study, we found that pre-transplant patients with an expansion of double-negative T (DNT) cells (CD3+CD4-CD8- T cells) had an increased incidence of infections within the first 6 months after LTx. These DNT cells also negatively correlated with their CD4/CD8 ratio. Compared to patients who had no infections after LTx, these DNT cells expressed more CD25, especially in the memory compartment. The receiver operating characteristic (ROC) analysis showed that the threshold area under the ROC curve of DNT cells which could be used to distinguish LTx patients with post-transplant infections from patients without infections after LTx was 0.8353 (95% CI: 0.6591-1.000). The cut-off for the pre-LTx DNT cell level was 11.35%. Although patients with post-transplant infections had decreased levels of CD4/CD8 T cells, CD8+ T cells in these patients were more exhausted, with higher PD-1 expression and lower IFNγ secretion. The increased levels of DNT cells in patients with post-transplant infections were still observed 2 weeks after LTx, with higher proportions of memory DNT cells. In conclusion, increased levels of DNT cells in pre-LTx patients may be valuable for the prognosis of post-transplant infections, especially within the first 6 months after LTx.
Collapse
Affiliation(s)
- Hong Lei
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an 710003, China;
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Min Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Xiaogang Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Xuemin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Bo Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (M.T.); (X.Z.); (X.L.); (B.W.)
| |
Collapse
|
12
|
Wu Z, Zheng Y, Sheng J, Han Y, Yang Y, Pan H, Yao J. CD3 +CD4 -CD8 - (Double-Negative) T Cells in Inflammation, Immune Disorders and Cancer. Front Immunol 2022; 13:816005. [PMID: 35222392 PMCID: PMC8866817 DOI: 10.3389/fimmu.2022.816005] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
The crucial role of CD4+ and CD8+ T cells in shaping and controlling immune responses during immune disease and cancer development has been well established and used to achieve marked clinical benefits. CD3+CD4-CD8- double-negative (DN) T cells, although constituting a rare subset of peripheral T cells, are gaining interest for their roles in inflammation, immune disease and cancer. Herein, we comprehensively review the origin, distribution and functions of this unique T cell subgroup. First, we focused on characterizing multifunctional DN T cells in various immune responses. DN regulatory T cells have the capacity to prevent graft-versus-host disease and have therapeutic value for autoimmune disease. T helper-like DN T cells protect against or promote inflammation and virus infection depending on the specific settings and promote certain autoimmune disease. Notably, we clarified the role of DN tumor-infiltrating lymphocytes and outlined the potential for malignant proliferation of DN T cells. Finally, we reviewed the recent advances in the applications of DN T cell-based therapy for cancer. In conclusion, a better understanding of the heterogeneity and functions of DN T cells may help to develop DN T cells as a potential therapeutic tool for inflammation, immune disorders and cancer.
Collapse
Affiliation(s)
- Zhiheng Wu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jin Sheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yicheng Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Yang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Wang X, Zhang L, Du J, Wei Y, Wang D, Song C, Chen D, Li B, Jiang M, Zhang M, Zhao H, Kong Y. Decreased CD73+ Double-Negative T Cells and Elevated Level of Soluble CD73 Correlated With and Predicted Poor Immune Reconstitution in HIV-Infected Patients After Antiretroviral Therapy. Front Immunol 2022; 13:869286. [PMID: 35444646 PMCID: PMC9013806 DOI: 10.3389/fimmu.2022.869286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Although extensive use of antiretroviral therapy (ART) has made great progress in controlling HIV replication and improving CD4+ T cell recovery, the immune reconstitution remained insufficient in some patients, who were defined as poor immunological responders (PIRs). These PIRs were at a high risk of AIDS-related and non-AIDS complications, resulting in higher morbidity and mortality rate. Thus, it is a major challenge and urgently needed to distinguish PIRs early and improve their immune function in time. Immune activation is a key factor that leads to impaired immune reconstitution in people living with HIV (PLWH) who are receiving effective ART. Double negative T cells (DNT) were reported to associate with the control of immune activation during HIV infection. However, the precise mechanisms by which DNT cells exerted their suppressive capacity during HIV infection remained puzzled. CD73, both a soluble and a membrane-bound form, display immunosuppressive effects through producing adenosine (ADO). Thus, whether DNT cells expressed CD73 and mediated immune suppression through CD73-ADO pathway needs to be investigated. Here, we found a significant downregulation of CD73 expression on DNT cells in treatment-naïve PLWH (TNs) compared to healthy controls, accompanied with increased concentration of sCD73 in plasma. Both the frequency of CD73+ DNT cells and the level of plasma sCD73 recovered after ART treatment. However, PIRs showed decreased percentage of CD73+ DNT cells compared to immunological responders (IRs). The frequency of CD73+ DNT cells was positively correlated with CD4+ T cell count and CD4/CD8 ratio, and negatively correlated with immune activation in PLWH. The level of sCD73 also showed a negative correlation to CD4+ T cell count and CD4/CD8 ratio. More importantly, in the present cohort, a higher level of sCD73 at the time of initiating ART could predict poor immune reconstitution in PLWH after long-term ART. Our findings highlighted the importance of CD73+ DNT cells and sCD73 in the disease progression and immune reconstitution of PLWH, and provided evidences for sCD73 as a potential biomarker of predicting immune recovery.
Collapse
Affiliation(s)
- Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leidan Zhang
- Peking University Ditan Teaching Hospital, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chuan Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Bei Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meiqing Jiang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mengyuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yaxian Kong, ; Hongxin Zhao,
| |
Collapse
|
14
|
Chen X, Wang D, Zhu X. Application of double-negative T cells in haematological malignancies: recent progress and future directions. Biomark Res 2022; 10:11. [PMID: 35287737 PMCID: PMC8919567 DOI: 10.1186/s40364-022-00360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Haematologic malignancies account for a large proportion of cancers worldwide. The high occurrence and mortality of haematologic malignancies create a heavy social burden. Allogeneic haematopoietic stem cell transplantation is widely used in the treatment of haematologic malignancies. However, graft-versus-host disease and relapse after allogeneic haematopoietic stem cell transplantation are inevitable. An emerging treatment method, adoptive cellular therapy, has been effectively used in the treatment of haematologic malignancies. T cells, natural killer (NK) cells and tumour-infiltrating lymphocytes (TILs) all have great potential in therapeutic applications, and chimeric antigen receptor T (CAR-T) cell therapy especially has potential, but cytokine release syndrome and off-target effects are common. Efficient anticancer measures are urgently needed. In recent years, double-negative T cells (CD3+CD4-CD8-) have been found to have great potential in preventing allograft/xenograft rejection and inhibiting graft-versus-host disease. They also have substantial ability to kill various cell lines derived from haematologic malignancies in an MHC-unrestricted manner. In addition, healthy donor expanded double-negative T cells retain their antitumour abilities and ability to inhibit graft-versus-host disease after cryopreservation under good manufacturing practice (GMP) conditions, indicating that double-negative T cells may be able to be used as an off-the-shelf product. In this review, we shed light on the potential therapeutic ability of double-negative T cells in treating haematologic malignancies. We hope to exploit these cells as a novel therapy for haematologic malignancies.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Dongyao Wang
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Xiaoyu Zhu
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China.
