1
|
Meloun A, León B. Sensing of protease activity as a triggering mechanism of Th2 cell immunity and allergic disease. FRONTIERS IN ALLERGY 2023; 4:1265049. [PMID: 37810200 PMCID: PMC10552645 DOI: 10.3389/falgy.2023.1265049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular parasites, like helminths. However, Th2 cells also play a pivotal role in the onset and progression of allergic inflammatory diseases such as atopic dermatitis, allergic rhinitis, asthma, and food allergy. This happens when allergens, which are otherwise harmless foreign proteins, are mistakenly identified as "pathogenic." Consequently, the encounter with these allergens triggers the activation of specific Th2 cell responses, leading to the development of allergic reactions. Understanding the molecular basis of allergen sensing is vital for comprehending how Th2 cell responses are erroneously initiated in individuals with allergies. The presence of protease activity in allergens, such as house dust mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant role in triggering robust Th2 cell responses. In this review, we aim to examine the significance of protease activity sensing in foreign proteins for the initiation of Th2 cell responses, highlighting how evolving a host protease sensor may contribute to detect invading helminth parasites, but conversely can also trigger unwanted reactions to protease allergens. In this context, we will explore the recognition receptors activated by proteolytic enzymes present in major allergens and their contribution to Th2-mediated allergic responses. Furthermore, we will discuss the coordinated efforts of sensory neurons and epithelial cells in detecting protease allergens, the subsequent activation of intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s), and the ultimate integration of all signals by conventional dendritic cells (cDCs), leading to the induction of Th2 cell responses. On the other hand, the review highlights the role of monocytes in the context of protease allergen exposure and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This review aims to provide insights into the innate functions and cell communications triggered by protease allergens, which can contribute to the initiation of detrimental Th2 cell responses, but also promote mechanisms to effectively suppress their development.
Collapse
Affiliation(s)
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
2
|
Ogasawara A, Yuki T, Katagiri A, Lai YT, Takahashi Y, Basketter D, Sakaguchi H. Proteolytic activity accelerates the T H17/T H22 recall response to an epicutaneous protein allergen-induced T H2 response. J Immunotoxicol 2022; 19:27-33. [PMID: 35378053 DOI: 10.1080/1547691x.2022.2049665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Epicutaneous exposure to protein allergens, such as papain, house dust mite (HDM), and ovalbumin (OVA), represents an important mode of sensitization for skin diseases including protein contact dermatitis, immunologic contact urticaria, and atopic dermatitis. These diseases are inducible by re-exposure to an allergen at both original skin sensitization and distant skin sites. In this study, we examined the serum IgE/IgG1 response, differentiation of T-helper (TH) cells, and epicutaneous TH recall response in mice pre-sensitized with protein allergens through the back skin and subsequently challenged on the ear skin. Repeated epicutaneous sensitization with allergenic proteins including papain, HDM, OVA, and protease inhibitor-treated papain, but not bovine serum albumin, induced serum allergen-specific antibody production, passive cutaneous anaphylaxis responses, and TH2 differentiation in the skin draining lymph node (DLN) cells. Sensitization with papain or HDM, which have protease activity, resulted in the differentiation of TH17 as well as TH2. In papain- or HDM-sensitized mice, a subsequent single challenge on the ear skin induced the expression of TH2 and TH17/TH22 cytokines. These results suggest that allergenic proteins induce the differentiation of TH2 in skin DLN cells and an antibody response. These findings may be useful for identifying proteins of high and low allergenic potential. Moreover, allergenic proteins containing protease activity may also differentiate TH17 and induce TH2 and TH17/TH22 recall responses at epicutaneous challenge sites. This suggests that allergen protease activity accelerates the onset of skin diseases caused by protein allergens.
Collapse
Affiliation(s)
- Akira Ogasawara
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuo Yuki
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Asuka Katagiri
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Yi-Ting Lai
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Yutaka Takahashi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | | | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| |
Collapse
|
3
|
Flayer CH, Sokol CL. Sensory neurons control the functions of dendritic cells to guide allergic immunity. Curr Opin Immunol 2022; 74:85-91. [PMID: 34808584 PMCID: PMC8901476 DOI: 10.1016/j.coi.2021.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/20/2021] [Accepted: 10/24/2021] [Indexed: 02/03/2023]
Abstract
Dendritic cells of the innate immune system and sensory neurons of the peripheral nervous system are embedded in barrier tissues and gather information about an organisms' environment. While the mechanisms by which dendritic cells recognize and initiate adaptive immune responses to pathogens is well defined, how they sense allergens is poorly understood. Indeed, allergens induce dendritic cell maturation and migration in vivo, but not in vitro. How are adaptive immune responses to allergens initiated if dendritic cells do not directly sense allergens? Sensory neurons release neuropeptides within minutes of allergen exposure. Recent evidence demonstrated that while neuropeptides modify dendritic cell function during pathogen responses, they are required for dendritic cell function during allergic responses. These emerging studies suggest that sensory neurons do not just pass information along to the central nervous system, but also to dendritic cells, particularly during the initiation of adaptive immunity to allergens.
Collapse
Affiliation(s)
| | - Caroline L Sokol
- Corresponding author: , 149 13th St Room 8103, Charlestown, MA 02129
| |
Collapse
|
4
|
Ogasawara A, Yuki T, Takai T, Yokozeki K, Katagiri A, Takahashi Y, Yokozeki H, Basketter D, Sakaguchi H. Epicutaneous challenge with protease allergen requires its protease activity to recall T H2 and T H17/T H22 responses in mice pre-sensitized via distant skin. J Immunotoxicol 2021; 18:118-126. [PMID: 34487475 DOI: 10.1080/1547691x.2021.1968548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epicutaneous exposure to allergenic proteins is an important sensitization route for skin diseases like protein contact dermatitis, immunologic contact urticaria, and atopic dermatitis. Environmental allergen sources such as house dust mites contain proteases, which are frequent allergens themselves. Here, the dependency of T-helper (TH) cell recall responses on allergen protease activity in the elicitation phase in mice pre-sensitized via distant skin was investigated. Repeated epicutaneous administration of a model protease allergen, i.e. papain, to the back skin of hairless mice induced skin inflammation, serum papain-specific IgE and TH2 and TH17 cytokine responses in the sensitization sites, and antigen-restimulated draining lymph node cells. In the papain-sensitized but not vehicle-treated mice, subsequent single challenge on the ear skin with papain, but not with protease inhibitor-treated papain, up-regulated the gene expression of TH2 and TH17/TH22 cytokines along with cytokines promoting these TH cytokine responses (TSLP, IL-33, IL-17C, and IL-23p19). Up-regulation of IL-17A gene expression and cells expressing RORγt occurred in the ear skin of the presensitized mice even before the challenge. In a reconstructed epidermal model with a three-dimensional culture of human keratinocytes, papain but not protease inhibitor-treated papain exhibited increasing transdermal permeability and stimulating the gene expression of TSLP, IL-17C, and IL-23p19. This study demonstrated that allergen protease activity contributed to the onset of cutaneous TH2 and TH17/TH22 recall responses on allergen re-encounter at sites distant from the original epicutaneous sensitization exposures. This finding suggested the contribution of protease-dependent barrier disruption and induction of keratinocyte-derived cytokines to the recall responses.
Collapse
Affiliation(s)
- Akira Ogasawara
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Takuo Yuki
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyosuke Yokozeki
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Asuka Katagiri
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Yutaka Takahashi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| | - Hiroo Yokozeki
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Hitoshi Sakaguchi
- Safety Science Research Laboratories, Kao Corporation, Tochigi, Japan
| |
Collapse
|
5
|
Wang M, Li Q, Hou M, Chan LLY, Liu M, Ter SK, Dong T, Xia Y, Chotirmall SH, Fang M. Inactivation of common airborne antigens by perfluoroalkyl chemicals modulates early life allergic asthma. Proc Natl Acad Sci U S A 2021; 118:e2011957118. [PMID: 34099560 PMCID: PMC8214667 DOI: 10.1073/pnas.2011957118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Allergic asthma, driven by T helper 2 cell-mediated immune responses to common environmental antigens, remains the most common respiratory disease in children. Perfluorinated chemicals (PFCs) are environmental contaminants of great concern, because of their wide application, persistence in the environment, and bioaccumulation. PFCs associate with immunological disorders including asthma and attenuate immune responses to vaccines. The influence of PFCs on the immunological response to allergens during childhood is unknown. We report here that a major PFC, perfluorooctane sulfonate (PFOS), inactivates house dust mite (HDM) to dampen 5-wk-old, early weaned mice from developing HDM-induced allergic asthma. PFOS further attenuates the asthma protective effect of the microbial product lipopolysaccharide (LPS). We demonstrate that PFOS prevents desensitization of lung epithelia by LPS, thus abolishing the latter's protective effect. A close mechanistic study reveals that PFOS specifically binds the major HDM allergen Der p1 with high affinity as well as the lipid A moiety of LPS, leading to the inactivation of both antigens. Moreover, PFOS at physiological human (nanomolar) concentrations inactivates Der p1 from HDM and LPS in vitro, although higher doses did not cause further inactivation because of possible formation of PFOS aggregates. This PFOS-induced neutralization of LPS has been further validated in primary human cell models and extended to an in vivo bacterial infection mouse model. This study demonstrates that early life exposure of mice to a PFC blunts airway antigen bioactivity to modulate pulmonary inflammatory responses, which may adversely affect early pulmonary health.
Collapse
Affiliation(s)
- Mengjing Wang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Louisa L Y Chan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore
| | - Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore
| | - Soo Kai Ter
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore
| | - Ting Dong
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore, Singapore
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore, Singapore;
| |
Collapse
|
6
|
Al-Naseri A, Al-Absi S, El Ridi R, Mahana N. A comprehensive and critical overview of schistosomiasis vaccine candidates. J Parasit Dis 2021; 45:557-580. [PMID: 33935395 PMCID: PMC8068781 DOI: 10.1007/s12639-021-01387-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
A digenetic platyhelminth Schistosoma is the causative agent of schistosomiasis, one of the neglected tropical diseases that affect humans and animals in numerous countries in the Middle East, sub-Saharan Africa, South America and China. Several control methods were used for prevention of infection or treatment of acute and chronic disease. Mass drug administration led to reduction in heavy-intensity infections and morbidity, but failed to decrease schistosomiasis prevalence and eliminate transmission, indicating the need to develop anti-schistosome vaccine to prevent infection and parasite transmission. This review summarizes the efficacy and protective capacity of available schistosomiasis vaccine candidates with some insights and future prospects.
