1
|
Harding J, Vintersten-Nagy K, Yang H, Tang JK, Shutova M, Jong ED, Lee JH, Massumi M, Oussenko T, Izadifar Z, Zhang P, Rogers IM, Wheeler MB, Lye SJ, Sung HK, Li C, Izadifar M, Nagy A. Immune-privileged tissues formed from immunologically cloaked mouse embryonic stem cells survive long term in allogeneic hosts. Nat Biomed Eng 2024; 8:427-442. [PMID: 37996616 PMCID: PMC11087263 DOI: 10.1038/s41551-023-01133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/30/2023] [Indexed: 11/25/2023]
Abstract
The immunogenicity of transplanted allogeneic cells and tissues is a major hurdle to the advancement of cell therapies. Here we show that the overexpression of eight immunomodulatory transgenes (Pdl1, Cd200, Cd47, H2-M3, Fasl, Serpinb9, Ccl21 and Mfge8) in mouse embryonic stem cells (mESCs) is sufficient to immunologically 'cloak' the cells as well as tissues derived from them, allowing their survival for months in outbred and allogeneic inbred recipients. Overexpression of the human orthologues of these genes in human ESCs abolished the activation of allogeneic human peripheral blood mononuclear cells and their inflammatory responses. Moreover, by using the previously reported FailSafe transgene system, which transcriptionally links a gene essential for cell division with an inducible and cell-proliferation-dependent kill switch, we generated cloaked tissues from mESCs that served as immune-privileged subcutaneous sites that protected uncloaked allogeneic and xenogeneic cells from rejection in immune-competent hosts. The combination of cloaking and FailSafe technologies may allow for the generation of safe and allogeneically accepted cell lines and off-the-shelf cell products.
Collapse
Affiliation(s)
- Jeffrey Harding
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Kristina Vintersten-Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Huijuan Yang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jean Kit Tang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Shutova
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Eric D Jong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad Massumi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Tatiana Oussenko
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Zohreh Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Puzheng Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - ChengJin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Mohammad Izadifar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Xu G, Fatima A, Breitbach M, Kuzmenkin A, Fügemann CJ, Ivanyuk D, Kim KP, Cantz T, Pfannkuche K, Schoeler HR, Fleischmann BK, Hescheler J, Šarić T. Electrophysiological Properties of Tetraploid Cardiomyocytes Derived from Murine Pluripotent Stem Cells Generated by Fusion of Adult Somatic Cells with Embryonic Stem Cells. Int J Mol Sci 2023; 24:ijms24076546. [PMID: 37047520 PMCID: PMC10095437 DOI: 10.3390/ijms24076546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Most cardiomyocytes (CMs) in the adult mammalian heart are either binucleated or contain a single polyploid nucleus. Recent studies have shown that polyploidy in CMs plays an important role as an adaptive response to physiological demands and environmental stress and correlates with poor cardiac regenerative ability after injury. However, knowledge about the functional properties of polyploid CMs is limited. In this study, we generated tetraploid pluripotent stem cells (PSCs) by fusion of murine embryonic stem cells (ESCs) and somatic cells isolated from bone marrow or spleen and performed a comparative analysis of the electrophysiological properties of tetraploid fusion-derived PSCs and diploid ESC-derived CMs. Fusion-derived PSCs exhibited characteristics of genuine ESCs and contained a near-tetraploid genome. Ploidy features and marker expression were also retained during the differentiation of fusion-derived cells. Fusion-derived PSCs gave rise to CMs, which were similar to their diploid ESC counterparts in terms of their expression of typical cardiospecific markers, sarcomeric organization, action potential parameters, response to pharmacologic stimulation with various drugs, and expression of functional ion channels. These results suggest that the state of ploidy does not significantly affect the structural and electrophysiological properties of murine PSC-derived CMs. These results extend our knowledge of the functional properties of polyploid CMs and contribute to a better understanding of their biological role in the adult heart.
Collapse
|
3
|
Ibáñez-Molero S, van Vliet A, Pozniak J, Hummelink K, Terry AM, Monkhorst K, Sanders J, Hofland I, Landeloos E, Van Herck Y, Bechter O, Kuilman T, Zhong W, Marine JC, Wessels L, Peeper DS. SERPINB9 is commonly amplified and high expression in cancer cells correlates with poor immune checkpoint blockade response. Oncoimmunology 2022; 11:2139074. [PMID: 36465485 PMCID: PMC9710519 DOI: 10.1080/2162402x.2022.2139074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Immunotherapies, in particular immune checkpoint blockade (ICB), have improved the clinical outcome of cancer patients, although many fail to mount a durable response. Several resistance mechanisms have been identified, but our understanding of the requirements for a robust ICB response is incomplete. We have engineered an MHC I/antigen: TCR-matched panel of human NSCLC cancer and T cells to identify tumor cell-intrinsic T cell resistance mechanisms. The top differentially expressed gene in resistant tumor cells was SERPINB9. This serine protease inhibitor of the effector T cell-derived molecule granzyme B prevents caspase-mediated tumor apoptosis. Concordantly, we show that genetic ablation of SERPINB9 reverts T cell resistance of NSCLC cell lines, whereas its overexpression reduces T cell sensitivity. SERPINB9 expression in NSCLC strongly correlates with a mesenchymal phenotype. We also find that SERPINB9 is commonly amplified in cancer, particularly melanoma in which it is indicative of poor prognosis. Single-cell RNA sequencing of ICB-treated melanomas revealed that SERPINB9 expression is elevated not only in cells from post- versus pre-treatment cancers, but also in ICB-refractory cancers. In NSCLC we commonly observed rare SERPINB9-positive cancer cells, possibly accounting for reservoirs of ICB-resistant cells. While underscoring SERPINB9 as a potential target to combat immunotherapy resistance, these results suggest its potential to serve as a prognostic and predictive biomarker.
