1
|
X M. A synthetic review: natural history of amniote reproductive modes in light of comparative evolutionary genomics. Biol Rev Camb Philos Soc 2025; 100:362-406. [PMID: 39300750 DOI: 10.1111/brv.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, and amphisbaenids). How transitions between parity modes occur at the genomic level has primary importance for how science conceptualises the origin of amniotes, and highly variable parity modes in Squamata. Synthesising literature from medicine, poultry science, reproductive biology, and evolutionary biology, I review the genomics and physiology of five broad processes (here termed the 'Main Five') expected to change during transitions between parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer alternative perspectives and testable hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site hypothesis as a proximate explanation. The framework of this hypothesis can be extended to amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how squamates may transition from viviparity to oviparity and make predictions about the directionality of transitions in three species. After considering evidence for differing perspectives on amniote origins, I offer a framework that unifies (i) the extended embryonic retention model and (ii) the traditional model which describes the amniote egg as an adaptation to the terrestrial environment. Additionally, this review contextualises the origin of amniotes and parity mode evolution within Medawar's paradigm. Medawar posited that pregnancy could be supported by immunosuppression, inertness, evasion, or immunological barriers. I demonstrate that this does not support gestation or gravidity across most amniotes but may be an adequate paradigm to explain how the first amniote tolerated internal fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, there should be evidence that oviparous gravidity can be met with a lack of immunological responses in utero. Rare examples of two species that differentially express very few genes during gravidity, suggestive of an absent immunological reaction to oviparous gravidity, are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve as good models for the original amniote egg. Overall, this review grounds itself in the historical literature while offering a modern perspective on the origin of amniotes. I encourage the scientific community to utilise this review as a resource in evolutionary and comparative genomics studies, embrace the complexity of the system, and thoughtfully consider the frameworks proposed.
Collapse
Affiliation(s)
- Maggs X
- Richard Gilder Graduate School at The American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
- Christopher S. Bond Life Science Center at the University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- School of Life and Environmental Sciences at the University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Bonney EA. A Framework for Understanding Maternal Immunity. Immunol Allergy Clin North Am 2023; 43:e1-e20. [PMID: 37179052 PMCID: PMC10484232 DOI: 10.1016/j.iac.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This is an alternative and controversial framing of the data relevant to maternal immunity. It argues for a departure from classical theory to view, interrogate and interpret existing data.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Robert Larner College of Medicine, Given Building, Room C246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
3
|
Hyde KJ, Schust DJ. Immunologic challenges of human reproduction: an evolving story. Fertil Steril 2016; 106:499-510. [PMID: 27477190 DOI: 10.1016/j.fertnstert.2016.07.1073] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Characterization of the implanting human fetus as an allograft prompted a field of research in reproductive immunology that continues to fascinate and perplex scientists. Paternal- or partner-derived alloantigens are present in the maternal host at multiple times during the reproductive process. They begin with exposure to semen, continue through implantation and placentation, and may persist for decades in the form of fetal microchimerism. Changes in maternal immune responses that allow allogenic fertilization and survival of semiallogenic concepti to delivery must be balanced with a continued need to respond appropriately to pathogenic invaders, commensals, cell or tissue damage, and any tendency toward malignant transformation. This complex and sophisticated balancing act is essential for survival of mother, fetus, and the species itself. We will discuss concepts of alloimmune recognition, tolerance, and ignorance as they pertain to mammalian reproduction with a focus on human reproduction, maternal immune modulation, and the very earliest events in the reproductive process, fertilization and implantation.
Collapse
Affiliation(s)
- Kassie J Hyde
- University of Missouri School of Medicine, Columbia, Missouri
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri.