Collapse
Affiliation(s)
- Aya Al-Naseri
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Samar Al-Absi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Noha Mahana
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| |
Collapse
|
7
|
Epicutaneous vaccination with protease inhibitor-treated papain prevents papain-induced Th2-mediated airway inflammation without inducing Th17 in mice. Biochem Biophys Res Commun 2021; 546:192-199. [PMID: 33618285 DOI: 10.1016/j.bbrc.2020.12.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
Environmental allergen sources such as house dust mites contain proteases, which are frequently allergens themselves. Inhalation with the exogenous proteases, such as a model of protease allergen, papain, to airways evokes release and activation of IL-33, which promotes innate and adaptive allergic airway inflammation and Th2 sensitization in mice. Here, we examine whether epicutaneous (e.c.) vaccination with antigens with and without protease activity shows prophylactic effect on the Th airway sensitization and Th2-medated airway inflammation, which are driven by exogenous or endogenous IL-33. E.c. vaccination with ovalbumin restrained ovalbumin-specific Th2 airway sensitization and/or airway inflammation on subsequent inhalation with ovalbumin plus papain or ovalbumin plus recombinant IL-33. E.c. vaccination with papain or protease inhibitor-treated papain restrained papain-specific Th2 and Th9 airway sensitization, eosinophilia, and infiltration of IL-33-responsive Th2 and group 2 innate lymphoid cells on subsequent inhalation with papain. However, e.c. vaccination with papain but not protease inhibitor-treated papain induced Th17 response in bronchial draining lymph node cells. In conclusions, we demonstrated that e.c. allergen vaccination via intact skin in mice restrained even protease allergen-activated IL-33-driven airway Th2 sensitization to attenuate allergic airway inflammation and that e.c. vaccination with protease allergen attenuated the airway inflammation similar to its derivative lacking the protease activity, although the former but not the latter promoted Th17 development. In addition, the present study suggests that modified allergens, of which Th17-inducing e.c. adjuvant activity such as the protease activity was eliminated, might be preferable for safer clinical applications of the e.c. allergen administration.
Collapse
|
8
|
Innate IL-17A Enhances IL-33-Independent Skin Eosinophilia and IgE Response on Subcutaneous Papain Sensitization. J Invest Dermatol 2021; 141:105-113.e14. [DOI: 10.1016/j.jid.2020.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
|
9
|
Caraballo L, Valenta R, Puerta L, Pomés A, Zakzuk J, Fernandez-Caldas E, Acevedo N, Sanchez-Borges M, Ansotegui I, Zhang L, van Hage M, Abel-Fernández E, Karla Arruda L, Vrtala S, Curin M, Gronlund H, Karsonova A, Kilimajer J, Riabova K, Trifonova D, Karaulov A. The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organ J 2020; 13:100118. [PMID: 32373267 PMCID: PMC7195550 DOI: 10.1016/j.waojou.2020.100118] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of allergens have been discovered but we know little about their potential to induce inflammation (allergenic activity) and symptoms. Nowadays, the clinical importance of allergens is determined by the frequency and intensity of their IgE antibody binding (allergenicity). This is a rather limited parameter considering the development of experimental allergology in the last 20 years and the criteria that support personalized medicine. Now it is known that some allergens, in addition to their IgE antibody binding properties, can induce inflammation through non IgE mediated pathways, which can increase their allergenic activity. There are several ways to evaluate the allergenic activity, among them the provocation tests, the demonstration of non-IgE mediated pathways of inflammation, case control studies of IgE-binding frequencies, and animal models of respiratory allergy. In this review we have explored the current status of basic and clinical research on allergenic activity of indoor allergens and confirm that, for most of them, this important property has not been investigated. However, during recent years important advances have been made in the field, and we conclude that for at least the following, allergenic activity has been demonstrated: Der p 1, Der p 2, Der p 5 and Blo t 5 from HDMs; Per a 10 from P. americana; Asp f 1, Asp f 2, Asp f 3, Asp f 4 and Asp f 6 from A. fumigatus; Mala s 8 and Mala s 13 from M. sympodialis; Alt a 1 from A. alternata; Pen c 13 from P. chrysogenum; Fel d 1 from cats; Can f 1, Can f 2, Can f 3, Can f 4 and Can f 5 from dogs; Mus m 1 from mice and Bos d 2 from cows. Defining the allergenic activity of other indoor IgE antibody binding molecules is necessary for a precision-medicine-oriented management of allergic diseases.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Corresponding author. Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia.
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, Moscow, Russian Federation
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Anna Pomés
- Indoor Biotechnologies, Inc. Charlottesville, VA, USA
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Mario Sanchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela
| | - Ignacio Ansotegui
- Department of Allergy & Immunology Hospital Quironsalud Bizkaia, Bilbao, Spain
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Abel-Fernández
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - L. Karla Arruda
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans Gronlund
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jonathan Kilimajer
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - Ksenja Riabova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Daria Trifonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Bruni FM, Coutinho EMM, Andrade-Barros AI, Grund LZ, Lopes-Ferreira M, Lima C. Anaphylaxis induced by Thalassophryne nattereri venom in mice is an IgE/IgG1-mediated, IL-4-dependent phenomenon. Sci Rep 2020; 10:584. [PMID: 31953450 PMCID: PMC6969187 DOI: 10.1038/s41598-019-57231-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023] Open
Abstract
We hypothesized that beyond the Thalassophryne nattereri venoms ability to induce in mice a strong specific-Th2 response with high levels of specific IgE/IgG1, it would be able to trigger anaphylaxis in sensitized individuals. To investigate whether the venom is capable of inducing an allergic reaction in mice and characterize soluble and cellular mediators involved in this process, BALB/c female mice were sensitized intraperitoneally with decreasing-dose of venom at weekly intervals for 4 weeks and challenged by intraperitoneal, oral or epicutaneous routes with venom 2 weeks later. Our data show that sensitized-mice challenged by all routes showed intense symptoms of anaphylaxis, dependent on the anaphylactic IgG1 and IgE antibodies and mast cells. The late-phase reaction developed after initial symptoms was characterized by the influx of eosinophils, dependent on IL-5, IL-17A and eotaxin produced by Th2 cells in inflamed lungs and skin draining lymph-nodes. Using C57BL/6 deficient mice we demonstrated that IL-4 KO mice failed to develop anaphylactic symptoms or local Th2 inflammation, producing low levels of IgG1 and increased levels of IgG2a. Together our results demonstrated that the venom of T. nattereri has allergenic proteins that can trigger an allergic process, a phenomenon IgE-IgG1 dependent, IL-4-mediated and negatively regulated by IFN-γ.
Collapse
Affiliation(s)
- Fernanda Miriane Bruni
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | | | | | - Lidiane Zito Grund
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
11
|
Rekima A, Bonnart C, Macchiaverni P, Metcalfe J, Tulic MK, Halloin N, Rekima S, Genuneit J, Zanelli S, Medeiros S, Palmer DJ, Prescott S, Verhasselt V. A role for early oral exposure to house dust mite allergens through breast milk in IgE-mediated food allergy susceptibility. J Allergy Clin Immunol 2020; 145:1416-1429.e11. [PMID: 31954775 DOI: 10.1016/j.jaci.2019.12.912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Successful prevention of food allergy requires the identification of the factors adversely affecting the capacity to develop oral tolerance to food antigen in early life. OBJECTIVES This study sought to determine whether oral exposure to Dermatophagoides pteronyssinus through breast milk affects gut mucosal immunity with long-term effects on IgE-mediated food allergy susceptibility. METHODS Gut immunity was explored in 2-week-old mice breast-fed by mothers exposed to D pteronyssinus, protease-inactivated D pteronyssinus, or to PBS during lactation. We further analyzed oral tolerance to a bystander food allergen, ovalbumin (OVA). In a proof-of-concept study, Der p 1 and OVA levels were determined in 100 human breast milk samples and the association with prevalence of IgE-mediated egg allergy at 1 year was assessed. RESULTS Increased permeability, IL-33 levels, type 2 innate lymphoid cell activation, and Th2 cell differentiation were found in gut mucosa of mice nursed by mothers exposed to D pteronyssinus compared with PBS. This pro-Th2 gut mucosal environment inhibited the induction of antigen-specific FoxP3 regulatory T cells and the prevention of food allergy by OVA exposure through breast milk. In contrast, protease-inactivated D pteronyssinus had no effect on offspring gut mucosal immunity. Based on the presence of Der p 1 and/or OVA in human breast milk, we identified groups of lactating mothers, which mirror the ones found in mice to be responsible for different egg allergy risk. CONCLUSIONS This study highlights an unpredicted potential risk factor for the development of food allergy, that is, D pteronyssinus allergens in breast milk, which disrupt gut immune homeostasis and prevents oral tolerance induction to bystander food antigen through their protease activity.
Collapse
Affiliation(s)
- Akila Rekima
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Chrystelle Bonnart
- Institut National de la Santé et de la Recherche Médicale, U1220, Toulouse, France
| | | | - Jessica Metcalfe
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Meri K Tulic
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France; Institut National de la Santé et de la Recherche Médicale, U1065, Mediterranean Centre for Molecular Medicine, Team 12, Nice, France; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ
| | - Nicolas Halloin
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France
| | - Samah Rekima
- Institut Biologie Valrose, Université Côte d'Azur, Institut National de la Santé et de la Recherche Medicale, Centre National de la Recherche Scientifique, Nice, France
| | - Jon Genuneit
- inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ; Pediatric Epidemiology, Department of Pediatrics, University of Leipzig Medical Center, Leipzig, Germany
| | - Samantha Zanelli
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France
| | - Samara Medeiros
- EA6302 Immune Tolerance, Université de Nice Sophia-Antipolis, Nice, France; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Debra J Palmer
- Telethon Kids Institute, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ
| | - Susan Prescott
- Telethon Kids Institute, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ; Perth Childrens Hospital, Perth, Australia; School of Medicine, University of Western Australia, Crawley, Australia
| | - Valerie Verhasselt
- School of Molecular Sciences, University of Western Australia, Perth, Australia; inVIVO Global Network, Research Group of the Worldwide Universities Network, West New York, NJ.
