1
|
Enfield KS, Colliver E, Lee C, Magness A, Moore DA, Sivakumar M, Grigoriadis K, Pich O, Karasaki T, Hobson PS, Levi D, Veeriah S, Puttick C, Nye EL, Green M, Dijkstra KK, Shimato M, Akarca AU, Marafioti T, Salgado R, Hackshaw A, Jamal-Hanjani M, van Maldegem F, McGranahan N, Glass B, Pulaski H, Walk E, Reading JL, Quezada SA, Hiley CT, Downward J, Sahai E, Swanton C, Angelova M. Spatial Architecture of Myeloid and T Cells Orchestrates Immune Evasion and Clinical Outcome in Lung Cancer. Cancer Discov 2024; 14:1018-1047. [PMID: 38581685 PMCID: PMC11145179 DOI: 10.1158/2159-8290.cd-23-1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
Understanding the role of the tumor microenvironment (TME) in lung cancer is critical to improving patient outcomes. We identified four histology-independent archetype TMEs in treatment-naïve early-stage lung cancer using imaging mass cytometry in the TRACERx study (n = 81 patients/198 samples/2.3 million cells). In immune-hot adenocarcinomas, spatial niches of T cells and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterized by sparse lymphocytes and high tumor-associated neutrophil (TAN) infiltration, had tumor cells spatially separated from vasculature and exhibited low spatial intratumor heterogeneity. TAN-high LUSC had frequent PIK3CA mutations. TAN-high tumors harbored recently expanded and metastasis-seeding subclones and had a shorter disease-free survival independent of stage. These findings delineate genomic, immune, and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis. SIGNIFICANCE This study provides novel insights into the spatial organization of the lung cancer TME in the context of tumor immunogenicity, tumor heterogeneity, and cancer evolution. Pairing the tumor evolutionary history with the spatially resolved TME suggests mechanistic hypotheses for tumor progression and metastasis with implications for patient outcome and treatment. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Katey S.S. Enfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Emma Colliver
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Claudia Lee
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Alastair Magness
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David A. Moore
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Kristiana Grigoriadis
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Takahiro Karasaki
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Philip S. Hobson
- Flow Cytometry, The Francis Crick Institute, London, United Kingdom
| | - Dina Levi
- Flow Cytometry, The Francis Crick Institute, London, United Kingdom
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Emma L. Nye
- Experimental Histopathology, The Francis Crick Institute, London, United Kingdom
| | - Mary Green
- Experimental Histopathology, The Francis Crick Institute, London, United Kingdom
| | - Krijn K. Dijkstra
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Masako Shimato
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ayse U. Akarca
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Roberto Salgado
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Allan Hackshaw
- Cancer Research UK and University College London Cancer Trials Centre, London, United Kingdom
| | | | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Febe van Maldegem
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | | | | | | | - James L. Reading
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Pre-cancer Immunology Laboratory, University College London Cancer Institute, London, United Kingdom
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Sergio A. Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Immune Regulation and Tumour Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Crispin T. Hiley
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
2
|
Yuliani FS, Chen JY, Cheng WH, Wen HC, Chen BC, Lin CH. Thrombin induces IL-8/CXCL8 expression by DCLK1-dependent RhoA and YAP activation in human lung epithelial cells. J Biomed Sci 2022; 29:95. [PMID: 36369000 PMCID: PMC9650896 DOI: 10.1186/s12929-022-00877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Doublecortin-like kinase 1 (DCLK1) has been recognized as a marker of cancer stem cell in several malignancies. Thrombin is crucial in asthma severity as it can promote IL-8/CXCL8 production in lung epithelial cells, which is a potent chemoattractant for neutrophils. However, the pathologic role of DCLK1 in asthma and its involvement in thrombin-stimulated IL-8/CXCL8 expression remain unknown. Methods IL-8/CXCL8, thrombin, and DCLK1 expression were observed in the lung tissues of severe asthma patients and ovalbumin (OVA)-induced asthmatic mice model. A549 and BEAS-2B cells were either pretreated with inhibitors or small interfering RNAs (siRNAs) before being treated with thrombin. IL-8/CXCL8 expression and the molecules involved in signaling pathway were performed using ELISA, luciferase activity assay, Western blot, or ChIP assay. Results IL-8/CXCL8, thrombin, and DCLK1 were overexpressed in the lung tissues of severe asthma patients and ovalbumin (OVA)-induced asthmatic mice model. Our in vitro study found that DCLK siRNA or LRKK2-IN-1 (DCLK1 inhibitor) attenuated IL-8/CXCL8 release after thrombin induction in A549 and BEAS-2B cells. Thrombin activated DCLK1, RhoA, and YAP in a time-dependent manner, in which DCLK1 siRNA inhibited RhoA and YAP activation. YAP was dephosphorylated on the Ser127 site after thrombin stimulation, resulting in YAP translocation to the nucleus from the cytosol. DCLK1, RhoA and YAP activation following thrombin stimulation were inhibited by U0126 (ERK inhibitor). Moreover, DCLK1 and YAP siRNA inhibited κB-luciferase activity. Thrombin stimulated the recruitment of YAP and p65 to the NF-κB site of the IL-8/CXCL8 promoter and was inhibited by DCLK1 siRNA. Conclusions Thrombin activates the DCLK1/RhoA signaling pathway, which promotes YAP activation and translocation to the nucleus from the cytosol, resulting in YAP/p65 formation, and binding to the NF-κB site, which enhances IL-8/CXCL8 expression. DCLK1 might be essential in thrombin-stimulated IL-8/CXCL8 expression in asthmatic lungs and indicates a potential therapeutic strategy for severe asthma treatment.
Collapse
|
3
|
Bourget C, Adams KV, Morshead CM. Reduced microglia activation following metformin administration or microglia ablation is sufficient to prevent functional deficits in a mouse model of neonatal stroke. J Neuroinflammation 2022; 19:146. [PMID: 35705953 PMCID: PMC9199194 DOI: 10.1186/s12974-022-02487-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Neonatal stroke is a devastating insult that can lead to life-long impairments. In response to hypoxic-ischaemic injury, there is loss of neurons and glia as well as a neuroinflammatory response mediated by resident immune cells, including microglia and astrocytes, which can exacerbate damage. Administration of the antidiabetic drug metformin has been shown to improve functional outcomes in preclinical models of brain injury and the cellular basis for metformin-mediated recovery is unknown. Given metformin's demonstrated anti-inflammatory properties, we investigated its role in regulating the microglia activation and used a microglia ablation strategy to investigate the microglia-mediated outcomes in a mouse model of neonatal stroke. METHODS Hypoxia-ischaemia (H-I) was performed on post-natal day 8. Metformin was administered for one week, starting one day after injury. Immunohistochemistry was used to examine the spatiotemporal response of microglia and astrocytes after hypoxia-ischaemia, with or without metformin treatment. To evaluate the effects of microglia depletion after hypoxia-ischaemia, we delivered Plexxikon 5622 for 1 or 2 weeks post-injury. The regional pattern of microglia and astrocyte depletion was assessed through immunohistochemistry. Motor behaviour was assessed with the righting reflex, hindlimb suspension, grip strength and cylinder tests. RESULTS Herein, we revealed a spatiotemporally regulated response of microglia and astrocytes after hypoxia-ischaemia. Metformin treatment after hypoxia-ischaemia had no effect on microglia number and proliferation, but significantly reduced microglia activation in all regions examined, concomitant with improved behavioural outcomes in injured mice. Plexxikon 5622 treatment successfully ablated microglia, resulting in a > 90% depletion in microglia in the neonatal brain. Microglia rapidly repopulated upon treatment cessation of Plexxikon. Most interesting, microglia ablation was sufficient to reduce functional deficits after hypoxia-ischaemia, mimicking the effects of 1 week of metformin treatment post-injury. CONCLUSION These results highlight the importance of regulating the neuroinflammatory response after neonatal stroke to promote recovery.
Collapse
Affiliation(s)
- Clara Bourget
- Institute of Medical Sciences, University of Toronto, Toronto, M5S1A8, Canada
| | - Kelsey V Adams
- Institute of Medical Sciences, University of Toronto, Toronto, M5S1A8, Canada
| | - Cindi M Morshead
- Institute of Medical Sciences, University of Toronto, Toronto, M5S1A8, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Room 1006, Toronto, ON, M5S3E1, Canada.
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, M5S1A8, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S3E1, Canada.
| |
Collapse
|
4
|
Li S, Nguyen TT, Ung TT, Sah DK, Park SY, Lakshmanan VK, Jung YD. Piperine Attenuates Lithocholic Acid-Stimulated Interleukin-8 by Suppressing Src/EGFR and Reactive Oxygen Species in Human Colorectal Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11030530. [PMID: 35326180 PMCID: PMC8944659 DOI: 10.3390/antiox11030530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Piperine, a natural alkaloidal pungent product present in pepper plants, possesses the properties of anti-inflammatory and anti-metastasis. Lithocholic acid is a monohydroxy-5beta-cholanic acid with an alpha-hydroxy substituent at position 3; it is a secondary bile acid that plays a pivotal role in fat absorption, and has been discovered to mediate colorectal cancer (CRC) cell invasion and migration. However, the effect of piperine on angiogenesis has been poorly investigated. In the current study, we examined the role of piperine on LCA-stimulated angiogenesis by measuring interleukin-8 (IL-8) expression; moreover, we revealed the potential molecular mechanisms in CRC cells. Here, we showed that piperine inhibited LCA-stimulated endothelial EA.hy926 cell angiogenesis in a conditioned medium obtained from colorectal HCT-116 cells. Experiments with an IL-8 neutralizer showed that IL-8 present in the conditioned medium was the major angiogenic factor. Piperine inhibited LCA-stimulated ERK1/2 and AKT via the Src/EGFR-driven ROS signaling pathway in the colorectal cell line (HCT-116). Through mutagenesis and inhibitory studies, we revealed that ERK1/2 acted as an upstream signaling molecule in AP-1 activation, and AKT acted as an upstream signaling molecule in NF-κB activation, which in turn attenuated IL-8 expression. Taken together, we demonstrated that piperine blocked LCA-stimulated IL-8 expression by suppressing Src and EGFR in human CRC HCT-116 cells, thus remarkably attenuating endothelial EA.hy926 cell tube formation.
Collapse
Affiliation(s)
- Shinan Li
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (S.L.); (T.T.N.); (T.T.U.); (D.K.S.); (S.Y.P.)
| | - Thi Thinh Nguyen
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (S.L.); (T.T.N.); (T.T.U.); (D.K.S.); (S.Y.P.)
- Nanogen Pharmaceutical Biotechnology Joint Stock Company, Ho Chi Minh City 70000, Vietnam
| | - Trong Thuan Ung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (S.L.); (T.T.N.); (T.T.U.); (D.K.S.); (S.Y.P.)
