1
|
Beesetti S, Guy C, Sirasanagandla S, Yang M, Sumpter RJ, Sheppard H, Pelletier S, Wlodarski MW, Green DR. Distinct developmental outcomes in DNA repair-deficient FANCC c.67delG mutant and FANCC -/- Mice. Cell Death Differ 2025:10.1038/s41418-025-01461-3. [PMID: 39962244 DOI: 10.1038/s41418-025-01461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Fanconi Anemia (FA) is an autosomal recessive disorder characterized by diverse clinical manifestations such as aplastic anemia, cancer predisposition, and developmental defects including hypogonadism, microcephaly, organ dysfunction, infertility, hyperpigmentation, microphthalmia, and skeletal defects. In addition to the well-described defects in DNA repair, mitochondrial dysfunction due to defects in mitochondrial autophagy (mitophagy) is also associated with FA, although its contribution to FA phenotypes is unknown. This study focused on the FANCC gene, which, alongside other FA genes, is integral to DNA repair and mitochondrial quality control. In the present study, we created a FANCC mutant mouse model, based on a human mutation (FANCC c.67delG) that is defective in DNA repair but proficient in mitophagy. We found that the FANCC c.67delG mutant mouse model recapitulates some phenotypes observed in FA patients, such as cellular hypersensitivity to DNA cross-linking agents and hematopoietic defects. In contrast, FA phenotypes such as microphthalmia, hypogonadism, and infertility, present in FANCC-deficient mice, were absent in the FANCC c.67delG mice, suggesting that the N-terminal 55 amino acids of FANCC are dispensable for these developmental processes. Furthermore, the FANCC c.67delG mutation preserved mitophagy, and unlike the FANCC null mutation, did not lead to the accumulation of damaged mitochondria in cells or tissues. This study highlights the multifaceted nature of the FANCC protein, with distinct domains responsible for DNA repair and mitophagy. Our results suggest that developmental defects in FA may not solely stem from DNA repair deficiencies but could also involve other functions, such as mitochondrial quality control.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Shyam Sirasanagandla
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mao Yang
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Rhea Jr Sumpter
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephane Pelletier
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Lineburg KE, Leveque-El Mouttie L, Hunter CR, Le Texier L, McGirr C, Teal B, Blazar BR, Lane SW, Hill GR, Lévesque JP, MacDonald KPA. Autophagy prevents graft failure during murine graft-versus-host disease. Blood Adv 2024; 8:2032-2043. [PMID: 38295282 PMCID: PMC11103170 DOI: 10.1182/bloodadvances.2023010972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
ABSTRACT Autophagy is an intracellular survival process that has established roles in the long-term survival and function of hematopoietic stem cells (HSC). We investigated the contribution of autophagy to HSC fitness during allogeneic transplantation and graft-versus-host disease (GVHD). We demonstrate in vitro that both tumor necrosis factor and IL-1β, major components of GVHD cytokine storm, synergistically promote autophagy in both HSC and their more mature hematopoietic progenitor cells (HPC). In vivo we demonstrate that autophagy is increased in donor HSC and HPC during GVHD. Competitive transplant experiments demonstrated that autophagy-deficient cells display reduced capacity to reconstitute the hematopoietic system compared to wild-type counterparts. In a major histocompatibility complex-mismatched model of GVHD and associated cytokine dysregulation, we demonstrate that autophagy-deficient HSC and progenitors fail to establish durable hematopoiesis, leading to primary graft failure and universal transplant related mortality. Using several different models, we confirm that autophagy activity is increased in early progenitor and HSC populations in the presence of T-cell-derived inflammatory cytokines and that these HSC populations require autophagy to survive. Thus, autophagy serves as a key survival mechanism in HSC and progenitor populations after allogeneic stem cell transplant and may represent a therapeutic target to prevent graft failure during GVHD.
