1
|
Confino H, Dirbas FM, Goldshtein M, Yarkoni S, Kalaora R, Hatan M, Puyesky S, Levi Y, Malka L, Johnson M, Chaisson S, Monson JM, Avniel A, Lisi S, Greenberg D, Wolf I. Gaseous nitric oxide tumor ablation induces an anti-tumor abscopal effect. Cancer Cell Int 2022; 22:405. [PMID: 36514083 PMCID: PMC9745717 DOI: 10.1186/s12935-022-02828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In-situ tumor ablation provides the immune system with the appropriate antigens to induce anti-tumor immunity. Here, we present an innovative technique for generating anti-tumor immunity by delivering exogenous ultra-high concentration (> 10,000 ppm) gaseous nitric oxide (UHCgNO) intratumorally. METHODS The capability of UHCgNO to induce apoptosis was tested in vitro in mouse colon (CT26), breast (4T1) and Lewis lung carcinoma (LLC-1) cancer cell lines. In vivo, UHCgNO was studied by treating CT26 tumor-bearing mice in-situ and assessing the immune response using a Challenge assay. RESULTS Exposing CT26, 4T1 and LLC-1 cell lines to UHCgNO for 10 s-2.5 min induced cellular apoptosis 24 h after exposure. Treating CT26 tumors in-situ with UHCgNO followed by surgical resection 14 days later resulted in a significant secondary anti-tumor effect in vivo. 100% of tumor-bearing mice treated with 50,000 ppm UHCgNO and 64% of mice treated with 20,000 ppm UHCgNO rejected a second tumor inoculation, compared to 0% in the naive control for 70 days. Additionally, more dendrocytes infiltrated the tumor 14 days post UHCgNO treatment versus the nitrogen control. Moreover, T-cell penetration into the primary tumor was observed in a dose-dependent manner. Systemic increases in T- and B-cells were seen in UHCgNO-treated mice compared to nitrogen control. Furthermore, polymorphonuclear-myeloid-derived suppressor cells were downregulated in the spleen in the UHCgNO-treated groups. CONCLUSIONS Taken together, our data demonstrate that UHCgNO followed by the surgical removal of the primary tumor 14 days later induces a strong and potent anti-tumor response.
Collapse
Affiliation(s)
| | - Frederick M. Dirbas
- grid.168010.e0000000419368956Department of General Surgery, Stanford University, Stanford, CA USA
| | | | | | | | | | | | - Yakir Levi
- Beyond Cancer Ltd., 7608801 Rehovot, Israel
| | | | | | | | - Jedidiah M. Monson
- Beyond Cancer Ltd., Atlanta, GA USA ,grid.476982.6California Cancer Associates for Research and Excellence, Fresno, CA USA
| | - Amir Avniel
- Beyond Air Ltd., 7608801 Rehovot, Israel ,Beyond Air Inc, Garden City, NY 11530 USA
| | - Steve Lisi
- Beyond Air Inc, Garden City, NY 11530 USA
| | - David Greenberg
- Beyond Air Ltd., 7608801 Rehovot, Israel ,Beyond Air Inc, Garden City, NY 11530 USA
| | - Ido Wolf
- grid.413449.f0000 0001 0518 6922Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel ,grid.12136.370000 0004 1937 0546Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Hombach AA, Heiders J, Foppe M, Chmielewski M, Abken H. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4(+) T cells. Oncoimmunology 2021; 1:458-466. [PMID: 22754764 PMCID: PMC3382912 DOI: 10.4161/onci.19855] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adoptive therapy with chimeric antigen receptor (CAR) redirected T cells recently showed remarkable anti-tumor efficacy in early phase clinical trials; self-repression of the immune response by T-cell secreted cytokines, however, is still an issue raising interest to abrogate the secretion of repressive cytokines while preserving the panel of CAR induced pro-inflammatory cytokines. We here revealed that T-cell activation by a CD28-ζ signaling CAR induced IL-10 secretion, which compromises T cell based immunity, along with the release of pro-inflammatory IFN-γ and IL-2. T cells stimulated by a ζ CAR without costimulation did not secrete IL-2 or IL-10; the latter, however, could be induced by supplementation with IL-2. Abrogation of CD28-ζ CAR induced IL-2 release by CD28 mutation did not reduce IL-10 secretion indicating that IL-10 can be induced by both a CD28 and an IL-2 mediated pathway. In contrast to the CD28-ζ CAR, a CAR with OX40 (CD134) costimulation did not induce IL-10. OX40 cosignaling by a 3rd generation CD28-ζ-OX40 CAR repressed CD28 induced IL-10 secretion but did not affect the secretion of pro-inflammatory cytokines, T-cell amplification or T-cell mediated cytolysis. IL-2 induced IL-10 was also repressed by OX40 co-signaling. OX40 moreover repressed IL-10 secretion by regulatory T cells which are strong IL-10 producers upon activation. Taken together OX40 cosignaling in CAR redirected T cell activation effectively represses IL-10 secretion which contributes to counteract self-repression and provides a rationale to explore OX40 co-signaling CARs in order to prolong a redirected T cell response.