Collapse
Affiliation(s)
- Sofía Ibáñez-Molero
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands
| | - Alex van Vliet
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands
| | - Joanna Pozniak
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Karlijn Hummelink
- Department of Thoracic oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands,Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Alexandra M. Terry
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands,Current address: Genmab, Utrecht, The Netherlands
| | - Kim Monkhorst
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ingrid Hofland
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Yannick Van Herck
- Department of General Medical Oncology, UZ Leuven Laboratory of Experimental Oncology, Leuven, Belgium
| | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven Laboratory of Experimental Oncology, Leuven, Belgium
| | - Thomas Kuilman
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands,Current address: Neogene Therapeutics, Amsterdam, The Netherlands
| | | | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Lodewyk Wessels
- Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daniel S. Peeper
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan, Amsterdam, the Netherlands,CONTACT Daniel S. Peeper Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam1066 CX, the Netherlands
| |
Collapse
|
4
|
Wang WJ, Wang J, Ouyang C, Chen C, Xu XF, Ye XQ. Overview of serpin B9 and its roles in cancer (Review). Oncol Rep 2021; 46:190. [PMID: 34278491 DOI: 10.3892/or.2021.8141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
Serine proteinase inhibitor B9 (serpin B9) is a member of the serine protease inhibitor superfamily, which is widely found in animals, plants and microorganisms. Serpin B9 has been reported to protect cells from the immune‑killing effect of granzyme B (GrB) released by lymphocytes. In recent years, an increasing number of studies have indicated that serpin B9 is involved in tumour apoptosis, immune evasion, tumorigenesis, progression, metastasis, drug resistance and even in maintaining the stemness of cancer stem cells (CSCs). Moreover, according to clinical studies, serpin B9 has been demonstrated to be significantly associated with the development of precancerous lesions, a poor prognosis and ineffective therapies, suggesting that serpin B9 may be a potential target for cancer treatment and an indicator of cancer diagnosis; thus, it has begun to attract increased attention from scholars. The present review concisely described the structure and biological functions of the serpin superfamily and serpin B9. In addition, related research on serpins in cancer is discussed in order to provide a comprehensive understanding of the role of serpin B9 in cancer, as well as its clinical significance for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiao Wang
- Department of Respiratory Diseases, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Chao Ouyang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chong Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Feng Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Qun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
5
|
Enhanced single-cell viability using 30Kc6 for efficient expansion of human induced pluripotent stem cells. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Johannsen H, Muppala V, Gröschel C, Monecke S, Elsner L, Didié M, Zimmermann WH, Dressel R. Immunological Properties of Murine Parthenogenetic Stem Cells and Their Differentiation Products. Front Immunol 2017; 8:924. [PMID: 28824647 PMCID: PMC5543037 DOI: 10.3389/fimmu.2017.00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/20/2017] [Indexed: 12/27/2022] Open
Abstract
The perspective to transplant grafts derived from pluripotent stem cells has gained much attention in recent years. Parthenogenetic stem cells (PSCs) are an alternative pluripotent stem cell type that is attractive as source of grafts for allogeneic transplantations because most PSCs are haploidentical for the major histocompatibility complex (MHC). This reduced immunogenetic complexity of PSCs could tremendously simplify the search for MHC-matched allogeneic stem cells. In this study, we have characterized immunological properties of the MHC haploidentical PSC line A3 (H2d/d) and the heterologous PSC line A6 (H2b/d). Both PSC lines largely lack MHC class I molecules, which present peptides to cytotoxic T lymphocytes (CTLs) and serve as ligands for inhibitory natural killer (NK) receptors. They express ligands for activating NK receptors, including the NKG2D ligand RAE-1, and the DNAM-1 ligands CD112 and CD155. Consequently, both PSC lines are highly susceptible to killing by IL-2-activated NK cells. In vitro-differentiated cells acquire resistance and downregulate ligands for activating NK receptors but fail to upregulate MHC class I molecules. The PSC line A6 and differentiated A6 cells are largely resistant to CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the appropriate peptide. The high susceptibility to killing by activated NK cells may constitute a general feature of pluripotent stem cells as it has been also found with other pluripotent stem cell types. This activity potentially increases the safety of transplantations, if grafts contain traces of undifferentiated cells that could be tumorigenic in the recipient.
Collapse
Affiliation(s)
- Hannah Johannsen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Vijayakumar Muppala
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Carina Gröschel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Sebastian Monecke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Didié
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Hombach AA, Abken H. Shared target antigens on cancer cells and tissue stem cells: go or no-go for CAR T cells? Expert Rev Clin Immunol 2016; 13:151-155. [PMID: 27546707 DOI: 10.1080/1744666x.2016.1221763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Adoptive therapy with chimeric antigen receptor (CAR) T cells redirected towards CD19 produces remissions of B cell malignancies, however, it also eradicates healthy B cells sharing the target antigen. Such 'on-target off-tumor' toxicity raises serious safety concerns when the target antigen is also expressed by tissue stem cells, with the risk of lasting tissue destruction. Areas covered: We discuss CAR T cell targeting of activation antigens versus lineage associated antigens on the basis of recent experimental and animal data and the literature in the field. Expert commentary: Targeting an activation associated antigen which is transiently expressed by stem cells seems to be safe, like CAR T cells targeting CD30 spare CD30+ hematopoietic stem and progenitor cells while eliminating CD30+ lymphoma cells, whereas targeting lineage associated antigens which increase in expression during cell maturation, like folate receptor-β and CD123, is of risk to destruct tissue stem cells.
Collapse
Affiliation(s)
- Andreas A Hombach
- a Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,b Department I of Internal Medicine , University Hospital Cologne , Cologne , Germany
| | - Hinrich Abken
- a Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,b Department I of Internal Medicine , University Hospital Cologne , Cologne , Germany
| |
Collapse
|
8
|
Emerging Implications for Extracellular Matrix-Based Technologies in Vascularized Composite Allotransplantation. Stem Cells Int 2016; 2016:1541823. [PMID: 26839554 PMCID: PMC4709778 DOI: 10.1155/2016/1541823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Despite recent progress in vascularized composite allotransplantation (VCA), limitations including complex, high dose immunosuppression regimens, lifelong risk of toxicity from immunosuppressants, acute and most critically chronic graft rejection, and suboptimal nerve regeneration remain particularly challenging obstacles restricting clinical progress. When properly configured, customized, and implemented, biomaterials derived from the extracellular matrix (ECM) retain bioactive molecules and immunomodulatory properties that can promote stem cell migration, proliferation and differentiation, and constructive functional tissue remodeling. The present paper reviews the emerging implications of ECM-based technologies in VCA, including local immunomodulation, tissue repair, nerve regeneration, minimally invasive graft targeted drug delivery, stem cell transplantation, and other donor graft manipulation.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Ongoing research is constantly looking for means to modulate the immune system for long-lasting engraftment of pluripotent stem cells (PSC) during stem cell-based therapies. This study reviews data on in-vitro and in-vivo immunogenicity of embryonic and induced-PSC and describes how their immunological properties can be harnessed for tolerance induction in organ transplantation. RECENT FINDINGS Although PSC display immunomodulatory properties in vitro, they are capable of eliciting an immune response that leads to cell rejection when transplanted into immune-competent recipients. Nevertheless, long-term acceptance of PSC-derived cells/tissues in an allogeneic environment can be achieved using minimal host conditioning. Protocols for differentiating PSC towards haematopoietic stem cells, thymic epithelial precursors, dendritic cells, regulatory T cells and myeloid-derived suppressor cells are being developed, suggesting the possibility to use PSC-derived immunomodulatory cells to induce tolerance to a solid organ transplant. SUMMARY PSC and/or their derivatives possess unique immunological properties that allow for acceptance of PSC-derived tissue with minimal host conditioning. Investigators involved either in regenerative or in transplant medicine must join their efforts with the ultimate aim of using PSC as a source of donor-specific cells that would create a protolerogenic environment to achieve tolerance in solid organ transplantation.