| |
Collapse
|
12
|
Genç D, Zibandeh N, Nain E, Arığ Ü, Göker K, Aydıner E, Akkoç T. IFN-γ stimulation of dental follicle mesenchymal stem cells modulates immune response of CD4 + T lymphocytes in Der p1 + asthmatic patients in vitro. Allergol Immunopathol (Madr) 2019; 47:467-476. [PMID: 30826066 DOI: 10.1016/j.aller.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/22/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND House dust mite (Dermataphagoides pteronyssinus) is a widespread risk factor in the development of asthma. CD4+ T lymphocytes have an important role in the pathogenesis of allergic asthma by polarizing to Th2 cells. OBJECTIVE We aimed to evaluate the immunoregulatory effects of dental follicle mesenchymal stem cells with and without IFN-γ stimulation on peripheral blood mononuclear cells of house dust mite sensitive asthmatic patients, and compared those with Dexamethasone as a systemic steroid. MATERIAL AND METHODS PBMC of asthmatic patients and healthy individuals separately cultured with or without DF-MSCs in the presence and absence of IFN-γ or Der p1 or Dexamethasone for 72h. CD4+ T proliferation, cell viability, CD4+CD25+FoxP3+ Treg cell frequency and cytokine profiles of PBMC were evaluated via flow cytometry. RESULTS DF-MSCs suppressed proliferation of CD4+ T lymphocytes (pCDmix<0.01, pDerp1<0.01, pIFN<0.005) by increasing the number of FoxP3 expressing CD4+CD25+ T regulatory cells (pCDmix<0.005, pDerp1<0.01, pIFN<0.001) and suppressed lymphocyte apoptosis (pCDmix<0.05, pDerp1<0.05, pIFN<0.05), while Dexamethasone increased the apoptosis and decreased Treg cell frequency in asthmatic patients. IFN-γ stimulation increased the suppressive effect of DF-MSCs and also enhanced the frequency of FoxP3 expressing CD4+CD25+ T regulatory cells. The cytokine levels were regulated by DF-MSCs by reducing IL-4 cytokine levels (pCDmix<0.01, pDerp1<0.05, pIFN<0.05) and upregulating IFN-γ levels (pCDmix<0.01, pDerp1<0.05, pIFN<0.005) in asthmatic patients. CONCLUSION IFN-γ stimulated DF-MSCs were found to have a high modulatory effect on CD4+ T cell responses, while Dexamethasone had an apoptotic effect on CD4+ T cells in asthmatic patients. DF-MSCs may be a new cell-based therapy option for allergic diseases including asthma.
Collapse
|
13
|
Martínez D, Munera M, Cantillo JF, Wortmann J, Zakzuk J, Keller W, Caraballo L, Puerta L. An Engineered Hybrid Protein from Dermatophagoides pteronyssinus Allergens Shows Hypoallergenicity. Int J Mol Sci 2019; 20:ijms20123025. [PMID: 31234267 PMCID: PMC6628193 DOI: 10.3390/ijms20123025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
The house dust mite (HDM) Dermatophagoides pteronyssinus is an important risk factor for asthma and rhinitis. Allergen specific immunotherapy that is based on recombinant proteins has been proposed for the safer and more efficient treatment of allergic diseases. The aim of this study was to design and obtain a hybrid protein (DPx4) containing antigenic regions of allergens Der p 1, Der p 2, Der p 7, and Der p 10 from this mite. DPx4 was produced in Escherichia coli and its folding was determined by circular dichroism. Non-denaturing dot-blot, ELISA, basophil activation test, dot blot with monoclonal antibodies, ELISA inhibition, and cysteine protease activity assays were performed. Mice that were immunized with DPx4 were also analyzed. We found that DPx4 had no cysteine protease activity and it showed significantly lower IgE reactivity than Der p 1, Der p 2, and D. pteronyssinus extract. DPx4 induced lower basophil activation than Der p 2 and the allergen extract. Immunized mice produced IgG antibodies that inhibited the binding of allergic patient’s IgE to the allergen extract and induced comparatively higher levels of IL-10 than the extract in peripheral blood mononuclear cells (PBMC) culture. These results suggest that DPx4 has immunological properties that are useful for the development of a mite allergy vaccine.
Collapse
Affiliation(s)
- Dalgys Martínez
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Marlon Munera
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Jose Fernando Cantillo
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Judith Wortmann
- Division of Structural Biology, Institute of Molecular Biosciences, BioTechMed, University of Graz, 8036 Graz, Austria.
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Walter Keller
- Division of Structural Biology, Institute of Molecular Biosciences, BioTechMed, University of Graz, 8036 Graz, Austria.
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena 130000, Colombia.
| |
Collapse
|
14
|
Li B, Zou Z, Meng F, Raz E, Huang Y, Tao A, Ai Y. Dust mite-derived Der f 3 activates a pro-inflammatory program in airway epithelial cells via PAR-1 and PAR-2. Mol Immunol 2019; 109:1-11. [PMID: 30836204 DOI: 10.1016/j.molimm.2019.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 11/17/2022]
Abstract
Protease activity of allergens has been suggested to be involved in the pathogenesis of allergic diseases. The major allergen Der f 3 from Dermatophagoides farinae harbors serine protease activity, but its immunopathogenesis remains unclear. This study aims to explore the effect of Der f 3 on the airway epithelial barrier and on the molecular pathways by which Der f 3 induces inflammation. RNA-seq was performed to identify differentially expressed genes in bronchial airway epithelial cells (AEC) between native Der f 3 and heat-inactivated (H) Der f 3, coupled with real-time PCR (RT-PCR) and ELISA for validation. Unlike other protease allergens such as that induce Th2-promoting alarmins (IL-25, IL-33, TSLP) in AECs, Der f 3 induced pro-inflammatory cytokines and chemokines including IL-6, IL-8 and GM-CSF, which are known to promote Th17 response. These pro-inflammatory mediators were induced by Der f 3 via the MAPK and NF-κB pathways as well as the store-operated calcium signaling. Gene silencing with small interfering RNA in A549 and BEAS-2B cells indicated that activation of AECs by Der f 3 was mainly dependent on protease-activated receptor 2 (PAR-2), while PAR-1 was also required for the full activation of AECs. Double knock-down of PAR-1 and PAR-2 largely impaired Der f 3-inducecd IL-8 production and subsequent signaling pathways. Our data suggest that Der f 3 induces pro-inflammatory mediators in human epithelial cell lines via the PARs-MAPK-NF-κB axis. Our results provide a molecular mechanism by which Der f 3 may trigger the Th17-skewed allergic response toward house dust mites.
Collapse
Affiliation(s)
- Bizhou Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China; Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, China
| | - Zehong Zou
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunity, & Immune-mediated Disease, Guangzhou Medical University, China
| | - Fanmei Meng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China; Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, China
| | - Eyal Raz
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunity, & Immune-mediated Disease, Guangzhou Medical University, China; Department of Medicine, University of California at San Diego, United States
| | - Yuye Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China; Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunity, & Immune-mediated Disease, Guangzhou Medical University, China.
| | - Yuncan Ai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China; Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, China.
| |
Collapse
|
15
|
Chruszcz M, Kapingidza AB, Dolamore C, Kowal K. A robust method for the estimation and visualization of IgE cross-reactivity likelihood between allergens belonging to the same protein family. PLoS One 2018; 13:e0208276. [PMID: 30496313 PMCID: PMC6264518 DOI: 10.1371/journal.pone.0208276] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Among the vast number of identified protein families, allergens emanate from relatively few families which translates to only a small fraction of identified protein families. In allergy diagnostics and immunotherapy, interactions between immunoglobulin E and allergens are crucial because the formation of an allergen-antibody complex is necessary for triggering an allergic reaction. In allergic diseases, there is a phenomenon known as cross-reactivity. Cross-reactivity describes a situation where an individual has produced antibodies against a particular allergenic protein, but said antibodies fail to discriminate between the original sensitizer and other similar proteins that usually belong to the same family. To expound the concept of cross-reactivity, this study examines ten protein families that include allergens selected specifically for the analysis of cross-reactivity. The selected allergen families had at least 13 representative proteins, overall folds that differ significantly between families, and include relevant allergens with various potencies. The selected allergens were analyzed using information on sequence similarities and identities between members of the families as well as reports on clinically relevant cross-reactivities. Based on our analysis, we propose to introduce a new A-RISC index (Allergens’–Relative Identity, Similarity and Cross-reactivity) which describes homology between two allergens belonging to the same protein family and is used to predict the likelihood of cross-reactivity between them. Information on sequence similarities and identities, as well as on the values of the proposed A-RISC index is used to introduce four categories describing a risk of a cross-reactive reaction, namely: high, medium-high, medium-low and low. The proposed approach can facilitate analysis in component-resolved allergy diagnostics, generation of avoidance guidelines for allergic individuals, and help with the design of immunotherapy.
Collapse
Affiliation(s)
- Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| | - A. Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Coleman Dolamore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
Mikami Y, Takada Y, Hagihara Y, Kanai T. Innate lymphoid cells in organ fibrosis. Cytokine Growth Factor Rev 2018; 42:27-36. [PMID: 30104153 DOI: 10.1016/j.cytogfr.2018.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILCs) are a recently identified family of lymphoid effector cells. ILCs are mainly clustered into 3 groups based on their unique cytokine profiles and transcription factors typically attributed to the subsets of T helper cells. ILCs have a critical role in the mucosal immune response through promptly responding to pathogens and producing large amount of effector cytokines of type 1, 2, or 3 responses. In addition to the role of early immune responses against infections, ILCs, particularly group 2 ILCs (ILC2), have recently gained attention for modulating remodeling and fibrosis especially in the mucosal tissues. Herein, we overview the current knowledge in this area, highlighting roles of ILCs on fibrosis in the mucosal tissues, especially focusing on the gut and lung. We also discuss some new directions for future research by extrapolating from knowledge derived from studies on Th cells.
Collapse
Affiliation(s)
- Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan.
| | - Yoshiaki Takada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Yuya Hagihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, 160-8582, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| |
Collapse
|
17
|
Nishioka I, Takai T, Maruyama N, Kamijo S, Suchiva P, Suzuki M, Kunimine S, Ochi H, Shimura S, Sudo K, Ogawa H, Okumura K, Ikeda S. Airway inflammation after epicutaneous sensitization of mice requires protease activity of low-dose allergen inhalation. J Allergy Clin Immunol 2018; 141:2271-2273.e7. [DOI: 10.1016/j.jaci.2017.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
|
18
|
Doras C, Petak F, Bayat S, Baudat A, Von Garnier C, Eigenmann P, Habre W. Lung responses in murine models of experimental asthma: Value of house dust mite over ovalbumin sensitization. Respir Physiol Neurobiol 2017; 247:43-51. [PMID: 28890402 DOI: 10.1016/j.resp.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 11/25/2022]
Abstract
Ovalbumin (OVA) sensitization has limitations in modelling asthma. Thus, we examined the value of allergic sensitization using a purified natural allergen, house dust mite (HDM), over the sensitization performed with OVA. Mice were sham-treated, or sensitized with OVA- or HDM with identical chronology. Airway resistance, tissue damping and elastance were assessed under control conditions and after challenging the animals with methacholine (MCh) and the specific allergen. Inflammatory profile of the bronchoalveolar lavage fluid was characterized and lung histology was performed. While no difference in the lung responsiveness to the specific allergen was noted, hyperresponsiveness to MCh was observed only in the HDM-sensitized animals in the lung peripheral parameters. Lung inflammation differed between the models, but excessive bronchial smooth muscle remodelling occurred only with OVA. In conclusion, we demonstrate that a purified natural allergen offers a more relevant murine model of human allergic asthma by expressing the key features of this chronic inflammatory disease both in the lung function and structure.