Collapse
Affiliation(s)
- Andreas A Hombach
- Center for Molecular Medicine Cologne (CMMC) and Tumor Genetics; Department I Internal Medicine; University of Cologne; Cologne, Germany
| | | | | | | | | |
Collapse
|
3
|
Harrop R, O’Neill E, Stern PL. Cancer stem cell mobilization and therapeutic targeting of the 5T4 oncofetal antigen. Ther Adv Vaccines Immunother 2019; 7:2515135518821623. [PMID: 30719508 PMCID: PMC6348545 DOI: 10.1177/2515135518821623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) can act as the cellular drivers of tumors harnessing stem cell properties that contribute to tumorigenesis either as founder elements or by the gain of stem cell traits by the malignant cells. Thus, CSCs can self-renew and generate the cellular heterogeneity of tumors including a hierarchical organization similar to the normal tissue. While the principle tumor growth contribution is often from the non-CSC components, it is the ability of small numbers of CSCs to avoid the effects of therapeutic strategies that can contribute to recurrence after treatment. However, identifying and characterizing CSCs for therapeutic targeting is made more challenging by their cellular potency being influenced by a particular tissue niche or by the capacity of more committed cells to regain stem cell functions. This review discusses the properties of CSCs including the limitations of the available cell surface markers, the assays that document tumor initiation and clonogenicity, the roles of epithelial mesenchymal transition and molecular pathways such as Notch, Wnt, Hippo and Hedgehog. The ability to target and eliminate CSCs is thought to be critical in the search for curative cancer treatments. The oncofetal tumor-associated antigen 5T4 (TBGP) has been linked with CSC properties in several different malignancies. 5T4 has functional attributes that are relevant to the spread of tumors including through EMT, CXCR4/CXCL12, Wnt, and Hippo pathways which may all contribute through the mobilization of CSCs. There are several different immunotherapies targeting 5T4 in development including antibody-drug conjugates, antibody-targeted bacterial super-antigens, a Modified Vaccinia Ankara-basedvaccine and 5T4-directed chimeric antigen receptor T-cells. These immune therapies would have the advantage of targeting both the bulk tumor as well as mobilized CSC populations.
Collapse
Affiliation(s)
- Richard Harrop
- Oxford BioMedica plc, Windrush Court, Transport Way, Oxford, OX4 6LT, UK
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Peter L. Stern
- Division of Molecular & Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Ghonime MG, Jackson J, Shah A, Roth J, Li M, Saunders U, Coleman J, Gillespie GY, Markert JM, Cassady KA. Chimeric HCMV/HSV-1 and Δγ 134.5 oncolytic herpes simplex virus elicit immune mediated antigliomal effect and antitumor memory. Transl Oncol 2017; 11:86-93. [PMID: 29216507 PMCID: PMC6002352 DOI: 10.1016/j.tranon.2017.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant gliomas are the most common primary brain tumor and are characterized by rapid and highly invasive growth. Because of their poor prognosis, new therapeutic strategies are needed. Oncolytic virotherapy (OV) is a promising strategy for treating cancer that incorporates both direct viral replication mediated and immune mediated mechanisms to kill tumor cells. C134 is a next generation Δγ134.5 oHSV-1 with improved intratumoral viral replication. It remains safe in the CNS environment by inducing early IFN signaling which restricts its replication in non-malignant cells. We sought to identify how C134 performed in an immunocompetent tumor model that restricts its replication advantage over first generation viruses. To achieve this we identified tumors that have intact IFN signaling responses that restrict C134 and first generation virus replication similarly. Our results show that both viruses elicit a T cell mediated anti-tumor effect and improved animal survival but that subtle difference exist between the viruses effect on median survival despite equivalent in vivo viral replication. To further investigate this we examined the anti-tumor activity in immunodeficient mice and in syngeneic models with re-challenge. These studies show that the T cell response is integral to C134 replication independent anti-tumor response and that OV therapy elicits a durable and circulating anti-tumor memory. The studies also show that repeated intratumoral administration can extend both OV anti-tumor effects and induce durable anti-tumor memory that is superior to tumor antigen exposure alone.