- Nanogen Pharmaceutical Biotechnology Joint Stock Company, Ho Chi Minh City 70000, Vietnam
| | - Dhiraj Kumar Sah
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (S.L.); (T.T.N.); (T.T.U.); (D.K.S.); (S.Y.P.)
| | - Seon Young Park
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (S.L.); (T.T.N.); (T.T.U.); (D.K.S.); (S.Y.P.)
| | - Vinoth-Kumar Lakshmanan
- Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600 116, India
- Correspondence: (V.-K.L.); (Y.D.J.); Tel.: +91-44-4592-8500 (V.-K.L.); +82-61-379-2772 (Y.D.J.); Fax: +91-44-2476-7008 (V.-K.L.); +82-81-379-2781 (Y.D.J.)
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (S.L.); (T.T.N.); (T.T.U.); (D.K.S.); (S.Y.P.)
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Hwasun 58128, Korea
- Correspondence: (V.-K.L.); (Y.D.J.); Tel.: +91-44-4592-8500 (V.-K.L.); +82-61-379-2772 (Y.D.J.); Fax: +91-44-2476-7008 (V.-K.L.); +82-81-379-2781 (Y.D.J.)
| |
Collapse
|
5
|
Liu K, Yu W, Tang Y, Chen C. Glycyrrhizin Attenuates c-Src-Mediated Lipopolysaccharide-Induced Inflammatory Response and Apoptosis in Bronchial Epithelial Cells by Upregulating miR-146b-5p. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Bronchial asthma is a common chronic inflammatory disease of the respiratory tract, whose pathogenesis involves a variety of factors. The purpose of this study was to explore the effect of traditional Chinese medicine Glycyrrhizin (Gly) on lipopolysaccharide (LPS)-induced
inflammation and apoptosis of bronchial epithelial cells and its action mechanism. Methods: Gly (20 µM) was used to treat bronchial epithelial BEAS-2B cells stimulated with LPS. The expression of SRC and miR-146b-5p in BEAS-2B cells was modified by the respective transfections
with pcDNA-SRC, miR-146b-5p mimic and miR-146b-5p inhibitor. STRING and Starbase online databases were used to predict the relationship between Gly, miR-146b-5p and SRC. Luciferase reporter assays were performed to verify the binding of miR-146b-5p to SRC. The viability, inflammatory response
and apoptosis of BEAS-2B cells were examined by CCK-8, ELISA and Tunel assays respectively. The expressions of apoptosis-related proteins (Bcl-2, Bax, caspase3 and Cleaved-caspase3), SRC and miR-146b-5p were detected by qRT-PCR or western blotting. Results: Gly inhibited LPS-induced
inflammation and apoptosis in BEAS-2B cells. The interaction between Gly and SRC was predicted by STRING. SRC expression was high in BEAS-2B cells stimulated with LPS and could be negatively regulated by Gly. Overexpression of SRC effectively alleviated the inhibitory effect of Gly on LPS-induced
damages in BEAS-2B cells. In addition, results of luciferase reporter assays verified SRC as a direct target gene of miR-146b-5p. The expression level of miR-146b-5p was downregulated by LPS stimulation in BEAS-2B cells. Gly decreased the expression of SRC in LPS-stimulated BEAS-2B cells.
These results could all be reversed by miR-146b-5p knockdown. Conclusion: Gly decreases the expression of SRC by upregulating the level of miR-146b-5p, thus alleviating the inflammation and apoptosis of bronchial epithelial cells treated with LPS. Our results provide a new theoretical
basis for applying Gly to the clinical management of asthma.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pediatrics, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210013, China
| | - Wanjing Yu
- Department of Pediatrics, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210013, China
| | - Yaoyao Tang
- Department of Pediatrics, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210013, China
| | - Chao Chen
- Department of Pediatrics, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210013, China
| |
Collapse
|
6
|
Chang JH, Lee YL, Laiman V, Han CL, Jheng YT, Lee KY, Yeh CT, Kuo HP, Chung KF, Heriyanto DS, Hsiao TC, Wu SM, Ho SC, Chuang KJ, Chuang HC. Air pollution-regulated E-cadherin mediates contact inhibition of proliferation via the hippo signaling pathways in emphysema. Chem Biol Interact 2022; 351:109763. [PMID: 34852269 DOI: 10.1016/j.cbi.2021.109763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 01/07/2023]
Abstract
Air pollution has been linked to emphysema in chronic obstruction pulmonary disease (COPD). However, the underlying mechanisms in the development of emphysema due to air pollution remain unclear. The objective of this study was to investigate the role of components of the Hippo signaling pathway for E-cadherin-mediated contact inhibition of proliferation in the lungs after air pollution exposure. E-Cadherin-mediated contact inhibition of proliferation via the Hippo signaling pathway was investigated in Sprague-Dawley (SD) rats whole-body exposed to air pollution, and in alveolar epithelial A549 cells exposed to diesel exhaust particles (DEPs), E-cadherin-knockdown, and high-mobility group box 1 (HMGB1) treatment. Underlying epithelial differentiation, apoptosis, and senescence were also examined, and the interaction network among these proteins was examined. COPD lung sections were used to confirm the observations in rats. Expressions of HMGB1 and E-cadherin were negatively regulated in the lungs and A549 cells by air pollution, and this was confirmed by knockdown of E-cadherin and by treating A549 cells with HMGB1. Depletion of phosphorylated (p)-Yap occurred after exposure to air pollution and E-cadherin-knockdown, which resulted in decreases of SPC and T1α. Exposure to air pollution and E-cadherin-knockdown respectively downregulated p-Sirt1 and increased p53 levels in the lungs and in A549 cells. Moreover, the protein interaction network suggested that E-cadherin is a key activator in regulating Sirt1 and p53, as well as alveolar epithelial cell differentiation by SPC and T1α. Consistently, downregulation of E-cadherin, p-Yap, SPC, and T1α was observed in COPD alveolar regions with particulate matter (PM) deposition. In conclusion, our results indicated that E-cadherin-mediated cell-cell contact directly regulates the Hippo signaling pathway to control differentiation, cell proliferation, and senescence due to air pollution. Exposure to air pollution may initiate emphysema in COPD patients.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Vincent Laiman
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Teng Jheng
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Han-Pin Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Montalbano AM, Chiappara G, Albano GD, Ferraro M, Di Sano C, Vitulo P, Pipitone L, Ricciardolo FLM, Anzalone G, Profita M. Expression/Activation of PAR-1 in Airway Epithelial Cells of COPD Patients: Ex Vivo/In Vitro Study. Int J Mol Sci 2021; 22:ijms221910703. [PMID: 34639044 PMCID: PMC8509732 DOI: 10.3390/ijms221910703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The role of PAR-1 expression and activation was described in epithelial cells from the central and distal airways of COPD patients using an ex vivo/in vitro model. PAR-1 immunoreactivity was studied in epithelial cells from surgical specimens of the central and distal airways of COPD patients and healthy control (HC). Furthermore, PAR-1 expression and activation were measured in both the human bronchial epithelial cell line (16HBE) and normal human bronchial epithelial cells (NHBEs) exposed to cigarette smoke extract (CSE) (10%) or thrombin. Finally, cell proliferation, apoptosis, and IL-8 release were detected in stimulated NHBEs. We identified higher levels of PAR-1 expression/activation in epithelial cells from the central airways of COPD patients than in HC. Active PAR-1 increased in epithelial cells from central and distal airways of COPD, with higher levels in COPD smokers (correlated with pack-years) than in COPD ex-smokers. 16HBE and NHBEs exposed to CSE or thrombin showed increased levels of active PAR-1 (localized in the cytoplasm) than baseline conditions, while NHBEs treated with thrombin or CSE showed increased levels of IL-8 proteins, with an additional effect when used in combination. Smoking habits generate the upregulation of PAR-1 expression/activation in airway epithelial cells, and promoting IL-8 release might affect the recruitment of infiltrating cells in the airways of COPD patients.
Collapse
Affiliation(s)
- Angela Marina Montalbano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90146 Palermo, Italy; (A.M.M.); (G.C.); (G.D.A.); (M.F.); (C.D.S.); (G.A.)
| | - Giuseppina Chiappara
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90146 Palermo, Italy; (A.M.M.); (G.C.); (G.D.A.); (M.F.); (C.D.S.); (G.A.)
| | - Giusy Daniela Albano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90146 Palermo, Italy; (A.M.M.); (G.C.); (G.D.A.); (M.F.); (C.D.S.); (G.A.)
| | - Maria Ferraro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90146 Palermo, Italy; (A.M.M.); (G.C.); (G.D.A.); (M.F.); (C.D.S.); (G.A.)
| | - Caterina Di Sano
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90146 Palermo, Italy; (A.M.M.); (G.C.); (G.D.A.); (M.F.); (C.D.S.); (G.A.)
| | - Patrizio Vitulo
- Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (ISMETT), 90127 Palermo, Italy; (P.V.); (L.P.)
| | - Loredana Pipitone
- Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (ISMETT), 90127 Palermo, Italy; (P.V.); (L.P.)
| | | | - Giulia Anzalone
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90146 Palermo, Italy; (A.M.M.); (G.C.); (G.D.A.); (M.F.); (C.D.S.); (G.A.)
| | - Mirella Profita
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 90146 Palermo, Italy; (A.M.M.); (G.C.); (G.D.A.); (M.F.); (C.D.S.); (G.A.)
- Correspondence:
| |
Collapse
|
8
|
Chen XY, Feng PH, Han CL, Jheng YT, Wu CD, Chou HC, Chen YY, Wu SM, Lee KY, Kuo HP, Chung KF, Hsiao TC, Chen KY, Ho SC, Chang TY, Chuang HC. Alveolar epithelial inter-alpha-trypsin inhibitor heavy chain 4 deficiency associated with senescence-regulated apoptosis by air pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116863. [PMID: 33735794 DOI: 10.1016/j.envpol.2021.116863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/16/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) is a type II acute-phase protein; however, the role of pulmonary ITIH4 after exposure to air pollution remains unclear. In this study, we investigated the role of ITIH4 in the lungs in response to air pollution. ITIH4 expression in bronchoalveolar lavage fluid (BAL) of 47 healthy human subjects and of Sprague-Dawley rats whole-body exposed to air pollution was determined, and the underlying antiapoptotic and matrix-stabilizing pathways in alveolar epithelial A549 cells induced by diesel exhaust particles (DEPs) as well as ITIH4-knockdown were investigated. We found that an interquartile range (IQR) increase in PM2.5 was associated with a decrease of 2.673 ng/mL in ITIH4, an increase of 1.104 pg/mL of 8-isoprostane, and an increase of 6.918 pg/mL of interleukin (IL)-6 in human BAL. In rats, increases in 8-isoprostane, IL-6, and p53 and a decrease in sirtuin-1 (Sirt1) in the lungs and decreases in ITIH4 in the BAL, lungs, and serum were observed after PM2.5 and gaseous exposure. ITIH4 levels in lung lysates were correlated with levels in BAL samples (r = 0.377, p < 0.01), whereas ITIH4 levels in BAL were correlated with IL-6 levels (r = -0.420, p < 0.01). ITIH4 expression was significantly reduced in alveolar epithelial A549 cells by DEP in a dose-dependent manner. A decrease in Sirt1 and increases in phosphorylated extracellular signal-regulated kinase (p-ERK) and caspase-3 were observed after DEP exposure and ITIH4-knockdown. In conclusion, air pollution decreased ITIH4 expression in the lungs, which was associated with alveolar epithelial cell senescence and apoptosis. ITIH4 could be a vital protein in regulating alveolar cell destruction and its inhibition after exposure to air pollution.