Collapse
Affiliation(s)
- Camille Doras
- Anaesthesiological Investigations Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Ferenc Petak
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Sam Bayat
- Anaesthesiological Investigations Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Aurélie Baudat
- Anaesthesiological Investigations Unit, University Hospitals of Geneva, Geneva, Switzerland
| | | | - Philippe Eigenmann
- Department of Paediatrics, University Hospitals of Geneva, Geneva, Switzerland
| | - Walid Habre
- Anaesthesiological Investigations Unit, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
19
|
Allergens with Protease Activity from House Dust Mites. Int J Mol Sci 2017; 18:ijms18071368. [PMID: 28653989 PMCID: PMC5535861 DOI: 10.3390/ijms18071368] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 11/29/2022] Open
Abstract
Globally, house dust mites (HDM) are one of the main sources of allergens causing Type I allergy, which has a high risk of progressing into a severe disabling disease manifestation such as allergic asthma. The strong protease activities of a number of these allergens are thought to be involved in several steps of the pathophysiology of this allergic disease. It has been a common notion that protease activity may be one of the properties that confers allergenicity to proteins. In this review we summarize and discuss the roles of the different HDM proteases in the development of Type I allergy.
Collapse
|
20
|
Jacquet A, Campisi V, Szpakowska M, Dumez ME, Galleni M, Chevigné A. Profiling the Extended Cleavage Specificity of the House Dust Mite Protease Allergens Der p 1, Der p 3 and Der p 6 for the Prediction of New Cell Surface Protein Substrates. Int J Mol Sci 2017; 18:ijms18071373. [PMID: 28654001 PMCID: PMC5535866 DOI: 10.3390/ijms18071373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
House dust mite (HDM) protease allergens, through cleavages of critical surface proteins, drastically influence the initiation of the Th2 type immune responses. However, few human protein substrates for HDM proteases have been identified so far, mainly by applying time-consuming target-specific individual studies. Therefore, the identification of substrate repertoires for HDM proteases would represent an unprecedented key step toward a better understanding of the mechanism of HDM allergic response. In this study, phage display screenings using totally or partially randomized nonameric peptide substrate libraries were performed to characterize the extended substrate specificities (P5–P4′) of the HDM proteases Der p 1, Der p 3 and Der p 6. The bioinformatics interface PoPS (Prediction of Protease Specificity) was then applied to define the proteolytic specificity profile of each protease and to predict new protein substrates within the human cell surface proteome, with a special focus on immune receptors. Specificity profiling showed that the nature of residues in P1 but also downstream the cleavage sites (P′ positions) are important for effective cleavages by all three HDM proteases. Strikingly, Der p 1 and Der p 3 display partially overlapping specificities. Analysis with PoPS interface predicted 50 new targets for the HDM proteases, including 21 cell surface receptors whose extracellular domains are potentially cleaved by Der p 1, Der p 3 and/or Der p 6. Twelve protein substrate candidates were confirmed by phage ELISA (enzyme linked immunosorbent assay). This extensive study of the natural protein substrate specificities of the HDM protease allergens unveils new cell surface target receptors for a better understanding on the role of these proteases in the HDM allergic response and paves the way for the design of specific protease inhibitors for future anti-allergic treatments.
Collapse
Affiliation(s)
- Alain Jacquet
- Faculty of Medicine, Division of Research Affairs, Chulalongkorn University, 10330 Bangkok, Thailand.
| | - Vincenzo Campisi
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
- Laboratoire des Macromolécules Biologiques, Centre for Protein Engineering (CIP), University of Liège, 4000 Liège, Belgium.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Marie-Eve Dumez
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
- Laboratoire des Macromolécules Biologiques, Centre for Protein Engineering (CIP), University of Liège, 4000 Liège, Belgium.
| | - Moreno Galleni
- Laboratoire des Macromolécules Biologiques, Centre for Protein Engineering (CIP), University of Liège, 4000 Liège, Belgium.
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
21
|
Chevigné A, Campizi V, Szpakowska M, Bourry D, Dumez ME, Martins JC, Matagne A, Galleni M, Jacquet A. The Lys-Asp-Tyr Triad within the Mite Allergen Der p 1 Propeptide Is a Critical Structural Element for the pH-Dependent Initiation of the Protease Maturation. Int J Mol Sci 2017; 18:ijms18051087. [PMID: 28531096 PMCID: PMC5454996 DOI: 10.3390/ijms18051087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
The major house dust mite allergen, Der p 1, is a papain-like cysteine protease expressed as an inactive precursor, proDer p 1, carrying an N-terminal propeptide with a unique structure. The maturation of the zymogen into an enzymatically-active form of Der p 1 is a multistep autocatalytic process initiated under acidic conditions through conformational changes of the propeptide, leading to the loss of its inhibitory ability and its subsequent gradual cleavage. The aims of this study were to characterize the residues present in the Der p 1 propeptide involved in the initiation of the zymogen maturation process, but also to assess the impact of acidic pH on the propeptide structure, the activity of Der p 1 and the fate of the propeptide. Using various complementary enzymatic and structural approaches, we demonstrated that a structural triad K17p-D51p-Y19p within the N-terminal domain of the propeptide is essential for its stabilization and the sensing of pH changes. Particularly, the protonation of D51p under acidic conditions unfolds the propeptide through disruption of the K17p-D51p salt bridge, reduces its inhibition capacity and unmasks the buried residues K17p and Y19p constituting the first maturation cleavage site of the zymogen. Our results also evidenced that this triad acts in a cooperative manner with other propeptide pH-responsive elements, including residues E56p and E80p, to promote the propeptide unfolding and/or to facilitate its proteolysis. Furthermore, we showed that acidic conditions modify Der p 1 proteolytic specificity and confirmed that the formation of the first intermediate represents the limiting step of the in vitro Der p 1 maturation process. Altogether, our results provide new insights into the early events of the mechanism of proDer p 1 maturation and identify a unique structural triad acting as a stabilizing and a pH-sensing regulatory element.
Collapse
Affiliation(s)
- Andy Chevigné
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - Vincenzo Campizi
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - David Bourry
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium.
| | - Marie-Eve Dumez
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg.
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic Chemistry, Ghent University, B-9000 Ghent, Belgium.
| | - André Matagne
- Laboratoire d'Enzymologie, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
| | - Moreno Galleni
- Macromolécules Biologiques, Centre for Protein Engineering, University of Liège, B-4000 Liège, Belgium.
| | - Alain Jacquet
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
22
|
Shimura S, Takai T, Iida H, Maruyama N, Ochi H, Kamijo S, Nishioka I, Hara M, Matsuda A, Saito H, Nakae S, Ogawa H, Okumura K, Ikeda S. Epicutaneous Allergic Sensitization by Cooperation between Allergen Protease Activity and Mechanical Skin Barrier Damage in Mice. J Invest Dermatol 2016; 136:1408-1417. [DOI: 10.1016/j.jid.2016.02.810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 02/01/2023]
|
23
|
Kamijo S, Suzuki M, Hara M, Shimura S, Ochi H, Maruyama N, Matsuda A, Saito H, Nakae S, Suto H, Ichikawa S, Ikeda S, Ogawa H, Okumura K, Takai T. Subcutaneous Allergic Sensitization to Protease Allergen Is Dependent on Mast Cells but Not IL-33: Distinct Mechanisms between Subcutaneous and Intranasal Routes. THE JOURNAL OF IMMUNOLOGY 2016; 196:3559-69. [PMID: 27001956 DOI: 10.4049/jimmunol.1500717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
Abstract
Protease activity of papain, a plant-derived occupational allergen homologous to mite major allergens, is essential to IgE/IgG1 production and lung eosinophilia induced by intranasal papain administration in mice, and IL-33 contributes to these responses. In this work, we investigate skin and Ab responses induced by s.c. papain administration into ear lobes and responses induced by subsequent airway challenge with papain. Subcutaneous papain injection induced swelling associated with increased epidermal thickness, dermal inflammation, serum IgE/IgG1 responses, and Th2 cytokine production in draining lymph node cells restimulated in vitro. These responses were markedly less upon s.c. administration of protease inhibitor-treated papain. Results obtained by using mast cell-deficient mice and reconstitution of tissue mast cells suggested the contribution of mast cells to papain-specific IgE/IgG1 responses and eosinophil infiltration. The responses were equivalent between wild-type and IL-33(-/-) mice. After the subsequent airway challenge, the s.c. presensitized wild-type mice showed more severe lung eosinophilia than those without the presensitization. The presensitized IL-33(-/-) mice showed modest lung eosinophilia, which was absent without the presensitization, but its severity and IgE boost by the airway challenge were markedly less than the presensitized wild-type mice, in which protease activity of inhaled papain contributed to the responses. The results suggest that mechanisms for the protease-dependent sensitization differ between skin and airway and that cooperation of mast cell-dependent, IL-33-independent initial sensitization via skin and protease-induced, IL-33-mediated mechanism in re-exposure via airway to protease allergens maximizes the magnitude of the transition from skin inflammation to asthma in natural history of progression of allergic diseases.