| |
Collapse
|
15
|
Li C, Du X, Shen Z, Wei Y, Wang Y, Han X, Jin H, Zhang C, Li M, Zhang Z, Wang S, Zhang D, Sun G. The Critical and Diverse Roles of CD4 -CD8 - Double Negative T Cells in Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2022; 13:1805-1827. [PMID: 35247631 PMCID: PMC9059101 DOI: 10.1016/j.jcmgh.2022.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatic inflammation is a hallmark of nonalcoholic fatty liver disease (NAFLD). Double negative T (DNT) cells are a unique subset of T lymphocytes that do not express CD4, CD8, or natural killer cell markers, and studies have suggested that DNT cells play critical and diverse roles in the immune system. However, the role of intrahepatic DNT cells in NAFLD is largely unknown. METHODS The proportions and RNA transcription profiling of intrahepatic DNT cells were compared between C57BL/6 mice fed with control diet or methionine-choline-deficient diet for 5 weeks. The functions of DNT cells were tested in vitro and in vivo. RESULTS The proportion of intrahepatic DNT cells was significantly increased in mice with diet-induced NAFLD. In NAFLD mice, the proportion of intrahepatic TCRγδ+ DNT cells was increased along with elevated interleukin (IL) 17A; in contrast, the percentage of TCRαβ+ DNT cells was decreased, accompanied by reduced granzyme B (GZMB). TCRγδ+ DNT cell depletion resulted in lowered liver IL17A levels and significantly alleviated NAFLD. Adoptive transfer of intrahepatic TCRαβ+ DNT cells from control mice increased intrahepatic CD4 and CD8 T cell apoptosis and inhibited NAFLD progression. Furthermore, we revealed that adrenic acid and arachidonic acid, harmful fatty acids that were enriched in the liver of the mice with NAFLD, could induce apoptosis of TCRαβ+ DNT cells and inhibit their immunosuppressive function and nuclear factor kappa B (NF-κB) or AKT signaling pathway activity. However, arachidonic acid facilitated IL17A secretion by TCRγδ+ DNT cells, and the NF-κB signaling pathway was involved. Finally, we also confirmed the variation of intrahepatic TCRαβ+ DNT cells and TCRγδ+ DNT cells in humans. CONCLUSIONS During NAFLD progression, TCRγδ+ DNT cells enhance IL17A secretion and aggravate liver inflammation, whereas TCRαβ+ DNT cells decrease GZMB production and lead to weakened immunoregulatory function. Shifting of balance from TCRγδ+ DNT cell response to one that favors TCRαβ+ DNT regulation would be beneficial for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Changying Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Xiaonan Du
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Zongshan Shen
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Yunxiong Wei
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Yaning Wang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Xiaotong Han
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Hua Jin
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Chunpan Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Mengyi Li
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,National Clinical Research Center for Digestive Diseases, Beijing
| | - Songlin Wang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China,Dong Zhang, PhD, Capital Medical University Affiliated Beijing Friendship Hospital, Yongan Street 95#, Xicheng District, Beijing 100050, China.
| | - Guangyong Sun
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing,Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing,Beijing Clinical Research Institute, Beijing,National Clinical Research Center for Digestive Diseases, Beijing,Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing, China,Correspondence Address correspondence to: Guangyong Sun, PhD, Capital Medical University Affiliated Beijing Friendship Hospital, Yongan Street 95#, Xicheng District, Beijing 100050, China. fax: (8610)63139421.
| |
Collapse
|
16
|
Hu SH, Zhang LH, Gao J, Guo JH, Xun XD, Xiang X, Cheng Q, Li Z, Zhu JY. NKG2D Enhances Double-Negative T Cell Regulation of B Cells. Front Immunol 2021; 12:650788. [PMID: 34220808 PMCID: PMC8242353 DOI: 10.3389/fimmu.2021.650788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Numerous studies reported a small subpopulation of TCRαβ+CD4-CD8- (double-negative) T cells that exert regulatory functions in the peripheral lymphocyte population. However, the origin of these double-negative T (DNT) cells is controversial. Some researchers reported that DNT cells originated from the thymus, and others argued that these cells are derived from peripheral immune induction. We report a possible mechanism for the induction of nonregulatory CD4+ T cells to become regulatory double-negative T (iDNT) cells in vitro. We found that immature bone marrow dendritic cells (CD86+MHC-II- DCs), rather than mature DCs (CD86+MHC-II+), induced high levels of iDNT cells. The addition of an anti-MHC-II antibody to the CD86+MHC-II+ DC group significantly increased induction. These iDNT cells promoted B cell apoptosis and inhibited B cell proliferation and plasma cell formation. A subgroup of iDNT cells expressed NKG2D. Compared to NKG2D- iDNT cells, NKG2D+ iDNT cells released more granzyme B to enhance B cell regulation. This enhancement may function via NKG2D ligands expressed on B cells following lipopolysaccharide stimulation. These results demonstrate that MHC-II impedes induction, and iDNT cells may be MHC independent. NKG2D expression on iDNT cells enhanced the regulatory function of these cells. Our findings elucidate one possible mechanism of the induction of peripheral immune tolerance and provide a potential treatment for chronic allograft rejection in the future.
Collapse
Affiliation(s)
- Shi-Hua Hu
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Long-Hui Zhang
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Jing-Heng Guo
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Xiao-Dong Xun
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Xiao Xiang
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
- Peking University Centre of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
- Peking University Centre of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing, China
| | - Ji-Ye Zhu
- Department of Hepatobiliary Surgery, Peking University Organ Transplantation Institute, Peking University People's Hospital, Beijing, China
- Peking University Centre of Liver Cancer Diagnosis and Treatment, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Peking University People's Hospital, Beijing, China
| |
Collapse
|
17
|
Yang L, Zhu Y, Tian D, Wang S, Guo J, Sun G, Jin H, Zhang C, Shi W, Gershwin ME, Zhang Z, Zhao Y, Zhang D. Transcriptome landscape of double negative T cells by single-cell RNA sequencing. J Autoimmun 2021; 121:102653. [PMID: 34022742 DOI: 10.1016/j.jaut.2021.102653] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/23/2023]
Abstract
CD4 and CD8 coreceptor double negative TCRαβ+ T (DNT) cells are increasingly being recognized for their critical and diverse roles in the immune system. However, their molecular and functional signatures remain poorly understood and controversial. Moreover, the majority of studies are descriptive because of the relative low frequency of cells and non-standardized definition of this lineage. In this study, we performed single-cell RNA sequencing on 28,835 single immune cells isolated from mixed splenocytes of male C57BL/6 mice using strict fluorescence-activated cell sorting. The data was replicated in a subsequent study. Our analysis revealed five transcriptionally distinct naïve DNT cell clusters, which expressed unique sets of genes and primarily performed T helper, cytotoxic and innate immune functions. Anti-CD3/CD28 activation enhanced their T helper and cytotoxic functions. Moreover, in comparison with CD4+, CD8+ T cells and NK cells, Ikzf2 was highly expressed by both naïve and activated cytotoxic DNT cells. In conclusion, we provide a map of the heterogeneity in naïve and active DNT cells, addresses the controversy about DNT cells, and provides potential transcription signatures of DNT cells. The landscape approach herein will eventually become more feasible through newer high throughput methods and will enable clustering data to be fed into a systems analysis approach. Thus the approach should become the "backdrop" of similar studies in the myriad murine models of autoimmunity, potentially highlighting the importance of DNT cells and other minor lineage of cells in immune homeostasis. The clear characterization of functional DNT subsets into helper DNT, cytotoxic DNT and innate DNT will help to better understand the intrinsic roles of different functional DNT subsets in the development and progression of autoimmune diseases and transplant rejection, and thereby may facilitate diagnosis and therapy.
Collapse
Affiliation(s)
- Lu Yang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Yanbing Zhu
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Dan Tian
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Song Wang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Jincheng Guo
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangyong Sun
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Hua Jin
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Chunpan Zhang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - Wen Shi
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA.
| | - Zhongtao Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; National Clinical Research Center for Digestive Diseases, Beijing, 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, China; Beijing Clinical Research Institute, Beijing, 100050, China.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW TCRαβ+CD4-CD8- double-negative T (DNT) cells, a principal subset of mature T lymphocytes, have been closely linked with autoimmune/inflammatory conditions. However, controversy persists regarding their ontogeny and function. Here, we present an overview on DNT cells in different autoimmune diseases to advance a deeper understanding of the contribution of this population to disease pathogenesis. RECENT FINDINGS DNT cells have been characterized in various chronic inflammatory diseases and they have been proposed to display pathogenic or regulatory function. The tissue location of DNT cells and the effector cytokines they produce bespeak to their active involvement in chronic inflammatory diseases. SUMMARY By producing various cytokines, expanded DNT cells in inflamed tissues contribute to the pathogenesis of a variety of autoimmune inflammatory diseases. However, it is unclear whether this population represents a stable lineage consisting of different subsets similar to CD4+ T helper cell subset. Better understanding of the possible heterogeneity and plasticity of DNT cells is needed to reveal interventional therapeutic opportunities.