Collapse
Affiliation(s)
- Xiao-Yue Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Teng Jheng
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Tainan, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ying Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Han-Pin Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Kimura G, Takahashi R, Nagamoto A, Yoshino K, Ueda K, Nishimoto Y, Kizawa Y. [Inhibitory Effects of Dabigatran on Airway Inflammation Induced by Lipopolysaccharide in Mice]. YAKUGAKU ZASSHI 2020; 140:1477-1483. [PMID: 32921648 DOI: 10.1248/yakushi.20-00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are characterised by chronic inflammation in the lung that is associated with airway obstruction. Inhaled therapy with a combination of corticosteroid and a long-acting β2-agonist is an effective anti-inflammatory medicine for asthma, but in patients with severe asthma and COPD fails to completely control these symptoms with current therapies. The inflammatory process in these diseases, which involves activation of the coagulation and fibrinolytic system in the lung, offers the opportunity for alternative anti-inflammatory therapies. In this study, we investigated the effects of anti-coagulants on lipopolysaccharide (LPS)-induced airway inflammation in mice. A/J mice were exposed to LPS, a bacterial endotoxin, intranasally and accumulation of inflammatory cells, TNF-α, C-X-C motif chemokine (CXCL) 1, and osteopontin in bronchoalveolar lavage fluid (BALF) was monitored by flow cytometry and an enzyme-linked immunosorbent assay. LPS exposure induced airway neutrophilia and accumulation of TNF-α, CXCL1, and osteopontin in BALF. This LPS-induced airway inflammation was not relieved using a corticosteroid, fluticasone propionate (FP), or a direct inhibitor of Factor Xa, rivaroxaban. In contrast, a direct thrombin inhibitor, dabigatran, inhibited LPS-induced airway neutrophilia and decreased inflammatory cytokine production in a dose dependent manner. Furthermore, combination of dabigatran and FP elicited stronger inhibition of LPS-induced airway inflammation. Therefore, these results suggest that dabigatran could be an effective new therapy for severe respiratory diseases.
Collapse
Affiliation(s)
- Genki Kimura
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Risa Takahashi
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Ayaka Nagamoto
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Kotomi Yoshino
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Keitaro Ueda
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Yuki Nishimoto
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| | - Yasuo Kizawa
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University
| |
Collapse
|
10
|
Chen TY, Sun D, Lin WS, Lin YL, Chao YM, Chen SY, Chen YR, Wu YL. Glucosamine regulation of fibroblast growth factor 21 expression in liver and adipose tissues. Biochem Biophys Res Commun 2020; 529:714-719. [PMID: 32736697 DOI: 10.1016/j.bbrc.2020.06.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
Abstract
Obesity is associated with metabolic disorders. Fibroblast growth factor 21 (FGF21) has been recognized as important in metabolism. Glucosamine (GLN) has been demonstrated to perform diverse beneficial functions. This study aimed to reveal whether and how GLN would modulate FGF21 production in relation to metabolism. With in vivo model of normal diet (ND) and high-fat diet (HFD) mice receiving GLN injection and in vitro model of mouse AML12 liver cells and differentiated 3T3L1 adipocytes challenged with GLN, GLN appeared to improve the glucose metabolism in HFD and ND mice and to elevate FGF21 protein expression in HFD liver and to increase both FGF21 protein and mRNA levels in WAT from HFD and ND mice and it also upregulated FGF21 expression in both AML12 and differentiated 3T3L1 cells. By using inhibitors against various signaling pathways, p38, Akt, NF-κB, and PKA appeared potentially involved in GLN-mediated FGF21 production in AML12 cells; GLN was able to mediate activation of NF-κB, p38 or PKA/CREB signaling. Our accumulated findings suggest that GLN may potentially improve the metabolic performance by inducing FGF21 production in liver and adipose tissues and such induction in liver cells may act in part due to GLN induction of the NF-κB, p38 and PKA pathways.
Collapse
Affiliation(s)
- Ting-Yu Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - David Sun
- Department of Obstetrics and Gynecology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Wei-Shen Lin
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ling Lin
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ming Chao
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shan-Yu Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Ru Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Lin Wu
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
11
|
Lin CH, Shih CH, Jiang CP, Wen HC, Cheng WH, Chen BC. Mammalian target of rapamycin and p70S6K mediate thrombin-induced nuclear factor-κB activation and IL-8/CXCL8 release in human lung epithelial cells. Eur J Pharmacol 2019; 868:172879. [PMID: 31863766 DOI: 10.1016/j.ejphar.2019.172879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
Thrombin plays a crucial role in lung inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). Thrombin induces the release of interleukin-8 (IL-8)/CXCL8 by lung epithelial cells, and this phenomenon plays a vital role in lung inflammation. Our previous studies have indicated that thrombin stimulates IL-8/CXCL8 expression through PI3K/Akt/IκB kinase (IKK)α/β/nuclear factor-κB (NF-κB) and p300 pathways in human lung epithelial cells. In the present study, we explored the roles of mammalian target of rapamycin (mTOR) and p70S6 kinase (p70S6K) in thrombin-induced NF-κB activation and IL-8/CXCL8 release in human lung epithelial cells. In this study, we found that rapamycin (an mTOR inhibitor) and p70S6K siRNA diminished thrombin-induced IL-8/CXCL8 release. Thrombin induced mTOR Ser2448 phosphorylation and p70S6K Thr389 phosphorylation in a time-dependent manner. Moreover, rapamycin attenuated thrombin-stimulated p70S6K phosphorylation. We also found that transfection of cells with the dominant negative mutant of Akt (Akt DN) reduced the thrombin-induced increase in mTOR phosphorylation and p70S6K phosphorylation. Moreover, thrombin-stimulated p300 phosphorylation was attenuated by Akt DN, rapamycin, and p70S6K siRNA. Thrombin triggered p70S6K translocation from the cytosol to the nucleus in a time-dependent manner. Thrombin induced the complex formation of p70S6K, p300, and p65; acetylation of p65 Lys310, and recruitment of p70S6K, p300, and p65 to the κB-binding site of the IL-8/CXCL8 promoter region. In conclusion, these results indicate that thrombin initiates the Akt-dependent mTOR/p70S6K signaling pathway to promote p300 phosphorylation and NF-κB activation and finally induces IL-8/CXCL8 release in human lung epithelial cells.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chung-Hung Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Ping Jiang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Heng-Ching Wen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wun-Hao Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Bing-Chang Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
12
|
Mohamed R, Janke R, Guo W, Cao Y, Zhou Y, Zheng W, Babaahmadi-Rezaei H, Xu S, Kamato D, Little PJ. GPCR transactivation signalling in vascular smooth muscle cells: role of NADPH oxidases and reactive oxygen species. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:R1-R11. [PMID: 32923966 PMCID: PMC7439842 DOI: 10.1530/vb-18-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 02/02/2023]
Abstract
The discovery and extension of G-protein-coupled receptor (GPCR) transactivation-dependent signalling has enormously broadened the GPCR signalling paradigm. GPCRs can transactivate protein tyrosine kinase receptors (PTKRs) and serine/threonine kinase receptors (S/TKRs), notably the epidermal growth factor receptor (EGFR) and transforming growth factor-β type 1 receptor (TGFBR1), respectively. Initial comprehensive mechanistic studies suggest that these two transactivation pathways are distinct. Currently, there is a focus on GPCR inhibitors as drug targets, and they have proven to be efficacious in vascular diseases. With the broadening of GPCR transactivation signalling, it is therefore important from a therapeutic perspective to find a common transactivation pathway of EGFR and TGFBR1 that can be targeted to inhibit complex pathologies activated by the combined action of these receptors. Reactive oxygen species (ROS) are highly reactive molecules and they act as second messengers, thus modulating cellular signal transduction pathways. ROS are involved in different mechanisms of GPCR transactivation of EGFR. However, the role of ROS in GPCR transactivation of TGFBR1 has not yet been studied. In this review, we will discuss the involvement of ROS in GPCR transactivation-dependent signalling.