Collapse
Affiliation(s)
- Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Mayu Suzuki
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Materials and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Sakiko Shimura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hirono Ochi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Natsuko Maruyama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Akira Matsuda
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hirohisa Saito
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; and Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hajime Suto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Saori Ichikawa
- Department of Materials and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo 112-8681, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| |
Collapse
|
24
|
Suzuki M, Hara M, Ichikawa S, Kamijo S, Nakazawa T, Hatanaka H, Akiyama K, Ogawa H, Okumura K, Takai T. Presensitization to Ascaris antigens promotes induction of mite-specific IgE upon mite antigen inhalation in mice. Allergol Int 2016; 65:44-51. [PMID: 26666495 DOI: 10.1016/j.alit.2015.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 07/02/2015] [Accepted: 07/12/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Patients with house dust mite (HDM) allergy or Ascariasis produce serum IgE specific to the antigens of HDM or nematode Ascaris, respectively. Although human IgE cross-reactivity has been reported between HDM and Ascaris antigens, it remains unclear whether it contributes to the pathogenesis of allergic diseases. We herein investigated the induction of cross-reactive antibodies and T cells in mice and effects of airway exposure to HDM antigens after preimmunization with Ascaris antigens. METHODS Mice were intraperitoneally immunized with HDM or Ascaris antigens with Alum, followed by the intranasal administration of HDM antigens. Serum antigen-specific IgE and IgG were measured by ELISA. Cytokine release in splenocytes from Ascaris-immunized mice upon in vitro restimulation with HDM antigens were measured by ELISA. RESULTS Immunization with Ascaris or HDM antigens induced cross-reactive IgG1. Splenocytes from Ascaris-immunized mice released IL-5 and IL-13 in response to the restimulation with HDM antigens. Subsequent airway exposure to HDM antigens promoted the induction of HDM-specific IgE and upregulation of HDM-specific IgG1 in Ascaris-immunized mice, whereas these responses were not detected or smaller without the Ascaris presensitization. CONCLUSIONS We demonstrated that the immunization of naïve mice with Ascaris antigens induced production of antibodies and differentiation of Th2 cells, which were cross-reactive to HDM antigens, and accelerated induction of serum HDM-specific IgE upon subsequent airway exposure to HDM antigens in mice. These results suggest that sensitization to HDM towards IgE-mediated allergic diseases is faster in individuals with a previous history of Ascaris infection than in those without presensitization to Ascaris.
Collapse
Affiliation(s)
- Mayu Suzuki
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Materials and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Ichikawa
- Department of Materials and Biological Sciences, Faculty of Science, Japan Women's University, Tokyo, Japan
| | - Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Nakazawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan; Department of Rheumatology, Allergy, and Clinical Immunology, National Hospital Organization Chiba-East National Hospital, Chiba, Japan
| | - Hideki Hatanaka
- National Bioscience Database Center, Japan Science and Technology Agency, Tokyo, Japan
| | - Kazuo Akiyama
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
25
|
Thomas WR. Hierarchy and molecular properties of house dust mite allergens. Allergol Int 2015; 64:304-11. [PMID: 26433526 DOI: 10.1016/j.alit.2015.05.004] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 01/01/2023] Open
Abstract
The allergenic load of house dust mite allergy is largely constituted by a few proteins with a hierarchical pattern of allergenicity. The serodominant specificities are the group 1&2 and the group 23 faecal allergens. The collective IgE binding to the group 1&2 allergens can measure unequivocal HDM sensitisation better than HDM extracts although discrepancies have been found in regions with complex acarofauna suggesting a need to investigate the specificity with allergen components. The group 4, 5, 7&21 allergens that each induce responses in about 40% of subjects are mid-tier allergens accounting for most of the remaining IgE binding. Their titres are proportional to the concomitant responses to Der p1&2. Group 2 allergen variants have different antibody binding. Body proteins only occasionally induce sensitisation although a higher prevalence of binding by atopic dermatitis patients provides a new avenue of research. A broad spectrum of IgE binding has been associated with diverse symptoms but not with the severity of asthma which is associated with low IgG antibody. Some allergens such as the group 14 large lipid binding proteins and the recently described proteins Der f 24-33, need further investigation but with the cognoscence that other denominated allergens have been found to be minor sensitisers by comparative quantitative analyses. Scabies is a confounder for diagnosis with extracts, inducing cross-reactive antibodies with Der p 4&20 as is seafood allergy with cross reactivity to Der p 10 a minor HDM allergen. The HDM genome sequence can now be used to verify allelic and paralogous variations.
Collapse
|
26
|
Bouley J, Groeme R, Le Mignon M, Jain K, Chabre H, Bordas-Le Floch V, Couret MN, Bussières L, Lautrette A, Naveau M, Baron-Bodo V, Lombardi V, Mascarell L, Batard T, Nony E, Moingeon P. Identification of the cysteine protease Amb a 11 as a novel major allergen from short ragweed. J Allergy Clin Immunol 2015; 136:1055-64. [PMID: 25865353 DOI: 10.1016/j.jaci.2015.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allergy to pollen from short ragweed (Ambrosia artemisiifolia) is a serious and expanding health problem in the United States and in Europe. OBJECTIVE We sought to investigate the presence of undescribed allergens in ragweed pollen. METHODS Ragweed pollen proteins were submitted to high-resolution gel electrophoresis and tested for IgE reactivity by using sera from 92 American or European donors with ragweed allergy. Pollen transcriptome sequencing, mass spectrometry (MS), and recombinant DNA technologies were applied to characterize new IgE-binding proteins. RESULTS High-resolution IgE immunoblotting experiments revealed that 50 (54%) of 92 patients with ragweed allergy were sensitized to a 37-kDa allergen distinct from Amb a 1. The full-length cDNA sequence for this molecule was obtained by means of PCR cloning after MS sequencing of the protein combined with ragweed pollen RNA sequencing. The purified allergen, termed Amb a 11, was fully characterized by MS and confirmed to react with IgEs from 66% of patients. This molecule is a 262-amino-acid thiol protease of the papain family expressed as a combination of isoforms and glycoforms after proteolytic removal of N- and C-terminal propeptides from a proform. Three-dimensional modeling revealed a high structural homology with known cysteine proteases, including the mite Der p 1 allergen. The protease activity of Amb a 11, as well as its capacity to activate basophils from patients with ragweed allergy, were confirmed. The production of a nonglycosylated recombinant form of Amb a 11 in Escherichia coli established that glycosylation is not required for IgE binding. CONCLUSION We identified the cysteine protease Amb a 11 as a new major allergen from ragweed pollen. Given the similar physicochemical properties shared by the 2 major allergens, we hypothesize that part of the allergenic activity previously ascribed to Amb a 1 is rather borne by Amb a 11.
Collapse
Affiliation(s)
- Julien Bouley
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Rachel Groeme
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Maxime Le Mignon
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Karine Jain
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Henri Chabre
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | | | | | | | | | - Marie Naveau
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | | | - Vincent Lombardi
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | | | - Thierry Batard
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Emmanuel Nony
- Research & Pharmaceutical Development, Stallergenes, Antony, France
| | - Philippe Moingeon
- Research & Pharmaceutical Development, Stallergenes, Antony, France.
| |
Collapse
|
27
|
Thalassophryne nattereri fish venom: from the envenoming to the understanding of the immune system. J Venom Anim Toxins Incl Trop Dis 2014; 20:35. [PMID: 25140174 PMCID: PMC4137268 DOI: 10.1186/1678-9199-20-35] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022] Open
Abstract
Thalassophryne nattereri (niquim) is a venomous fish found off North and Northeast coast of Brazil, where it is known by the severity of the accidents involving humans. This review article is divided into four topics. The first one provides a brief description of the animal biology and its distribution off Brazilian coastal waters, the venom apparatus, signs and symptoms observed in envenomated humans and also describes envenomation in mice. The second topic describes the use of modern genetic approach and mass spectrometry for identification of highly expressed genes in its venom glands and the sequence of major toxins. The third chapter offers a detailed study of tissue injury induced by the venom and reveals the role of toxins that impair inflammation reduction. Finally, the fourth section expands the understanding of many extrinsic and intrinsic essential factors in maintaining survival of memory B cell compartment. Our results demonstrate the wide possibilities for research in the area of toxinology, also the necessity of interconnection among biochemistry, pharmacology and immunology areas for the expansion of knowledge and for generation of innovation.
Collapse
|
28
|
Davidson CE, Asaduzzaman M, Arizmendi NG, Polley D, Wu Y, Gordon JR, Hollenberg MD, Cameron L, Vliagoftis H. Proteinase-activated receptor-2 activation participates in allergic sensitization to house dust mite allergens in a murine model. Clin Exp Allergy 2014; 43:1274-85. [PMID: 24152160 DOI: 10.1111/cea.12185] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/03/2013] [Accepted: 08/09/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Many aeroallergens contain proteinase activity and are able to induce allergic sensitization when presented to mucosal surfaces. Some of these allergens activate proteinase-activated receptor-2 (PAR2 ). OBJECTIVE To determine the role of PAR2 activation in a murine house dust mite (HDM) allergy model. METHODS We sensitized and challenged PAR2 -deficient mice with HDM, and examined allergic outcomes compared to wild-type animals. To focus on the role of PAR2 in allergic sensitization, we administered a PAR2 blocking antibody to wild-type animals during the sensitization phase and examined the outcomes immediately after sensitization or following subsequent allergen challenge. RESULTS We found PAR2 -deficient mice sensitized and challenged with HDM failed to develop airway inflammation, did not produce HDM-specific IgG1 and had less IL-4 mRNA in the lungs than wild-type animals. Prevention of PAR2 activation during sensitization in wild-type mice diminished the levels of Th2 mediators, including IL-4, IL-5 and IL-13, in the lungs. Blocking PAR2 during the sensitization phase also led to decreased manifestations of allergic disease, including airway hyperresponsiveness (AHR) and airway inflammation following subsequent allergen challenge. HDM-induced proliferation of splenocytes obtained from animals sensitized in the presence of PAR2 antibody was reduced relative to those that did not receive antibody. The effect of PAR2 blockade could be transferred to naïve mice through splenic CD4(+) T cells from sensitized mice. CONCLUSIONS AND CLINICAL RELEVANCE PAR2 activation plays a key role during the sensitization phase of our HDM allergy model, leading to increased lung cytokine production and augmented lung reactivity. PAR2 activation is a common mechanism for sensitization to a wide variety of allergens and is therefore a potential pharmacological target to prevent allergy.