Collapse
Affiliation(s)
- Hao Li
- Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
19
|
Examining the Relationship between Circulating CD4- CD8- Double-Negative T Cells and Outcomes of Immuno-Checkpoint Inhibitor Therapy-Looking for Biomarkers and Therapeutic Targets in Metastatic Melanoma. Cells 2021; 10:cells10020406. [PMID: 33669266 PMCID: PMC7920027 DOI: 10.3390/cells10020406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The role of circulating CD4−/CD8− double-negative T cells (DNTs) in the immune response to melanoma is poorly understood, as are the effects of checkpoint inhibitors on T cell subpopulations. Methods: We performed a basal and longitudinal assessment of circulating immune cells, including DNTs, in metastatic melanoma patients treated with checkpoint blockade in a single-center cohort, and examined the correlations levels of immune cells with clinical features and therapy outcomes. Results: Sixty-eight patients (48 ipilimumab, 20 PD1 inhibitors) were enrolled in the study. Our analysis indicated that better outcomes were associated with normal LDH, fewer than three metastatic sites, an ECOG performance status of 0, M1a stage, lower WBC and a higher lymphocyte count. The increase in lymphocyte count and decrease of DNTs were significantly associated with the achievement of an overall response. The median value of DNT decreased while the CD4+ and NK cells increased in patients that responded to treatment compare to those who did not respond to treatment. Conclusions: DNT cells change during treatment with checkpoint inhibitors and may be adept at sensing the immune response to melanoma. The complementary variation of DNT cells with respect to CD4+ and other immune actors may improve the reliability of lymphocyte assessment. Further investigation of DNT as a potential target in checkpoint inhibitor resistant melanoma is warranted.
Collapse
|
20
|
Haug T, Aigner M, Peuser MM, Strobl CD, Hildner K, Mougiakakos D, Bruns H, Mackensen A, Völkl S. Human Double-Negative Regulatory T-Cells Induce a Metabolic and Functional Switch in Effector T-Cells by Suppressing mTOR Activity. Front Immunol 2019; 10:883. [PMID: 31105702 PMCID: PMC6498403 DOI: 10.3389/fimmu.2019.00883] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 01/07/2023] Open
Abstract
The recently discovered population of TCRαβ+ CD4–/CD8– (double-negative, DN) T-cells are highly potent suppressor cells in mice and humans. In preclinical transplantation models, adoptive transfer of DN T-cells specifically inhibits alloreactive T-cells and prevents transplant rejection or graft-vs.-host disease (GvHD). Interestingly, clinical studies in patients who underwent allogeneic stem cell transplantation reveal an inverse correlation between the frequency of circulating DN T-cells and the severity of GvHD, suggesting a therapeutic potential of human DN T-cells. However, their exact mode of action has not been elucidated yet. Investigating the impact of DN T-cells on conventional T-cells, we found that human DN T-cells selectively inhibit mTOR signaling in CD4 T-cells. Given that mTOR is a critical regulator of cellular metabolism, we further determined the impact of DN T-cells on the metabolic framework of T-cells. Intriguingly, DN T-cells diminished expression of glucose transporters and glucose uptake, whereas fatty acid uptake was not modified, indicating that DN T-cells prevent metabolic adaptation of CD4 T-cells upon activation (i.e., glycolytic switch) thereby contributing to their suppression. Further analyses demonstrated that CD4 T-cells also do not upregulate homing receptors associated with inflammatory processes. In contrast, expression of central memory-cell associated cell surface markers and transcription factors were increased by DN T-cells. Moreover, CD4 T-cells failed to produce inflammatory cytokines after co-culture with DN T-cells, whereas IL-2 secretion was enhanced. Taken together DN T-cells impair metabolic reprogramming of conventional CD4 T-cells by abrogating mTOR signaling, thereby modulating CD4 T-cell functionality. These results uncover a new mechanism of DN T-cell-mediated suppression, pointing out that DN T-cells could serve as cell-based therapy to limit alloreactive immune response.
Collapse
Affiliation(s)
- Tabea Haug
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Moritz M Peuser
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carolin D Strobl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kai Hildner
- Department of Internal Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
21
|
Hillhouse EE, Thiant S, Moutuou MM, Lombard-Vadnais F, Parat R, Delisle JS, Ahmad I, Roy DC, Guimond M, Roy J, Lesage S. Double-Negative T Cell Levels Correlate with Chronic Graft-versus-Host Disease Severity. Biol Blood Marrow Transplant 2019; 25:19-25. [DOI: 10.1016/j.bbmt.2018.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
|
22
|
Liu K, Ye H, Zhou J, Tian Y, Xu H, Sun X, Zhang D. Ox40 regulates the conversion and suppressive function of double-negative regulatory T cells. Int Immunopharmacol 2018; 65:16-22. [PMID: 30268799 DOI: 10.1016/j.intimp.2018.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022]
Abstract
Naïve CD4 T cells can be converted to double-negative regulatory T cells (DNT) by mature dendritic cells (mDCs) and IL-2 stimulation, with IL-2 enhancing the proliferation and Perforin expression of DNT. However, the molecules that affect the conversion of DNT are still not clear. Here, we investigated the effects of Ox40 on the conversion and function of DNT in vitro and in vivo without IL-2. We found that OX86 (an Ox40 agonist) increased the conversion rate of DNT but failed to enhance the suppressive function of DNT. Ox40 deficiency profoundly decreased the conversion rate and suppressive function of DNT. This suppression decline was caused by effects of Ox40 on proliferation and apoptosis independent of Perforin, Granzyme B and Fas ligand. Ox40 deficiency influenced the regulatory function of DNT through multiple signals, such as Cxcr3, Cd160 and Cd30, independently of Prf, Gzmb and Fasl. In conclusion, we elucidated that Ox40 promotes the conversion and maintenance of DNT. Ox40 deficiency reduced the regulatory function of DNT both in vitro and in vivo by regulating proliferation, apoptosis, and suppression-related genes.
Collapse
Affiliation(s)
- Kai Liu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China
| | - Huichu Ye
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University Beijing, China
| | - Jin Zhou
- Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China
| | - Yue Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China
| | - Hufeng Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China
| | - Xuelian Sun
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Clinical Research Institute, Beijing 100050, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing 100050, China.
| |
Collapse
|
23
|
Wu D, Yan WM, Wang HW, Huang D, Luo XP, Ning Q. γδ T Cells Contribute to the Outcome of Murine Fulminant Viral Hepatitis via Effector Cytokines TNF-α and IFN-γ. Curr Med Sci 2018; 38:648-655. [DOI: 10.1007/s11596-018-1926-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/25/2018] [Indexed: 12/25/2022]
|
24
|
Achita P, Dervovic D, Ly D, Lee JB, Haug T, Joe B, Hirano N, Zhang L. Infusion of ex-vivo expanded human TCR-αβ + double-negative regulatory T cells delays onset of xenogeneic graft-versus-host disease. Clin Exp Immunol 2018; 193:386-399. [PMID: 30066399 DOI: 10.1111/cei.13145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
Despite the demonstration of potent immunosuppressive function of T cell receptor (TCR)-αβ+ double-negative regulatory T cells (DN Tregs ), scarce numbers and lack of effective expansion method limit their clinical applications. Here we describe an approach that allows for ∼3500-fold ex-vivo expansion of human DN Tregs within 3 weeks with > 97% purity. Ex-vivo-expanded DN Tregs suppress proliferation of polyclonally stimulated autologous T and B cells in vitro through direct cell-to-cell contact. In vivo, we demonstrate for the first time that infusion of human DN Tregs delayed an onset of xenogeneic graft-versus-host disease (GVHD) significantly in a humanized mouse model. Furthermore, preincubation of ex-vivo-expanded DN Tregs with a mechanistic target of rapamycin (mTOR) inhibitor rapamycin enhanced their immune regulatory function further. Taken together, this study demonstrates that human DN Tregs can be expanded ex vivo to therapeutic numbers. The expanded DN Tregs can suppress proliferation of T and B cells and attenuate GVHD, highlighting the potential clinical use of DN Tregs to mitigate GVHD.