Collapse
|
10
|
Chen HF, Yu CY, Chen MJ, Chou SH, Chiang MS, Chou WH, Ko BS, Huang HP, Kuo HC, Ho HN. Characteristic Expression of Major Histocompatibility Complex and Immune Privilege Genes in Human Pluripotent Stem Cells and Their Derivatives. Cell Transplant 2015; 24:845-64. [DOI: 10.3727/096368913x674639] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), have been regarded as useful sources for cell-based transplantation therapy. However, immunogenicity of the cells remains the major determinant for successful clinical application. We report the examination of several hESC lines (NTU1 and H9), hiPSC lines, and their derivatives (including stem cell-derived hepatocytes) for the expression of major histocompatibility complex (MHC), natural killer (NK) cell receptor (NKp30, NKp44, NKp46) ligand, immune-related genes, human leukocyte antigen (HLA) haplotyping, and the effects in functional mixed lymphocyte reaction (MLR). Flow cytometry showed lower levels (percentages and fluorescence intensities) of MHC class I (MHC-I) molecules, β2-microglobulin, and HLA-E in undifferentiated stem cells. The levels were increased after cotreatment with interferon-γ and/or in vitro differentiation. Antigen-presenting cell markers (CD11c, CD80, and CD86) and MHC-II (HLA-DP, -DQ, and -DR) remained low throughout the treatments. Recognition of stem cells/derivatives by NK lysis receptors were lower or absent. Activation of responder lymphocytes was significantly lower by undifferentiated stem cells than by allogeneic lymphocytes in MLR, but differentiated NTU1 hESCs induced a cell number-dependent lymphocyte proliferation comparable with that by allogeneic lymphocytes. Interestingly, activation of lymphocytes by differentiated hiPSCs or H9 cells became blunted at higher cell numbers. Real-time reverse transcriptase PCR (RT-PCR) showed significant differential expression of immune privilege genes ( TGF-β2, Arginase 2, Indole 1, GATA3, POMC, VIP, CALCA, CALCB, IL-1RN, CD95L, CR1L, Serpine 1, HMOX1, IL6, LGALS3, HEBP1, THBS1, CD59, and LGALS1) in pluripotent stem cells/derivatives when compared to somatic cells. It was concluded that pluripotent stem cells/derivatives are predicted to be immunogenic, though evidence suggests some level of potential immune privilege. In addition, differential immunogenicity may exist between different pluripotent stem cell lines and their derivatives.
Collapse
Affiliation(s)
- Hsin-Fu Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Ying Yu
- Institute of Cellular and Organismic Biology and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Jou Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Taipei, Taiwan
| | - Ming-Shan Chiang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsi Chou
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Cellular and Systemic Medicine, National Health Research Institute, Miaoli County, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hong-Nerng Ho
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Aldahmash A, Atteya M, Elsafadi M, Al-Nbaheen M, Al-Mubarak HA, Vishnubalaji R, Al-Roalle A, Al-Harbi S, Manikandan M, Matthaei KI, Mahmood A. Teratoma formation in immunocompetent mice after syngeneic and allogeneic implantation of germline capable mouse embryonic stem cells. Asian Pac J Cancer Prev 2015; 14:5705-11. [PMID: 24289566 DOI: 10.7314/apjcp.2013.14.10.5705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Embryonic stem cells (ESCs) have the potential to form teratomas when implanted into immunodeficient mice, but data in immunocompetent mice are limited. We therefore investigated teratoma formation after implantation of three different mouse ESC (mESC) lines into immunocompetent mice. MATERIALS AND METHODS BALB/c mice were injected with three highly germline competent mESCs (129Sv, BALB/c and C57BL/6) subcutaneously or under the kidney capsule. After 4 weeks, mice were euthanized and examined histologically for teratoma development. The incidence, size and composition of teratomas were compared using Pearson Chi-square, t-test for dependent variables, one-way analysis of variance and the nonparametric Kruskal- Wallis analysis of variance and median test. RESULTS Teratomas developed from all three cell lines. The incidence of formation was significantly higher under the kidney capsule compared to subcutaneous site and occurred in both allogeneic and syngeneic mice. Overall, the size of teratoma was largest with the 129Sv cell line and under the kidney capsule. Diverse embryonic stem cell-derived tissues, belonging to the three embryonic germ layers, were encountered, reflecting the pluripotency of embryonic stem cells. Most commonly represented tissues were nervous tissue, keratinizing stratified squamous epithelium (ectoderm), smooth muscle, striated muscle, cartilage, bone (mesoderm), and glandular tissue in the form of gut- and respiratory-like epithelia (endoderm). CONCLUSIONS ESCs can form teratomas in immunocompetent mice and, therefore, removal of undifferentiated ESC is a pre-requisite for a safe use of ESC in cell-based therapies. In addition the genetic relationship of the origin of the cell lines to the ability to transplant plays a major role.
Collapse
Affiliation(s)
- Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University and King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia E-mail : ,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Although cellular therapies hold great promise for the treatment of human disease, results from several initial clinical trials have not shown a level of efficacy required for their use as a first line therapy. Here we discuss how in vivo molecular imaging has helped identify barriers to clinical translation and potential strategies that may contribute to successful transplantation and improved outcomes, with a focus on cardiovascular and neurological diseases. We conclude with a perspective on the future role of molecular imaging in defining safety and efficacy for clinical implementation of stem cell therapies.
Collapse
|
13
|
Kim EM, Miyake B, Aggarwal M, Voetlause R, Griffith M, Zavazava N. Embryonic stem cell-derived haematopoietic progenitor cells down-regulate the CD3 ξ chain on T cells, abrogating alloreactive T cells. Immunology 2014; 142:421-30. [PMID: 24527810 DOI: 10.1111/imm.12268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 11/29/2022] Open
Abstract
Murine embryonic stem (ES) cell-derived haematopoietic progenitor cells (HPCs) engraft and populate lymphoid organs. In vivo, HPCs engraft across MHC barriers protecting donor-type allografts from rejection. However, the underlying phenomenon remains elusive. Here, we sought to determine the mechanism by which ES cell-derived HPCs regulate alloreactive T cells. We used the 2C mouse, which expresses a transgenic T-cell receptor against H2-L(d) to determine whether HPCs are deleted by cytotoxic T lymphocytes (CTLs). Previously, we reported that HPCs express MHC class I antigens poorly and do not express class II antigens. In vitro stimulated 2C CTLs failed to lyse H2-L(d) HPCs in a standard 4-hr (51) chromium release assay. Similarly, when the HPCs were tested in an ELISPOT assay measuring the release of interferon-γ by CTLs, HPCs failed to induce CTL degranulation. In addition, mice that were injected with HPCs showed a marked decrease in T-cell responses to alloantigen and CD3 stimulation, but showed a normal response to PMA/ionomycin, suggesting that HPCs impaired T-cell signalling through the T-cell receptor/CD3 complex. Here, we show that HPCs secrete arginase, an enzyme that scavenges l-arginine, leading to metabolites that down-regulate CD3 ζ chain. Indeed an arginase inhibitor partially restored expression of the CD3 ζ chain, implicating arginase 1 in the down-regulation of T cells. This previously unrecognized property of ES cell-derived HPCs could positively enhance the engraftment of ES cell-derived HPCs across MHC barriers by preventing rejection.
