1
|
Liu Q, Chen G, Liu X, Tao L, Fan Y, Xia T. Tolerogenic Nano-/Microparticle Vaccines for Immunotherapy. ACS NANO 2024. [PMID: 38323542 DOI: 10.1021/acsnano.3c11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Autoimmune diseases, allergies, transplant rejections, generation of antidrug antibodies, and chronic inflammatory diseases have impacted a large group of people across the globe. Conventional treatments and therapies often use systemic or broad immunosuppression with serious efficacy and safety issues. Tolerogenic vaccines represent a concept that has been extended from their traditional immune-modulating function to induction of antigen-specific tolerance through the generation of regulatory T cells. Without impairing immune homeostasis, tolerogenic vaccines dampen inflammation and induce tolerogenic regulation. However, achieving the desired potency of tolerogenic vaccines as preventive and therapeutic modalities calls for precise manipulation of the immune microenvironment and control over the tolerogenic responses against the autoantigens, allergens, and/or alloantigens. Engineered nano-/microparticles possess desirable design features that can bolster targeted immune regulation and enhance the induction of antigen-specific tolerance. Thus, particle-based tolerogenic vaccines hold great promise in clinical translation for future treatment of aforementioned immune disorders. In this review, we highlight the main strategies to employ particles as exciting tolerogenic vaccines, with a focus on the particles' role in facilitating the induction of antigen-specific tolerance. We describe the particle design features that facilitate their usage and discuss the challenges and opportunities for designing next-generation particle-based tolerogenic vaccines with robust efficacy to promote antigen-specific tolerance for immunotherapy.
Collapse
Affiliation(s)
- Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Lu Tao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Puricelli C, Boggio E, Gigliotti CL, Stoppa I, Sutti S, Rolla R, Dianzani U. Cutting-Edge Delivery Systems and Adjuvants in Tolerogenic Vaccines: A Review. Pharmaceutics 2022; 14:pharmaceutics14091782. [PMID: 36145531 PMCID: PMC9501480 DOI: 10.3390/pharmaceutics14091782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional therapies for immune-mediated diseases, including autoimmune disorders, transplant reactions, and allergies, have undergone a radical evolution in the last few decades; however, they are still not specific enough to avoid widespread immunosuppression. The idea that vaccine usage could be extended beyond its traditional immunogenic function by encompassing the ability of vaccines to induce antigen-specific tolerance may revolutionize preventive and therapeutic strategies in several clinical fields that deal with immune-mediated disorders. This approach has been supported by improved data relating to the several mechanisms involved in controlling unwanted immune responses and allowing peripheral tolerance. Given these premises, several approaches have been developed to induce peripheral tolerance against the antigens that are involved in the pathological immune response, including allergens, autoantigens, and alloantigens. Technological innovations, such as nucleic acid manipulation and the advent of micro- and nanoparticles, have further supported these novel preventive and therapeutic approaches. This review focuses on the main strategies used in the development of tolerogenic vaccines, including the technological issues used in their design and the role of “inverse adjuvants”. Even though most studies are still limited to the preclinical field, the enthusiasm generated by their results has prompted some initial clinical trials, and they show great promise for the future management of immune-mediated pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Roberta Rolla
- Correspondence: ; Tel.: +39-0321-3733583; Fax: +39-0321-3733987
| | | |
Collapse
|
3
|
Moorman CD, Sohn SJ, Phee H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Front Immunol 2021; 12:657768. [PMID: 33854514 PMCID: PMC8039385 DOI: 10.3389/fimmu.2021.657768] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers. These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn's disease. TNF-α blockade quickly became the "standard of care" for these autoimmune diseases due to their effectiveness in controlling disease and decreasing patient's adverse risk profiles compared to broad-spectrum immunosuppressive agents. However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. The next wave of truly transformative therapeutics should aspire to provide a cure by selectively suppressing pathogenic autoantigen-specific immune responses while leaving the rest of the immune system intact to control infectious diseases and malignancies. In this review, we will focus on three main areas of active research in immune tolerance. First, tolerogenic vaccines aiming at robust, lasting autoantigen-specific immune tolerance. Second, T cell therapies using Tregs (either polyclonal, antigen-specific, or genetically engineered to express chimeric antigen receptors) to establish active dominant immune tolerance or T cells (engineered to express chimeric antigen receptors) to delete pathogenic immune cells. Third, IL-2 therapies aiming at expanding immunosuppressive regulatory T cells in vivo.