Collapse
Affiliation(s)
- P Achita
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, Toronto, ON, Canada
| | - D Dervovic
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - D Ly
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - J B Lee
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - T Haug
- Department of Internal Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - B Joe
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - N Hirano
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - L Zhang
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Ezzelarab MB. Regulatory T cells from allo- to xenotransplantation: Opportunities and challenges. Xenotransplantation 2018; 25:e12415. [DOI: 10.1111/xen.12415] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Mohamed B. Ezzelarab
- Thomas E. Starzl Transplantation Institute; University of Pittsburgh Medical Center; Pittsburgh PA USA
| |
Collapse
|
26
|
Sun G, Sun X, Li W, Liu K, Tian D, Dong Y, Sun X, Xu H, Zhang D. Critical role of OX40 in the expansion and survival of CD4 T-cell-derived double-negative T cells. Cell Death Dis 2018; 9:616. [PMID: 29795285 PMCID: PMC5966453 DOI: 10.1038/s41419-018-0659-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/19/2023]
Abstract
CD4+ T-cell-converted CD4−CD8− double negative (cDNT) have strong suppressive activity in the maintenance of immune tolerance, whereas IL-2 promotes cDNT proliferation and enhances cDNT resistance to apoptosis. However, the intrinsic mechanisms that regulate the survival of cDNT are still unknown. Here we demonstrate that the OX40 molecule was highly expressed on cDNT. The expression of OX40 was necessary to promote proliferation and inhibit apoptosis of cDNT in vivo and in vitro. OX40 promoted the survival of cDNT by regulating the expression of Bcl-2, Bcl-xL, Survivin, and BCL2L11. Canonical NF-κB cell signaling played an important role in the transmission of essential division and survival signals through OX40 in cDNT. IL-2 promoted the survival of cDNT in part via elevating the expression of the OX40 molecule. IL-2 promoted OX40 expression via downregulating the PPARα expression. In conclusion, we elucidated that OX40 is a key molecule that regulates cDNT proliferation and survival. IL-2 promoted OX40 expression by downregulating the PPARα binding to the OX40 promoter, leading to the elevated expression of Bcl-2, Bcl-xL, and Survivin in cDNT, which finally resulted in the promoted proliferation and decreased apoptosis of cDNT.
Collapse
Affiliation(s)
- Guangyong Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Clinical Research Institute, Beijing, 100050, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Xiaojing Sun
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Clinical Research Institute, Beijing, 100050, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Wei Li
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Kai Liu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Clinical Research Institute, Beijing, 100050, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Dan Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Clinical Research Institute, Beijing, 100050, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Yiran Dong
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Clinical Research Institute, Beijing, 100050, China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China
| | - Xuelian Sun
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hufeng Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China. .,Beijing Clinical Research Institute, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China.
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China. .,Beijing Clinical Research Institute, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, 100050, China. .,National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
27
|
Collin R, Doyon K, Mullins-Dansereau V, Karam M, Chabot-Roy G, Hillhouse EE, Orthwein A, Lesage S. Genetic interaction between two insulin-dependent diabetes susceptibility loci, Idd2 and Idd13, in determining immunoregulatory DN T cell proportion. Immunogenetics 2018; 70:495-509. [PMID: 29696366 DOI: 10.1007/s00251-018-1060-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Several immune regulatory cell types participate in the protection against autoimmune diseases such as autoimmune diabetes. Of these immunoregulatory cells, we and others have shown that peripheral CD4-CD8- double negative (DN) T cells can induce antigen-specific immune tolerance. Particularly, we have described that diabetes-prone mice exhibit a lower number of peripheral DN T cells compared to diabetes-resistant mice. Identifying the molecular pathways that influence the size of the DN T cell pool in peripheral lymphoid organs may thus be of interest for maintaining antigen-specific immune tolerance. Hence, through immunogenetic approaches, we found that two genetic loci linked to autoimmune diabetes susceptibility, namely Idd2 and Idd13, independently contribute to the partial restoration of DN T cell proportion in secondary lymphoid organs. We now extend these findings to show an interaction between the Idd2 and Idd13 loci in determining the number of DN T cells in secondary lymphoid organs. Using bioinformatics tools, we link potential biological pathways arising from interactions of genes encoded within the two loci. By focusing on cell cycle, we validate that both the Idd2 and Idd13 loci influence RAD51 expression as well as DN T cell progression through the cell cycle. Altogether, we find that genetic interactions between Idd2 and Idd13 loci modulate cell cycle progression, which contributes, at least in part, to defining the proportion of DN T cells in secondary lymphoid organs.
Collapse
Affiliation(s)
- Roxanne Collin
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Kathy Doyon
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Victor Mullins-Dansereau
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - Martin Karam
- Division of Experimental Medicine, McGill University, Montréal, Québec, H4A 3J1, Canada.,Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Geneviève Chabot-Roy
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Erin E Hillhouse
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada
| | - Alexandre Orthwein
- Division of Experimental Medicine, McGill University, Montréal, Québec, H4A 3J1, Canada. .,Lady Davis Institute, Jewish General Hospital, 3755 Côte Ste-Catherine, Montréal, Québec, H3T 1E2, Canada. .,Department of Oncology, McGill University, Montréal, Québec, H4A 3J1, Canada.
| | - Sylvie Lesage
- Division of Immunology-oncology, Maisonneuve-Rosemont Hospital, Research Center, Montréal, 5415 l'Assomption Blvd, Québec, H1T 2M4, Canada. .,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|
28
|
Zhao H, Wan L, Chen Y, Zhang H, Xu Y, Qiu S. FasL incapacitation alleviates CD4 + T cells-induced brain injury through remodeling of microglia polarization in mouse ischemic stroke. J Neuroimmunol 2018; 318:36-44. [PMID: 29395324 DOI: 10.1016/j.jneuroim.2018.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 12/24/2022]
Abstract
Inflammation responses involving the crosstalk between infiltrated T cells and microglia play crucial roles in ischemia stroke. Recent studies showed that Fas ligand (FasL) mutation could reduce post-stroke T cell invasion and microglia activation. In this study, we demonstrated that CD4+ T cells could induce M1 microglia polarization through NF-κB signaling pathway, whereas FasL mutant CD4+ T cells significantly reversed this effect. Besides, Th17/Treg cells balance was skewed into Treg cells after FasL mutation. In addition, conditioned medium from co-culture of FasL mutant CD4+ T cells and microglia could alleviate neuronal injury. Collectively, FasL incapacitation could alleviate CD4+ T cells-induced inflammation through remodeling microglia polarization, suggesting a therapeutic potential for control of inflammation responses after ischemic stroke.