Collapse
Affiliation(s)
- Eun-Mi Kim
- University of Iowa Hospitals and Clinics & Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | | | | | | | | | | |
Collapse
|
14
|
Tan Y, Ooi S, Wang L. Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: genetic and epigenetic perspectives. Curr Stem Cell Res Ther 2014; 9:63-72. [PMID: 24160683 PMCID: PMC3873036 DOI: 10.2174/1574888x113086660068] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022]
Abstract
One aim of stem cell-based therapy is to utilize pluripotent stem cells (PSCs) as a supplementary source of cells
to repair or replace tissues or organs that have ceased to function due to severe tissue damage. However, PSC-based therapy
requires extensive research to ascertain if PSC derivatives are functional without the risk of tumorigenicity, and also
do not engender severe immune rejection that threatens graft survival and function. Recently, the suitability of induced
pluripotent stem cells applied for patient-tailored cell therapy has been questioned since the discovery of several genetic
and epigenetic aberrations during the reprogramming process. Hence, it is crucial to understand the effect of these abnormalities
on the immunogenicity and survival of PSC grafts. As induced PSC-based therapy represents a hallmark for the
potential solution to prevent and arrest immune rejection, this review also summarizes several up-to-date key findings in
the field.
Collapse
Affiliation(s)
| | | | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa K1H8M5, Canada.
| |
Collapse
|
15
|
Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplant 2013; 22:571-617. [DOI: 10.3727/096368912x655208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward. The advent of the induced pluripotent stem cell (iPSC), which represents the ability to “reprogram” somatic cells into a pluripotent state, hails the arrival of a new cell transplantation candidate for potential clinical application in therapies designed to promote repair and/or regeneration of the CNS. Since the initial development of iPSC technology, these cells have been extensively characterized in vitro and in a number of pathological conditions and were originally reported to be equivalent to embryonic stem cells (ESCs). This review highlights emerging evidence that suggests iPSCs are not necessarily indistinguishable from ESCs and may occupy a different “state” of pluripotency with differences in gene expression, methylation patterns, and genomic aberrations, which may reflect incomplete reprogramming and may therefore impact on the regenerative potential of these donor cells in therapies. It also highlights the limitations of current technologies used to generate these cells. Moreover, we provide a systematic review of the state of play with regard to the use of iPSCs in the treatment of neurodegenerative and neuropathological conditions. The importance of balancing the promise of this transplantation candidate in the light of these emerging properties is crucial as the potential application in the clinical setting approaches. The first of three sections in this review discusses (A) the pathophysiology of spinal cord injury (SCI) and how stem cell therapies can positively alter the pathology in experimental SCI. Part B summarizes (i) the available technologies to deliver transgenes to generate iPSCs and (ii) recent data comparing iPSCs to ESCs in terms of characteristics and molecular composition. Lastly, in (C) we evaluate iPSC-based therapies as a candidate to treat SCI on the basis of their neurite induction capability compared to embryonic stem cells and provide a summary of available in vivo data of iPSCs used in SCI and other disease models.
Collapse
Affiliation(s)
- Anne S. Kramer
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Alan R. Harvey
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Giles W. Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart I. Hodgetts
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
16
|
de Almeida PE, Ransohoff JD, Nahid A, Wu JC. Immunogenicity of pluripotent stem cells and their derivatives. Circ Res 2013; 112:549-61. [PMID: 23371903 DOI: 10.1161/circresaha.111.249243] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ability of pluripotent stem cells to self-renew and differentiate into all somatic cell types brings great prospects to regenerative medicine and human health. However, before clinical applications, much translational research is necessary to ensure that their therapeutic progenies are functional and nontumorigenic, that they are stable and do not dedifferentiate, and that they do not elicit immune responses that could threaten their survival in vivo. For this, an in-depth understanding of their biology, genetic, and epigenetic make-up and of their antigenic repertoire is critical for predicting their immunogenicity and for developing strategies needed to assure successful long-term engraftment. Recently, the expectation that reprogrammed somatic cells would provide an autologous cell therapy for personalized medicine has been questioned. Induced pluripotent stem cells display several genetic and epigenetic abnormalities that could promote tumorigenicity and immunogenicity in vivo. Understanding the persistence and effects of these abnormalities in induced pluripotent stem cell derivatives is critical to allow clinicians to predict graft fate after transplantation, and to take requisite measures to prevent immune rejection. With clinical trials of pluripotent stem cell therapy on the horizon, the importance of understanding immunologic barriers and devising safe, effective strategies to bypass them is further underscored. This approach to overcome immunologic barriers to stem cell therapy can take advantage of the validated knowledge acquired from decades of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Patricia E de Almeida
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Human embryonic stem cells (hESCs), initially thought to be immune privileged cells, are now known to be susceptible to immune recognition. Human induced pluripotent stem cells (iPSCs) have been proposed as a potential source of autologous stem cells for therapy, but even these autologous stem cells may be targets of immune rejection. With clinical trials on the horizon, it is imperative that the immunogenicity of hESCs and iPSCs be definitively understood.
Collapse
Affiliation(s)
- Jeremy I. Pearl
- Department of Medicine & Radiology, Stanford University School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Leslie S. Kean
- The Aflac Cancer Center and Blood Disorders Service, Children’s Healthcare of Atlanta, and Department of Pediatrics, and the Emory Transplant Center, Emory University School of Medicine, Atlanta, GA
| | - Mark M. Davis
- Howard Hughes Medical Institute and the Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
| | - Joseph C. Wu
- Department of Medicine & Radiology, Stanford University School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
18
|
Dhingra S, Huang XP, Li RK. Challenges in allogeneic mesenchymal stem cell-mediated cardiac repair. Trends Cardiovasc Med 2012; 20:263-8. [PMID: 22433652 DOI: 10.1016/j.tcm.2011.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autologous mesenchymal stem cells (MSCs) have been proven safe in phase I and II clinical trials in patients who have suffered a myocardial infarction. However, their potential for proliferation and differentiation decreases with age, which limits their efficacy in elderly patients. Allogeneic MSCs offer several key advantages over autologous MSCs, including a high regenerative potential and availability for clinical use without the delay required for expansion. It was believed that allogeneic MSCs were immune privileged and thus able to escape the recipient's immune system. In several preclinical studies, allogeneic MSCs were successful in regenerating the myocardium, and the transplanted MSCs improved heart function early after implantation. However, the long-term ability of allogeneic MSCs to preserve heart function is limited because of a transition from an immune privileged to an immunogenic phenotype after the cells differentiate. The initial phase I/II clinical study using allogeneic MSCs in patients with acute myocardial infarction was safe, and no side effects were observed. However, the long-term safety and efficacy of allogeneic MSCs remain to be established. In this review, we discuss the challenges of using allogeneic MSCs for cardiac repair and present strategies to prevent the immune rejection of allogeneic MSCs to increase their potential for use in cardiac patients.