Collapse
Affiliation(s)
- Mohammed G Ghonime
- The Research Institute at Nationwide Children's Hospital-Center for Childhood Cancer and Blood Disorders, Columbus, OH, USA
| | - Josh Jackson
- University of Alabama at Birmingham-School of Medicine, Birmingham, AL, USA
| | - Amish Shah
- University of Alabama at Birmingham-School of Medicine, Birmingham, AL, USA
| | - Justin Roth
- University of Alabama at Birmingham-School of Medicine, Birmingham, AL, USA
| | - Mao Li
- Nationwide Children's Hospital Department of Pediatrics - Infectious Diseases, Columbus, OH, USA
| | - Ute Saunders
- University of Alabama at Birmingham-School of Medicine, Birmingham, AL, USA
| | - Jennifer Coleman
- University of Alabama at Birmingham-Department of Neurosurgery, Birmingham, AL, USA
| | - G Yancey Gillespie
- University of Alabama at Birmingham-Department of Neurosurgery, Birmingham, AL, USA
| | - James M Markert
- University of Alabama at Birmingham-School of Medicine, Birmingham, AL, USA; University of Alabama at Birmingham-Department of Neurosurgery, Birmingham, AL, USA
| | - Kevin A Cassady
- The Research Institute at Nationwide Children's Hospital-Center for Childhood Cancer and Blood Disorders, Columbus, OH, USA; Nationwide Children's Hospital Department of Pediatrics - Infectious Diseases, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
5
|
Abstract
Metastatic renal cell carcinoma (mRCC) continues to be associated with high rates of morbidity and mortality. Renal cell carcinoma (RCC) is typically resistant to cytotoxic chemotherapy, and while targeted therapies have activity and prolong progression-free and overall survival, responses are usually not durable. Modulating the immune system with cytokine therapy, vaccine therapy, cell therapy, and checkpoint inhibitors offers hope of prolonged survival. Standard and emerging immune therapy approaches and combinations of immune therapies and other modalities are reviewed.
Collapse
Affiliation(s)
- Susanna A Curtis
- Section of Medical Oncology, Department of Medicine, Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, 06510, CT, USA
| | - Justine V Cohen
- Section of Medical Oncology, Department of Medicine, Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, 06510, CT, USA
| | - Harriet M Kluger
- Section of Medical Oncology, Department of Medicine, Yale Cancer Center, 333 Cedar Street, PO Box 208028, New Haven, 06510, CT, USA.
| |
Collapse
|
6
|
Abstract
Adoptive cell therapy (ACT) of tumor-infiltrating lymphocytes (TILs) is a powerful form of immunotherapy by inducing durable complete responses that significantly extend the survival of melanoma patients. Mutation-derived neoantigens were recently identified as key factors for tumor recognition and rejection by TILs. The isolation of T-cell receptor (TCR) genes directed against neoantigens and their retransduction into peripheral T cells may provide a new form of ACT.Genetic modifications of T cells with chimeric antigen receptors (CARs) have demonstrated remarkable clinical results in hematologic malignancies, but are so far less effective in solid tumors. Only very limited reports exist in melanoma. Progress in CAR T-cell engineering, including neutralization of inhibitory signals or additional safety switches, may open opportunities also in melanoma.We review clinical results and latest developments of adoptive therapies with TILs, T-cell receptor, and CAR-modified T cells and discuss future directions for the treatment of melanoma.
Collapse
|
7
|
Stern PL, Harrop R. 5T4 oncofoetal antigen: an attractive target for immune intervention in cancer. Cancer Immunol Immunother 2017; 66:415-426. [PMID: 27757559 PMCID: PMC11029567 DOI: 10.1007/s00262-016-1917-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/12/2016] [Indexed: 01/18/2023]
Abstract
The natural history of a patient's cancer is often characterised by genetic diversity and sequential sweeps of clonal dominance. It is therefore not surprising that identifying the most appropriate tumour-associated antigen for targeted intervention is challenging. The 5T4 oncofoetal antigen was identified by searching for surface molecules shared between human trophoblast and cancer cells with the rationale that they may function to allow survival of the foetus as a semi-allograft in the mother or a tumour in its host. The 5T4 protein is expressed by many different cancers but rarely in normal adult tissues. 5T4 molecules are 72 kD, heavily N-glycosylated proteins with several leucine-rich repeats which are often associated with protein-protein interactions. 5T4 expression is associated with the directional movement of cells through epithelial mesenchymal transition, potentiation of CXCL12/CXCR4 chemotaxis and inhibition of canonical Wnt/beta-catenin while favouring non-canonical pathway signalling; all processes which help drive the spread of cancer cells. The selective pattern of 5T4 tumour expression, association with a tumour-initiating phenotype plus a mechanistic involvement with cancer spread have underwritten the clinical development of different immunotherapeutic strategies including a vaccine, a tumour-targeted superantigen and an antibody drug conjugate. In addition, a chimeric antigen receptor T cell approach targeting 5T4 expressing tumour cells is in pre-clinical development. A key challenge will include how best to combine each 5T4 targeted immunotherapy with the most appropriate standard of care treatment (or adjunct therapy) to maximise the recovery of immune control and ultimately eliminate the tumour.