Collapse
Affiliation(s)
- Haoran Zhao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, PR China
| | - Lihua Wan
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, PR China
| | - Yan Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - He Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, PR China.
| | - Shuwei Qiu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, PR China.
| |
Collapse
|
29
|
A novel differentiation pathway from CD4⁺ T cells to CD4⁻ T cells for maintaining immune system homeostasis. Cell Death Dis 2016; 7:e2193. [PMID: 27077809 PMCID: PMC4855662 DOI: 10.1038/cddis.2016.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/26/2022]
Abstract
CD4+ T lymphocytes are key players in the adaptive immune system and can differentiate into a variety of effector and regulatory T cells. Here, we provide evidence that a novel differentiation pathway of CD4+ T cells shifts the balance from a destructive T-cell response to one that favors regulation in an immune-mediated liver injury model. Peripheral CD4−CD8−NK1.1− double-negative T cells (DNT) was increased following Concanavalin A administration in mice. Adoptive transfer of DNT led to significant protection from hepatocyte necrosis by direct inhibition on the activation of lymphocytes, a process that occurred primarily through the perforin-granzyme B route. These DNT converted from CD4+ rather than CD8+ T cells, a process primarily regulated by OX40. DNT migrated to the liver through the CXCR3-CXCL9/CXCL10 interaction. In conclusion, we elucidated a novel differentiation pathway from activated CD4+ T cells to regulatory DNT cells for maintaining homeostasis of the immune system in vivo, and provided key evidence that utilizing this novel differentiation pathway has potential application in the prevention and treatment of autoimmune diseases.
Collapse
|
30
|
Xu H, Zhu XX, Chen J. DNT cell inhibits the growth of pancreatic carcinoma via abnormal expressions of NKG2D and MICA in vivo. Biochem Biophys Res Commun 2016; 469:145-50. [PMID: 26616050 DOI: 10.1016/j.bbrc.2015.11.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/19/2015] [Indexed: 01/19/2023]
Abstract
This research aimed to investigate the effects of natural killer group 2 member D (NKG2D) and its ligands major histocompatibility complex class I chain-related molecules A(MICA) in DNT cell killing pancreatic carcinoma. Antibodies adsorption was used to separate DNT cell from human peripheral blood. Human pancreatic tumor models were established via implanting BXPC-3 cells into nude mice. Then randomly divided mice into blank group, gemcitabine group and DNT group. Mice weights and mice tumor volumes were measured every 5 days. 50 days later mice were euthanized at cervical dislocation method. Tumor weights were measured. Relative tumor volume and tumor inhibition rate were calculated. Western blot and qPCR were used to detect the expressions of NKG2D and MICA in the transplanted tumors of the three groups. DNT cell significantly increased over time. The blank group tumor volume and weight were significantly larger than the other groups (p < 0.001, p < 0.001), but there were no significantly difference between DNT group and gemcitabine group (p > 0.05). Gemcitabine and DNT cell tumor inhibition rate were 40.4% and 35.5%. Western blot and qPCR showed that MICA mRNA and protein levels in blank group were significantly higher than DNT group (p = 0.001, p = 0.003). NKG2D mRNA and protein levels in blank group were significantly lower than DNT cells group (p < 0.001, p = 0.001). In conclusion DNT cell can significantly inhibit the growth of pancreatic carcinoma in vivo, and the mechanism may be involved in abnormal expressions of MICA and NKG2D.
Collapse
Affiliation(s)
- Hong Xu
- Department of General Surgery, Affiliated Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei 230001, PR China
| | - Xing-Xing Zhu
- Department of General Surgery, Affiliated Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei 230001, PR China
| | - Jiong Chen
- Department of General Surgery, Affiliated Provincial Hospital, Anhui Medical University, Hefei 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei 230001, PR China.
| |
Collapse
|
31
|
Allgäuer A, Schreiner E, Ferrazzi F, Ekici AB, Gerbitz A, Mackensen A, Völkl S. IL-7 Abrogates the Immunosuppressive Function of Human Double-Negative T Cells by Activating Akt/mTOR Signaling. THE JOURNAL OF IMMUNOLOGY 2015; 195:3139-48. [DOI: 10.4049/jimmunol.1501389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/02/2015] [Indexed: 11/19/2022]
|
32
|
Monson MS, Settlage RE, Mendoza KM, Rawal S, El-Nezami HS, Coulombe RA, Reed KM. Modulation of the spleen transcriptome in domestic turkey (Meleagris gallopavo) in response to aflatoxin B1 and probiotics. Immunogenetics 2015; 67:163-78. [PMID: 25597949 DOI: 10.1007/s00251-014-0825-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/24/2014] [Indexed: 12/19/2022]
Abstract
Poultry are highly susceptible to the immunotoxic effects of the food-borne mycotoxin aflatoxin B1 (AFB1). Exposure impairs cell-mediated and humoral immunity, limits vaccine efficacy, and increases the incidence of costly secondary infections. We investigated the molecular mechanisms of AFB1 immunotoxicity and the ability of a Lactobacillus-based probiotic to protect against aflatoxicosis in the domestic turkey (Meleagris gallopavo). The spleen transcriptome was examined by RNA sequencing (RNA-seq) of 12 individuals representing four treatment groups. Sequences (6.9 Gb) were de novo assembled to produce over 270,000 predicted transcripts and transcript fragments. Differential expression analysis identified 982 transcripts with statistical significance in at least one comparison between treatment groups. Transcripts with known immune functions comprised 27.6 % of significant expression changes in the AFB1-exposed group. Short exposure to AFB1 suppressed innate immune transcripts, especially from antimicrobial genes, but increased the expression of transcripts from E3 ubiquitin-protein ligase CBL-B and multiple interleukin-2 response genes. Up-regulation of transcripts from lymphotactin, granzyme A, and perforin 1 could indicate either increased cytotoxic potential or activation-induced cell death in the spleen during aflatoxicosis. Supplementation with probiotics was found to ameliorate AFB1-induced expression changes for multiple transcripts from antimicrobial and IL-2-response genes. However, probiotics had an overall suppressive effect on immune-related transcripts.
Collapse
Affiliation(s)
- Melissa S Monson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 295 AS/VM, 1988 Fitch Ave., St. Paul, MN, 55108, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Getachew Y, Cusimano FA, James LP, Thiele DL. The role of intrahepatic CD3+/CD4-/CD8- double negative T (DN T) cells in enhanced acetaminophen toxicity. Toxicol Appl Pharmacol 2014; 280:264-71. [PMID: 25168425 PMCID: PMC4253711 DOI: 10.1016/j.taap.2014.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 01/22/2023]
Abstract
UNLABELLED The role of the immune system, specifically NK, NKT and CD3 cells, in acetaminophen (APAP) induced liver injury remains inconsistently defined. In the present study, wild type (C57BL/6J) mice and granzyme B deficient (GrB -/-) mice were treated with acetaminophen to assess the role of the immune system in acute liver injury. Doses of acetaminophen that induced sub lethal liver injury in wild type mice unexpectedly produced fatal hepatotoxicity in granzyme B deficient (GrB -/-) mice. Analysis revealed that GrB -/- mice had an increased population of intrahepatic CD3 (+), CD4 (-), and CD8 (-) lymphocytes expressing the CD69 activation marker and Fas ligand. Depletion of these cells in the GrB -/- and wild type mice made them less susceptible to APAP injury, while depletion of NK1.1 (+) cells or both CD4 (+) and CD8 (+) T cells failed to provide the same hepatoprotection. Transfer of the GrB -/- IHLs further exacerbated liver injury and increased mortality in wild type mice but not in LRP/LPR mice, lacking fas expression. CONCLUSIONS Acetaminophen toxicity is enhanced by the presence of activated, FasL expressing intrahepatic CD3 (+), CD4 (-), CD8 (-), NK1.1 (-) T cells. Depletion of these cells from GrB -/- mice and wild type mice greatly reduces mortality and improves the course of liver injury recovery.