Collapse
Affiliation(s)
- Sanjiv Dhingra
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | | | | |
Collapse
|
19
|
Abstract
Repair of damaged myocardium with pluripotent stem cell derived cardiomyocytes is becoming increasingly more feasible. Developments in stem cell research emphasize the need to address the foreseeable problem of immune rejection following transplantation. Pluripotent stem cell (PSC) derived cardiomyocytes have unique immune characteristics, some of which are not advantageous for transplantation. Here we review the possible mechanisms of PSC-derived cardiomyocytes rejection, summarize the current knowledge pertaining to immunogenicity of such cells and describe the existing controversies. Myocardial graft rejection can be reduced by modifying PSCs prior to their differentiation into cardiomyocytes. Overall, this approach facilitates the development of universal donor stem cells suitable for the regeneration of many different tissue types.
Collapse
Affiliation(s)
- Zaruhi Karabekian
- Pharmacology and Physiology Department, The George Washington University, 2300 Eye Street, Washington, DC 20037, USA
| | | | | |
Collapse
|
20
|
Poon E, Kong CW, Li RA. Human pluripotent stem cell-based approaches for myocardial repair: from the electrophysiological perspective. Mol Pharm 2011; 8:1495-504. [PMID: 21879736 DOI: 10.1021/mp2002363] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heart diseases are a leading cause of mortality worldwide. Terminally differentiated adult cardiomyocytes (CMs) lack the innate ability to regenerate. Their malfunction or significant loss can lead to conditions from cardiac arrhythmias to heart failure. For myocardial repair, cell- and gene-based therapies offer promising alternatives to donor organ transplantation. Human embryonic stem cells (hESCs) can self-renew while maintaining their pluripotency. Direct reprogramming of adult somatic cells to become pluripotent hES-like cells (also known as induced pluripotent stem cells or iPSCs) has been achieved. Both hESCs and iPSCs have been successfully differentiated into genuine human CMs. In this review, we describe our current knowledge of the structure-function properties of hESC/iPSC-CMs, with an emphasis on their electrophysiology and Ca(2+) handling, along with the hurdles faced and potential solutions for translating into clinical and other applications (e.g., disease modeling, cardiotoxicity and drug screening).
Collapse
Affiliation(s)
- Ellen Poon
- Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | | | | |
Collapse
|
21
|
Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 2011; 8:309-17. [PMID: 21362570 DOI: 10.1016/j.stem.2011.01.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/10/2010] [Accepted: 01/11/2011] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) are an attractive source for tissue regeneration and repair therapies because they can be differentiated into virtually any cell type in the adult body. However, for this approach to succeed, the transplanted ESCs must survive long enough to generate a therapeutic benefit. A major obstacle facing the engraftment of ESCs is transplant rejection by the immune system. Here we show that blocking leukocyte costimulatory molecules permits ESC engraftment. We demonstrate the success of this immunosuppressive therapy for mouse ESCs, human ESCs, mouse induced pluripotent stem cells (iPSCs), human induced pluripotent stem cells, and more differentiated ESC/(iPSCs) derivatives. Additionally, we provide evidence describing the mechanism by which inhibition of costimulatory molecules suppresses T cell activation. This report describes a short-term immunosuppressive approach capable of inducing engraftment of transplanted ESCs and iPSCs, providing a significant improvement in our mechanistic understanding of the critical role costimulatory molecules play in leukocyte activation.
Collapse
|
22
|
El Haddad N, Moore R, Heathcote D, Mounayar M, Azzi J, Mfarrej B, Batal I, Ting C, Atkinson M, Sayegh MH, Ashton-Rickardt PG, Abdi R. The novel role of SERPINB9 in cytotoxic protection of human mesenchymal stem cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2252-60. [PMID: 21795594 DOI: 10.4049/jimmunol.1003981] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical trials using allogeneic mesenchymal stem cells (MSCs) are ongoing for the purpose of providing therapeutic benefit for a variety of human disorders. Pertinent to their clinical use are the accessibility to sufficient quantities of these cells allowing for repetitive administration, as well as a better understanding of the specific mechanisms by which allogeneic MSCs evade host immune responses that in turn influence their life span following administration. In this report, we sought to characterize and compare human peripheral blood MSCs (hPB-MSCs) with bone marrow-derived MSCs. hPB-MSCs met the established criteria to characterize this cellular lineage, including capacity for self-renewal, differentiation into tissues of mesodermal origin, and expression of phenotypic surface markers. In addition, hPB-MSCs suppressed alloreactive proliferation as well as the production of proinflammatory cytokines. Examination of the mechanisms by which allogeneic MSCs evade the host immune response, which is crucial for their therapeutic use, demonstrated that constitutive expression of serine protease inhibitor 9 (PI-9) on hPB-MSCs and bone marrow-derived MSCs is a major defense mechanism against granzyme B-mediated destruction by NK cells. Similarly, MSCs treated with small interfering RNA for PI-9 increased MSC cellular death, whereas expression of transgenic PI-9 following retroviral transduction protected MSCs. These data significantly advance our understanding of the immunomodulatory role for hPB-MSCs as well as the mechanisms by which they evade host immune responses. These findings contribute to the development of MSC-based therapies for diseases.