| |
Collapse
|
4
|
Alijotas-Reig J, Llurba E, Gris JM. Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta 2014; 35:241-8. [PMID: 24581729 DOI: 10.1016/j.placenta.2014.02.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 02/08/2023]
Abstract
The maternal immune system needs to adapt to tolerate the semi-allogeneic conceptus. Since maternal allo-reactive lymphocytes are not fully depleted, other local/systemic mechanisms play a key role in altering the immune response. The Th1/Th2 cytokine balance is not essential for a pregnancy to be normal. The immune cells, CD4+CD25+Foxp3+, also known as regulatory T cells (Tregs), step in to regulate the allo-reactive Th1 cells. In this review we discuss the role of Tregs in foeto-maternal immune tolerance and in recurrent miscarriage as well as their potential use as a new target for infertility treatment. Animal and human experiments showed Treg cell number and/or function to be diminished in miscarriages. Murine miscarriage can be prevented by transferring Tregs from normal pregnant mice. Tregs at the maternal-fetal interface prevented fetal allo-rejection by creating a "tolerant" microenvironment characterised by the expression of IL-10, TGF-β and haem oxygenase isoform 1 (HO-1) rather than by lowering Th1 cytokines. Tregs increase placental HO-1. In turn, HO-1 may lead to up-regulation of TGF-β, IL-10 and CTLA-4. In vivo experiments showed Tregs sensitisation from paternal antigens to be essential for maternal-fetal tolerance. Tregs increase throughout pregnancy and diminish in late puerperium. Recent data also support the capacity of Tregs to block maternal effector T cells, thereby reducing the maternal-fetal pathological responses to paternal antigens. These findings also permit us to consider new strategies for improving pregnancy outcomes, i.e., anti-TNF blockers and granulocyte-colony stimulating factors as well as novel approaches to therapeutically exploiting Treg + cell memory.
Collapse
Affiliation(s)
- J Alijotas-Reig
- Systemic Autoimmune Disease Unit, Department of Internal Medicine I, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Department of Medicine, Faculty of Medicine, Universitat Autonoma, Barcelona, Spain.
| | - E Llurba
- High Obstetric Risk Unit, Obstetric Department, Vall d'Hebron University Hospital, Universitat Autonoma, Barcelona, Spain
| | - J Ma Gris
- Reproductive Medicine Unit, Obstetric Department, Vall d'Hebron University Hospital, Universitat Autonoma, Barcelona, Spain
| |
Collapse
|
5
|
Perchellet AL, Jasti S, Petroff MG. Maternal CD4⁺ and CD8⁺ T cell tolerance towards a fetal minor histocompatibility antigen in T cell receptor transgenic mice. Biol Reprod 2013; 89:102. [PMID: 24025737 DOI: 10.1095/biolreprod.113.110445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tolerance of the maternal immune system in pregnancy is important for successful pregnancy because the semiallogeneic fetus may be subject to antifetal responses. We examined maternal tolerance to the fetus using a murine system in which a model paternally inherited antigen, ovalbumin (OVA), is expressed exclusively in the fetus and placenta. By employing T cell receptor (TCR) transgenic mice specific for major histocompatibility complex class I- or class II-restricted epitopes of OVA (OT-I and OT-II) as mothers, we investigated the fate of fetus-specific CD8⁺ and CD4⁺ T cells, respectively, during gestation. Both OVA-specific CD8⁺ and CD4⁺ T cells displayed an activated phenotype in the peripheral lymphoid tissues of OVA-bred OT-I and OT-II mice, consistent with their encounter of fetal antigen. Whereas a small percentage of OVA-specific CD4⁺ T cells were deleted in the periphery and thymus of OVA-bred OT-II mice, with evidence of TCR downregulation in the remaining T cells, deletion and TCR downregulation were not observed in OVA-bred OT-I mice. Both CD4⁺ and CD8⁺ T cells upregulated inducible costimulator expression in response to the fetal antigen, but only CD4⁺ T cells consistently upregulated the inhibitory receptors programmed cell death 1 and cytotoxic T lymphocyte antigen-4. More regulatory T cells (Tregs) were present in pregnant OVA-bred than in WT-bred OT-II mice, revealing that Tregs expanded specifically in response to the fetal antigen. These data indicate that several mechanisms tolerize fetal antigen-specific maternal CD4⁺ T cells, whereas tolerance of fetal antigen-specific CD8⁺ T cells is less effective. The importance of these mechanisms is underscored by the finding that fetal loss occurs in OVA-bred OT-I but not OT-II mice.