Collapse
Affiliation(s)
| | | | - Hyewon Phee
- Department of Inflammation and Oncology, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| |
Collapse
|
4
|
Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060333. [PMID: 32486045 PMCID: PMC7348736 DOI: 10.3390/brainsci10060333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system and is considered to be the leading non-traumatic cause of neurological disability in young adults. Current treatments for MS comprise long-term immunosuppressant drugs and disease-modifying therapies (DMTs) designed to alter its progress with the enhanced risk of severe side effects. The Holy Grail for the treatment of MS is to specifically suppress the disease while at the same time allow the immune system to be functionally active against infectious diseases and malignancy. This could be achieved via the development of immunotherapies designed to specifically suppress immune responses to self-antigens (e.g., myelin antigens). The present study attempts to highlight the various antigen-specific immunotherapies developed so far for the treatment of multiple sclerosis (e.g., vaccination with myelin-derived peptides/proteins, plasmid DNA encoding myelin epitopes, tolerogenic dendritic cells pulsed with encephalitogenic epitopes of myelin proteins, attenuated autologous T cells specific for myelin antigens, T cell receptor peptides, carriers loaded/conjugated with myelin immunodominant peptides, etc), focusing on the outcome of their recent preclinical and clinical evaluation, and to shed light on the mechanisms involved in the immunopathogenesis and treatment of multiple sclerosis.
Collapse
|
5
|
Chao YH, Chen DY, Lan JL, Tang KT, Lin CC. Tolerogenic β2-glycoprotein I DNA vaccine and FK506 as an adjuvant attenuates experimental obstetric antiphospholipid syndrome. PLoS One 2018; 13:e0198821. [PMID: 29894515 PMCID: PMC5997307 DOI: 10.1371/journal.pone.0198821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/26/2018] [Indexed: 11/28/2022] Open
Abstract
DNA vaccines have recently emerged as a therapeutic agent for treating autoimmune diseases, such as multiple sclerosis. Antiphospholipid antibody syndrome (APS) is an autoimmune disease characterized by β2-glycoprotein I (β2-GPI)-targeting antiphospholipid antibodies (APAs) and vascular thrombosis or obstetrical complications. To examine the therapeutic potential of a β2-GPI DNA vaccine, we administered a vaccine mixed with FK506 as an adjuvant to a mouse model of obstetric APS. First, the pCMV3-β2-GPI DNA vaccine, which encodes the full-length human β2-GPI gene, was constructed. Then, we administered the β2-GPI DNA vaccine in 0.1 ml of saline, mixed with or without 100 μg of FK506, intramuscularly to the mice on days 28, 35 and 42. Blood titers of the anti-β2-GPI antibody, platelet counts, activated partial thromboplastin times (aPTTs), and the percentage of fetal loss were measured. We also stimulated murine splenic T cells ex vivo with β2-GPI and determined the T helper cell proportion and cytokine secretion. The administration of the β2-GPI DNA vaccine mixed with FK506 reduced the blood IgG anti-β2-GPI antibody titers and suppressed APS manifestations in mice. The combination also suppressed interferon-γ and interleukin (IL)-17A secretion but increased the Treg cell proportion and IL-10 secretion in murine splenic T cells following ex vivo stimulation with β2-GPI. Our results demonstrated the therapeutic efficacy of a β2-GPI DNA vaccine and FK506 as an adjuvant in a murine model of obstetric APS. Possible mechanisms include the inhibition of Th1 and Th17 responses and the up-regulation of Treg cells.