Collapse
Affiliation(s)
- C E Davidson
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Iida H, Takai T, Hirasawa Y, Kamijo S, Shimura S, Ochi H, Nishioka I, Maruyama N, Ogawa H, Okumura K, Ikeda S. Epicutaneous administration of papain induces IgE and IgG responses in a cysteine protease activity-dependent manner. Allergol Int 2014; 63:219-26. [PMID: 24662805 DOI: 10.2332/allergolint.13-oa-0621] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/17/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Epicutaneous sensitization to allergens is important in the pathogenesis of not only skin inflammation such as atopic dermatitis but also "atopic march" in allergic diseases such as asthma and food allergies. We here examined antibody production and skin barrier dysfunction in mice epicutaneously administered papain, a plant-derived occupational allergen belonging to the same family of cysteine proteases as mite major group 1 allergens. METHODS Papain and Staphylococcus aureus V8 protease were patched on the backs of hairless mice. Transepidermal water loss was measured to evaluate the skin barrier dysfunction caused by the proteases. Papain or that treated with an irreversible inhibitor specific to cysteine proteases, E64, was painted onto the ear lobes of mice of an inbred strain C57BL/6. Serum total IgE levels and papain-specific IgE and IgG antibodies were measured by ELISA. RESULTS Papain and V8 protease patched on the backs of hairless mice caused skin barrier dysfunction and increased serum total IgE levels, and papain induced the production of papain-specific IgG1, IgG2a, and IgG2b. Papain painted onto the ear lobes of C57BL/6 mice induced papain-specific IgE, IgG1, IgG2c, and IgG2b, whereas papain treated with E64 did not. IgG1 was the most significantly induced papain-specific IgG subclass among those measured. CONCLUSIONS We demonstrated that the epicutaneous administration of protease not only disrupted skin barrier function, but also induced IgE and IgG responses in a manner dependent on its protease activity. These results suggest that protease activity contained in environmental sources contributes to sensitization through an epicutaneous route.
Collapse
Affiliation(s)
- Hideo Iida
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiro Takai
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yusuke Hirasawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sakiko Shimura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirono Ochi
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Izumi Nishioka
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Natsuko Maruyama
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Gender Equality Promotion Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Abstract
Allergic rhinitis, particularly seasonal allergic rhinitis, is considered a classic Th2-mediated disease, with important contributions to pathology by interleukins 4, 5 and 13. As such, allergic rhinitis is an excellent model for studying allergic inflammation, with findings potentially relevant to the mechanism of lower airways inflammation seen in allergic asthma. However, recent evidence has revealed roles for additional non-Th2 cytokines in asthma, including IL-17 family cytokines and epithelial-derived cytokines. Additionally, putative roles for epithelial-derived cytokines and innate lymphoid cells have been described in chronic rhinosinusitis with nasal polyps. Here, evidence for the involvement of different cytokines and cytokine groups in allergic rhinitis is considered.
Collapse
Affiliation(s)
- Guy Scadding
- Allergy and Clinical Immunology, Imperial College, London, South Kensington Campus, London, SW7 2AZ, UK,
| |
Collapse
|
31
|
El Ridi R, Tallima H, Dalton JP, Donnelly S. Induction of protective immune responses against schistosomiasis using functionally active cysteine peptidases. Front Genet 2014; 5:119. [PMID: 24847355 PMCID: PMC4021144 DOI: 10.3389/fgene.2014.00119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Each year schistosomiasis afflicts up to 600 million people in 74 tropical and sub-tropical countries, predominantly in the developing world. Yet we depend on a single drug, praziquantel, for its treatment and control. There is no vaccine available but one is urgently needed especially since praziquantel-resistant parasites are likely to emerge at some time in the future. The disease is caused by several worm species of the genus Schistosoma. These express several classes of papain-like cysteine peptidases, cathepsins B and L, in various tissues but particularly in their gastrodermis where they employ them as digestive enzymes. We have shown that sub-cutaneous injection of recombinant and functionally active Schistosoma mansoni cathepsin B1 (SmCB1), or a cathepsin L from a related parasite Fasciola hepatica (FhCL1), elicits highly significant protection (up to 73%) against an experimental challenge worm infection in murine models of schistosomiasis. The immune modulating properties of this subcutaneous injection can boost protection levels (up to 83%) when combined with other S. mansoni vaccine candidates, glyceraldehyde 3-phosphate dehydrogenase (SG3PDH) and peroxiredoxin (PRX-MAP). Here, we discuss these data in the context of the parasite's biology and development, and provide putative mechanism by which the native-like cysteine peptidase induce protective immune responses.
Collapse
Affiliation(s)
- Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University Cairo, Egypt
| | - Hatem Tallima
- Zoology Department, Faculty of Science, Cairo University Cairo, Egypt
| | - John P Dalton
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast Belfast, Northern Ireland
| | - Sheila Donnelly
- The i-three Institute, University of Technology at Sydney Ultimo, Sydney, NSW, Australia
| |
Collapse
|
32
|
Kofler S, Ackaert C, Samonig M, Asam C, Briza P, Horejs-Hoeck J, Cabrele C, Ferreira F, Duschl A, Huber C, Brandstetter H. Stabilization of the dimeric birch pollen allergen Bet v 1 impacts its immunological properties. J Biol Chem 2013; 289:540-51. [PMID: 24253036 PMCID: PMC3879576 DOI: 10.1074/jbc.m113.518795] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many allergens share several biophysical characteristics, including the capability to undergo oligomerization. The dimerization mechanism in Bet v 1 and its allergenic properties are so far poorly understood. Here, we report crystal structures of dimeric Bet v 1, revealing a noncanonical incorporation of cysteine at position 5 instead of genetically encoded tyrosine. Cysteine polysulfide bridging stabilized different dimeric assemblies, depending on the polysulfide linker length. These dimers represent quaternary arrangements that are frequently observed in related proteins, reflecting their prevalence in unmodified Bet v 1. These conclusions were corroborated by characteristic immunologic properties of monomeric and dimeric allergen variants. Hereby, residue 5 could be identified as an allergenic hot spot in Bet v 1. The presented results refine fundamental principles in protein chemistry and emphasize the importance of protein modifications in understanding the molecular basis of allergenicity.
Collapse
Affiliation(s)
- Stefan Kofler
- From the Structural Biology Group, Department of Molecular Biology
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 2013; 39:733-43. [PMID: 24076051 DOI: 10.1016/j.immuni.2013.08.029] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/29/2013] [Indexed: 12/24/2022]
Abstract
Unlike other types of T helper (Th) responses, whether the development of Th2 cells requires instruction from particular subset of dendritic cells (DCs) remains unclear. By using an in vivo depletion approach, we have shown that DCs expressing CD301b were required for the generation of Th2 cells after subcutaneous immunization with ovalbumin (OVA) along with papain or alum. CD301b⁺ DCs are distinct from epidermal or CD207⁺ dermal DCs (DDCs) and were responsible for transporting antigen injected subcutaneously with Th2-type adjuvants. Transient depletion of CD301b⁺ DCs resulted in less effective accumulation and decreased expression of CD69 by polyclonal CD4⁺ T cells in the lymph node. Moreover, despite intact cell division and interferon-γ production, CD301b⁺ DC depletion led to blunted interleukin-4 production by OVA-specific OT-II transgenic CD4⁺ T cells and significantly impaired Th2 cell development upon infection with Nippostrongylus brasiliensis. These results reveal CD301b⁺ DDCs as the key mediators of Th2 immunity.
Collapse
Affiliation(s)
- Yosuke Kumamoto
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
34
|
Dumez ME, Herman J, Campisi V, Bouaziz A, Rosu F, Luxen A, Vandenberghe I, de Pauw E, Frère JM, Matagne A, Chevigné A, Galleni M. The proline-rich motif of the proDer p 3 allergen propeptide is crucial for protease-protease interaction. PLoS One 2013; 8:e68014. [PMID: 24073192 PMCID: PMC3779199 DOI: 10.1371/journal.pone.0068014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
The majority of proteases are synthesized in an inactive form, termed zymogen, which consists of a propeptide and a protease domain. The propeptide is commonly involved in the correct folding and specific inhibition of the enzyme. The propeptide of the house dust mite allergen Der p 3, NPILPASPNAT, contains a proline-rich motif (PRM), which is unusual for a trypsin-like protease. By truncating the propeptide or replacing one or all of the prolines in the non-glycosylated zymogen with alanine(s), we demonstrated that the full-length propeptide is not required for correct folding and thermal stability and that the PRM is important for the resistance of proDer p 3 to undesired proteolysis when the protein is expressed in Pichia pastoris. Additionally, we followed the maturation time course of proDer p 3 by coupling a quenched-flow assay to mass spectrometry analysis. This approach allowed to monitor the evolution of the different species and to determine the steady-state kinetic parameters for activation of the zymogen by the major allergen Der p 1. This experiment demonstrated that prolines 5 and 8 are crucial for proDer p 3-Der p 1 interaction and for activation of the zymogen.
Collapse
Affiliation(s)
- Marie-Eve Dumez
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - Julie Herman
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - Vincenzo Campisi
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
- Laboratoire de Rétrovirologie, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Ahlem Bouaziz
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - Frédéric Rosu
- Laboratoire de spectrométrie de masse (L.S.M.), GIGA-R, Université de Liège, Liège, Belgium
| | - André Luxen
- Centre de Recherches du cyclotron, Université de Liège, Liège, Belgium
| | - Isabel Vandenberghe
- Laboratory for Protein Biochemistry and Protein Engineering, K.L. Ledeganckstraat 35B, Gent, Belgium
| | - Edwin de Pauw
- Laboratoire de spectrométrie de masse (L.S.M.), GIGA-R, Université de Liège, Liège, Belgium
| | - Jean-Marie Frère
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
- Laboratoire d'enzymologie et repliement des protéines, Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - André Matagne
- Laboratoire d'enzymologie et repliement des protéines, Centre for Protein Engineering, Université de Liège, Liège, Belgium
| | - Andy Chevigné
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
- Laboratoire de Rétrovirologie, Centre de Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Moreno Galleni
- Macromolécules Biologiques, Centre for Protein Engineering, Université de Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
35
|
Abstract
Activation of receptors of the innate immune system is a critical step in the initiation of immune responses. It has been shown that dominant allergens have properties that could allow them to interact with toll-like and C-type lectin receptors to favour Th2-biased responses and many bind lipids and glycans that could associate with ligands to mimic pathogen-associated microbial patterns. In accord with the proposed allergen-specific innate interactions it has been shown that the immune responses to different allergens and antigens from the same source are not necessarily coordinately regulated.
Collapse
Affiliation(s)
- W R Thomas
- Centre for Child Health Research, University of Western Australia, Telethon Institute for Child Health Research, Subiaco, Western Australia, Australia.
| |
Collapse
|
36
|
Komegae EN, Grund LZ, Lopes-Ferreira M, Lima C. The longevity of Th2 humoral response induced by proteases natterins requires the participation of long-lasting innate-like B cells and plasma cells in spleen. PLoS One 2013; 8:e67135. [PMID: 23840604 PMCID: PMC3696013 DOI: 10.1371/journal.pone.0067135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/16/2013] [Indexed: 11/22/2022] Open
Abstract
The generation of long-lived antibody-secreting cells (ASC) and memory B cells are critical events for an effective vaccine and the choice of adjuvant can influence these processes. Various cellular and molecular mechanism involved in the protease action that determine Th2 responses have been identified. However, direct or indirect actions in the regulation of the induction, survival and longevity of ASC in differential compartments remain largely unknown. We investigated whether the proteolytic activity of proteins are determinant for the modulation of the memory immune response in mice, promoting the differentiation of memory B cells to terminally differentiated end stage cells. Here, we show that the proteolytic activity of Natterins, from the venom of Thalassophryne nattereri Brazilian fish, besides inducing a Th2 response with plasmatic titers of high-affinity antigen-specific IgE over extended periods is sufficient for the generation of signals that contribute to the formation of a survival niche in the spleen, essential for the longevity of the main subtype of ASC with B220neg phenotype.