Collapse
Affiliation(s)
- Antoine L Perchellet
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | | | | |
Collapse
|
6
|
Noronha LE, Antczak DF. Modulation of T-cell reactivity during equine pregnancy is antigen independent. Am J Reprod Immunol 2012; 68:107-15. [PMID: 22587222 DOI: 10.1111/j.1600-0897.2012.01154.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 04/14/2012] [Indexed: 12/12/2022] Open
Abstract
PROBLEM Pregnant mares demonstrate a reduction in cytotoxic T lymphocyte (CTL) reactivity against cells from the breeding stallion. We investigated whether this effect is limited to activity against paternal major histocompatibility complex (MHC) antigens, and whether it occurs during MHC-compatible pregnancy. METHOD OF STUDY Mares were mated to carry MHC-compatible or MHC-incompatible pregnancies. CTL activity of these mares when pregnant and non-pregnant was measured against cells from horses with MHC haplotypes unrelated to the mare or breeding stallion. RESULTS While carrying MHC-incompatible pregnancies, mares demonstrated reduced CTL activity against lymphocytes from third-party horses in addition to those from the breeding stallion. This effect was also observed in mares carrying MHC-compatible pregnancies. CONCLUSIONS The decrease in maternal T-cell reactivity characteristic of normal equine pregnancy is not restricted to paternal alloantigen, and occurs during MHC-matched matings. This suggests that antigen-independent mechanisms may be responsible for this reduction in cell-mediated immune activity.
Collapse
Affiliation(s)
- Leela E Noronha
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
7
|
Bonney EA, Shepard MT, Bizargity P. Transient modification within a pool of CD4 T cells in the maternal spleen. Immunology 2011; 134:270-80. [PMID: 21977997 DOI: 10.1111/j.1365-2567.2011.03486.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Classic models suggest maternal tolerance is dependent on regulation of fetal antigen-specific T cell responses. We hypothesize that factors unique to a particular fetal antigen-specific T cell, rather than the state of pregnancy per se, are important determinants of T cell fate during pregnancy. To investigate the fate of fetal antigen-specific CD4 T cells in the systemic circulation, we examined spleen cells in a CD4 T cell receptor transgenic mouse specific for the male antigen H-Y. We observed a transient decrease in CD4(+) Vβ6(+) cell numbers and, due to transient internalization of CD4, an increase in CD4(-) Vβ6(+) T cells. Antigen-specific in vitro responsiveness was not depressed by pregnancy. These data suggest that pregnancy supports fluidity in this particular CD4 T cell pool that may, in turn, help to meet competing requirements of maternal immune responsiveness and fetal tolerance.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, The University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
8
|
New insights in mucosal vaccine development. Vaccine 2011; 30:142-54. [PMID: 22085556 DOI: 10.1016/j.vaccine.2011.11.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/25/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022]
Abstract
Mucosal surfaces are the major entrance for infectious pathogens and therefore mucosal immune responses serve as a first line of defence. Most current immunization procedures are obtained by parenteral injection and only few vaccines are administered by mucosal route, because of its low efficiency. However, targeting of mucosal compartments to induce protective immunity at both mucosal sites and systemic level represents a great challenge. Major efforts are made to develop new mucosal candidate vaccines by selecting appropriate antigens with high immunogenicity, designing new mucosal routes of administration and selecting immune-stimulatory adjuvant molecules. The aim of mucosal vaccines is to induce broad potent protective immunity by specific neutralizing antibodies at mucosal surfaces and by induction of cellular immunity. Moreover, an efficient mucosal vaccine would make immunization procedures easier and be better suited for mass administration. This review focuses on contemporary developments of mucosal vaccination approaches using different routes of administration.
Collapse
|
9
|
Girardi G, Prohászka Z, Bulla R, Tedesco F, Scherjon S. Complement activation in animal and human pregnancies as a model for immunological recognition. Mol Immunol 2011; 48:1621-30. [DOI: 10.1016/j.molimm.2011.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 12/16/2022]
|
10
|
Scherjon S, Lashley L, van der Hoorn ML, Claas F. Fetus specific T cell modulation during fertilization, implantation and pregnancy. Placenta 2011; 32 Suppl 4:S291-7. [PMID: 21592567 DOI: 10.1016/j.placenta.2011.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/28/2011] [Indexed: 02/07/2023]
Abstract
Recently there is an increasing interest in aspects of a more specific immunoregulation during pregnancy. Understanding these mechanism might have a broader application not only for reproductive immunology but also in general for biology and medicine. Especially the induction, already before conception, of feto-specific T cells with a possibly regulatory function gives a biological explanation of local immunotolerance at the maternal fetal interface, supporting the epidemiological evidence of a feto/paternal-specific immuneregulation. Understanding the expression of specific HLA-classes on trophoblast and the crosstalk of these antigens with various cell types, specifically modulated in the decidua, resulting in the secretion of cytokines and (angiogenic) chemokines has given us a more and more detailed understanding of this regulation. This regulation could be induced by fetal cells circulating in the mother (microchimerism) and from the interaction with fetal subcellular fractions as exosomes, but also from paternal antigens present in seminal fluid. Molecular interaction between paternal and fetal antigens and receptors in endometrium and the decidua are discussed. This review highlights besides uNK cells, especially the function of CD4+ and CD8+ T cells with a regulatory function in the context of recurrent miscarriage and pre-eclampsia. Besides HLA, also male-specific minor histocompatibility antigens and the genetic background for these pregnancy complications are discussed.