Collapse
Affiliation(s)
- Ya-Hsuan Chao
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan
| | - Der-Yuan Chen
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Joung-Liang Lan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- * E-mail: (K-TT); (C-CL)
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (K-TT); (C-CL)
| |
Collapse
|
6
|
Brain Protection Conferred by Long-Term Administration of 2-(2-Benzofuranyl)-2-Imidazoline Against Experimental Autoimmune Encephalomyelitis. Neurochem Res 2014; 40:572-8. [DOI: 10.1007/s11064-014-1502-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 11/26/2022]
|
7
|
Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology 2014; 96:55-69. [PMID: 25446571 DOI: 10.1016/j.neuropharm.2014.10.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 02/07/2023]
Abstract
Neuroimmune diseases have diverse symptoms and etiologies but all involve pathological inflammation that affects normal central nervous system signaling. Critically, many neuroimmune diseases also involve insufficient signaling/bioavailability of interleukin-10 (IL-10). IL-10 is a potent anti-inflammatory cytokine released by immune cells and glia, which drives the regulation of a variety of anti-inflammatory processes. This review will focus on the signaling pathways and function of IL-10, the current evidence for insufficiencies in IL-10 signaling/bioavailability in neuroimmune diseases, as well as the implications for IL-10-based therapies to treating such problems. We will review in detail four pathologies as examples of the common etiologies of such disease states, namely neuropathic pain (nerve trauma), osteoarthritis (peripheral inflammation), Parkinson's disease (neurodegeneration), and multiple sclerosis (autoimmune). A number of methods to increase IL-10 have been developed (e.g. protein administration, viral vectors, naked plasmid DNA, plasmid DNA packaged in polymers to enhance their uptake into target cells, and adenosine 2A agonists), which will also be discussed. In general, IL-10-based therapies have been effective at treating both the symptoms and pathology associated with various neuroimmune diseases, with more sophisticated gene therapy-based methods producing sustained therapeutic effects lasting for several months following a single injection. These exciting results have resulted in IL-10-targeted therapeutics being positioned for upcoming clinical trials for treating neuroimmune diseases, including neuropathic pain. Although further research is necessary to determine the full range of effects associated with IL-10-based therapy, evidence suggests IL-10 may be an invaluable target for the treatment of neuroimmune disease. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- A J Kwilasz
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado-Boulder, Boulder, CO 80309-0345, USA.
| | - P M Grace
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado-Boulder, Boulder, CO 80309-0345, USA
| | - P Serbedzija
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado-Boulder, Boulder, CO 80309-0345, USA
| | - S F Maier
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado-Boulder, Boulder, CO 80309-0345, USA
| | - L R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado-Boulder, Boulder, CO 80309-0345, USA
| |
Collapse
|
8
|
Silva CL, Bonato VLD, dos Santos-Júnior RR, Zárate-Bladés CR, Sartori A. Recent advances in DNA vaccines for autoimmune diseases. Expert Rev Vaccines 2014; 8:239-52. [DOI: 10.1586/14760584.8.2.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Treg cell resistance to apoptosis in DNA vaccination for experimental autoimmune encephalomyelitis treatment. PLoS One 2012; 7:e49994. [PMID: 23166807 PMCID: PMC3498204 DOI: 10.1371/journal.pone.0049994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/15/2012] [Indexed: 12/29/2022] Open
Abstract
Background Regulatory T (Treg) cells can be induced with DNA vaccinations and protect mice from the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Tacrolimus (FK506) has been shown to have functions on inducing immunosuppression and augmenting apoptosis of pathologic T cells in autoimmune disease. Here we examined the therapeutic effect of DNA vaccine in conjunction with FK506 on EAE. Methodology/Principal Findings After EAE induction, C57BL/6 mice were treated with DNA vaccine in conjunction with FK506. Functional Treg cells were induced in treated EAE mice and suppressed Th1 and Th17 cell responses. Infiltrated CD4 T cells were reduced while Treg cells were induced in spinal cords of treated EAE mice. Remarkably, the activated CD4 T cells augmented apoptosis, but the induced Treg cells resisted apoptosis in treated EAE mice, resulting in alleviation of clinical EAE severity. Conclusions/Significance DNA vaccine in conjunction with FK506 treatment ameliorates EAE by enhancing apoptosis of CD4 T cells and resisting apoptosis of induced Treg cells. Our findings implicate the potential of tolerogenic DNA vaccines for treating MS.