Collapse
Affiliation(s)
- Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Reearna Janke
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Wanru Guo
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Yingnan Cao
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Hossein Babaahmadi-Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Atherosclerosis Research Center, Ahvaz, Iran
| | - Suowen Xu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Tsai CC, Kuo FT, Lee SB, Chang YT, Fu HW. Endocytosis-dependent lysosomal degradation of Src induced by protease-activated receptor 1. FEBS Lett 2019; 593:504-517. [PMID: 30758841 DOI: 10.1002/1873-3468.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/28/2019] [Accepted: 02/07/2019] [Indexed: 11/08/2022]
Abstract
Src plays a critical role in regulating cellular responses induced by protease-activated receptor 1 (PAR1). Here, we found that PAR1 activation induces lysosomal degradation of Src. Src is associated and trafficked together with activated PAR1 to early endosomes and then sorted to lysosomes for degradation. Blocking agonist-induced endocytosis of PAR1 by inhibition of dynamin activity suppresses PAR1-induced degradation of Src. However, Src activity is neither required for agonist-induced PAR1 internalization nor required for Src degradation upon PAR1 activation. We show that PAR1 activation triggers endocytosis-dependent lysosomal degradation of Src in both human embryonic kidney 293 and human umbilical vein endothelial cells. Our finding provides a new paradigm for how an irreversibly activated receptor regulates its downstream signalling.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Fang-Ting Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Sung-Bau Lee
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,College of Pharmacy, Taipei Medical University, Taiwan, Republic of China
| | - Yu-Ting Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hua-Wen Fu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
14
|
Huang ZW, Lien GS, Lin CH, Jiang CP, Chen BC. p300 and C/EBPβ-regulated IKKβ expression are involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. Pharmacol Res 2017; 121:33-41. [PMID: 28428115 DOI: 10.1016/j.phrs.2017.04.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 12/17/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are common chronic lung inflammatory diseases. Thrombin and interleukin (IL)-8/C-X-C chemokine ligand 8 (CXCL8) play critical roles in lung inflammation. Our previous study showed that c-Src-dependent IκB kinase (IKK)/IκBα/nuclear factor (NF)-κB and mitogen-activated protein kinase kinase kinase 1 (MEKK1)/extracellular signal-regulated kinase (ERK)/ribosomal S6 protein kinase (RSK)-dependent CAAT/enhancer-binding protein β (C/EBPβ) activation are involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. In this study, we aimed to investigate the roles of p300 and C/EBPβ-reliant IKKβ expression in thrombin-induced IL-8/CXCL8 expression. Thrombin-induced increases in IL-8/CXCL8-luciferase activity and IL-8/CXCL8 release were inhibited by p300 small interfering (siRNA). Thrombin-caused histone H3 acetylation was attenuated by p300 siRNA. Stimulation of cells with thrombin for 12h resulted in increases in IKKβ expression and phosphorylation in human lung epithelial cells. However, thrombin did not affect p65 expression. Moreover, 12h of thrombin stimulation produced increases in IKKβ expression and phosphorylation, and IκBα phosphorylation, which were inhibited by C/EBPβ siRNA. Finally, treatment of cells with thrombin caused increases in p300 and C/EBPβ complex formation, p65 and C/EBPβ complex formation, and recruitment of p300, p65, and C/EBPβ to the IL-8/CXCL8 promoter. These results imply that p300-dependent histone H3 acetylation and C/EBPβ-regulated IKKβ expression contribute to thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. Results of this study will help clarify C/EBPβ signaling pathways involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Zheng-Wei Huang
- Graduate Institute of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Gi-Shih Lien
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ping Jiang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Pacheco S, Kanou T, Fung SY, Chen K, Lee D, Bai X, Keshavjee S, Liu M. Formulation of hydrophobic therapeutics with self-assembling peptide and amino acid: A new platform for intravenous drug delivery. J Control Release 2016; 239:211-22. [DOI: 10.1016/j.jconrel.2016.08.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/27/2016] [Indexed: 01/21/2023]
|
16
|
Maza PK, Suzuki E. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment. Front Microbiol 2016; 7:580. [PMID: 27148251 PMCID: PMC4840283 DOI: 10.3389/fmicb.2016.00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/08/2016] [Indexed: 01/30/2023] Open
Abstract
Histoplasma capsulatum var. capsulatum is a dimorphic fungus that causes histoplasmosis, a human systemic mycosis with worldwide distribution. In the present work, we demonstrate that H. capsulatum yeasts are able to induce cytokine secretion by the human lung epithelial cell line A549 in integrin- and Src-family kinase (SFK)-dependent manners. This conclusion is supported by small interfering RNA (siRNA) directed to α3 and α5 integrins, and PP2, an inhibitor of SFK activation. siRNA and PP2 reduced IL-6 and IL-8 secretion in H. capsulatum-infected A549 cell cultures. In addition, α3 and α5 integrins from A549 cells were capable of associating with H. capsulatum yeasts, and this fungus promotes recruitment of these integrins and SFKs to A549 cell membrane rafts. Corroborating this finding, membrane raft disruption with the cholesterol-chelator methyl-β-cyclodextrin reduced the levels of integrins and SFKs in these cell membrane domains. Finally, pretreatment of A549 cells with the cholesterol-binding compound, and also a membrane raft disruptor, filipin, significantly reduced IL-6 and IL-8 levels in A549-H.capsulatum cultures. Taken together, these results indicate that H. capsulatum yeasts induce secretion of IL-6 and IL-8 in human lung epithelial cells by interacting with α3 and α5 integrins, recruiting these integrins to membrane rafts, and promoting SFK activation.
Collapse
Affiliation(s)
- Paloma K Maza
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Erika Suzuki
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
17
|
Di A, Mehta D, Malik AB. ROS-activated calcium signaling mechanisms regulating endothelial barrier function. Cell Calcium 2016; 60:163-71. [PMID: 26905827 DOI: 10.1016/j.ceca.2016.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
Increased vascular permeability is a common pathogenic feature in many inflammatory diseases. For example in acute lung injury (ALI) and its most severe form, the acute respiratory distress syndrome (ARDS), lung microvessel endothelia lose their junctional integrity resulting in leakiness of the endothelial barrier and accumulation of protein rich edema. Increased reactive oxygen species (ROS) generated by neutrophils (PMNs) and other inflammatory cells play an important role in increasing endothelial permeability. In essence, multiple inflammatory syndromes are caused by dysfunction and compromise of the barrier properties of the endothelium as a consequence of unregulated acute inflammatory response. This review focuses on the role of ROS signaling in controlling endothelial permeability with particular focus on ALI. We summarize below recent progress in defining signaling events leading to increased endothelial permeability and ALI.
Collapse
Affiliation(s)
- Anke Di
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612, United States
| | - Dolly Mehta
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612, United States
| | - Asrar B Malik
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612, United States.
| |
Collapse
|
18
|
Natorska J, Marek G, Sadowski J, Undas A. Presence of B cells within aortic valves in patients with aortic stenosis: Relation to severity of the disease. J Cardiol 2016; 67:80-5. [DOI: 10.1016/j.jjcc.2015.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 04/03/2015] [Accepted: 05/07/2015] [Indexed: 11/29/2022]
|
19
|
Thrombin-induced IL-8/CXCL8 release is mediated by CK2, MSK1, and NF-κB pathways in human lung epithelial cells. Eur J Pharmacol 2015; 767:135-43. [PMID: 26463037 DOI: 10.1016/j.ejphar.2015.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022]
Abstract
Airway inflammation plays a major role in the pathophysiology of lung inflammatory diseases such as asthma. Thrombin, a serine protease, is known to mediate central functions in thrombosis and hemostasis and also plays a critical role in lung inflammation via producing chemokine release including interleukin (IL)-8/CXCL8. Our previous studies showed that c-Src- and Rac-dependent nuclear factor (NF)-κB signaling pathways participate in thrombin-induced IL-8/CXCL8 release in human lung epithelial cells. In this study, we further investigated the role of casein kinase 2 (CK2)/mitogen stress-activated protein kinase 1 (MSK1)-dependent p65 phosphorylation in thrombin-induced NF-κB activation and IL-8/CXCL8 release. Thrombin-induced IL-8/CXCL8 release was inhibited by CK2 inhibitors (apigenin and tetrabromobenzotriazole, TBB), small interfering RNA of CK2β (CK2β siRNA), and MSK1 siRNA. Treatment of cells with thrombin caused increases in CK2β phosphorylation at Ser209, which was inhibited by a protein kinase C α (PKCα) inhibitor (Ro-32-0432). Thrombin-induced MSK1 phosphorylation at Ser581 and Akt phosphorylation at Ser473 were inhibited by apigenin. Moreover, the thrombin-induced increase in IL-8/CXCL8 release was attenuated by p65 siRNA. Stimulation of cells with thrombin resulted in an increase in p65 phosphorylation at Ser276, which was inhibited by apigenin and MSK1 siRNA. Thrombin-induced κB-luciferase activity was also inhibited by apigenin and MSK1 siRNA. Taken together, these results show that thrombin activates the PKCα/CK2/MSK1 signaling pathways, which in turn initiates p65 phosphorylation and NF-κB activation, and ultimately induces IL-8/CXCL8 release in human lung epithelial cells.
Collapse
|
20
|
Chou WY, Chuang KH, Sun D, Lee YH, Kao PH, Lin YY, Wang HW, Wu YL. Inhibition of PKC-Induced COX-2 and IL-8 Expression in Human Breast Cancer Cells by Glucosamine. J Cell Physiol 2015; 230:2240-51. [DOI: 10.1002/jcp.24955] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/05/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Wan-Yu Chou
- Department of Physiology; School of Medicine; National Yang-Ming University; Taipei Taiwan
| | - Kun-Han Chuang
- Department of Physiology; School of Medicine; National Yang-Ming University; Taipei Taiwan
| | - David Sun
- Department of Obstetrics and Gynecology; Cheng Hsin General Hospital; Taipei Taiwan
| | - Yu-Hsiu Lee
- Institute of Microbiology and Immunology; School of Life Sciences; National Yang-Ming University; Taipei Taiwan
| | - Pu-Hong Kao
- Department of Physiology; School of Medicine; National Yang-Ming University; Taipei Taiwan
| | - Yen-Yu Lin
- Department of Physiology; School of Medicine; National Yang-Ming University; Taipei Taiwan
| | - Hsei-Wei Wang
- Institute of Microbiology and Immunology; School of Life Sciences; National Yang-Ming University; Taipei Taiwan
| | - Yuh-Lin Wu
- Department of Physiology; School of Medicine; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
21
|
Lien GS, Wu MS, Bien MY, Chen CH, Lin CH, Chen BC. Epidermal growth factor stimulates nuclear factor-κB activation and heme oxygenase-1 expression via c-Src, NADPH oxidase, PI3K, and Akt in human colon cancer cells. PLoS One 2014; 9:e104891. [PMID: 25122478 PMCID: PMC4133279 DOI: 10.1371/journal.pone.0104891] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/29/2014] [Indexed: 01/12/2023] Open
Abstract
Previous report showed that epidermal growth factor (EGF) promotes tumor progression. Several studies demonstrated that growth factors can induce heme oxygenase (HO)-1 expression, protect against cellular injury and cancer cell proliferation. In this study, we investigated the involvement of the c-Src, NADPH oxidase, reactive oxygen species (ROS), PI3K/Akt, and NF-κB signaling pathways in EGF-induced HO-1 expression in human HT-29 colon cancer cells. Treatment of HT-29 cells with EGF caused HO-1 to be expressed in concentration- and time-dependent manners. Treatment of HT-29 cells with AG1478 (an EGF receptor (EGFR) inhibitor), small interfering RNA of EGFR (EGFR siRNA), a dominant negative mutant of c-Src (c-Src DN), DPI (an NADPH oxidase inhibitor), glutathione (an ROS inhibitor), LY294002 (a PI3K inhibitor), and an Akt DN inhibited EGF-induced HO-1 expression. Stimulation of cells with EGF caused an increase in c-Src phosphorylation at Tyr406 in a time-dependent manner. Treatment of HT-29 cells with EGF induced an increase in p47(phox) translocation from the cytosol to membranes. The EGF-induced ROS production was inhibited by DPI. Stimulation of cells with EGF resulted in an increase in Akt phosphorylation at Ser473, which was inhibited by c-Src DN, DPI, and LY 294002. Moreover, treatment of HT-29 cells with a dominant negative mutant of IκB (IκBαM) inhibited EGF-induced HO-1 expression. Stimulation of cells with EGF induced p65 translocation from the cytosol to nuclei. Treatment of HT-29 cells with EGF induced an increase in κB-luciferase activity, which was inhibited by a c-Src DN, LY 294002, and an Akt DN. Furthermore, EGF-induced colon cancer cell proliferation was inhibited by Sn(IV)protoporphyrin-IX (snPP, an HO-1 inhibitor). Taken together, these results suggest that the c-Src, NADPH oxidase, PI3K, and Akt signaling pathways play important roles in EGF-induced NF-κB activation and HO-1 expression in HT-29 cells. Moreover, overexpression of HO-1 mediates EGF-induced colon cancer cell proliferation.