Collapse
Affiliation(s)
- Evilin Naname Komegae
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lidiane Zito Grund
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Monica Lopes-Ferreira
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit, Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
37
|
Kamijo S, Takeda H, Tokura T, Suzuki M, Inui K, Hara M, Matsuda H, Matsuda A, Oboki K, Ohno T, Saito H, Nakae S, Sudo K, Suto H, Ichikawa S, Ogawa H, Okumura K, Takai T. IL-33-mediated innate response and adaptive immune cells contribute to maximum responses of protease allergen-induced allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4489-99. [PMID: 23547117 DOI: 10.4049/jimmunol.1201212] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
How the innate and adaptive immune systems cooperate in the natural history of allergic diseases has been largely unknown. Plant-derived allergen, papain, and mite allergens, Der f 1 and Der p 1, belong to the same family of cysteine proteases. We examined the role of protease allergens in the induction of Ab production and airway inflammation after repeated intranasal administration without adjuvants and that in basophil/mast cell stimulation in vitro. Papain induced papain-specific IgE/IgG1 and lung eosinophilia. Der f 1 induced Der f 1-specific IgG1 and eosinophilia. Although papain-, Der f 1-, and Der p 1-stimulated basophils expressed allergy-inducing cytokines, including IL-4 in vitro, basophil-depleting Ab and mast cell deficiency did not suppress the papain-induced in vivo responses. Protease inhibitor-treated allergens and a catalytic site mutant did not induce the responses. These results indicate that protease activity is essential to Ab production and eosinophilia in vivo and basophil activation in vitro. IL-33-deficient mice lacked eosinophilia and had reduced papain-specific IgE/IgG1. Coadministration of OVA with papain induced OVA-specific IgE/IgG1, which was reduced in IL-33-deficient mice. We demonstrated IL-33 release, subsequent IL-33-dependent IL-5/IL-13 release, and activation of T1/ST2-expressing lineage(-)CD25(+)CD44(+) innate lymphoid cells in the lung after papain inhalation, suggesting the contribution of the IL-33-type 2 innate lymphoid cell-IL-5/IL-13 axis to the papain-induced airway eosinophilia. Rag2-deficient mice, which lack adaptive immune cells, showed significant, but less severe, eosinophilia. Collectively, these results suggest cooperation of adaptive immune cells and IL-33-responsive innate cells in protease-dependent allergic airway inflammation.
Collapse
Affiliation(s)
- Seiji Kamijo
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Morales M, Iraola V, Leonor JR, Carnés J. Enzymatic activity of allergenic house dust and storage mite extracts. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:147-154. [PMID: 23427664 DOI: 10.1603/me12154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Proteases are involved in the pathogenicity of allergy, increasing epithelial permeability and acting as adjuvants. Enzymatic activity is therefore important for the allergenicity of an extract and also affects its stability and safety. However, the enzymatic activity of extracts is not usually evaluated. The objective of this study was to evaluate the enzymatic activity of the most allergenic mite extracts and to investigate their allergenic properties. Extracts from nine allergenic mite species (Dermatophagoides pteronyssinus, Dermatophagoides farinae Hughes, Euroglyphus maynei, Lepidoglyphus destructor, Tyrophagus putrescentiae (Schrank), Glycyphagus domesticus (DeGeer), Acarus siro L., Chortoglyphus arcuatus, and Blomia tropicalis) were characterized. Protein and allergen profiles were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western-blot, respectively. Gelatinolytic activity was evaluated with a zymogram and the activity of other enzymes (cysteine, serine proteases, and esterases) was evaluated individually or with the API-ZYM system. The main differences in protease activity were found between house dust mites and storage mites. House dust mites presented higher cysteine protease activity while storage mites presented higher serine protease activity. These differences are in line with their trophic specialization. A wide range of different activities was found in all the extracts analyzed, reflecting the fact that the extracts preserve the activity of many enzymes, this being necessary for a correct diagnosis. However, enzymes may act as adjuvants and, therefore, could lead to undesirable effects in immunotherapies, making this activity not suitable for treatment products. Modified extracts with lower enzymatic activity could be more appropriate for immunotherapy.
Collapse
Affiliation(s)
- Maria Morales
- Research & Development, Laboratorios LETI, S.L., Calle del Sol no 5, 28760 Tres Cantos, Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Kumari D, Arora N, Kasera R, Sridhara S, Kumar R, Singh BP. Isolation and characterization of a 28kDa major allergen from blackgram (Phaseolus mungo). Immunobiology 2012; 217:895-904. [DOI: 10.1016/j.imbio.2011.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 12/30/2011] [Accepted: 12/30/2011] [Indexed: 11/26/2022]
|
40
|
Role of Allergen Source-Derived Proteases in Sensitization via Airway Epithelial Cells. J Allergy (Cairo) 2012; 2012:903659. [PMID: 22523502 PMCID: PMC3303585 DOI: 10.1155/2012/903659] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/14/2011] [Accepted: 10/04/2011] [Indexed: 12/12/2022] Open
Abstract
Protease activity is a characteristic common to many allergens. Allergen source-derived proteases interact with lung epithelial cells, which are now thought to play vital roles in both innate and adaptive immune responses. Allergen source-derived proteases act on airway epithelial cells to induce disruption of the tight junctions between epithelial cells, activation of protease-activated receptor-2, and the production of thymic stromal lymphopoietin. These facilitate allergen delivery across epithelial layers and enhance allergenicity or directly activate the immune system through a nonallergic mechanism. Furthermore, they cleave regulatory cell surface molecules involved in allergic reactions. Thus, allergen source-derived proteases are a potentially critical factor in the development of allergic sensitization and appear to be strongly associated with heightened allergenicity.
Collapse
|
41
|
Koziel J, Potempa J. Protease-armed bacteria in the skin. Cell Tissue Res 2012; 351:325-37. [PMID: 22358849 PMCID: PMC3560952 DOI: 10.1007/s00441-012-1355-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
The skin constitutes a formidable barrier against commensal and pathogenic bacteria, which permanently and transiently colonise the skin, respectively. Commensal and pathogenic species inhabiting skin both express proteases. Whereas proteases secreted by commensals contribute to homeostatic bacterial coexistence on skin, proteases from pathogenic bacteria are used as virulence factors, helping them colonise skin with breached integrity of the epithelial layer. From these initial sites of colonisation, pathogens can disseminate into deeper layers of skin, possibly leading to the spread of infection. Secreted bacterial proteases probably play an important role in this process and in the deterrence of innate defence mechanisms. For example, Staphylococcus aureus proteases are essential for changing the bacterial phenotype from adhesive to invasive by degrading adhesins on the bacterial cell surface. Secreted staphylococcal proteases mediate pathogen penetration by degrading collagen and elastin, essential components of connective tissue in the dermis. The activation of the contact system and kinin generation by Streptococcus pyogenes and S. aureus proteases contributes to an inflammatory reaction manifested by oedema, redness and pain. Kinin-enhanced vascular leakage might help bacteria escape into the circulation thereby causing possible systemic dissemination of the infection. The inflammatory reaction can also be fueled by the activation of protease-activated receptors on keratinocytes. Concomitantly, bacterial proteases are involved in degrading antimicrobial peptides, disarming the complement system and neutrophils and preventing the infiltration of the infected sites with immune cells by inactivation of chemoattractants. Together, this provides protection for colonising and/or invading pathogens from attack by antibacterial forces of the skin.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| | | |
Collapse
|
42
|
Kezic S, O'Regan GM, Lutter R, Jakasa I, Koster ES, Saunders S, Caspers P, Kemperman PMJH, Puppels GJ, Sandilands A, Chen H, Campbell LE, Kroboth K, Watson R, Fallon PG, McLean WHI, Irvine AD. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol 2012; 129:1031-9.e1. [PMID: 22322004 PMCID: PMC3627959 DOI: 10.1016/j.jaci.2011.12.989] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 12/20/2011] [Accepted: 12/27/2011] [Indexed: 02/07/2023]
Abstract
Background Filaggrin (FLG) mutations result in reduced stratum corneum (SC) natural moisturizing factor (NMF) components and consequent increased SC pH. Because higher pH activates SC protease activity, we hypothesized an enhanced release of proinflammatory IL-1 cytokines from corneocytes in patients with atopic dermatitis (AD) with FLG mutations (ADFLG) compared with that seen in patients with AD without these mutations (ADNON-FLG). Objectives We sought to investigate SC IL-1 cytokine profiles in the uninvolved skin of controls and patients with ADFLG versus patients with ADNON-FLG. We also sought to examine the same profiles in a murine model of filaggrin deficiency (Flgft/Flgft [FlgdelAPfal] mice). Methods One hundred thirty-seven patients were studied. NMF levels were ascertained using confocal Raman spectroscopy; transepidermal water loss and skin surface pH were measured. IL-1α, IL-1β, IL-18, IL-1 receptor antagonist (IL-1RA), and IL-8 levels were determined in SC tape strips from 93 patients. All subjects were screened for 9 FLG mutations. Flgft/Flgft (FlgdelAPfal) mice, separated from maFlgft/maFlgft (flaky tail) mice, were used for the preparation and culture of primary murine keratinocytes and as a source of murine skin. RT-PCR was performed using primers specific for murine IL-1α, IL-1β, and IL-1RA. Results SC IL-1 levels were increased in patients with ADFLG; these levels were inversely correlated with NMF levels. NMF values were also inversely correlated with skin surface pH. Skin and keratinocytes from Flgft/Flgft mice had upregulated expression of IL-1β and IL-1RA mRNA. Conclusions ADFLG is associated with an increased SC IL-1 cytokine profile; this profile is also seen in a murine homologue of filaggrin deficiency. These findings might have importance in understanding the influence of FLG mutations on the inflammasome in the pathogenesis of AD and help individualize therapeutic approaches.