Collapse
|
10
|
Fissolo N, Costa C, Nurtdinov RN, Bustamante MF, Llombart V, Mansilla MJ, Espejo C, Montalban X, Comabella M. Treatment with MOG-DNA vaccines induces CD4+CD25+FoxP3+ regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis. J Neuroinflammation 2012; 9:139. [PMID: 22727044 PMCID: PMC3464883 DOI: 10.1186/1742-2094-9-139] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/22/2012] [Indexed: 01/07/2023] Open
Abstract
Background DNA vaccines represent promising therapeutic strategies in autoimmune disorders such as multiple sclerosis (MS). However, the precise mechanisms by which DNA vaccines induce immune regulation remain largely unknown. Here, we aimed to expand previous knowledge existing on the mechanisms of action of DNA vaccines in the animal model of MS, experimental autoimmune encephalomyelitis (EAE), by treating EAE mice with a DNA vaccine encoding the myelin oligodendrocyte glycoprotein (MOG), and exploring the therapeutic effects on the disease-induced inflammatory and neurodegenerative changes. Methods EAE was induced in C57BL6/J mice by immunization with MOG35-55 peptide. Mice were intramuscularly treated with a MOG-DNA vaccine or vehicle in prophylactic and therapeutic approaches. Histological studies were performed in central nervous system (CNS) tissue. Cytokine production and regulatory T cell (Treg) quantification were achieved by flow cytometry. Gene expression patterns were determined using microarrays, and the main findings were validated by real-time PCR. Results MOG-DNA treatment reduced the clinical and histopathological signs of EAE when administered in both prophylactic and therapeutic settings. Suppression of clinical EAE was associated with dampening of antigen (Ag)-specific proinflammatory Th1 and Th17 immune responses and, interestingly, expansion of Treg in the periphery and upregulation in the CNS of genes encoding neurotrophic factors and proteins involved in remyelination. Conclusions These results suggest for the first time that the beneficial effects of DNA vaccines in EAE are not limited to anti-inflammatory mechanisms, and DNA vaccines may also exert positive effects through hitherto unknown neuroprotective mechanisms.
Collapse
Affiliation(s)
- Nicolás Fissolo
- Centre d'Esclerosi Múltiple de Catalunya, CEM-Cat, Unitat de Neuroimmunologia Clínica, Hospital Universitari Vall d´Hebron (HUVH), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fissolo N, Montalban X, Comabella M. DNA-based vaccines for multiple sclerosis: Current status and future directions. Clin Immunol 2012; 142:76-83. [DOI: 10.1016/j.clim.2010.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 01/23/2023]
|
12
|
Guan Y, Zhang M, Li Y, Cao W, Ji M, Liu Y. Vaccination with IA-2 autoantigen can prevent late prediabetic nonobese diabetic mice from developing diabetes mellitus. Diabetes Res Clin Pract 2012; 95:93-7. [PMID: 22004942 DOI: 10.1016/j.diabres.2011.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 09/15/2011] [Accepted: 09/20/2011] [Indexed: 11/23/2022]
Abstract
DNA vaccine can be applied to deliver genes into cells to induce tolerance of some autoimmune diseases. This study aimed to evaluate the effect of DNA vaccine in preventing late prediabetic nonobese diabetic (NOD) mice from developing autoimmune diabetes mellitus. The cDNA of human IA2 was recombined to be used as the DNA vaccine. Plasmid IL-4/MCP-1 was co-administrated as the DNA adjuvant. 49 10-11-week-old NOD mice were grouped into four groups: the control group (n=10), IA-2 vaccine group (n=17), IL-4/MCP-1 vaccine group (n=8) and IA-2 plus IL-4/MCP-1 vaccine group (n=14) by intramuscularly injected with 50 μg plasmid in each quadriceps muscle. Glucose levels in the groups were detected every 1-2 weeks. Insulitis was evaluated with hematoxylin and eosin-stained pancreatic sections. CD4(+) CD25(+)and CD8(+) T lymphocytes were measured with flow cytometry. The results showed that in 10-11-week-old female NOD mice, vaccination with IA2 or in combination with IL-4/MCP-1 delayed the onset of disease compared with the control group (p<0.05). Our results suggest that the DNA vaccine IA2 can prevent NOD mouse from developing autoimmune diabetes and this efficiency is related to the immune status of the recipients. Our findings offer new insights into the immune system and suggest novel methods of type 1 diabetes prevention.