Collapse
Affiliation(s)
- Peter L Stern
- Institute of Cancer Studies, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Richard Harrop
- Oxford BioMedica Plc, Windrush Court, Transport Way, Oxford, OX4 6LT, UK.
| |
Collapse
|
8
|
Maus MV, June CH. Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy. Clin Cancer Res 2016; 22:1875-84. [PMID: 27084741 DOI: 10.1158/1078-0432.ccr-15-1433] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/16/2016] [Indexed: 12/21/2022]
Abstract
Chimeric antigen receptors (CAR) are engineered fusion proteins constructed from antigen recognition, signaling, and costimulatory domains that can be expressed in cytotoxic T cells with the purpose of reprograming the T cells to specifically target tumor cells. CAR T-cell therapy uses gene transfer technology to reprogram a patient's own T cells to stably express CARs, thereby combining the specificity of an antibody with the potent cytotoxic and memory functions of a T cell. In early-phase clinical trials, CAR T cells targeting CD19 have resulted in sustained complete responses within a population of otherwise refractory patients with B-cell malignancies and, more specifically, have shown complete response rates of approximately 90% in patients with relapsed or refractory acute lymphoblastic leukemia. Given this clinical efficacy, preclinical development of CAR T-cell therapy for a number of cancer indications has been actively investigated, and the future of the CAR T-cell field is extensive and dynamic. Several approaches to increase the feasibility and safety of CAR T cells are currently being explored, including investigation into the mechanisms regulating the persistence of CAR T cells. In addition, numerous early-phase clinical trials are now investigating CAR T-cell therapy beyond targeting CD19, especially in solid tumors. Trials investigating combinations of CAR T cells with immune checkpoint blockade therapies are now beginning and results are eagerly awaited. This review evaluates several of the ongoing and future directions of CAR T-cell therapy.
Collapse
Affiliation(s)
- Marcela V Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | - Carl H June
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Abstract
Recent clinical success has underscored the potential for immunotherapy based on the adoptive cell transfer (ACT) of engineered T lymphocytes to mediate dramatic, potent, and durable clinical responses. This success has led to the broader evaluation of engineered T-lymphocyte-based adoptive cell therapy to treat a broad range of malignancies. In this review, we summarize concepts, successes, and challenges for the broader development of this promising field, focusing principally on lessons gleaned from immunological principles and clinical thought. We present ACT in the context of integrating T-cell and tumor biology and the broader systemic immune response.
Collapse
Affiliation(s)
- Marco Ruella
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
10
|
Bot A, Marincola F, Smith KA. Repositioning therapeutic cancer vaccines in the dawning era of potent immune interventions. Expert Rev Vaccines 2013; 12:1219-34. [PMID: 24099049 DOI: 10.1586/14760584.2013.836908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Based on lessons learned with various immune interventions, this review aims to provide a constructive framework for repositioning therapeutic cancer vaccination. Intensive research throughout the past decade has identified key hurdles interfering with the efficacy of cancer vaccines. The vaccination concept still holds promise if positioned appropriately in minimal residual disease and select early disease stage cancer indications. However, in advanced cancer, it must be integrated with complementary immune interventions to ensure reconstruction of a functional immune repertoire and simultaneous blockade of immune inhibiting mechanisms. Vaccination could render complex and integrative immune interventions simpler, safer and more effective. The near future will witness an explosion of activities in the cancer immunotherapy arena, witnessing a rational repositioning of vaccines rather than their extinction.