Collapse
Affiliation(s)
- Gi-Shih Lien
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mauo-Ying Bien
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Hsin Chen
- Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Lin CH, Shih CH, Tseng CC, Yu CC, Tsai YJ, Bien MY, Chen BC. CXCL12 induces connective tissue growth factor expression in human lung fibroblasts through the Rac1/ERK, JNK, and AP-1 pathways. PLoS One 2014; 9:e104746. [PMID: 25121739 PMCID: PMC4133236 DOI: 10.1371/journal.pone.0104746] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023] Open
Abstract
CXCL12 (stromal cell-derived factor-1, SDF-1) is a potent chemokine for homing of CXCR4+ fibrocytes to injury sites of lung tissue, which contributes to pulmonary fibrosis. Overexpression of connective tissue growth factor (CTGF) plays a critical role in pulmonary fibrosis. In this study, we investigated the roles of Rac1, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CXCL12-induced CTGF expression in human lung fibroblasts. CXCL12 caused concentration- and time-dependent increases in CTGF expression and CTGF-luciferase activity. CXCL12-induced CTGF expression was inhibited by a CXCR4 antagonist (AMD3100), small interfering RNA of CXCR4 (CXCR4 siRNA), a dominant negative mutant of Rac1 (RacN17), a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor (PD98059), a JNK inhibitor (SP600125), a p21-activated kinase inhibitor (PAK18), c-Jun siRNA, and an AP-1 inhibitor (curcumin). Treatment of cells with CXCL12 caused activations of Rac1, Rho, ERK, and c-Jun. The CXCL12-induced increase in ERK phosphorylation was inhibited by RacN17. Treatment of cells with PD98059 and SP600125 both inhibited CXCL12-induced c-Jun phosphorylation. CXCL12 caused the recruitment of c-Jun and c-Fos binding to the CTGF promoter. Furthermore, CXCL12 induced an increase in α-smooth muscle actin (α-SMA) expression, a myofibroblastic phenotype, and actin stress fiber formation. CXCL12-induced actin stress fiber formation and α-SMA expression were respectively inhibited by AMD3100 and CTGF siRNA. Taken together, our results suggest that CXCL12, acting through CXCR4, activates the Rac/ERK and JNK signaling pathways, which in turn initiates c-Jun phosphorylation, and recruits c-Jun and c-Fos to the CTGF promoter and ultimately induces CTGF expression in human lung fibroblasts. Moreover, overexpression of CTGF mediates CXCL12-induced α-SMA expression.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Huang Shih
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Chieh Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Jhih Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mauo-Ying Bien
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Thrombin induces ICAM-1 expression in human lung epithelial cells via c-Src/PDGFR/PI3K/Akt-dependent NF-κB/p300 activation. Clin Sci (Lond) 2014; 127:171-83. [PMID: 24506791 DOI: 10.1042/cs20130676] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Up-regulation of ICAM-1 (intercellular adhesion molecule-1) is frequently implicated in lung inflammation and lung diseases, such as IPF (idiopathic pulmonary fibrosis). Thrombin has been shown to play a key role in inflammation via the induction of adhesion molecules, which then causes lung injury. However, the mechanisms underlying thrombin-induced ICAM-1 expression in HPAEpiCs (human pulmonary alveolar epithelial cells) remain unclear. In the present study, we have shown that thrombin induced ICAM-1 expression in HPAEpiCs. Pre-treatment with the inhibitor of thrombin [PPACK (D-Phe-Pro-Arg-chloromethyl ketone)], c-Src (PP1), PDGFR (platelet-derived growth factor receptor) (AG1296), PI3K (phosohinositide 3-kinase) (LY294002), NF-κB (nuclear factor κB) (Bay11-7082) or p300 (GR343) and transfection with siRNAs of c-Src, PDGFR, Akt, p65 and p300 markedly reduced thrombin-induced ICAM-1 expression and monocyte adherence to HPAEpiCs challenged with thrombin. In addition, we established that thrombin stimulated the phosphorylation of c-Src, PDGFR, Akt and p65, which were inhibited by pre-treatment with their respective inhibitors PP1, AG1296, LY294002 or Bay11-7082. In addition, thrombin also enhanced Akt and NF-κB translocation from the cytosol to the nucleus, which was reduced by PP1, AG1296 or LY294002. Thrombin induced NF-κB promoter activity and the formation of the p65-Akt-p300 complex, which were inhibited by AG1296, LY294002 or PP1. Finally, we have shown that thrombin stimulated in vivo binding of p300, Akt and p65 to the ICAM-1 promoter, which was reduced by AG1296, LY294002, SH-5 or PP1. These results show that thrombin induced ICAM-1 expression and monocyte adherence via a c-Src/PDGFR/PI3K/Akt/NF-κB-dependent pathway in HPAEpiCs. Increased understanding of the signalling mechanisms underlying ICAM-1 gene regulation will create opportunities for the development of anti-inflammatory therapeutic strategies.
Collapse
|
24
|
Lin CH, Yu MC, Tung WH, Chen TT, Yu CC, Weng CM, Tsai YJ, Bai KJ, Hong CY, Chien MH, Chen BC. Connective tissue growth factor induces collagen I expression in human lung fibroblasts through the Rac1/MLK3/JNK/AP-1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2823-2833. [PMID: 23906792 DOI: 10.1016/j.bbamcr.2013.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
Abstract
Connective tissue growth factor (CTGF) plays an important role in lung fibrosis. In this study, we investigated the role of Rac1, mixed-lineage kinase 3 (MLK3), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CTGF-induced collagen I expression in human lung fibroblasts. CTGF caused concentration- and time-dependent increases in collagen I expression. CTGF-induced collagen I expression was inhibited by the dominant negative mutant (DN) of Rac1 (RacN17), MLK3DN, MLK3 inhibitor (K252a), JNK1DN, JNK2DN, a JNK inhibitor (SP600125), and an AP-1 inhibitor (curcumin). Treatment of cells with CTGF caused activation of Rac1, MLK3, JNK, and AP-1. The CTGF-induced increase in MLK3 phosphorylation was inhibited by RacN17. Treatment with RacN17 and the MLK3DN inhibited CTGF-induced JNK phosphorylation. CTGF caused increases in c-Jun phosphorylation and the recruitment of c-Jun and c-Fos to the collagen I promoter. Furthermore, stimulation of cells with the CTGF resulted in increases in AP-1-luciferase activity; this effect was inhibited by Rac1N17, MLK3DN, JNK1DN, and JNK2DN. Moreover, CTGF-induced α-smooth muscle actin (α-SMA) expression was inhibited by the procollagen I small interfering RNA (siRNA). These results suggest for the first time that CTGF acting through Rac1 activates the MLK3/JNK signaling pathway, which in turn initiates AP-1 activation and recruitment of c-Jun and c-Fos to the collagen I promoter and ultimately induces collagen I expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chih Yu
- Department of Pulmonary Medicine, Taipei Medical University - Wanfang Hospital, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Hsuan Tung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ting Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Weng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Jyu Tsai
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kua-Jen Bai
- Department of Pulmonary Medicine, Taipei Medical University - Wanfang Hospital, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuang-Ye Hong
- Taipei Medical University Wangfang Hospital, Taipei, Taiwan
| | - Ming-Hsien Chien
- Taipei Medical University Wangfang Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
25
|
Lin CH, Nai PL, Bien MY, Yu CC, Chen BC. Thrombin-Induced CCAAT/Enhancer-Binding Protein β Activation and IL-8/CXCL8 Expression via MEKK1, ERK, and p90 Ribosomal S6 Kinase 1 in Lung Epithelial Cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:338-48. [DOI: 10.4049/jimmunol.1203323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Sakai O, Tamada Y, Shearer TR, Azuma M. Involvement of NFκB in the production of chemokines by rat and human conjunctival cells cultured under allergenic conditions. Curr Eye Res 2013; 38:825-34. [PMID: 23621293 DOI: 10.3109/02713683.2013.780623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE The purpose of present studies was to determine the involvement of NFκB and STAT6 transcription factors in the production of cytokines by the fibroblasts and epithelial cells in conjunctiva. METHODS An in vitro model of allergic conjunctivitis was developed by sensitizing and challenging rat mast cells with anti-dinitrophenyl (DNP) IgE and DNP-BSA, and then using the conditioned medium to stimulate rat conjunctival fibroblasts. Chemokines (eotaxin-1, IL-8, and RANTES -- Regulated and Normal T cell Expressed and Secreted) released from cells into the medium was determined by ELISA. Human conjunctival fibroblasts and epithelial cells were also directly stimulated with exogenous cytokines tumor necrosis factor (TNF)-α or IL-4. Degradation of IκB-α and phosphorylation of STAT6 were assessed by immunoblotting. For inhibition of NFκB or STAT6 activation, upstream regulators IκB kinase and Janus protein tyrosine kinases (JAK) were inhibited by use of BMS-345541 and JAK inhibitor 1. An in vivo model of conjunctivitis was also produced in rats by intraperitoneal injection of ovalbumin (OA) with aluminum hydroxide and challenge at 21 d with OA eye drops. RESULTS Stimulated rat mast cells released TNF-α and IL-4. TNF-α induced NFκB activation in rat and human conjunctival fibroblasts and epithelial cells, and caused production and release of cytokines IL-8 and RANTES. IL-4 activation of STAT6 did not cause release of these cytokines. Only fibroblasts produced the eosinophil-recruiting cytokine, eotaxin-1, after treatment with TNF-α- plus IL-4. As observed in the cultured cells, allergic stimulation in the in vivo model caused degradation of IκB-α in conjunctiva, and infiltration of eosinophils and other inflammatory cells. CONCLUSION Activated NFκB was found to be a major transcription factor for the release of cytokines from conjunctival cells and intensification of the allergic response. Inhibition of the NFκB pathway by therapeutic drugs may be an important objective for the treatment of human allergic conjunctivitis.
Collapse
Affiliation(s)
- Osamu Sakai
- Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co. Ltd., Kobe, Japan
| | | | | | | |
Collapse
|
27
|
Wells EK, Yarborough O, Lifton RP, Cantley LG, Caplan MJ. Epithelial morphogenesis of MDCK cells in three-dimensional collagen culture is modulated by interleukin-8. Am J Physiol Cell Physiol 2013; 304:C966-75. [PMID: 23485708 DOI: 10.1152/ajpcell.00261.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial morphogenesis is dependent upon a variety of factors, many of which involve complex interactions between cells and their surrounding environments. We analyzed the patterns of differential gene expression associated with Madin-Darby canine kidney (MDCK) renal epithelial cells grown within a collagen gel in three-dimensional (3D) culture compared with those grown atop a collagen gel in two-dimensional (2D) culture. Under these conditions, MDCK cells spontaneously formed either hollow spherical cysts or flat monolayer sheets, respectively. Microarray analysis of gene expression revealed a twofold or greater expression difference in 732 gene sets from MDCK cysts compared with monolayers (false discovery rate or FDR-adjusted P values <0.05). Interleukin-8 (IL-8) was reproducibly found to be among the genes whose expression was most dramatically upregulated, and this behavior was verified through real-time PCR analysis. The level of IL-8 protein expression was significantly increased in 3D MDCK cultures compared with that detected in cells in 2D culture. Hepatocyte growth factor (HGF) induces MDCK cells in 3D culture to form linear tubule-like structures. We found that HGF stimulation caused MDCK cells in 3D culture to decrease the expression of IL-8 at both the mRNA and protein levels. Furthermore, the addition of recombinant IL-8 to HGF-stimulated 3D MDCK cultures was sufficient to partially reverse the tubulogenic effects of HGF, resulting in the formation of cystic structures. These data suggest that IL-8 participates in the formation of cystic structures by MDCK cells in 3D culture and that HGF may stimulate tubulogenesis through the suppression of IL-8.