Collapse
Affiliation(s)
- Yueyan Guan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130041, China
| | | | | | | | | | | |
Collapse
|
13
|
Liu QY, Yao YM, Zhang SW, Sheng ZY. Astragalus polysaccharides regulate T cell-mediated immunity via CD11c(high)CD45RB(low) DCs in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2011; 136:457-464. [PMID: 20620204 DOI: 10.1016/j.jep.2010.06.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/01/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus polysaccharides (APS) isolated from one of the Chinese herbs, Astragalus mongholicus, are known to have a variety of immunomodulatory activities. However, it is not yet clear whether APS can induce the activation and differentiation of dendritic cells (DCs) and subsequently activate T cells. AIM OF THE STUDY This study was carried out to investigate the effect of APS on the differentiation of splenic DCs and its influence on T cell-mediated immunity through interleukin (IL)-12-producing CD11c(high)CD45RB(low) DCs in vitro. METHODOLOGY MACS microbeads were used to isolate splenic DCs, CD11c(high)CD45RB(low) DCs, CD11c(low)CD45RB(high) DCs and CD4(+) T cells. Phenotypes were analyzed by flow cytometry, and cytokine levels were determined with cytometric bead array or ELISA. RESULT The percentage of CD11c(high)CD45RB(low) DCs was significantly increased after treatment with APS compared to their counterparts. The cytokine secretion pattern of CD11c(high)CD45RB(low) DCs and CD11c(low)CD45RB(high) DCs was detected, and it was found that unlike the stable IL-10 secretion pattern of CD11c(low)CD45RB(high) DCs induced by APS, CD11c(high)CD45RB(low) DCs showed a dose-dependent relationship between IL-12 production and APS stimulation. In order to verify whether the activation of CD4(+) T was associated with the differentiation of splenic DCs mediated by APS to CD11c(high)CD45RB(low) DCs, anti-IL-12 receptor (IL-12R) as well as anti-IL-10R monoclonal antibody was used to inhibit the effect of CD11c(high)CD45RB(low) DCs and CD11c(low)CD45RB(high) DCs in CD4(+) T mixed lymphocyte reaction culture. After treatment with anti-IL-12R or anti-IL-10 monoclonal antibody in CD4(+) T+CD11c(high)CD45RB(low) DCs or CD11c(low)CD45RB(high) DCs mixed lymphocyte reaction, the inductions of these DCs on T cells were inhibited dramatically. CONCLUSION APS might induce the differentiation of splenic DCs to CD11c(high)CD45RB(low) DCs followed by shifting of Th2 to Th1 with enhancement of T lymphocyte immune function in vitro. Also, the effect of APS on T-cell differentiation to Th1 was not associated with the inhibition of IL-10 production in CD11c(low)CD45RB(high) DCs.
Collapse
Affiliation(s)
- Qing-yang Liu
- Department of Microbiology and Immunology, Burns Institute, First Hospital affiliated to the Chinese PLA General Hospital, 51 Fu-Cheng Road, Beijing, PR China.
| | | | | | | |
Collapse
|
14
|
Carvalho JA, Rodgers J, Atouguia J, Prazeres DMF, Monteiro GA. DNA vaccines: a rational design against parasitic diseases. Expert Rev Vaccines 2010; 9:175-91. [PMID: 20109028 DOI: 10.1586/erv.09.158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.
Collapse
Affiliation(s)
- Joana A Carvalho
- Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
15
|
Izhak L, Wildbaum G, Weinberg U, Uri W, Shaked Y, Alami J, Dumont D, Friedman B, Stein A, Karin N. Predominant expression of CCL2 at the tumor site of prostate cancer patients directs a selective loss of immunological tolerance to CCL2 that could be amplified in a beneficial manner. THE JOURNAL OF IMMUNOLOGY 2009; 184:1092-101. [PMID: 19995900 DOI: 10.4049/jimmunol.0902725] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that, during inflammatory autoimmune diseases in humans, the immune system develops a neutralizing auto-Ab-based response to a very limited number of inflammatory mediators, and that amplification of each response could be beneficial for the host. Our working hypothesis has been that this selective breakdown of immunological tolerance is due to a predominant expression of an inflammatory mediator at an immune-restricted site undergoing a destructive process. All three conditions also take place in cancer diseases. In this study, we delineate this hypothesis for the first time in a human cancer disease and then explore its clinical implications. We show that in primary tumor sections of prostate cancer subjects, CCL2 is predominantly expressed at the tumor site over other chemokines that have been associated with tumor development, including: CXCL12, CXCL10, CXCL8, CCL3, and CCL5. Subsequently, the immune response selectivity mounts an Ab-based response to CCL2. These Abs are neutralizing Abs. These findings hold diagnostic and therapeutic implications. The current diagnosis of prostate cancer is based on prostate-specific Ag measurements that do not distinguish benign hypertrophy from malignancy. We show in this study that development of anti-CCL2 Abs is selective to the malignant stage. From a clinically oriented perspective, we show, in an experimental model of the disease, that DNA-based amplification of this response suppresses disease, which has implications for a novel way of therapy in humans.