Collapse
Affiliation(s)
- Yonas Getachew
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA.
| | - Frank A Cusimano
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA
| | - Laura P James
- Department of Pediatrics, University of Arkansas, Little Rock, AR, USA
| | - Dwain L Thiele
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9151, USA
| |
Collapse
|
34
|
Li W, Tian Y, Li Z, Gao J, Shi W, Zhu J, Zhang D. Ex vivo converted double negative T cells suppress activated B cells. Int Immunopharmacol 2014; 20:164-9. [PMID: 24613134 DOI: 10.1016/j.intimp.2014.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 02/06/2023]
Abstract
Although the ability of endogenous CD4(-)CD8(-) double negative (DN) T cells to suppress B cells has been documented, the extent to which ex vivo converted DN T cells suppress B cells activity is still being explored. The aim of this study was to determine whether and what extent ex vivo converted CD4(-)CD8(-) DN T cells suppress B cell activation and antibody production. We found that ex vivo converted DN T cells suppressed proliferation of activated B cells in a perforin and cell-cell contact dependent manner. In addition, ex vivo converted DN T cells significantly inhibited the production of IgG by stimulated B cells. This study provides evidence that ex vivo converted CD4(-)CD8(-) double negative T cells can down-regulate immune responses by suppressing B cell proliferation and IgG production, and supports efforts to develop ex vivo DN T cell therapies.
Collapse
Affiliation(s)
- WenXia Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, NO. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yue Tian
- Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, NO. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, NO. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Wen Shi
- Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing 100050, China
| | - JiYe Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, NO. 11, Xizhimen South Street, Xicheng District, Beijing 100044, China.
| | - Dong Zhang
- Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95, Yongan Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
35
|
Su Y, Jevnikar AM, Huang X, Lian D, Zhang ZX. Spi6 protects alloreactive CD4(+) but not CD8 (+) memory T cell from granzyme B attack by double-negative T regulatory cell. Am J Transplant 2014; 14:580-593. [PMID: 24730048 DOI: 10.1111/ajt.12614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Memory T (Tm) cells pose a major barrier to long-term transplant survival. Whether regulatory T cells (Tregs)can control them remains poorly defined. Previously,we established that double-negative (DN) Tregs suppress effector T (Teff) cells. Here, we demonstrate that DNTregs effectively suppress CD4+/CD8+Teff and CD8+Tm but not CD4+Tm cells, whereas the suppression on CD8+Tm is abrogated by perforin (PFN) deficiency in DNTregs. Consistently, in a BALB/c to B6-Rag1-/-skin transplantation, transfer of DN Tregs suppressed the rejection mediated by CD4þ/CD8+Teff and CD8+Tmcells (76.0±4.9, 87.5±5.0 and 63.0±4.7 days, respectively)but not CD4þTmcells (25.3±1.4 days). Both CD8þ effector memory T and central memory T compartments significantly reduced after DN Treg transfer. CD4+Tm highly expresses granzyme B (GzmB) inhibitor serine protease inhibitor-6 (Spi6). Spi6 deficiency renders CD4þTm susceptible to DN Treg suppression. In addition,transfer of WT DN Tregs, but not PFN-/-DN Tregs,inhibited the skin allograft rejection mediated by Spi6-/-CD4þTm(75.5±7.9 days). In conclusion, CD4+ and CD8+Tm cells differentially respond toDNTregs’ suppression.The GzmB resistance conferred by Spi6 in CD4þTm cells might hint at the physiological significance of Tmpersistence
Collapse
|
36
|
Liang Q, Jiao Y, Zhang T, Wang R, Li W, Zhang H, Huang X, Tang Z, Wu H. Double Negative (DN) [CD3⁺CD4⁻CD8⁻] T cells correlate with disease progression during HIV infection. Immunol Invest 2014; 42:431-7. [PMID: 23802173 DOI: 10.3109/08820139.2013.805763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although double negative T (DNT) cells (CD3⁺CD4⁻CD8⁻) share some characteristics with T regulatory cells, the relationship between DNT cells and disease progression in HIV infection is unclear. In this study, we analyzed the relationship between DNT cells and disease progression during the first 2 years of HIV infection. We found that DNT cell numbers tended to decrease with disease progression. There was a positive correlation between DNT cells and CD4 counts. The DNT cell numbers were significantly lower in the high viral load group compared with the low viral load group. Therefore, we conclude that DNT cells correlated with disease progression in HIV infection. These data provide valuable information for further understanding of the role of DNT cells during HIV infection.
Collapse
Affiliation(s)
- Qi Liang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang C, Yan MY, Lu P, Chen P, Yang M, Ye XW, Xu M, Yang ZHO, Zhang XY. Hypomethylation of perforin regulatory elements in CD4+T cells from rat spleens contributes to the development of autoimmune emphysema. Respirology 2014; 19:376-81. [PMID: 24506670 DOI: 10.1111/resp.12240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/10/2013] [Accepted: 10/22/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Cheng Zhang
- Department of Respiratory Medicine; Guizhou Provincial People's Hospital; Guiyang Guizhou China
| | - Mu-Yun Yan
- Department of Respiratory Medicine; Guizhou Provincial People's Hospital; Guiyang Guizhou China
| | - Ping Lu
- Department of Respiratory Medicine; Guizhou Provincial People's Hospital; Guiyang Guizhou China
| | - Ping Chen
- Department of Respiratory Medicine; Xiangya Second Hospital of Central South University; Changsha Hunan China
| | - Min Yang
- Department of Respiratory Medicine; Xiangya Second Hospital of Central South University; Changsha Hunan China
| | - Xian-Wei Ye
- Department of Respiratory Medicine; Guizhou Provincial People's Hospital; Guiyang Guizhou China
| | - Mei Xu
- Department of Respiratory Medicine; Guizhou Provincial People's Hospital; Guiyang Guizhou China
| | - Zhang-Hong Ou Yang
- Department of Respiratory Medicine; Guizhou Provincial People's Hospital; Guiyang Guizhou China
| | - Xiang-Yan Zhang
- Department of Respiratory Medicine; Guizhou Provincial People's Hospital; Guiyang Guizhou China
| |
Collapse
|
38
|
Chaouat G. Effectors regulatory T cells in pregnancy (and autoimmunity?). Expert Rev Clin Immunol 2014; 3:861-9. [DOI: 10.1586/1744666x.3.6.861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Gao J, McIntyre MSF, D'Souza CA, Zhang L. Pretransplant infusion of donor B cells enhances donor-specific skin allograft survival. PLoS One 2013; 8:e77761. [PMID: 24204953 PMCID: PMC3810130 DOI: 10.1371/journal.pone.0077761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/04/2013] [Indexed: 01/06/2023] Open
Abstract
Pretransplant donor lymphocyte infusion (DLI) has been shown to enhance donor-specific allograft survival in rodents, primates and humans. However, the cell subset that is critical for the DLI effect and the mechanisms involved remain elusive. In this study, we monitored donor cell subsets after DLI in a murine MHC class I Ld-mismatched skin transplantation model. We found that donor B cells, but not DCs, are the major surviving donor APCs in recipients following DLI. Infusing donor B, but not non-B, cells resulted in significantly enhanced donor-specific skin allograft survival. Furthermore, mice that had received donor B cells showed higher expression of Ly6A and CD62L on antigen-specific TCRαβ+CD3+CD4−CD8−NK1.1− double negative (DN) regulatory T cells (Tregs). B cells presented alloantigen to DN Tregs and primed their proliferation in an antigen-specific fashion. Importantly, DN Tregs, activated by donor B cells, showed increased cytotoxicity toward anti-donor CD8+ T cells. These data demonstrate that donor B cells can enhance skin allograft survival, at least partially, by increasing recipient DN Treg-mediated killing of anti-donor CD8+ T cells. These findings provide novel insights into the mechanisms underlying DLI-induced transplant tolerance and suggest that DN Tregs have great potential as an antigen-specific immune therapy to enhance allograft survival.