Collapse
Affiliation(s)
- Katie E. Lineburg
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, Australia
| | - Lucie Leveque-El Mouttie
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, Australia
| | - Christopher R. Hunter
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laetitia Le Texier
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Crystal McGirr
- Stem Cell Biology Group, Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Bianca Teal
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bruce R. Blazar
- Pediatric Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Steven W. Lane
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Haematology, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Jean-Pierre Lévesque
- Stem Cell Biology Group, Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Kelli P. A. MacDonald
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Liang Y, Zhou Y, Xie D, Yin F, Luo X. Hypermethylation and low expression of FANCC involved in multi-walled carbon nanotube-induced toxicity on ARPE-19 cells. ENVIRONMENTAL RESEARCH 2024; 241:117619. [PMID: 37952855 DOI: 10.1016/j.envres.2023.117619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Multi-walled carbon nanotube (MWCNT) exposure was observed to cause damages on the viability of ocular cells, however, the underlying mechanisms remain not well understood. Epigenetic alterations that regulate gene expression have been identified as a major responsiveness to environmental challenge. Thus, the aim of this study was to screen methylation-regulated genes involved in MWCNT exposure. The Illumina Human Methylation 850 K array was employed to determine the genome-wide DNA methylation profile of human retinal pigment epithelial cell line (ARPE-19) exposed to 50% inhibition concentration of MWCNTs (100 μg/ml) for 24 h or without (n = 3 for each group). Then, the transcriptome data obtained by high-throughput RNA sequencing previously were integrated with DNA methylome to identify the overlapped genes. As a result, the integrative bioinformatics analysis identified that compared with controls, FA complementation group C (FANCC) was hypermethylated and downregulated in MWCNT-exposed ARPE-19 cells. Quantitative real-time polymerase chain reaction analysis confirmed the mRNA expression level of FANCC was significantly decreased following MWCNT treatment and the addition of DNA methylation inhibitor 5-Aza-deoxycytidine (10 μM) reversed this decrease. Pyrosequencing analysis further validated the hypermethylation status at the 5'-untranslated promoter region of FANCC (cg14583550) in MWCNT-exposed ARPE-19 cells. Protein-protein interaction network and function analyses predicted that FANCC may contribute to MWCNT-induced cytotoxicity by interacting with heat shock protein 90 beta family member 1 and then upregulating cytokine interleukin-6 and apoptosis biomarker caspase 3. In conclusion, the present study links the epigenetic modification of FANCC with the pathogenesis of MWCNT-induced retinal toxicity.
Collapse
Affiliation(s)
- Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
4
|
Xia M, Li X, Ye S, Zhang Q, Zhao T, Li R, Zhang Y, Xian M, Li T, Li H, Hong X, Zheng S, Qian Z, Yang L. FANCC deficiency mediates microglial pyroptosis and secondary neuronal apoptosis in spinal cord contusion. Cell Biosci 2022; 12:82. [PMID: 35659106 PMCID: PMC9164466 DOI: 10.1186/s13578-022-00816-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Traumatic spinal cord injury (SCI)-induced neuroinflammation results in secondary neurological destruction and functional disorder. Previous findings showed that microglial pyroptosis plays a crucial role in neuroinflammation. Thus, it is necessary to conduct a comprehensive investigation of the mechanisms associated with post-SCI microglial pyroptosis. The Fanconi Anemia Group C complementation group gene (FANCC) has been previously reported to have an anti-inflammation effect; however, whether it can regulate microglial pyroptosis remains unknown. Therefore, we probed the mechanism associated with FANCC-mediated microglial pyroptosis and neuroinflammation in vitro and in vivo in SCI mice.
Methods
Microglial pyroptosis was assessed by western blotting (WB) and immunofluorescence (IF), whereas microglial-induced neuroinflammation was evaluated by WB, Enzyme-linked immunosorbent assays and IF. Besides, flow cytometry, TdT-mediated dUTP Nick-End Labeling staining and WB were employed to examine the level of neuronal apoptosis. Morphological changes in neurons were assessed by hematoxylin–eosin and Luxol Fast Blue staining. Finally, locomotor function rehabilitation was analyzed using the Basso Mouse Scale and Louisville Swim Scale.