Collapse
Affiliation(s)
- Liat Izhak
- Department of Immunology, the Ruth and Bruce Rappaport Faculty of Medicine, Rappaport Family Institute for Research in the Medical Sciences, Technion-Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sloane EM, Soderquist RG, Maier SF, Mahoney MJ, Watkins LR, Milligan ED. Long-term control of neuropathic pain in a non-viral gene therapy paradigm. Gene Ther 2009; 16:470-5. [PMID: 19262611 DOI: 10.1038/gt.2009.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traditional approaches to treating chronic neuropathic pain largely focus on manipulations directly altering neuronal activity or neuron-to-neuron communication. Recently, however, it has become clear that glial cells (including microglia and astroglia) play a significant role in pain expression in a variety of neuropathic pain models. Multiple aspects of the inflammatory response of glial cells, commonly observed in neuropathic pain conditions, have been implicated in pain expression. Thus, glial cell inflammation has emerged as a potential therapeutic target in neuropathic pain. Our laboratory has been exploring the use of an anti-inflammatory cytokine, interleukin-10 (IL-10), to control glial inflammatory activation thereby controlling neuropathic pain. IL-10 protein delivery is limited by a short half-life and an inability to cross into the central nervous system from the periphery, making a centrally delivered gene therapy approach attractive. We have recently characterized a non-viral gene therapy approach using two injections of naked DNA to achieve long-term (>3 months) control of neuropathic pain in a peripheral nerve injury model. Timing and dose requirements leading to long-term pain control are discussed in this review, as is recent work using microparticle-encapsulated DNA to achieve long-term therapeutic efficacy with a single injection.
Collapse
Affiliation(s)
- E M Sloane
- Department of Psychology and Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ye F, Yan S, Xu L, Jiang Z, Liu N, Xiong S, Wang Y, Chu Y. Tr1 regulatory T cells induced by ConA pretreatment prevent mice from ConA-induced hepatitis. Immunol Lett 2009; 122:198-207. [DOI: 10.1016/j.imlet.2009.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 12/14/2008] [Accepted: 01/12/2009] [Indexed: 01/01/2023]
|
18
|
Sloane E, Ledeboer A, Seibert W, Coats B, van Strien M, Maier SF, Johnson KW, Chavez R, Watkins LR, Leinwand L, Milligan ED, Van Dam AM. Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental Multiple Sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy. Brain Behav Immun 2009; 23:92-100. [PMID: 18835435 PMCID: PMC2631931 DOI: 10.1016/j.bbi.2008.09.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/20/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune inflammatory disease that presents clinically with a range of symptoms including motor, sensory, and cognitive dysfunction as well as demyelination and lesion formation in brain and spinal cord. A variety of animal models of MS have been developed that share many of the pathological hallmarks of MS including motor deficits (ascending paralysis), demyelination and axonal damage of central nervous system (CNS) tissue. In recent years, neuropathic pain has been recognized as a prevalent symptom of MS in a majority of patients. To date, there have been very few investigations into sensory disturbances in animal models of MS. The current work contains the first assessment of hind paw mechanical allodynia (von Frey test) over the course of a relapsing-remitting myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE) rat model of MS and establishes the utility of this model in examining autoimmune induced sensory dysfunction. We demonstrate periods of both decreased responsiveness to touch that precedes the onset of hind limb paralysis, and increased responsiveness (allodynia) that occurs during the period of motor deficit amelioration traditionally referred to as symptom remission. Furthermore, we tested the ability of our recently characterized anti-inflammatory IL-10 gene therapy to treat the autoimmune inflammation induced behavioral symptoms and tissue histopathological changes. This therapy is shown here to reverse inflammation induced paralysis, to reduce disease associated reduction in sensitivity to touch, to prevent the onset of allodynia, to reverse disease associated loss of body weight, and to suppress CNS glial activation associated with disease progression in this model.