Collapse
Affiliation(s)
- Erika K Wells
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
28
|
Lin CH, Yu MC, Chiang CC, Bien MY, Chien MH, Chen BC. Thrombin-induced NF-κB activation and IL-8/CXCL8 release is mediated by c-Src-dependent Shc, Raf-1, and ERK pathways in lung epithelial cells. Cell Signal 2013; 25:1166-75. [PMID: 23357535 DOI: 10.1016/j.cellsig.2013.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/03/2013] [Accepted: 01/21/2013] [Indexed: 02/02/2023]
Abstract
In addition to its functions in thrombosis and hemostasis, thrombin also plays an important role in lung inflammation. Our previous report showed that thrombin activates the protein kinase C (PKC)α/c-Src and Gβγ/Rac1/PI3K/Akt signaling pathways to induce IκB kinase α/β (IKKα/β) activation, NF-κB transactivation, and IL-8/CXCL8 expressions in human lung epithelial cells (ECs). In this study, we further investigated the mechanism of c-Src-dependent Shc, Raf-1, and extracellular signal-regulated kinase (ERK) signaling pathways involved in thrombin-induced NF-κB activation and IL-8/CXCL8 release. Thrombin-induced increases in IL-8/CXCL8 release and κB-luciferase activity were inhibited by the Shc small interfering RNA (siRNA), p66Shc siRNA, GW 5074 (a Raf-1 inhibitor), and PD98059 (a mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor). Treatment of A549 cells with thrombin increased p66Shc and p46/p52Shc phosphorylation at Tyr239/240 and Tyr317, which was inhibited by cell transfection with the dominant negative mutant of c-Src (c-Src DN). Thrombin caused time-dependent phosphorylation of Raf-1 and ERK, which was attenuated by the c-Src DN. Thrombin-induced IKKα/β phosphorylation was inhibited by GW 5074 and PD98059. Treatment of cells with thrombin induced Gβγ, c-Src, and p66Shc complex formation in a time-dependent manner. Taken together, these results show for the first time that thrombin activates Shc, Raf-1, and ERK through Gβγ, c-Src, and Shc complex formation to induce IKKα/β phosphorylation, NF-κB activation, and IL-8/CXCL8 release in human lung ECs.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Bai KJ, Chen BC, Pai HC, Weng CM, Yu CC, Hsu MJ, Yu MC, Ma HP, Wu CH, Hong CY, Kuo ML, Lin CH. Thrombin-induced CCN2 expression in human lung fibroblasts requires the c-Src/JAK2/STAT3 pathway. J Leukoc Biol 2013; 93:101-112. [DOI: 10.1189/jlb.0911449] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Thrombin might activate c-Src to induce JAK2 activation, which causes STAT3 activation, inducing CCN2 expression in human lung fibroblasts.
Thrombin is a multifunctional serine protease and an important fibrotic mediator that induces CCN2 expression. We previously showed that thrombin induces CCN2 expression via an ASK1-dependent JNK/AP-1 pathway in human lung fibroblasts. In this study, we further investigated the roles of c-Src, JAK2, and STAT3 in thrombin-induced CCN2 expression. Thrombin-induced CCN2 expression and CCN2-Luc activity were attenuated by a JAK inhibitor (AG490) and JAK2DN, STAT3DN, and the STAT decoy ODN. Moreover, transfection of cells with a CCN2-mtSTAT-Luc construct inhibited thrombin-induced CCN2-Luc activity. Treatment of cells with thrombin caused JAK2 phosphorylation at Tyr1007/1008 and STAT3 phosphorylation at Tyr705 in time-dependent manners. Thrombin-induced STAT3 phosphorylation was inhibited by AG490 and JAK2DN. Thrombin-induced STAT3 binding to the CCN2 promoter was analyzed by a DNA-binding affinity pull-down assay. In addition, thrombin-induced CCN2 expression and CCN2-Luc activity were inhibited by c-SrcDN and PP2 (an Src inhibitor). Transfection of cells with c-SrcDN also inhibited thrombin-induced JAK2 and STAT3 phosphorylation. Taken together, these results indicate that thrombin might activate c-Src to induce JAK2 activation, which in turn, causes STAT3 activation, and finally induces CCN2 expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Kua-Jen Bai
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
- School of Respiratory Therapy, Taipei Medical University , Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, Taipei Medical University , Taipei, Taiwan
| | - Hui-Chen Pai
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
| | - Chih-Ming Weng
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
| | - Ming-Jen Hsu
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
- Department of Pharmacology, College of Medicine, Taipei Medical University , Taipei, Taiwan
| | - Ming-Chih Yu
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
- School of Respiratory Therapy, Taipei Medical University , Taipei, Taiwan
| | - Hon-Ping Ma
- Taipei Medical University–Shuang Ho Hospital , New Taipei City, Taiwan
| | - Chih-Hsiung Wu
- Taipei Medical University–Shuang Ho Hospital , New Taipei City, Taiwan
| | - Chuang-Ye Hong
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
| | - Min-Liang Kuo
- Angiogenesis Research Center, Laboratory of Molecular and Cellular Toxicology, Institute of Toxicology, College of Medicine, National Taiwan University , Taipei, Taiwan
| | - Chien-Huang Lin
- Department of Pulmonary Medicine, Taipei Medical University–Wanfang Hospital, Taipei Medical University , Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
- Taipei Medical University–Shuang Ho Hospital , New Taipei City, Taiwan
| |
Collapse
|
30
|
Vázquez-Franco JE, Reyes-Maldonado E, Vela-Ojeda J, Domínguez-López ML, Lezama RA. Src, Akt, NF-κB, BCL-2 and c-IAP1 may be involved in an anti-apoptotic effect in patients with BCR-ABL positive and BCR-ABL negative acute lymphoblastic leukemia. Leuk Res 2012; 36:862-7. [DOI: 10.1016/j.leukres.2012.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/22/2012] [Accepted: 03/25/2012] [Indexed: 12/28/2022]
|
31
|
Lin CC, Shih CH, Yang YL, Bien MY, Lin CH, Yu MC, Sureshbabu M, Chen BC. Thrombin induces inducible nitric oxide synthase expression via the MAPK, MSK1, and NF-κB signaling pathways in alveolar macrophages. Eur J Pharmacol 2011; 672:180-7. [DOI: 10.1016/j.ejphar.2011.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 12/17/2022]
|
32
|
Queiroz KCS, Van 't Veer C, Van Den Berg Y, Duitman J, Versteeg HH, Aberson HL, Groot AP, Verstege MI, Roelofs JJTH, Te Velde AA, Spek CA. Tissue factor-dependent chemokine production aggravates experimental colitis. Mol Med 2011; 17:1119-26. [PMID: 21717035 DOI: 10.2119/molmed.2011.00138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/21/2011] [Indexed: 12/29/2022] Open
Abstract
Tissue factor (TF) is traditionally known as the initiator of blood coagulation, but TF also plays an important role in inflammatory processes. Considering the pivotal role of coagulation in inflammatory bowel disease, we assessed whether genetic ablation of TF limits experimental colitis. To this end, wild-type and TF-deficient (TFlow) mice were treated with 1.5% dextran sulfate sodium (DSS) for 7 d, and effects on disease severity, cytokine production and leukocyte recruitment were examined. Clinical and histological parameters showed that the severity of colitis was reduced in both heterozygous and homozygous TFlow mice compared with controls. Most notably, edema, granulocyte numbers at the site of inflammation and cytokine levels were reduced in TFlow mice. Although anticoagulant treatment with dalteparin of wild-type mice reduced local fibrin production and cytokine levels to a similar extent as in TFlow mice, it did not affect clinical and histological parameters of experimental colitis. Mechanistic studies revealed that TF expression did not influence the intrinsic capacity of granulocytes to migrate. Instead, TF enhanced granulocyte migration into the colon by inducing high levels of the granulocyte chemoattractant keratinocyte-derived chemokine (KC). Taken together, our data indicate that TF plays a detrimental role in experimental colitis by signal transduction-dependent KC production in colon epithelial cells, thereby provoking granulocyte influx with subsequent inflammation and organ damage.
Collapse
Affiliation(s)
- Karla C S Queiroz
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Brady RRW, Loveridge CJ, Dunlop MG, Stark LA. c-Src dependency of NSAID-induced effects on NF-κB-mediated apoptosis in colorectal cancer cells. Carcinogenesis 2011; 32:1069-77. [PMID: 21551129 DOI: 10.1093/carcin/bgr077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Long-term aspirin or related non-steroidal anti-inflammatory drugs (NSAIDs) ingestion can protect against colorectal cancer (CRC). NSAIDs have a pro-apoptotic activity and we have shown that stimulation of the nuclear factor-kappaB (NF-κB) pathway is a key component of this pro-apoptotic effect. However, the upstream pathways have yet to be fully elucidated. Here, we demonstrate that aspirin activates the c-Src tyrosine kinase pathway in CRC cells. We show that c-Src activation occurs in a time- and dose-dependent manner, preceding aspirin-mediated degradation of IκBα, nuclear/nucleolar translocation of NF-κB/RelA and induction of apoptosis. Furthermore, inhibition of c-Src activity, by chemical inhibition or expression of a kinase dead form of the protein abrogates aspirin-mediated degradation of IκBα, nuclear translocation of RelA and apoptosis, suggesting a causal link. Expression of constitutively active c-Src mimics aspirin-induced stimulation of the NF-κB pathway. The NSAIDs sulindac, sulindac sulphone and indomethacin all similarly activate a c-Src-dependent NF-κB and apoptotic response. These data provide compelling evidence that c-Src is an upstream mediator of aspirin/NSAID effects on NF-κB signalling and apoptosis in CRC cells and have relevance to the development of future chemotherapeutic/chemopreventative agents.