Collapse
|
11
|
Abstract
In recent years, an improved understanding of renal cell carcinoma (RCC) tumour biology has resulted in major advances in the treatment of patients with metastatic RCC (mRCC). Although immunotherapy with interleukin-2 and interferon-α was once the standard of care for mRCC, the introduction of novel agents targeting angiogenesis and signal transduction pathways has markedly improved patient outcomes. However, targeted agents rarely induce complete responses, and patients eventually develop resistance to therapy, prompting consideration of novel therapeutic approaches and a resurgence of interest in immunotherapy for RCC. Phase I/II trials of vaccination with allogeneic dendritic cell/tumour fusions in patients with mRCC have demonstrated immunological and clinical responses in some patients, and T-cell modulating agents (e.g. antibodies against programmed death 1 and cytotoxic T lymphocyte-associated antigen-4, or soluble lymphocyte activation gene-3) and dendritic cell-activating toll-like receptor agonists have also shown encouraging evidence of efficacy in early-phase clinical trials. These early studies suggest that immunotherapy may continue to be an effective approach for patients with mRCC. As such, a number of other strategies are currently under investigation, including adoptive cell transfer (ACT) with T cells modified to target proteins expressed by renal tumours such as MAGE-A3/12, DR4 and TRAIL, and ACT with autologous natural killer cells. Results from trials of novel immunotherapies are encouraging, with data from other indications helping to facilitate development. To realise the full benefit for patients, it is likely that immunotherapy will need to be combined with targeted agents or other agents. Novel therapies used in combination or sequentially have the potential to improve outcomes in mRCC, and results from ongoing/planned trials will shape future therapy.
Collapse
Affiliation(s)
- B Escudier
- Department of Medical Oncology, Institut Gustave-Roussy, Villejuif/Paris-Sud, France.
| |
Collapse
|
12
|
Maher J. Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN ONCOLOGY 2012; 2012:278093. [PMID: 23304553 PMCID: PMC3523553 DOI: 10.5402/2012/278093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/11/2022]
Abstract
Chimeric antigen receptor- (CAR-) based immunotherapy has been under development for almost 25 years, over which period it has progressed from a new but cumbersome technology to an emerging therapeutic modality for malignant disease. The approach involves the genetic engineering of fusion receptors (CARs) that couple the HLA-independent binding of cell surface target molecules to the delivery of a tailored activating signal to host immune cells. Engineered CARs are delivered most commonly to peripheral blood T cells using a range of vector systems, most commonly integrating viral vectors. Preclinical refinement of this approach has proceeded over several years to the point that clinical testing is now being undertaken at several centres, using increasingly sophisticated and therapeutically successful genetic payloads. This paper considers several aspects of the pre-clinical and clinical development of CAR-based immunotherapy and how this technology is acquiring an increasing niche in the treatment of both solid and haematological malignancies.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Department of Research Oncology, King's Health Partners Integrated Cancer Centre, King's College London, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Barnet and Chase Farm Hospitals NHS Trust, Barnet, Hertfordshire EN5 3DJ, UK
- Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
13
|
Mondino A, Dardalhon V, Hess Michelini R, Loisel-Meyer S, Taylor N. Redirecting the immune response: role of adoptive T cell therapy. Hum Gene Ther 2010; 21:533-41. [PMID: 20201627 DOI: 10.1089/hum.2010.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adoptive T cell therapy is aimed at overcoming constraints of the endogenous immune response. In patients with malignancies, this approach is based on the possibility of administering sufficient numbers of tumor-reactive lymphocytes under conditions in which they will promote a therapeutic response. Although this strategy is potentially applicable to a vast number of malignancies, its efficacy, to date, has been limited. This is likely related to several factors including an insufficient persistence and reactivation of infused cells, insufficient tumor infiltration, and the presence of an immunosuppressive environment. Here, we review the importance of pretransplantation host conditioning and posttransplantation strategies that have been shown to contribute to the therapeutic efficacy of infused T lymphocytes.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | | | | | | |
Collapse
|
14
|
Coccoris M, Straetemans T, Govers C, Lamers C, Sleijfer S, Debets R. T cell receptor (TCR) gene therapy to treat melanoma: lessons from clinical and preclinical studies. Expert Opin Biol Ther 2010; 10:547-62. [PMID: 20146634 DOI: 10.1517/14712591003614756] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Adoptive T cell therapy (ACT) with tumour infiltrating lymphocytes is currently the best treatment option for metastatic melanoma. Despite its clinical successes, ACT has limitations in availability and generation of therapeutic T cells for a larger group of patients. Introduction of tumour-specific T cell receptors into T cells, termed TCR gene therapy, can provide an alternative for ACT that is more widely applicable and might be extended to other types of cancer. AREAS COVERED IN THIS REVIEW The current status of TCR gene therapy studies including clinical challenges, such as on-target toxicity, compromised anti-tumour T cell responses, compromised T cell persistence and potential immunogenicity of receptor transgenes. Strategies to address these challenges are covered. WHAT THE READER WILL GAIN A listing and discussion of strategies that aim at improving the efficacy and safety of TCR gene therapy. Such strategies address antigen choice, TCR mis-pairing, functional avidity and persistence of T cells, immune responses towards receptor transgenes, and combination of ACT with other therapies. TAKE HOME MESSAGE To ensure further clinical development of TCR gene therapy, it is necessary to choose safe T cell target antigens, and implement (combinations of) strategies that enhance the correct pairing of TCR transgenes and the functional avidity and persistence of T cells.