Collapse
Affiliation(s)
- Najib El Haddad
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li Y, Hu Y, Jin Y, Zhang G, Wong J, Sun LQ, Wang M. Prophylactic, therapeutic and immune enhancement effect of liposome-encapsulated PolyICLC on highly pathogenic H5N1 influenza infection. J Gene Med 2011; 13:60-72. [PMID: 21259409 DOI: 10.1002/jgm.1536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In view of the magnitude and severity of outbreaks of the highly pathogenic H5N1 influenza virus (H5N1-HPIV) and the threat to public health, there is an urgent need to develop broad-spectrum prophylactic and therapeutic agents against infection by H5N1-HPIV and other subtypes. METHODS AND RESULTS In the present study, we explored the use of LE-PolyICLC, a liposome encapsulated double-stranded RNA, as a possible prophylactic, therapeutic and immune enhancement agent. In a mouse infection model, we showed that the administration of LE-PolyICLC intranasally before or shortly after infection could inhibit virus replication, leading to a significant reduction in pulmonary viral titres and a higher survival rate of infected mice. When used as a molecular adjuvant, LE-PolyICLC significantly enhanced both the humoral and cellular responses elicited by inactivated H5N1 vaccine and augmented the protective efficacy provided by vaccination. Most importantly, the data also demonstrate that LE-PolyICLC could effectively attenuate the development of pulmonary fibrosis during the restoration period at day 14 after H5N1 infection. CONCLUSIONS Taken together, the data obtained in the present study suggest that strong consideration should be given for the use of LE-PolyICLC as prophylactic and therapeutic agents and also as a vaccination adjuvant to combat highly pathogenic influenza infection and its associated complications such as pulmonary fibrosis.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Kadereit S, Trounson A. In vitro immunogenicity of undifferentiated pluripotent stem cells (PSC) and derived lineages. Semin Immunopathol 2011; 33:551-62. [DOI: 10.1007/s00281-011-0265-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/16/2011] [Indexed: 01/19/2023]
|
25
|
Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells. Semin Immunopathol 2011; 33:573-91. [PMID: 21461989 PMCID: PMC3204002 DOI: 10.1007/s00281-011-0266-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned.
Collapse
|
26
|
How to cross immunogenetic hurdles to human embryonic stem cell transplantation. Semin Immunopathol 2011; 33:525-34. [PMID: 21461719 DOI: 10.1007/s00281-011-0262-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 03/15/2011] [Indexed: 12/23/2022]
Abstract
Implantation of human embryonic stem cells (hES), derived progenitors or mature cells derived from hES has great therapeutic potential for many diseases. If hES would come from genetically unrelated individuals, it would be probably rejected by the immune system of the recipient. Blood groups, MHC and minor antigens are the immunogenetic hurdles that have to be crossed for successful transplantation. Autologous transplantation with adult stem cells would be the best approach but several elements argue against this option. Classical immunosuppression, depleting antibody, induction of tolerance and stem cell banking are alternative methods that could be proposed to limit the risk of rejection.
Collapse
|
27
|
Abstract
Serine proteases control a wide variety of physiological and pathological processes in multi-cellular organisms, including blood clotting, cancer, cell death, osmoregulation, tissue remodeling, and immunity to infection. Cytotoxic T lymphocytes (CTLs) are required for adaptive cell-mediated immunity to intracellular pathogens by killing infected cells and through the development of memory T cells. Serine proteases not only allow a CTL to kill but also impose homeostatic control on CTL number. Serine protease inhibitors (serpins) are the physiological regulators of serine proteases' activity. In this review, I discuss the role of serpins in controlling the recognition of antigen, effector function, and homeostatic control of CTLs through the inhibition of physiological serine protease targets. An emerging view of serpins is that they are important promoters of cellular viability through their inhibition of executioner proteases. This view is discussed in the context of the T-lymphocyte survival during effector responses and the development and persistence of long-lived memory T cells. Given the important role serpins play in CTL immunity, I discuss the potential for developing new immunotherapeutic approaches based directly on serpins or knowledge gained from identifying their physiologically relevant protease targets.
Collapse
|
28
|
Dressel R, Nolte J, Elsner L, Novota P, Guan K, Streckfuss-Bömeke K, Hasenfuss G, Jaenisch R, Engel W. Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J 2010; 24:2164-77. [PMID: 20145206 DOI: 10.1096/fj.09-134957] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multipotent adult germ-line stem cells (maGSCs) and induced pluripotent stem cells (iPSCs) could be used to generate autologous cells for therapeutic purposes, which are expected to be tolerated by the recipient. However, effects of the immune system on these cells have not been investigated. We have compared the susceptibility of maGSC lines to IL-2-activated natural killer (NK) cells with embryonic stem cell (ESC) lines, iPSCs, and F9 teratocarcinoma cells. The killing of pluripotent cell lines by syngeneic, allogeneic, and xenogeneic killer cells ranged between 48 and 265% in chromium release assays when compared to YAC-1 cells, which served as highly susceptible reference cells. With the exception of 2 maGSC lines, they expressed ligands for the activating NK receptor NKG2D that belong to the RAE-1 family, and killing could be inhibited by soluble NKG2D, demonstrating a functional role of these molecules. Furthermore, ligands of the activating receptor DNAM-1 were frequently expressed. The susceptibility to NK cells might constitute a common feature of pluripotent cells. It could result in rejection after transplantation, as suggested by a reduced teratoma growth after NK cell activation in vivo, but it might also offer a strategy to deplete contaminating pluripotent cells before grafting of differentiated cells.
Collapse
Affiliation(s)
- Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dressel R, Guan K, Nolte J, Elsner L, Monecke S, Nayernia K, Hasenfuss G, Engel W. Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules. Biol Direct 2009; 4:31. [PMID: 19715575 PMCID: PMC2745366 DOI: 10.1186/1745-6150-4-31] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/28/2009] [Indexed: 01/09/2023] Open
Abstract
Background Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. Reviewers This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter.
Collapse
Affiliation(s)
- Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Basak GW, Yasukawa S, Alfaro A, Halligan S, Srivastava AS, Min WP, Minev B, Carrier E. Human embryonic stem cells hemangioblast express HLA-antigens. J Transl Med 2009; 7:27. [PMID: 19386101 PMCID: PMC2680830 DOI: 10.1186/1479-5876-7-27] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 04/22/2009] [Indexed: 02/02/2023] Open
Abstract
Background It has been suggested that the initial differentiation of endothelial and hematopoietic cells during embryogenesis occurs from a common progenitor, called hemangioblast (hB). We hypothesized that these cells with dual hematopoietic/endothelial potential could be used in future regenerative medicine. Methods We used the two-step differentiation technology to generate bipotential blast cells from human embryonic stem cells (hES). This involved short differentiation in our in vitro EB system followed by differentiation in semisolid culture medium supplemented with mixture of cytokines. Results The occurrence of blast-colony-forming cells (BL-CFC) during EB differentiation (day 0–6) was transient and peaked on day 3. The emergence of this event was associated with expression of mesoderm gene T, and inversely correlated with expression of endoderm gene FoxA2. Similarly, the highest BL-CFC number was associated with increase in expression of early hematopoietic/endothelial genes: CD34, CD31 and KDR. The derived colonies were composed of 30–50 blast cells on day 6 in culture. These cells had homogenous appearance in Wright-Giemsa stain, but to a different extent expressed markers of immature hematopoietic and endothelial cells (CD31, CD34, VE-cadherin, Flt-1) and mature differentiated cells (CD45, CD33, CD146). We found that some of them expressed fetal and embryonic globin genes. Interestingly, these cells expressed also HLA class I molecules, however at very low levels compared to endothelial and hematopoietic cells. The blast cells could be successfully differentiated to hematopoietic cells in a CFU assay. In these conditions, blast cells formed CFU-M colonies (63.4 ± 0.8%) containing macrophages, BFU-E colonies (19.5 ± 3.5%) containing nucleated red blood cells, and CFU-EM colonies (17.1 ± 2.7%) composed of macrophages and nucleated erythrocytes. Cells of CFU-EM and BFU-E colonies expressed both ε – and γ- globin genes, but not adult-type γ-globin. When in endothelial cell culture conditions, blast cells differentiated to endothelial cells which had the ability to take up Dil-Ac-LDL and to form complex vascular networks in Matrigel. Conclusion 1) Hematoendothelial precursors exist transiently in early embryonic development and form single cell-derived colonies; 2) their differentiation can be tracked by the use of chosen molecular markers; 3) blast colonies consist of cells having properties of endothelial and hematopoietic precursors, however the issue of their ability to maintain dual properties over time needs to be further explored; 4) blast cells can potentially be used in regenerative medicine due to their low expression of HLA molecules.