Collapse
Affiliation(s)
- Richard R W Brady
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | | | | | |
Collapse
|
34
|
Lin CH, Cheng HW, Ma HP, Wu CH, Hong CY, Chen BC. Thrombin induces NF-kappaB activation and IL-8/CXCL8 expression in lung epithelial cells by a Rac1-dependent PI3K/Akt pathway. J Biol Chem 2011; 286:10483-94. [PMID: 21266580 DOI: 10.1074/jbc.m110.112433] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype. Proc Natl Acad Sci U S A 2010; 108:626-31. [PMID: 21187389 DOI: 10.1073/pnas.1006886108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The thrombin receptor protease activated receptor-1 (PAR-1) is overexpressed in metastatic melanoma cell lines and tumor specimens. Previously, we demonstrated a significant reduction in tumor growth and experimental lung metastasis after PAR-1 silencing via systemic delivery of siRNA encapsulated into nanoliposomes. Gene expression profiling identified a 40-fold increase in expression of Maspin in PAR-1-silenced metastatic melanoma cell lines. Maspin promoter activity was significantly increased after PAR-1 silencing, suggesting that PAR1 negatively regulates Maspin at the transcriptional level. ChIP analyses revealed that PAR-1 decreases binding of Ets-1 and c-Jun transcription factors to the Maspin promoter, both known to activate Maspin transcription. PAR-1 silencing did not affect Ets-1 or c-Jun expression; rather it resulted in increased expression of the chromatin remodeling complex CBP/p300, as well as decreased activity of the CBP/p300 inhibitor p38, resulting in increased binding of Ets-1 and c-Jun to the Maspin promoter and higher Maspin expression. Functionally, Maspin expression reduced the invasive capability of melanoma cells after PAR-1 silencing, which was abrogated after rescuing with PAR-1. Furthermore, tumor growth and experimental lung metastasis was significantly decreased after expressing Maspin in a metastatic melanoma cell line. Moreover, silencing Maspin in PAR-1-silenced cells reverted the inhibition of tumor growth and experimental lung metastasis. Herein, we demonstrate a mechanism by which PAR-1 negatively regulates the expression of the Maspin tumor-suppressor gene in the acquisition of the metastatic melanoma phenotype, thus attributing an alternative function to PAR-1 other than coagulation.
Collapse
|
36
|
Zhang T, Ma Z, Wang R, Wang Y, Wang S, Cheng Z, Xu H, Jin X, Li W, Wang X. Thrombin facilitates invasion of ovarian cancer along peritoneum by inducing monocyte differentiation toward tumor-associated macrophage-like cells. Cancer Immunol Immunother 2010; 59:1097-108. [PMID: 20352429 PMCID: PMC11030270 DOI: 10.1007/s00262-010-0836-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/16/2010] [Indexed: 01/26/2023]
Abstract
Peritoneal metastasis is a distinct pathologic characteristic of advanced epithelial ovarian cancer (EOC), which is the most deadly disease of the female reproductive tract. The inflammatory environment of the peritoneum in EOC contains abundant macrophages, activated thrombin, and thrombin-associated receptors. However, little is known about the mechanism by which the thrombin-macrophages interaction contributes to tumor invasion and metastasis. We investigated the phenotype and cytokine/chemokine expression of thrombin-treated peripheral blood monocytes (MOs)/macrophages, it was found that the phenotype of MOs was altered toward a TAM-like macrophage CD163(high)IL-10(high)CCL18(high)IL-8(high) after thrombin stimulation. By Matrigel invasion assay, the conditioned medium of thrombin-stimulated MOs accelerated remarkable invasion of ES-2, SKOV3, and HO-8910, which was similar to invasive cell numbers of ascites stimuli (P < 0.05) and higher than MOs medium alone (P < 0.05). IL-8 was proposed as the major chemoattractant mediating EOC invasion based on MOs mRNA and protein expression profiling. It was observed that anti IL-8 monoclonal neutralizing antibody attenuated EOC cell invasion in a concentration-dependent manner. Increased transcriptional activation of NF-kappaB p50/p65 was identified in thrombin-treated MOs. This study provided insight the role of thrombin in the regulation of EOC peritoneal invasion via "educating" MOs.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Zhengwen Ma
- Department of Neurobiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Ruili Wang
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Ying Wang
- Department of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023 China
| | - Shujun Wang
- Department of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023 China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Yangpu Central Hospital, Shanghai, 200090 China
| | - Hong Xu
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Xinjuan Jin
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Weiping Li
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001 China
| |
Collapse
|
37
|
Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 2010; 72:463-93. [PMID: 20148685 DOI: 10.1146/annurev-physiol-021909-135833] [Citation(s) in RCA: 488] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endothelium functions as a semipermeable barrier regulating tissue fluid homeostasis and transmigration of leukocytes and providing essential nutrients across the vessel wall. Transport of plasma proteins and solutes across the endothelium involves two different routes: one transcellular, via caveolae-mediated vesicular transport, and the other paracellular, through interendothelial junctions. The permeability of the endothelial barrier is an exquisitely regulated process in the resting state and in response to extracellular stimuli and mediators. The focus of this review is to provide a comprehensive overview of molecular and signaling mechanisms regulating endothelial barrier permeability with emphasis on the cross-talk between paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Yulia Komarova
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | |
Collapse
|
38
|
Chen HT, Tsou HK, Tsai CH, Kuo CC, Chiang YK, Chang CH, Fong YC, Tang CH. Thrombin enhanced migration and MMPs expression of human chondrosarcoma cells involves PAR receptor signaling pathway. J Cell Physiol 2010; 223:737-45. [PMID: 20175118 DOI: 10.1002/jcp.22083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thrombin is a multifunctional protease that can activate hemostasis and coagulation through the cleavage of fibrinogen to form fibrin clots. Thrombin also plays a crucial role in migration and metastasis of human cancer cells. However, the effect of thrombin on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that thrombin increased the migration and expression of matrix metalloproteinase (MMP)-2 and MMP-13 in human chondrosarcoma cells (JJ012 and SW1353 cells). By using pharmacological inhibitors or activators or genetic inhibition by the protease-activated receptor (PAR), we found that the PAR1 and PAR4 receptor but not PAR3 receptor are involved in thrombin-mediated cell migration and MMPs expression. Thrombin-mediated migration and MMPs up-regulation was attenuated by phospholipase C (PLC), protein kinase C, and c-Src inhibitor. Activations of PLCbeta, PKCalpha, c-Src, and NF-kappaB pathways after thrombin treatment was demonstrated, and thrombin-induced MMPs expression and migration activity was inhibited by the specific inhibitors and mutants of PLC, PKC, c-Src, and NF-kappaB cascades. Taken together, our results indicated that thrombin enhances the migration of chondrosarcoma cells by increasing MMP-2 and MMP-13 expression through the PAR/PLC/PKCalpha/c-Src/NF-kappaB signal transduction pathway.
Collapse
Affiliation(s)
- Hsien-Te Chen
- Department of Orthopaedic, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shih CH, Bien MY, Chiang LL, Su CL, Lin CH, Chen BC. Thrombin induces cyclooxygenase-2 expression via the ERK and NF-kappaB pathways in human lung fibroblasts. Eur J Pharmacol 2009; 618:70-5. [PMID: 19616539 DOI: 10.1016/j.ejphar.2009.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/25/2009] [Accepted: 07/09/2009] [Indexed: 12/19/2022]
Abstract
There is growing evidence that increased expression of cyclooxygenase-2 (COX-2) in the lungs of patients is a key event in the pathogenesis of lung diseases. In this study, we investigated the involvement of the extracellular signal-regulated kinase (ERK), IkappaB kinase alpha/beta (IKKalpha/beta), and nuclear factor-kappaB (NF-kappaB) signaling pathways in thrombin-induced COX-2 expression in human lung fibroblasts (WI-38). Treatment of WI-38 cells with thrombin caused increased COX-2 expression in a concentration- and time-dependent manner. Treatment of WI-38 cells with PD 98059 (2-[2-amino-3-methoxyphenyl]-4H-1-benzopyran-4-one, a MEK inhibitor) inhibited thrombin-induced COX-2 expression and COX-2-luciferase activity. Stimulation of cells with thrombin caused an increase in ERK phosphorylation in a time-dependent manner. In addition, treatment of WI-38 cells with Bay 117082, an IkappaB phosphorylation inhibitor, and pyrrolidine dithiocarbamate (PDTC), an NF-kappaB inhibitor, inhibited thrombin-induced COX-2 expression. The thrombin-induced increase in COX-2-luciferase activity was also blocked by the dominant negative IkappaBalpha mutant (IkappaBalphaM). Treatment of WI-38 cells with thrombin induced IKKalpha/beta and IkappaBalpha phosphorylation, IkappaBalpha degradation, and kappaB-luciferase activity. The thrombin-mediated increases in IKKalpha/beta phosphorylation and kappaB-luciferase activity were inhibited by PD 98059. Taken together, these results suggest that the ERK-dependent IKKalpha/beta/NF-kappaB signaling pathway plays an important role in thrombin-induced COX-2 expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Chung-Huang Shih
- Department of Respiratory Therapy, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Yu CC, Hsu MJ, Kuo ML, Chen RFC, Chen MC, Bai KJ, Yu MC, Chen BC, Lin CH. Thrombin-Induced Connective Tissue Growth Factor Expression in Human Lung Fibroblasts Requires the ASK1/JNK/AP-1 Pathway. THE JOURNAL OF IMMUNOLOGY 2009; 182:7916-27. [PMID: 19494316 DOI: 10.4049/jimmunol.0801582] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Boots AW, Hristova M, Kasahara DI, Haenen GRMM, Bast A, van der Vliet A. ATP-mediated activation of the NADPH oxidase DUOX1 mediates airway epithelial responses to bacterial stimuli. J Biol Chem 2009; 284:17858-67. [PMID: 19386603 DOI: 10.1074/jbc.m809761200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the NADPH oxidase homolog dual oxidase 1 (DUOX1) within the airway epithelium represents a key mechanism of innate airway host defense, through enhanced production of H2O2, which mediates cellular signaling pathways that regulate the production of various inflammatory mediators. Production of the CXC chemokine interleukin (IL)-8/CXCL8 forms a common epithelial response to many diverse stimuli, including bacterial and viral triggers, environmental oxidants, and other biological mediators, suggesting the potential involvement of a common signaling pathway that may involve DUOX1-dependent H2O2 production. Following previous reports showing that DUOX1 is activated by extracellular ATP and purinergic receptor stimulation, this study demonstrates that airway epithelial IL-8 production in response to several bacterial stimuli involves ATP release and DUOX1 activation. ATP-mediated DUOX1 activation resulted in the activation of ERK1/2 and NF-kappaB pathways, which was associated with epidermal growth factor receptor (EGFR) ligand shedding by ADAM17 (a disintegrin and metalloproteinase-17). Although ATP-mediated ADAM17 activation and IL-8 release were not prevented by extracellular H2O2 scavenging by catalase, these responses were attenuated by intracellular scavengers of H2O2 or related oxidants, suggesting an intracellular redox signaling mechanism. Both ADAM17 activation and IL-8 release were suppressed by inhibitors of EGFR/ERK1/2 signaling, which can regulate ADAM17 activity by serine/threonine phosphorylation. Collectively, our results indicate that ATP-mediated DUOX1 activation represents a common response mechanism to several environmental stimuli, involving H2O2-dependent EGFR/ERK activation, ADAM17 activation, and EGFR ligand shedding, leading to amplified epithelial EGFR activation and IL-8 production.