Collapse
Affiliation(s)
- Miriam Coccoris
- Erasmus MC-Daniel den Hoed Cancer Center, Laboratory of Experimental Tumor immunology, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Hawkins RE, Gilham DE, Debets R, Eshhar Z, Taylor N, Abken H, Schumacher TN. Development of Adoptive Cell Therapy for Cancer: A Clinical Perspective. Hum Gene Ther 2010; 21:665-72. [DOI: 10.1089/hum.2010.086] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robert E. Hawkins
- Cellular Therapy Group, School of Cancer and Enabling Sciences, The Paterson Institute of Cancer Research, The University of Manchester, Manchester M20 4BX, United Kingdom
| | - David E. Gilham
- Cellular Therapy Group, School of Cancer and Enabling Sciences, The Paterson Institute of Cancer Research, The University of Manchester, Manchester M20 4BX, United Kingdom
| | - Reno Debets
- Laboratory of Experimental Tumor Immunology, Department of Medical Oncology, Erasmus MC-Daniel den Hoed Cancer Center, 3075EA Rotterdam, The Netherlands
| | - Zelig Eshhar
- The Weizmann Institute of Science, Department of Immunology, 76100 Rehovot, Israel
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, 34293 Montpellier, France
| | - Hinrich Abken
- Klinik I für Innere Medizin and Zentrum für Molekulare Medizin Köln, Universitat zu Köln, 50931 Köln, Germany
| | - Ton N. Schumacher
- The Division of Immunology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
16
|
Elkord E, Shablak A, Stern PL, Hawkins RE. 5T4 as a target for immunotherapy in renal cell carcinoma. Expert Rev Anticancer Ther 2010; 9:1705-9. [PMID: 19954280 DOI: 10.1586/era.09.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Shablak A, Hawkins RE, Rothwell DG, Elkord E. T cell-based immunotherapy of metastatic renal cell carcinoma: modest success and future perspective. Clin Cancer Res 2009; 15:6503-10. [PMID: 19843660 DOI: 10.1158/1078-0432.ccr-09-1605] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastatic renal cell carcinoma (MRCC) remains a challenging malignancy to treat. Cancer immunotherapies have been extensively explored in melanoma and RCC as they poorly respond to conventional cytotoxic agents but show responses to a variety of immunologic agents. The recent considerable success of T cell-based immunotherapy in melanoma warrants further efforts to apply this treatment to other cancers including MRCC. Although RCC is an immunosensitive cancer, similar attempts in MRCC have shown a very limited success. In this review, we summarize the clinical data on T cell-based immunotherapies for MRCC showing the modest success that has been achieved to date. More importantly, we discuss potential strategies for improving its efficacy for the treatment of MRCC in light of the important achievements for treating metastatic melanoma. In particular, the growing evidence of success by combining expanded tumor-infiltrating lymphocytes with lymphodepletion merits investigation in MRCC. Identifying new RCC-associated antigens, optimized methods, and conditions for detection, isolation, and/or modification and expansion of tumor-specific T cells are all important strategies to be pursued for improving T cell-based immunotherapy of MRCC.