Collapse
Affiliation(s)
- Sanja Kezic
- Coronel Institute of Occupational Health, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Suzuki K, Kaminuma O, Yang L, Takai T, Mori A, Umezu-Goto M, Ohtomo T, Ohmachi Y, Noda Y, Hirose S, Okumura K, Ogawa H, Takada K, Hirasawa M, Hiroi T, Takaiwa F. Prevention of allergic asthma by vaccination with transgenic rice seed expressing mite allergen: induction of allergen-specific oral tolerance without bystander suppression. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:982-990. [PMID: 21447056 DOI: 10.1111/j.1467-7652.2011.00613.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study tested the feasibility of oral immunotherapy for bronchial asthma using a newly developed subunit vaccine in which a fragment (p45-145) of mite allergen (Der p 1) containing immunodominant human and mouse T cell epitopes was encapsulated in endoplasmic reticulum-derived protein bodies of transgenic (Tg) rice seed. Allergen-specific serum immunoglobulin responses, T cell proliferation, Th1/Th2 cytokine production, airway inflammatory cell infiltration, bronchial hyper-responsiveness (BHR) and lung histology were investigated in allergen-immunized and -challenged mice. Prophylactic oral vaccination with the Tg rice seeds clearly reduced the serum levels of allergen-specific IgE and IgG. Allergen-induced CD4(+) T cell proliferation and production of Th2 cytokines in vitro, infiltration of eosinophils, neutrophils and mononuclear cells into the airways and BHR were also inhibited by oral vaccination. The effects of the vaccine were antigen-specific immune response because the levels of specific IgE and IgG in mice immunized with Der f 2 or ovalbumin were not significantly suppressed by oral vaccination with the Der p 1 expressing Tg rice. Thus, the vaccine does not induce nonspecific bystander suppression, which has been a problem with many oral tolerance regimens. These results suggest that our novel vaccine strategy is a promising approach for allergen-specific oral immunotherapy against allergic diseases including bronchial asthma.
Collapse
MESH Headings
- Animals
- Antibody Formation
- Antigens, Dermatophagoides/genetics
- Antigens, Dermatophagoides/immunology
- Antigens, Dermatophagoides/metabolism
- Arthropod Proteins/genetics
- Arthropod Proteins/immunology
- Arthropod Proteins/metabolism
- Asthma/immunology
- Asthma/prevention & control
- Asthma/therapy
- Bystander Effect
- Cell Proliferation
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/immunology
- Cysteine Endopeptidases/metabolism
- Desensitization, Immunologic
- Epitopes, T-Lymphocyte/immunology
- Female
- Humans
- Immunity, Cellular
- Immunoglobulin E/immunology
- Lung/immunology
- Lung/pathology
- Mice
- Mice, Inbred BALB C
- Oryza/genetics
- Oryza/immunology
- Oryza/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Plasmids/genetics
- Plasmids/metabolism
- Pyroglyphidae/immunology
- Seeds/genetics
- Seeds/immunology
- Seeds/metabolism
- Vaccination
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Kazuya Suzuki
- Transgenic Crop Research and Development Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Proteomic analysis of human skin treated with larval schistosome peptidases reveals distinct invasion strategies among species of blood flukes. PLoS Negl Trop Dis 2011; 5:e1337. [PMID: 21980548 PMCID: PMC3181243 DOI: 10.1371/journal.pntd.0001337] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/11/2011] [Indexed: 11/26/2022] Open
Abstract
Background Skin invasion is the initial step in infection of the human host by schistosome blood flukes. Schistosome larvae have the remarkable ability to overcome the physical and biochemical barriers present in skin in the absence of any mechanical trauma. While a serine peptidase with activity against insoluble elastin appears to be essential for this process in one species of schistosomes, Schistosoma mansoni, it is unknown whether other schistosome species use the same peptidase to facilitate entry into their hosts. Methods Recent genome sequencing projects, together with a number of biochemical studies, identified alternative peptidases that Schistosoma japonicum or Trichobilharzia regenti could use to facilitate migration through skin. In this study, we used comparative proteomic analysis of human skin treated with purified cercarial elastase, the known invasive peptidase of S. mansoni, or S. mansoni cathespin B2, a close homolog of the putative invasive peptidase of S. japonicum, to identify substrates of either peptidase. Select skin proteins were then confirmed as substrates by in vitro digestion assays. Conclusions This study demonstrates that an S. mansoni ortholog of the candidate invasive peptidase of S. japonicum and T. regenti, cathepsin B2, is capable of efficiently cleaving many of the same host skin substrates as the invasive serine peptidase of S. mansoni, cercarial elastase. At the same time, identification of unique substrates and the broader species specificity of cathepsin B2 suggest that the cercarial elastase gene family amplified as an adaptation of schistosomes to human hosts. Schistosome parasites are a major cause of disease in the developing world, but the mechanism by which these parasites first infect their host has been studied at the molecular level only for S. mansoni. In this paper, we have mined recent genome annotations of S. mansoni and S. japonicum, a zoonotic schistosome species, to identify differential expansion of peptidase gene families that may be involved in parasite invasion and subsequent migration through skin. Having identified a serine peptidase gene family in S. mansoni and a cysteine peptidase gene family in S. japonicum, we then used a comparative proteomic approach to identify potential substrates of representative members of both classes of enzymes from S. mansoni in human skin. The results of this study suggest that while these species evolved to use different classes of peptidases in host invasion, both are capable of cleaving components of the epidermis and dermal extracellular matrix, as well as proteins involved in the host immune response against the migrating parasite.
Collapse
|
45
|
Dai X, Sayama K, Tohyama M, Shirakata Y, Hanakawa Y, Tokumaru S, Yang L, Hirakawa S, Hashimoto K. Mite allergen is a danger signal for the skin via activation of inflammasome in keratinocytes. J Allergy Clin Immunol 2011; 127:806-14.e1-4. [DOI: 10.1016/j.jaci.2010.12.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 11/22/2010] [Accepted: 12/02/2010] [Indexed: 01/06/2023]
|
46
|
Takai T, Ikeda S. Barrier dysfunction caused by environmental proteases in the pathogenesis of allergic diseases. Allergol Int 2011; 60:25-35. [PMID: 21173566 DOI: 10.2332/allergolint.10-rai-0273] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Indexed: 12/13/2022] Open
Abstract
Skin barrier dysfunction has emerged as a critical driving force in the initiation and exacerbation of atopic dermatitis and the "atopic march" in allergic diseases. The genetically determined barrier deficiency and barrier disruption by environmental and endogenous proteases in skin and epithelium are considered to increase the risk of sensitization to allergens and contribute to the exacerbation of allergic diseases. Sources of allergens such as mites, cockroaches, fungi, and pollen, produce or contain proteases, which are frequently themselves allergens. Staphylococcus aureus, which heavily colonizes the lesions of atopic dermatitis patients and is known to trigger a worsening of the disease, also produces extracellular proteases. Environmental proteases can cause barrier breakdown in the skin, not only in the epithelium, and stimulate various types of cells through IgE-independent mechanisms. Endogenous protease inhibitors control the functions of environmental and endogenous proteases. In this review, we focus on the barrier dysfunction caused by environmental proteases and roles of endogenous protease inhibitors in the pathogenesis of allergic diseases. Additionally, we examine the subsequent innate response to Th2-skewed adaptive immune reactions.
Collapse
Affiliation(s)
- Toshiro Takai
- Atopy Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan. t−
| | | |
Collapse
|
47
|
Arizmendi NG, Abel M, Mihara K, Davidson C, Polley D, Nadeem A, El Mays T, Gilmore BF, Walker B, Gordon JR, Hollenberg MD, Vliagoftis H. Mucosal allergic sensitization to cockroach allergens is dependent on proteinase activity and proteinase-activated receptor-2 activation. THE JOURNAL OF IMMUNOLOGY 2011; 186:3164-72. [PMID: 21270400 DOI: 10.4049/jimmunol.0903812] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization.
Collapse
Affiliation(s)
- Narcy G Arizmendi
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jacquet A. Interactions of airway epithelium with protease allergens in the allergic response. Clin Exp Allergy 2010; 41:305-11. [PMID: 21121984 DOI: 10.1111/j.1365-2222.2010.03661.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among the apparently innocuous environmental proteins routinely inhaled by human subjects, only a small proportion of these antigens triggers allergy in susceptible individuals. Although the molecular basis of the allergenicity of these airborne proteins remains to be fully characterized, numerous studies suggest that the ability of such proteins to promote allergic responses is at least due to their proteolytic activity. This review will summarize insights into the interactions of protease allergens with the respiratory epithelium. In addition to their capacity to facilitate their antigen presentation through epithelial barrier degradation, protease allergens can directly activate airway mucosal surfaces to recruit inflammatory cells and to initiate the airway remodelling process. A greater understanding of the effects of protease allergens in the airways inflammation as well as on the relevant targets could define novel therapeutic strategies for the treatment allergic asthma.
Collapse
Affiliation(s)
- A Jacquet
- Department of Medicine, Division of Allergy and Clinical Immunology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
| |
Collapse
|
49
|
Georas SN, Rezaee F, Lerner L, Beck L. Dangerous allergens: why some allergens are bad actors. Curr Allergy Asthma Rep 2010; 10:92-8. [PMID: 20425500 DOI: 10.1007/s11882-010-0090-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immune responses can be compartmentalized into innate versus adaptive components. This relatively recent dichotomy positioned the innate immune system at the interface between the host and the external environment and provided a new conceptual framework with which to view allergic diseases, including asthma. Airway epithelial cells and dendritic cells are key components of the innate immune system in the nose and lung and are now known to be intimately involved in allergen recognition and in modulating allergic immune responses. Here we review current thinking about how these two key cell types sense and respond to inhaled allergens, and emphasize how an understanding of "allergic innate immunity" can translate into new thinking about mechanisms of allergen sensitization and potentially lead to new therapeutic targets.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642-8692, USA.
| | | | | | | |
Collapse
|
50
|
Georas SN, Beck L. Dangerous allergens: innate immunity, dendritic cells and allergic asthma. Expert Rev Clin Immunol 2010; 4:777-85. [PMID: 20477127 DOI: 10.1586/1744666x.4.6.777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immune responses can be compartmentalized into innate versus adaptive components. This relatively recent dichotomy positioned the innate immune system at the interface between the host and the external environment, and provided a new conceptual framework with which to view allergic diseases, including asthma. Among the cells of the innate immune system, antigen-presenting dendritic cells are now thought to be intimately involved in allergen recognition, as well as modulating allergic immune responses. This review summarizes current thinking regarding the role of dendritic cells in allergic asthma and concludes with a summary of emerging concepts in the field.
Collapse
Affiliation(s)
- Steve N Georas
- University of Rochester Medical Center, 601 Elmwood Avenue, Box 692, Rochester, NY 14642-8692, USA.
| | | |
Collapse
|