Collapse
Affiliation(s)
- Agnes W Boots
- Department of Pathology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
42
|
Billich A, Urtz N, Reuschel R, Baumruker T. Sphingosine kinase 1 is essential for proteinase-activated receptor-1 signalling in epithelial and endothelial cells. Int J Biochem Cell Biol 2009; 41:1547-55. [PMID: 19162217 DOI: 10.1016/j.biocel.2009.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Revised: 12/24/2008] [Accepted: 01/05/2009] [Indexed: 01/07/2023]
Abstract
There is accumulating evidence that activation of sphingosine kinase 1 (SPHK1) is an important element in intracellular signalling cascades initiated by stimulation of multiple receptors, including certain growth factor, cytokine, and also G-protein coupled receptors. We here report that stimulation of the lung epithelial cell line A549 by thrombin leads to transient increase of SPHK1 activity and elevation of intracellular sphingosine-1-phosphate (S1P); abrogation of this stimulation by SPHK1-specific siRNA, pharmacological inhibition, or expression of a dominant-negative SPHK1 mutant blocks the response to thrombin, as measured by secretion of MCP-1, IL-6, IL-8, and PGE(2). Using selective stimulation of proteinase-activated receptors (PARs) a specific involvement of SPHK1 in the PAR-1 induced responses in A549 cell, including activation of NFkappaB, was evident, while PAR-2 and PAR-4 responses were independent of SPHK1. Moreover, PAR-1 or thrombin-induced cytokine production and adhesion factor expression of human umbilical vein endothelial cells was also seen to depend on SPHK1. Using dermal microvascular endothelial cells from SPHK1-deficient mice, we showed that absence of the enzyme abrogates MCP-1 production induced in these cells upon treatment with thrombin or PAR-1 activating peptide. We propose SPHK1 inhibition as a novel way to block PAR-1 mediated signalling, which could be useful in treatment of a number of diseases, in particular in atherosclerosis.
Collapse
Affiliation(s)
- Andreas Billich
- Novartis Institutes for BioMedical Research, Brunnerstrasse 59, Vienna, Austria.
| | | | | | | |
Collapse
|
43
|
Bradykinin-induced IL-6 expression through bradykinin B2 receptor, phospholipase C, protein kinase Cδ and NF-κB pathway in human synovial fibroblasts. Mol Immunol 2008; 45:3693-702. [DOI: 10.1016/j.molimm.2008.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/06/2008] [Accepted: 06/08/2008] [Indexed: 11/21/2022]
|
44
|
Bijli KM, Fazal F, Minhajuddin M, Rahman A. Activation of Syk by protein kinase C-delta regulates thrombin-induced intercellular adhesion molecule-1 expression in endothelial cells via tyrosine phosphorylation of RelA/p65. J Biol Chem 2008; 283:14674-84. [PMID: 18362147 DOI: 10.1074/jbc.m802094200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C-delta (PKC-delta) plays a pivotal role in mediating thrombin-induced NF-kappaB activation and ICAM-1 expression in endothelial cells. However, the downstream mechanisms mediating its function are unclear. In this study, we show that PKC-delta-mediated activation of protein-tyrosine kinase Syk plays an important role in thrombin signaling of NF-kappaB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells. Stimulation of human vascular endothelial cells with thrombin resulted in a time-dependent phosphorylation of Syk on tyrosine 525 and 526, an indication of Syk activation. Inhibition of PKC-delta by pharmacological and genetic approaches prevented Syk activation by thrombin. These results place Syk downstream of PKC-delta in transmitting thrombin-activated signaling in endothelial cells. Consistent with this, thrombin-induced NF-kappaB activity and ICAM-1 expression were prevented by the expression of a kinase-defective mutant or RNA interference knockdown of Syk. Similarly, inhibiting Syk also impaired NF-kappaB activity and ICAM-1 expression induced by a constitutively active mutant of PKC-delta. Analysis of the NF-kappaB pathway showed that Syk contributes to thrombin-induced NF-kappaB activation by controlling its transactivation potential and that this response is associated with tyrosine phosphorylation of RelA/p65. Thus, these data unveil a novel pathway in which Syk signals downstream of PKC-delta to mediate thrombin induced ICAM-1 expression in endothelial cells by increasing transcriptional capacity of NF-kappaB via a mechanism that relies on tyrosine phosphorylation of RelA/p65.
Collapse
Affiliation(s)
- Kaiser M Bijli
- Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
45
|
Hou CH, Tan TW, Tang CH. AMP-activated protein kinase is involved in COX-2 expression in response to ultrasound in cultured osteoblasts. Cell Signal 2008; 20:978-88. [PMID: 18276112 DOI: 10.1016/j.cellsig.2008.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 01/17/2008] [Accepted: 01/17/2008] [Indexed: 01/31/2023]
Abstract
It has been shown that ultrasound (US) stimulation accelerates fracture healing in the animal models and in clinical studies. Cyclooxygenase-2 (COX-2) is a crucial mediator in mechanically induced bone formation. AMP-activated protein kinase (AMPK) has reported to sense and regulate the cellular energy status in various cell types. Here we found that US-mediated COX-2 expression was attenuated by LKB1 and AMPKalpha1 small interference RNA (siRNA) in human osteoblasts. Pretreatment of osteoblasts with AMPK inhibitor (araA and compound C), p38 inhibitor (SB203580), NF-kappaB inhibitor (PDTC), IkappaB protease inhibitor (TPCK) and NF-kappaB inhibitor peptide also inhibited the potentiating action of US. US increased the kinase activity and phosphorylation of LKB1, AMPK and p38. Stimulation of osteoblasts with US activated IkappaB kinase alpha/beta (IKKalpha/beta), IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. US-mediated an increase of IKKalpha/beta activity, kappaB-luciferase activity and p65 and p50 binding to the NF-kappaB element was inhibited by araA, SB203580 and LKB1 siRNA. Our results suggest that US increased COX-2 expression in osteoblasts via the LKB1/AMPKalpha1/p38/IKKalphabeta and NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Chun-Han Hou
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
46
|
Chiu YC, Fong YC, Lai CH, Hung CH, Hsu HC, Lee TS, Yang RS, Fu WM, Tang CH. Thrombin-induced IL-6 production in human synovial fibroblasts is mediated by PAR1, phospholipase C, protein kinase C alpha, c-Src, NF-kappa B and p300 pathway. Mol Immunol 2007; 45:1587-99. [PMID: 18062909 DOI: 10.1016/j.molimm.2007.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 09/30/2007] [Accepted: 10/04/2007] [Indexed: 11/15/2022]
Abstract
Thrombin is a key factor in the stimulation of fibrin deposition, angiogenesis and proinflammatory processes. Abnormalities in these processes are primary features of rheumatoid arthritis (RA) in synovial tissues. We investigated the signaling pathway involved in IL-6 production caused by thrombin in synovial fibroblasts. Thrombin caused concentration- and time-dependent increases in IL-6 production. By using pharmacological inhibitors or activators or genetic inhibition by the protease activated receptor (PAR), siRNA revealed that the PAR1 receptor but not other PAR receptors is involved in thrombin-mediated up-regulation of IL-6. Thrombin-mediated IL-6 production was attenuated by thrombin inhibitor (PPACK), phospholipase C inhibitor (U73122), protein kinase C alpha inhibitor (Ro320432), Src inhibitor (PP2), NF-kappaB inhibitor (PDTC), I kappa B protease inhibitor (TPCK), or NF-kappaB inhibitor peptide. Stimulation of synovial fibroblasts with thrombin activated I kappa B kinase alpha/beta (IKK alpha/beta), I kappa B alpha phosphorylation, I kappa B alpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Thrombin-mediated an increase of IKK alpha/beta activity, kappaB-luciferase activity and p65 and p50 binding to the NF-kappaB element was inhibited by PPACK, U73122, Ro320432 and PP2. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of p50 acetylation on the IL-6 promoter was enhanced by thrombin. Our results suggest that thrombin increased IL-6 production in synovial fibroblasts via the PAR1 receptor/PI-PLC/PKC alpha/c-Src/NF-kappaB and p300 signaling pathway.
Collapse
Affiliation(s)
- Yung-Cheng Chiu
- Department of Orthopaedics, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tang CH, Lu DY, Yang RS, Tsai HY, Kao MC, Fu WM, Chen YF. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia. THE JOURNAL OF IMMUNOLOGY 2007; 179:1292-302. [PMID: 17617622 DOI: 10.4049/jimmunol.179.2.1292] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.
Collapse
Affiliation(s)
- Chih-Hsin Tang
- Department of Pharmacology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Cenac N, Andrews CN, Holzhausen M, Chapman K, Cottrell G, Andrade-Gordon P, Steinhoff M, Barbara G, Beck P, Bunnett NW, Sharkey KA, Ferraz JGP, Shaffer E, Vergnolle N. Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest 2007; 117:636-47. [PMID: 17304351 PMCID: PMC1794118 DOI: 10.1172/jci29255] [Citation(s) in RCA: 439] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 12/05/2006] [Indexed: 12/12/2022] Open
Abstract
Mediators involved in the generation of symptoms in patients with irritable bowel syndrome (IBS) are poorly understood. Here we show that colonic biopsy samples from IBS patients release increased levels of proteolytic activity (arginine cleavage) compared to asymptomatic controls. This was dependent on the activation of NF-kappaB. In addition, increased proteolytic activity was measured in vivo, in colonic washes from IBS compared with control patients. Trypsin and tryptase expression and release were increased in colonic biopsies from IBS patients compared with control subjects. Biopsies from IBS patients (but not controls) released mediators that sensitized murine sensory neurons in culture. Sensitization was prevented by a serine protease inhibitor and was absent in neurons lacking functional protease-activated receptor-2 (PAR2). Supernatants from colonic biopsies of IBS patients, but not controls, also caused somatic and visceral hyperalgesia and allodynia in mice, when administered into the colon. These pronociceptive effects were inhibited by serine protease inhibitors and a PAR2 antagonist and were absent in PAR2-deficient mice. Our study establishes that proteases are released in IBS and that they can directly stimulate sensory neurons and generate hypersensitivity symptoms through the activation of PAR2.
Collapse
Affiliation(s)
- Nicolas Cenac
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher N. Andrews
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marinella Holzhausen
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Chapman
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Graeme Cottrell
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patricia Andrade-Gordon
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martin Steinhoff
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Giovanni Barbara
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul Beck
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nigel W. Bunnett
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jose Geraldo P. Ferraz
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eldon Shaffer
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nathalie Vergnolle
- Department of Pharmacology and Therapeutics and
Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
Departments of Surgery and Physiology, UCSF, San Francisco, California, USA.
R.W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania, USA.
Department of Dermatology and Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster, Münster, Germany.
Departments of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy.
Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|