Collapse
|
31
|
Swijnenburg RJ, Schrepfer S, Cao F, Pearl JI, Xie X, Connolly AJ, Robbins RC, Wu JC. In vivo imaging of embryonic stem cells reveals patterns of survival and immune rejection following transplantation. Stem Cells Dev 2009; 17:1023-9. [PMID: 18491958 DOI: 10.1089/scd.2008.0091] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Embryonic stem cell (ESC)-based transplantation is considered a promising novel therapy for a variety of diseases. This is bolstered by the suggested immune-privileged properties of ESCs. In this study, we used in vivo bioluminescent imaging (BLI) to non-invasively track the fate of transplanted murine ESCs (mESCs), which are stably transduced with a double fusion reporter gene consisting of firefly luciferase (FLuc) and enhanced green fluorescent protein (eGFP). Following syngeneic intramuscular transplantation of 1 x 10(6) mESCs, the cells survived and differentiated into teratomas. In contrast, allogeneic mESC transplants were infiltrated by a variety of inflammatory cells, leading to rejection within 28 days. Acceleration of rejection was observed when mESCs were allotransplanted following prior sensitization of the host. Finally, we demonstrate that the mESC derivatives were more rapidly rejected compared to undifferentiated mESCs. These data show that mESCs do not retain immune-privileged properties in vivo and are subject to immunological rejection as assessed by novel molecular imaging approaches.
Collapse
Affiliation(s)
- Rutger-Jan Swijnenburg
- Department of Cardiothoracic Surgery, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Role of Natural-Killer Group 2 Member D Ligands and Intercellular Adhesion Molecule 1 in Natural Killer Cell-Mediated Lysis of Murine Embryonic Stem Cells and Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells 2009; 27:307-16. [DOI: 10.1634/stemcells.2008-0528] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Lampton PW, Crooker RJ, Newmark JA, Warner CM. Expression of major histocompatibility complex class I proteins and their antigen processing chaperones in mouse embryonic stem cells from fertilized and parthenogenetic embryos. ACTA ACUST UNITED AC 2008; 72:448-57. [PMID: 18778324 DOI: 10.1111/j.1399-0039.2008.01132.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Embryonic stem (ES) cells are pluripotent cells with the potential to differentiate into cells or tissues that may be used for transplantation therapy. Parthenogenetic ES (pES) cells have been recently derived from both mouse and human oocytes and hold promise as a cell source that is histocompatible to the oocyte donor. Because of the importance of major histocompatibility complex (MHC) antigens in mediating tissue rejection or acceptance, we examined levels of mRNA and protein expression of MHC class I proteins, as well as several MHC class I antigen processing and presentation chaperones in mouse ES cells derived from both fertilized (fES) and parthenogenetic (pES) embryos. We found that H-2K, Qa-2, TAP1, TAP2, and tapasin mRNAs were all expressed at low levels in undifferentiated and differentiating ES cells and were significantly upregulated in response to interferon-gamma (IFN-gamma) treatment following 14 days of differentiation. Likewise, expression of H-2K(b) and H-2K(k) proteins were upregulated to detectable levels by IFN-gamma after 14 days of differentiation, but Qa-2 protein expression remained low or absent. We also found that MHC class I, TAP1, TAP2, and tapasin mRNAs were all expressed at very low levels in ES cells compared with T cells, suggesting transcriptional regulation of these genes in ES cells. Calnexin, a chaperone molecule involved in other pathways than MHC expression, had mRNA levels that were similar in ES cells and T cells and was not upregulated by IFN-gamma in ES cells. Overall, ES cells derived from fertilized embryos and parthenogenetic embryos displayed remarkably similar patterns of gene expression at the mRNA and protein levels. The similarity between the fES and pES cell lines with regard to expression of MHC class I and antigen-processing machinery provides evidence for the potential usefulness of pES cells in transplantation therapy.
Collapse
Affiliation(s)
- P W Lampton
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
34
|
The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients' immune response. PLoS One 2008; 3:e2622. [PMID: 18612432 PMCID: PMC2440803 DOI: 10.1371/journal.pone.0002622] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 05/30/2008] [Indexed: 01/17/2023] Open
Abstract
Embryonic stem (ES) cells have the potential to differentiate into all cell types and are considered as a valuable source of cells for transplantation therapies. A critical issue, however, is the risk of teratoma formation after transplantation. The effect of the immune response on the tumorigenicity of transplanted cells is poorly understood. We have systematically compared the tumorigenicity of mouse ES cells and in vitro differentiated neuronal cells in various recipients. Subcutaneous injection of 1×106 ES or differentiated cells into syngeneic or allogeneic immunodeficient mice resulted in teratomas in about 95% of the recipients. Both cell types did not give rise to tumors in immunocompetent allogeneic mice or xenogeneic rats. However, in 61% of cyclosporine A-treated rats teratomas developed after injection of differentiated cells. Undifferentiated ES cells did not give rise to tumors in these rats. ES cells turned out to be highly susceptible to killing by rat natural killer (NK) cells due to the expression of ligands of the activating NK receptor NKG2D on ES cells. These ligands were down-regulated on differentiated cells. The activity of NK cells which is not suppressed by cyclosporine A might contribute to the prevention of teratomas after injection of ES cells but not after inoculation of differentiated cells. These findings clearly point to the importance of the immune response in this process. Interestingly, the differentiated cells must contain a tumorigenic cell population that is not present among ES cells and which might be resistant to NK cell-mediated killing.