Collapse
Affiliation(s)
- S Scherjon
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
11
|
Moldenhauer LM, Hayball JD, Robertson SA. Utilising T cell receptor transgenic mice to define mechanisms of maternal T cell tolerance in pregnancy. J Reprod Immunol 2010; 87:1-13. [DOI: 10.1016/j.jri.2010.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/19/2010] [Accepted: 05/31/2010] [Indexed: 12/21/2022]
|
12
|
Taglauer ES, Adams Waldorf KM, Petroff MG. The hidden maternal-fetal interface: events involving the lymphoid organs in maternal-fetal tolerance. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2010; 54:421-30. [PMID: 19876825 DOI: 10.1387/ijdb.082800et] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The genetic disparity between the mother and fetus has long enticed immunologists to search for mechanisms of maternal tolerance to fetal antigens. The study of antigen-specific tolerance in murine and human pregnancy has gained new momentum in recent years through the focus on antigen-presenting cells, uterine lymphatics and fetal antigen-specific maternal T cell responses. In mice, we now know that these responses occur within the secondary lymphoid structures as they can be conveniently tracked through the use of defined, often transgenic fetal antigens and maternal T cell receptors. Although the secondary lymphoid organs are sites of both immunization and tolerization to antigens, the immunological processes that occur in response to fetal antigens during the healthy pregnancy must invariably lead to tolerance. The molecular properties of these maternal-fetal tolerogenic interactions are still being unraveled, and are likely to be greatly influenced by tissue-specific microenvironments and the hormonal milieu of pregnancy. In this article, we discuss the events leading to antigen-specific maternal tolerance, including the trafficking of fetal antigens to secondary lymphoid organs, the properties of the antigen-presenting cells that display them to maternal T lymphocytes, and the nature of the ensuing tolerogenic response. Experimental data generated from human biological specimens as well as murine transgenic models are considered.
Collapse
Affiliation(s)
- Elizabeth S Taglauer
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | |
Collapse
|
13
|
Carey AJ, Beagley KW. Chlamydia trachomatis, a hidden epidemic: effects on female reproduction and options for treatment. Am J Reprod Immunol 2010; 63:576-86. [PMID: 20192953 DOI: 10.1111/j.1600-0897.2010.00819.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The number of genital tract Chlamydia trachomatis infections is steadily increasing worldwide, with approximately 50-70% of infections asymptomatic. There is currently no uniform screening practice, current antibiotic treatment has failed to prevent the increased incidence, and there is no vaccine available. We examined studies on the epidemiology of C. trachomatis infections, the effects infections have on the female reproductive tract and subsequent reproductive health and what measures are being taken to reduce these problems. Undetected or multiple infections in women can lead to the development of severe reproductive sequelae, including pelvic inflammatory disease and tubal infertility. There are two possible paradigms of chlamydial pathogenesis, the cellular and immunological paradigms. While many vaccine candidates are being extensively tested in animal models, they are still years from clinical trials. With no vaccine available and antibiotic treatment unable to halt the increased incidence, infection rates will continue to increase and cause a significant burden on health care systems.