Collapse
Affiliation(s)
- Alaaeldin Shablak
- Department of Medical Oncology, School of Cancer, Enabling Sciences and Technology, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | | | | | |
Collapse
|
18
|
Turner JD, Langley RS, Johnston KL, Gentil K, Ford L, Wu B, Graham M, Sharpley F, Slatko B, Pearlman E, Taylor MJ. Wolbachia lipoprotein stimulates innate and adaptive immunity through Toll-like receptors 2 and 6 to induce disease manifestations of filariasis. J Biol Chem 2009; 284:22364-22378. [PMID: 19458089 PMCID: PMC2755959 DOI: 10.1074/jbc.m901528200] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Indexed: 01/18/2023] Open
Abstract
Wolbachia endosymbiotic bacteria have been implicated in the inflammatory pathogenesis of filariasis. Inflammation induced by Brugia malayi female worm extract (BMFE) is dependent on Toll-like receptors 2 and 6 (TLR2/6) with only a partial requirement for TLR1. Removal of Wolbachia, lipids, or proteins eliminates all inflammatory activity. Wolbachia bacteria contain the lipoprotein biosynthesis genes Ltg and LspA but not Lnt, suggesting Wolbachia proteins cannot be triacylated, accounting for recognition by TLR2/6. Lipoprotein databases revealed 3-11 potential lipoproteins from Wolbachia. Peptidoglycan-associated lipoprotein (PAL) and Type IV secretion system-VirB6 were consistently predicted, and B. malayi Wolbachia PAL (wBmPAL) was selected for functional characterization. Diacylated 20-mer peptides of wBmPAL (Diacyl Wolbachia lipopeptide (Diacyl WoLP)) showed a near identical TLR2/6 and TLR2/1 usage compared with BMFE and bound directly to TLR2. Diacyl WoLP induced systemic tumor necrosis factor-alpha and neutrophil-mediated keratitis in mice. Diacyl WoLP activated monocytes induce up-regulation of gp38 on human lymphatic endothelial cells and induced dendritic cell maturation and activation. Dendritic cells primed with BMFE generated a non-polarized Th1/Th2 CD4+ T cell profile, whereas priming with Wolbachia depleted extracts (following tetracycline treatment; BMFEtet) polarized to a Th2 profile that could be reversed by reconstitution with Diacyl WoLP. BMFE generated IgG1 and IgG2c antibody responses, whereas BMFEtet or inoculation of TLR2 or MyD88-/- mice produced defective IgG2c responses. Thus, in addition to innate inflammatory activation, Wolbachia lipoproteins drive interferon-gamma-dependent CD4+ T cell polarization and antibody switching.
Collapse
Affiliation(s)
- Joseph D. Turner
- From the Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - R. Stuart Langley
- From the Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Kelly L. Johnston
- From the Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Katrin Gentil
- the Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Louise Ford
- From the Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Bo Wu
- New England Biolabs, Ipswich, Massachusetts 01938
| | - Maia Graham
- From the Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Faye Sharpley
- From the Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | | | - Eric Pearlman
- the Department of Ophthalmology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Mark J. Taylor
- From the Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
19
|
Bullain SS, Sahin A, Szentirmai O, Sanchez C, Lin N, Baratta E, Waterman P, Weissleder R, Mulligan RC, Carter BS. Genetically engineered T cells to target EGFRvIII expressing glioblastoma. J Neurooncol 2009; 94:373-82. [PMID: 19387557 DOI: 10.1007/s11060-009-9889-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
Glioblastoma remains a significant therapeutic challenge, warranting further investigation of novel therapies. We describe an immunotherapeutic strategy to treat glioblastoma based on adoptive transfer of genetically modified T-lymphocytes (T cells) redirected to kill EGFRvIII expressing gliomas. We constructed a chimeric immune receptor (CIR) specific to EGFRvIII, (MR1-zeta). After in vitro selection and expansion, MR1-zeta genetically modified primary human T-cells specifically recognized EGFRvIII-positive tumor cells as demonstrated by IFN-gamma secretion and efficient tumor lysis compared to control CIRs defective in EGFRvIII binding (MRB-zeta) or signaling (MR1-delzeta). MR1-zeta expressing T cells also inhibited EGFRvIII-positive tumor growth in vivo in a xenografted mouse model. Successful targeting of EGFRvIII-positive tumors via adoptive transfer of genetically modified T cells may represent a new immunotherapy strategy with great potential for clinical applications.
Collapse
Affiliation(s)
- Szofia S Bullain
- Neurosurgical Service, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sadelain M, Brentjens R, Rivière I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol 2009; 21:215-23. [PMID: 19327974 DOI: 10.1016/j.coi.2009.02.009] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/25/2009] [Indexed: 12/26/2022]
Abstract
One important purpose of T cell engineering is to generate tumor-targeted T cells through the genetic transfer of antigen-specific receptors, which consist of either physiological, MHC-restricted T cell receptors (TCRs) or non MHC-restricted chimeric antigen receptors (CARs). CARs combine antigen-specificity and T cell activating properties in a single fusion molecule. First generation CARs, which included as their signaling domain the cytoplasmic region of the CD3zeta or Fc receptor gamma chain, effectively redirected T cell cytotoxicity but failed to enable T cell proliferation and survival upon repeated antigen exposure. Receptors encompassing both CD28 and CD3zeta are the prototypes for second generation CARs, which are now rapidly expanding to a diverse array of receptors with different functional properties. First generation CARs have been tested in phase I clinical studies in patients with ovarian cancer, renal cancer, lymphoma, and neuroblastoma, where they have induced modest responses. Second generation CARs, which are just now entering the clinical arena in the B cell malignancies and other cancers, will provide a more significant test for this approach. If the immunogenicity of CARs can be averted, the versatility of their design and HLA-independent antigen recognition will make CARs tools of choice for T cell engineering for the development of targeted cancer immunotherapies.