Collapse
Affiliation(s)
- Evan Sloane
- Department of Psychology & Center for Neuroscience, University of Colorado, CU-Boulder 345, CO 80305, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Graber JJ, Dhib-Jalbut S. Protective autoimmunity in the nervous system. Pharmacol Ther 2008; 121:147-59. [PMID: 19000712 DOI: 10.1016/j.pharmthera.2008.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 12/31/2022]
Abstract
The immune system can play both detrimental and beneficial roles in the nervous system. Multiple arms of the immune system, including T cells, B cells, NK cells, mast cells, macrophages, dendritic cells, microglia, antibodies, complement and cytokines participate in limiting damage to the nervous system during toxic, ischemic, hemorrhagic, infective, degenerative, metabolic and immune-mediated insults and also assist in the process of repair after injury has occurred. Immune cells have been shown to produce neurotrophic growth factors and interact with neurons and glial cells to preserve them from injury and stimulate growth and repair. The immune system also appears to participate in proliferation of neural progenitor stem cells and their migration to sites of injury. Neural stem cells can also modify the immune response in the central and peripheral nervous system to enhance neuroprotective effects. Evidence for protective and reparative functions of the immune system has been found in diverse neurologic diseases including traumatic injury, ischemic and hemorrhagic stroke, multiple sclerosis, infection, and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis). Existing therapies including glatiramer acetate, interferon-beta and immunoglobulin have been shown to augment the protective and regenerative aspects of the immune system in humans, and other experimental interventions such as vaccination, minocycline, antibodies and neural stem cells, have shown promise in animal models of disease. The beneficent aspects of the immune response in the nervous system are beginning to be appreciated and their potential as pharmacologic targets in neurologic disease is being explored.
Collapse
Affiliation(s)
- Jerome J Graber
- New York University School of Medicine, Department of Neurology, New York, NY, USA
| | | |
Collapse
|
20
|
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS, characterized pathologically by a perivascular infiltrate consisting predominantly of T cells and macrophages. Although its aetiology remains unknown, several lines of evidence support the hypothesis that autoimmune mechanisms play a major role in the development of the disease. Several widely used disease-modifying agents are approved for the treatment of MS. However, these agents are only partially effective and their ability to attenuate the more progressive phases of the disease is not clear at this time. Therefore, there is a need to develop improved treatment options for MS. This article reviews the role of several novel, selective vaccine strategies that are currently under investigation, including: (i) T-cell vaccination (TCV); (ii) T-cell receptor (TCR) peptide vaccination; (iii) DNA vaccination; and (iv) altered peptide ligand (APL) vaccination. The administration of attenuated autoreactive T cells induces regulatory networks to specifically suppress pathogenic T cells in MS, a strategy named TCV. The concept of TCV was based on the experience of vaccination against aetiological agents of infectious diseases in which individuals are purposely exposed to an attenuated microbial pathogen, which then instructs the immune system to recognize and neutralize it in its virulent form. In regard to TCV, attenuated, pathogenic T cells are similarly used to instruct the immune system to recognize and neutralize disease-inducing T cells. In experimental allergic encephalomyelitis (EAE), an animal model for MS, pathogenic T cells use a strikingly limited number of variable-region elements (V region) to form TCR specific for defined autoantigens. Thus, vaccination with peptides directed against these TCR structures may induce immunoregulatory mechanisms, thereby preventing EAE. However, unlike EAE, myelin-reactive T cells derived from MS patients utilize a broad range of different V regions, challenging the clinical utility of this approach. Subsequently, the demonstration that injection of plasmid DNA encoding a reporter gene into skeletal muscle results in expression of the encoded proteins, as well as in the induction of immune responses in animal models of autoimmunity, was explored as another strategy to re-establish self-tolerance. This approach has promise for the treatment of MS and, therefore, warrants further investigation. APLs are molecules in which the native encephalitogenic peptides are modified by substitution(s) of one or a few amino acids critical for contact with the TCR. Depending on the substitution(s) at the TCR contact residues of the cognate peptide, an APL can induce immune responses that can protect against or reverse EAE. However, the heterogeneity of the immune response in MS patients requires further study to determine which patients are most likely to benefit from APL therapy. Other potential approaches for vaccines in MS include vaccination against axonal growth inhibitors associated with myelin, use of dendritic cells pulsed with specific antigens, and active vaccination against proinflammatory cytokines. Overall, vaccines for MS represent promising approaches for the treatment of this devastating disease, as well as other autoimmune diseases.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Raúl Carrea Institute for Neurological Research, Buenos Aires, Argentina.
| | | | | |
Collapse
|