Collapse
Affiliation(s)
- Alison J Carey
- Institute of Health & Biomedical Innovation, School of Life Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Qld, Australia
| | | |
Collapse
|
14
|
Krishnan L, Pejcic-Karapetrovic B, Gurnani K, Zafer A, Sad S. Pregnancy does not deter the development of a potent maternal protective CD8+ T-cell acquired immune response against Listeria monocytogenes despite preferential placental colonization. Am J Reprod Immunol 2009; 63:54-65. [PMID: 19912156 DOI: 10.1111/j.1600-0897.2009.00766.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
PROBLEM Listeria monocytogenes (LM) preferentially colonizes the placenta and causes fetal loss and systemic disease during pregnancy. As systemic CD8+ T-cell memory is critical in controlling LM infection, we addressed the issue as to whether it is modulated during pregnancy. METHOD OF STUDY Pregnant mice were infected with LM and their immune response was quantified relative to the non-pregnant cohort using advanced immunological techniques. RESULTS Pregnant mice exhibited progressive and massive placental LM infection leading to fetal resorptions. In contrast, they harbored significantly lower bacteria in spleen and liver relative to non-pregnant controls, and rapidly cleared systemic infection. Both pregnant and non-pregnant mice exhibited similar activation of systemic innate immunity. Moreover, LM infection in pregnant and non-pregnant hosts evoked strong antigen-specific cytolytic CD8+ T cells that produced IFN-gamma. Consequently, LM infection initiated during pregnancy afforded long-term protective memory to secondary infection. CONCLUSION Maternal hosts generate a normal Listeria-specific adaptive immunity in particular CD8+ T-cell memory response suggesting that systemic listeriosis during pregnancy may be an immunopathology associated with placental infection.
Collapse
Affiliation(s)
- Lakshmi Krishnan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada.
| | | | | | | | | |
Collapse
|
15
|
Moldenhauer LM, Diener KR, Thring DM, Brown MP, Hayball JD, Robertson SA. Cross-Presentation of Male Seminal Fluid Antigens Elicits T Cell Activation to Initiate the Female Immune Response to Pregnancy. THE JOURNAL OF IMMUNOLOGY 2009; 182:8080-93. [DOI: 10.4049/jimmunol.0804018] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Estradiol-induced vaginal mucus inhibits antigen penetration and CD8(+) T cell priming in response to intravaginal immunization. Vaccine 2009; 27:2342-9. [PMID: 19428849 DOI: 10.1016/j.vaccine.2009.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 02/02/2009] [Accepted: 02/09/2009] [Indexed: 11/24/2022]
Abstract
Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8(+) T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APCs) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8(+) T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8(+) T cell priming after insemination or vaginal vaccination.
Collapse
|
17
|
Seavey MM, Mosmann TR. Immunoregulation of fetal and anti-paternal immune responses. Immunol Res 2007; 40:97-113. [DOI: 10.1007/s12026-007-8005-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Erlebacher A, Vencato D, Price KA, Zhang D, Glimcher LH. Constraints in antigen presentation severely restrict T cell recognition of the allogeneic fetus. J Clin Invest 2007; 117:1399-411. [PMID: 17446933 PMCID: PMC1849983 DOI: 10.1172/jci28214] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 02/20/2007] [Indexed: 11/17/2022] Open
Abstract
How the fetus escapes rejection by the maternal immune system remains one of the major unsolved questions in transplantation immunology. Using a system to visualize both CD4+ and CD8+ T cell responses during pregnancy in mice, we find that maternal T cells become aware of the fetal allograft exclusively through "indirect" antigen presentation, meaning that T cell engagement requires the uptake and processing of fetal/placental antigen by maternal APCs. This reliance on a relatively minor allorecognition pathway removes a major threat to fetal survival, since it avoids engaging the large number of T cells that typically drive acute transplant rejection through their ability to directly interact with foreign MHC molecules. Furthermore, CD8+ T cells that indirectly recognize fetal/placental antigen undergo clonal deletion without priming for cytotoxic effector function and cannot induce antigen-specific fetal demise even when artificially activated. Antigen presentation commenced only at mid-gestation, in association with the endovascular invasion of placental trophoblasts and the hematogenous release of placental debris. Our results suggest that limited pathways of antigen presentation, in conjunction with tandem mechanisms of immune evasion, contribute to the unique immunological status of the fetus. The pronounced degree of T cell ignorance of the fetus also has implications for the pathophysiology of immune-mediated early pregnancy loss.
Collapse
Affiliation(s)
- Adrian Erlebacher
- Department of Pathology, Experimental Pathology Program, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|