Collapse
Affiliation(s)
- Michel Sadelain
- Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
21
|
Georgaki S, Skopeliti M, Tsiatas M, Nicolaou KA, Ioannou K, Husband A, Bamias A, Dimopoulos MA, Constantinou AI, Tsitsilonis OE. Phenoxodiol, an anticancer isoflavene, induces immunomodulatory effects in vitro and in vivo. J Cell Mol Med 2009; 13:3929-38. [PMID: 19220577 PMCID: PMC4516540 DOI: 10.1111/j.1582-4934.2009.00695.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phenoxodiol (PXD) is a synthetic analogue of the plant isoflavone genistein with improved anticancer efficacy. Various properties and mechanisms of action have been attributed to the drug, the most important being its ability to sensitize resistant tumour cells to chemotherapy, which led to its fast track FDA approval for phase II/III clinical trials. In this study, we examined the effects of PXD on human peripheral blood mononuclear cells (PBMC) and its potential role in regulating immune responses. We show that PXD, at concentrations ≥1 μg/ml (4 μM), inhibited proliferation and reduced the viability of healthy donor-derived PBMC. In contrast, lower PXD concentrations (0.05–0.5 μg/ml) augmented, upon 3-day incubation, PBMC cytotoxicity. Experiments with purified CD56+ lymphocytes revealed that PXD enhanced the lytic function of natural killer (NK) cells by directly stimulating this lymphocytic subpopulation. Furthermore, in an in vivo colon cancer model, Balb/C mice administered low-dose PXD, exhibited significantly reduced tumour growth rates and prolonged survival (in 40% of the animals). Ex vivo results showed that PXD stimulated both NK and tumour-specific cell lytic activity. We conclude that PXD, when administered at low concentrations, can act as an immunomodulator, enhancing impaired immune responses, often seen in cancer-bearing individuals.
Collapse
Affiliation(s)
- Sylvianna Georgaki
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
For many years, various cancer vaccines have been widely evaluated, however clinical responses remain rare. In this review, we attempt to address the question of which delivery strategies and platforms are feasible to produce clinical response and define the characteristics of the strategy that will induce long-lasting antitumor response. We limit our analysis and discussion to microparticles/nanoparticles, liposomes, heat-shock proteins, viral vectors and different types of adjuvants. This review aims to provide an overview of the specific characteristics, strengths and limitations of these delivery systems, focusing on their impacts on the development of melanoma vaccine. To date, only adoptive T-cell transfer has shown promising clinical outcomes compared to other treatments.
Collapse
Affiliation(s)
- Yin Hwa Lai
- Department of Pharmaceutical Sciences, Mercer University, College of Pharmacy and Health Sciences, Atlanta, GA 30341, USA.
| | | |
Collapse
|
23
|
Elkord E, Hawkins RE, Stern PL. Immunotherapy for gastrointestinal cancer: current status and strategies for improving efficacy. Expert Opin Biol Ther 2008; 8:385-95. [PMID: 18352844 DOI: 10.1517/14712598.8.4.385] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite improvement in conventional strategies for treating gastrointestinal (GI) carcinoma, large numbers of patients still suffer from incurable or progressive disease. OBJECTIVE Here we consider the prospects for circumventing limitations and maximising the efficacy of different immunotherapies. METHODS We summarise different cancer vaccines and targeted drugs and highlight the scientific rationale of using immunotherapy for targeting GI cancers, in addition to the potential strategies for improving immunotherapeutic efficacy. RESULTS/CONCLUSION Many cancer vaccines and antibody-directed therapies have been tested in early phase clinical trials and demonstrated proof of concept and safety. As yet few have been properly evaluated for clinical efficacy; although adoptive transfer of tumour-associated-antigen-specific T cells has shown dramatic clinical responses in some patients. The recognition of a role for T regulatory cells in limiting anti-tumour immunity has provided momentum for developing strategies to over-ride such immunoinhibitory effects. There is some evidence that conventional therapies may work by influencing these negative factors and allowing expression of immune control mechanisms. An important developing area for clinical evaluation is the testing of combined conventional and immunotherapeutic modalities which may provide for synergy; thereby circumventing the limitations of individualised treatments and generating additional clinical benefits.
Collapse
Affiliation(s)
- Eyad Elkord
- University of Manchester, Paterson Institute for Cancer Research, Department of Medical Oncology, Wilmslow Road, Manchester M20 4BX, UK.
| | | | | |
Collapse
|
24
|
|