Collapse
Affiliation(s)
- Julia Gao
- University of Toronto Transplantation Institute, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Megan S. Ford. McIntyre
- University of Toronto Transplantation Institute, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl A. D'Souza
- University of Toronto Transplantation Institute, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Li Zhang
- University of Toronto Transplantation Institute, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
40
|
Hillhouse EE, Delisle JS, Lesage S. Immunoregulatory CD4(-)CD8(-) T cells as a potential therapeutic tool for transplantation, autoimmunity, and cancer. Front Immunol 2013; 4:6. [PMID: 23355840 PMCID: PMC3553425 DOI: 10.3389/fimmu.2013.00006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/05/2013] [Indexed: 11/17/2022] Open
Abstract
A central objective in organ transplantation and the treatment or prevention of autoimmune disease is the achievement of antigen-specific immune tolerance. An additional challenge in bone marrow transplantation for the treatment of hematological malignancies is the prevention of graft-vs-host disease (GVHD) while maintaining graft-vs-tumor activity. Interestingly, CD4-CD8- (double negative, DN) T cells, which exhibit a unique antigen-specific immunoregulatory potential, appear to exhibit all of the properties to respond to these challenges. Herein, we review the therapeutic potential of immunoregulatory DN T cells in various immunopathological settings, including graft tolerance, GVHD, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Erin E Hillhouse
- Department of Microbiology and Immunology, University of Montreal Montreal, QC, Canada ; Research Center, Maisonneuve-Rosemont Hospital Montreal, QC, Canada
| | | | | |
Collapse
|
41
|
Wang X, Yan W, Lu Y, Chen T, Sun Y, Qin X, Zhang J, Han M, Guo W, Wang H, Wu D, Xi D, Luo X, Ning Q. CD4-CD8-T cells contribute to the persistence of viral hepatitis by striking a delicate balance in immune modulation. Cell Immunol 2012; 280:76-84. [PMID: 23261832 PMCID: PMC7094652 DOI: 10.1016/j.cellimm.2012.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/04/2012] [Accepted: 11/12/2012] [Indexed: 12/13/2022]
Abstract
Viral hepatitis remains the most common cause of liver disease and a major public health problem. Here, we focus on the role of CD4 CD8 double negative T (DN T) cells involved in the mechanisms of viral persistence in hepatitis. C3H/HeJ mice infected with murine hepatitis virus strain 3 (MHV-3) were used to display chronic viral hepatitis. DN T cells dramatically increased in MHV-3 infected mice. Adoptive transfer of DN T cells from MHV-3 infected mice led to a significant increase in mice survival. The DN T cells with production of IFN-γ and IL-2 are able to kill virus-specific CD8(+) T cells via the Fas/FasL dependent pathway. The delicate balance of multiple effects of DN T cells may lead to viral persistence in MHV-3 induced hepatitis. In short, our study identified DN T cells contributing to viral persistence in MHV-3 induced hepatitis in C3H/HeJ mice, which provides a rationale for modulating DN T cells for the management of viral hepatitis.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Infectious Disease and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hillhouse EE, Lesage S. A comprehensive review of the phenotype and function of antigen-specific immunoregulatory double negative T cells. J Autoimmun 2012; 40:58-65. [PMID: 22910322 DOI: 10.1016/j.jaut.2012.07.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
Abstract
Double negative T cells that lack the expression of both CD4 and CD8 T cell co-receptors exhibit a most unique antigen-specific immunoregulatory potential first described over a decade ago. Due to their immunoregulatory function, this rare T cell population has been studied in both mice and humans for their contribution to peripheral tolerance and disease prevention. Consequently, double negative cells are gaining interest as a potential cellular therapeutic. Herein, we review the phenotype and function of double negative T cells with emphasis on their capacity to induce antigen-specific immune tolerance. While the phenotypic and functional similarities between double negative T cells identified in mouse and humans are highlighted, we also call attention to the need for a specific marker of double negative T cells, which will facilitate future studies in humans. Altogether, due to their unique properties, double negative T cells present a promising therapeutic potential in the context of various disease settings.
Collapse
Affiliation(s)
- Erin E Hillhouse
- Department of Microbiology and Immunology, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.
| | | |
Collapse
|
43
|
Juvet SC, Zhang L. Double negative regulatory T cells in transplantation and autoimmunity: recent progress and future directions. J Mol Cell Biol 2012; 4:48-58. [PMID: 22294241 DOI: 10.1093/jmcb/mjr043] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
T lymphocytes bearing the αβ T cell receptor (TCR) but lacking CD4, CD8, and markers of natural killer (NK) cell differentiation are known as 'double-negative' (DN) T cells and have been described in both humans and rodent models. We and others have shown that DN T cells can act as regulatory T cells (Tregs) that are able to prevent allograft rejection, graft-versus-host disease, and autoimmune diabetes. In the last few years, new data have revealed evidence of DN Treg function in vivo in rodents and humans. Moreover, significant advances have been made in the mechanisms by which DN Tregs target antigen-specific T cells. One major limitation of the field is the lack of a specific marker that can be used to distinguish truly regulatory DN T cells (DN Tregs) from non-regulatory ones, and this is the central challenge in the coming years. Here, we review recent progress on the role of DN Tregs in transplantation and autoimmunity, and their mechanisms of action. We also provide some perspectives on how DN Tregs compare with Foxp3(+) Tregs.
Collapse
Affiliation(s)
- Stephen C Juvet
- Division of Respirology and Clinician-Scientist Training Program, Department of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
44
|
Level of double negative T cells, which produce TGF-β and IL-10, predicts CD8 T-cell activation in primary HIV-1 infection. AIDS 2012; 26:139-48. [PMID: 22045342 DOI: 10.1097/qad.0b013e32834e1484] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Persistent immune activation plays a central role in the pathogenesis of HIV disease. Besides natural regulatory T cells (nTregs), 'double negative' T cells shown to exhibit regulatory properties could be involved in the control of harmful immune activation. The aim of this study was to analyze, in patients with primary HIV infection (PHI), the relationship between CD4(+)CD25(+)CD127(low)FoxP3(+) nTregs or CD3(+)CD4(-)CD8(-) double negative T cells and systemic immune activation. DESIGN A prospective longitudinal study of patients with early PHI. METHODS Twenty-five patients were included. Relationships between frequency of Treg subsets and T-cell activation, assessed on fresh peripheral blood mononuclear cells, were analyzed using nonparametric tests. Cytokine production by double negative T cells was assessed following anti-CD3/anti-CD28 stimulation. RESULTS No relationship was found between T-cell activation and frequencies of nTregs. In contrast, a strong negative relationship was found at baseline between the proportion of double negative T cells and the proportion of activated CD8 T cells coexpressing CD38 and HLA-DR (P = 0.005) or expressing Ki-67 (P = 0.002). In addition, the frequency of double negative T cells at baseline negatively correlated with the frequency of HLA-DR(+)CD38(+)CD8(+) T cells at month 6, defining the immune activation set point (P = 0.031). High proportions of stimulated double negative T cells were found to produce the immunosuppressive cytokines transforming growth factor-β1 and/or IL-10. CONCLUSION The proportion of double negative T cells at baseline was found to be predictive of the immune activation set point. Our data strongly suggest that double negative T cells may control immune activation in PHI. This effect might be mediated through the production of TGF-β1/IL-10 known to downmodulate immune activation.