Collapse
|
35
|
|
36
|
He Q, Trindade PT, Stumm M, Li J, Zammaretti P, Bettiol E, Dubois-Dauphin M, Herrmann F, Kalangos A, Morel D, Jaconi ME. Fate of undifferentiated mouse embryonic stem cells within the rat heart: role of myocardial infarction and immune suppression. J Cell Mol Med 2008; 13:188-201. [PMID: 18373734 PMCID: PMC3823046 DOI: 10.1111/j.1582-4934.2008.00323.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract It has recently been suggested that the infarcted rat heart microenvironment could direct pluripotent mouse embryonic stem cells to differentiate into cardiomyocytes through an in situ paracrine action. To investigate whether the heart can function as a cardiogenic niche and confer an immune privilege to embryonic stem cells, we assessed the cardiac differentiation potential of undifferentiated mouse embryonic stem cells (mESC) injected into normal, acutely or chronically infarcted rat hearts. We found that mESC survival depended on immunosuppression both in normal and infarcted hearts. However, upon Cyclosporin A treatment, both normal and infarcted rat hearts failed to induce selective cardiac differentiation of implanted mESC. Instead, teratomas developed in normal and infarcted rat hearts 1 week and 4 weeks (50% and 100%, respectively) after cell injection. Tight control of ESC commitment into a specific cardiac lineage is mandatory to avoid the risk of uncontrolled growth and tumourigenesis following transplantation of highly plastic cells into a diseased myocardium.
Collapse
Affiliation(s)
- Qing He
- Department of Rehabilitation and Geriatrics, Laboratory of Biology of Aging, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sarić T, Frenzel LP, Hescheler J. Immunological barriers to embryonic stem cell-derived therapies. Cells Tissues Organs 2008; 188:78-90. [PMID: 18303241 DOI: 10.1159/000118784] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Replacement of diseased tissues with healthy cells derived from embryonic stem (ES) cells has a potential to become, in the future, a better alternative to current treatments of a number of conditions characterized by irreversible tissue injury, such as heart and liver failure, diabetes mellitus and neurodegeneration. However, several obstacles have to be overcome before this new therapeutic modality becomes part of a standard clinical practice. First of all, ethical and safety issues have to be resolved, the methodologies must be developed to enable obtaining sufficient amounts of differentiated cells, and the immune rejection of allogeneic cells must be prevented in order to ensure their long-term engraftment and function. Data on immunological properties of human and murine ES cells and their differentiated derivatives are controversial, ranging from those claiming unique immune-privileged properties for ES cells to those which refute these conclusions. This indicates that much more research is required to definitively understand the immunological features and engraftment capacity of ES cell derivatives. We review here the current state of the art in this new and exciting field of ES cell immunology and discuss the implications of these findings for the development of ES cell-based therapies.
Collapse
Affiliation(s)
- Tomo Sarić
- Center for Physiology, Medical Faculty of the University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
38
|
Stout-Delgado HW, Getachew Y, Miller BC, Thiele DL. Intrahepatic lymphocyte expression of dipeptidyl peptidase I-processed granzyme B and perforin induces hepatocyte expression of serine proteinase inhibitor 6 (Serpinb9/SPI-6). THE JOURNAL OF IMMUNOLOGY 2007; 179:6561-7. [PMID: 17982045 DOI: 10.4049/jimmunol.179.10.6561] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human proteinase inhibitor 9 (PI-9/serpinB9) and the murine ortholog, serine proteinase inhibitor 6 (SPI-6/serpinb9) are members of a family of intracellular serine proteinase inhibitors (serpins). PI-9 and SPI-6 expression in immune-privileged cells, APCs, and CTLs protects these cells against the actions of granzyme B, and when expressed in tumor cells or virally infected hepatocytes, confers resistance to killing by CTL and NK cells. The present studies were designed to assess the existence of any correlation between granzyme B activity in intrahepatic lymphocytes and induction of hepatic SPI-6 expression. To this end, SPI-6, PI-9, and serpinB9 homolog expression was examined in response to IFN-alpha treatment and during in vivo adenoviral infection of the liver. SPI-6 mRNA expression increased 10- to 100-fold in the liver after IFN-alpha stimulation and during the course of viral infection, whereas no significant up-regulation of SPI-8 and <5-fold increases in other PI-9/serpinB9 homolog mRNAs was observed. Increased SPI-6 gene expression during viral infection correlated with influxes of NK cells and CTL. Moreover, IFN-alpha-induced up-regulation of hepatocyte SPI-6 mRNA expression was not observed in NK cell-depleted mice. Additional experiments using genetically altered mice either deficient in perforin or unable to process or express granzyme B indicated that SPI-6 is selectively up-regulated in hepatocytes in response to infiltration of the liver by NK cells that express perforin and enzymatically active granzyme B.
Collapse
Affiliation(s)
- Heather W Stout-Delgado
- Department of Internal Medicine, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
39
|
Utermöhlen O, Krönke M. Survival of priceless cells: active and passive protection of embryonic stem cells against immune destruction. Arch Biochem Biophys 2007; 462:273-7. [PMID: 17459325 DOI: 10.1016/j.abb.2007.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/12/2007] [Accepted: 03/21/2007] [Indexed: 12/23/2022]
Abstract
This review focuses on our current knowledge of the mechanisms employed by embryonic stem (ES) cells to avoid destruction by cell-mediated immune responses. Recently, ES cells have been found to shield themselves against cytotoxic effector cells by expressing CD95L and serine protease inhibitor SPI-6 mediating apoptosis of the cytotoxic cells and inactivation of granzyme B, respectively. These findings are discussed in view of their implications for using ES cell-derived transplants in regenerative medicine as well as for our understanding of early embryonic stages during invasion and implantation.
Collapse
Affiliation(s)
- Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, Medical Center of the University of Cologne, Cologne, Germany.
| | | |
Collapse
|
40
|
Krzyzanowski PM, Andrade-Navarro MA. Identification of novel stem cell markers using gap analysis of gene expression data. Genome Biol 2007; 8:R193. [PMID: 17875203 PMCID: PMC2375031 DOI: 10.1186/gb-2007-8-9-r193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 09/17/2007] [Indexed: 01/22/2023] Open
Abstract
We describe a method for detecting marker genes in large heterogeneous collections of gene expression data. Markers are identified and characterized by the existence of demarcations in their expression values across the whole dataset, which suggest the presence of groupings of samples. We apply this method to DNA microarray data generated from 83 mouse stem cell related samples and describe 426 selected markers associated with differentiation to establish principles of stem cell evolution.
Collapse
Affiliation(s)
- Paul M Krzyzanowski
- Molecular Medicine, Ottawa Health Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - Miguel A Andrade-Navarro
- Molecular Medicine, Ottawa Health Research Institute, 501 Smyth Road, Ottawa, Ontario, K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|