Collapse
|
45
|
Peterson RA. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol 2012; 40:186-204. [PMID: 22222887 DOI: 10.1177/0192623311430693] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Regulatory T-cells (T(REG)) are diverse populations of lymphocytes that regulate the adaptive immune response in higher vertebrates. T(REG) delete autoreactive T-cells, induce tolerance, and dampen inflammation. T(REG) cell deficiency in humans (i.e., IPEX [Immunodysregulation, Polyendocrinopathy and Enteropathy, X-linked syndrome]) and animal models (e.g., "Scurfy" mouse) is associated with multisystemic autoimmune disease. T(REG) in humans and laboratory animal species are similar in type and regulatory function. A molecular marker of and the cell lineage specification factor for T(REG) is FOXP3, a forkhead box transcription factor. CD4(+) T(REG) are either natural (nT(REG)), which are thymus-derived CD4(+)CD25(+)FOXP3(+) T-cells, or inducible (i.e., Tr1 cells that secrete IL-10, Th3 cells that secrete TGF-β and IL-10, and Foxp3(+) Treg). The proinflammatory Th17 subset has been a major focus of research. T(H)17 CD4(+) effector T-cells secrete IL-17, IL-21, and IL-22 in autoimmune and inflammatory disease, and are dynamically balanced with T(REG) cell development. Other lymphocyte subsets with regulatory function include: inducible CD8(+) T(REG), CD3(+)CD4(-)CD8(-) T(REG) (double-negative), CD4(+)Vα14(+) (NKT(REG)), and γδ T-cells. T(REG) have four regulatory modes of action: secretion of inhibitory cytokines (e.g., IL-10 and TGF-β), granzyme-perforin-induced apoptosis of effector lymphocytes, depriving effector T-cells of cytokines leading to apoptosis, or inhibition of dendritic cell function. The role of T(REG) in mucosal sites, inflammation/infection, pregnancy, and cancer as well as a review of T(REG) as a modulatory target in drug development will be covered.
Collapse
|
46
|
Lee BO, Jones JE, Peters CJ, Whitacre D, Frelin L, Hughes J, Kim WK, Milich DR. Identification of a unique double-negative regulatory T-cell population. Immunology 2012; 134:434-47. [PMID: 22044159 DOI: 10.1111/j.1365-2567.2011.03502.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Regulatory T (Treg) cells represent one of the main mechanisms of regulating self-reactive immune cells. Treg cells are thought to play a role in down-regulating immune responses to self or allogeneic antigens in the periphery. Although the function of Treg cells has been demonstrated in many experimental settings, the precise mechanisms and antigen specificity often remain unclear. In a hepatitis B e antigen-T-cell receptor (HBeAg-TCR) double transgenic mouse model, we observed a phenotypically unique (TCR+) CD4- /CD8- CD25(+/-) GITR(high) PD-1(high) FoxP3-) HBeAg-specific population that demonstrates immune regulatory function. This HBeAg-specific double-negative regulatory cell population proliferates vigorously in vitro, in contrast to any other known regulatory population, in an interleukin-2-independent manner.
Collapse
Affiliation(s)
- Byung O Lee
- Vaccine Research Institute of San Diego, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
BACKGROUND Interleukin-10 is a pleiotropic cytokine, whose main function is limitation and ultimately termination of immune responses. This is especially true for environmental interfaces such as the gastrointestinal tract. IL-10 acts as a key mediator for maintaining gut homeostasis. IL-10 knockout mice are well established as a genetic model for inflammatory bowel disease (IBD), and sequence variants in the IL-10 locus contribute to ulcerative colitis (UC). DESIGN This review covers the significance of IL-10 signalling in the intestinal immune response both in health and disease. It explains the biological role of IL-10, its deregulation in IBD and its contribution to intestinal inflammation via endoplasmic reticulum stress response. RESULTS Many IBD susceptibility genes have been discovered in the past years, linking fundamental biological systems, like innate and adaptive immunity, stress responses, autophagy and mucosal barrier to the pathogenesis of Crohn's disease (CD) and UC. IL-10 has long been known for its substantial role in regulating gut immunity, but its contribution to IBD was somewhat elusive. A recent study identified mutations in either IL-10 receptor subunits that are associated with early-onset enterocolitis, a severe phenotype of IBD. Other than genetic variants of IL-10 receptors, IL-10 and STAT3 genes are also associated with IBD, emphasizing the involvement of the IL-10 signalling cascade in the pathogenesis of CD and UC. CONCLUSIONS The discovery of inherited deregulations in the IL-10 signalling cascade is not only considered the missing link between IL-10 and intestinal homeostasis, but also demonstrates how findings made in animal models help explaining human disease.
Collapse
Affiliation(s)
- Gregor Paul
- Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
48
|
Gao JF, McIntyre MSF, Juvet SC, Diao J, Li X, Vanama RB, Mak TW, Cattral MS, Zhang L. Regulation of antigen-expressing dendritic cells by double negative regulatory T cells. Eur J Immunol 2011; 41:2699-708. [PMID: 21660936 DOI: 10.1002/eji.201141428] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/05/2011] [Accepted: 06/01/2011] [Indexed: 12/25/2022]
Abstract
TCRαβ(+) CD3(+) CD4(-) CD8(-) NK1.1(-) double negative (DN) Tregs comprise 1-3% of peripheral T lymphocytes in mice and humans. It has been demonstrated that DN Tregs can suppress allo-, xeno- and auto-immune responses in an Ag-specific fashion. However, the mechanisms by which DN Tregs regulate immune responses remain elusive. Whether DN Tregs can regulate DCs has not been investigated previously. In this study, we demonstrate that DN Tregs express a high level of CTLA4 and are able to down-regulate costimulatory molecules CD80 and CD86 expressed on Ag-expressing mature DCs (mDCs). DN Tregs from CTLA4 KO mice were not able to downregulate CD80 and CD86 expression, indicating that CTLA4 is critical for DN Treg-mediated downregulation of costimulatory molecule expression on Ag-expressing mature DCs. Furthermore, DN Tregs could kill both immature and mature allogeneic DCs, as well as Ag-loaded syngeneic DCs, in an Ag-specific manner in vitro and in vivo, mainly through the Fas-FasL pathway. These data demonstrate, for the first time, that DN Tregs are potent regulators of DCs and may have the potential to be developed as a novel immune suppression treatment.
Collapse
Affiliation(s)
- Julia Fang Gao
- University of Toronto Transplant Institute, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ford McIntyre MS, Gao JF, Li X, Naeini BM, Zhang L. Consequences of double negative regulatory T cell and antigen presenting cell interaction on immune response suppression. Int Immunopharmacol 2011; 11:597-603. [DOI: 10.1016/j.intimp.2010.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 11/28/2022]
|
50
|
Voelkl S, Gary R, Mackensen A. Characterization of the immunoregulatory function of human TCR-αβ+ CD4- CD8- double-negative T cells. Eur J Immunol 2011; 41:739-48. [PMID: 21287552 DOI: 10.1002/eji.201040982] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 12/21/2022]
Abstract
Regulatory T cells (Tregs) play an important role in the maintenance of immune tolerance to self-antigens and are involved in modulating immune responses in autoimmunity, transplant rejection, and tumor immunity. Recently, a novel subset of TCR-αβ(+) CD4(-) CD8(-) (double negative, DN) T cells has been described to specifically suppress T-cell responses in mice. Here, we demonstrate that human DN T cells are highly potent suppressors of both CD4(+) and CD8(+) T-cell responses. In contrast to naturally occurring CD4(+) CD25(+) Tregs, DN T cells have to be activated by antigen-presenting cells (APCs) to induce their regulatory potential. The suppressive activity of DN T cells is neither mediated indirectly by modulation of APCs nor by competition for T-cell growth factors. Furthermore, DN T-cell-mediated suppression toward responder T cells is TCR dependent and requires novel protein synthesis. In contrast to murine DN T cells, which eliminate effector T cells via Fas/FasL or perforin/granzyme, human DN T cells suppress proliferation of responder T cells by cell contact-dependent mechanisms. Taken together, our data indicate that human DN T cells exert strong immunosuppressive effects on both CD4(+) and CD8(+) T cells and may serve as a new therapeutic approach to treat autoimmunity and transplant rejection.
Collapse
Affiliation(s)
- Simon Voelkl
- Department of Internal Medicine 5 - Hematology/Oncology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|