Results
Overexpression of FANCC suppressed microglial pyroptosis via inhibiting p38/NLRP3 expression, which in turn reduced neuronal apoptosis. By contrast, knockdown of FANCC increased the degree of neuronal apoptosis by aggravating microglial pyroptosis. Besides, increased glial scar formation, severe myelin sheath destruction and poor axon outgrowth were observed in the mice transfected with short hairpin RNA of FANCC post SCI, which caused reduced locomotor function recovery.
Conclusions
Taken together, a previously unknown role of FANCC was identified in SCI, where its deficiency led to microglia pyroptosis, neuronal apoptosis and neurological damage. Mechanistically, FANCC mediated microglia pyroptosis and the inflammatory response via regulating the p38/NLRP3 pathway.
Collapse
|
5
|
Landelouci K, Sinha S, Pépin G. Type-I Interferon Signaling in Fanconi Anemia. Front Cell Infect Microbiol 2022; 12:820273. [PMID: 35198459 PMCID: PMC8859461 DOI: 10.3389/fcimb.2022.820273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Fanconi Anemia (FA) is a genome instability syndrome caused by mutations in one of the 23 repair genes of the Fanconi pathway. This heterogenous disease is usually characterized by congenital abnormalities, premature ageing and bone marrow failure. FA patients also show a high predisposition to hematological and solid cancers. The Fanconi pathway ensures the repair of interstrand crosslinks (ICLs) DNA damage. Defect in one of its proteins prevents functional DNA repair, leading to the accumulation of DNA breaks and genome instability. Accumulating evidence has documented a close relationship between genome instability and inflammation, including the production of type-I Interferon. In this context, type-I Interferon is produced upon activation of pattern recognition receptors by nucleic acids including by the cyclic GMP-AMP synthase (cGAS) that detects DNA. In mouse models of diseases displaying genome instability, type-I Interferon response is responsible for an important part of the pathological symptoms, including premature aging, short stature, and neurodegeneration. This is illustrated in mouse models of Ataxia-telangiectasia and Aicardi-Goutières Syndrome in which genetic depletion of either Interferon Receptor IFNAR, cGAS or STING relieves pathological symptoms. FA is also a genetic instability syndrome with symptoms such as premature aging and predisposition to cancer. In this review we will focus on the different molecular mechanisms potentially leading to type-I Interferon activation. A better understanding of the molecular mechanisms engaging type-I Interferon signaling in FA may ultimately lead to the discovery of new therapeutic targets to rescue the pathological inflammation and premature aging associated with Fanconi Anemia.
Collapse
Affiliation(s)
- Karima Landelouci
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Shruti Sinha
- Department of Biotechnology, GITAM Institute of Technology, GITAM deemed to be University, Visakhapatnam, India
| | - Geneviève Pépin
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Groupe de Recherche en Signalisation Cellulaire, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
6
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
7
|
Fisher DAC, Fowles JS, Zhou A, Oh ST. Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms. Front Immunol 2021; 12:683401. [PMID: 34140953 PMCID: PMC8204249 DOI: 10.3389/fimmu.2021.683401] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid neoplasms, including acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), and myelodysplastic syndromes (MDS), feature clonal dominance and remodeling of the bone marrow niche in a manner that promotes malignant over non-malignant hematopoiesis. This take-over of hematopoiesis by the malignant clone is hypothesized to include hyperactivation of inflammatory signaling and overproduction of inflammatory cytokines. In the Ph-negative MPNs, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET) to secondary myelofibrosis (MF), and the equivalent emergence of primary myelofibrosis (PMF). Bone marrow fibrosis itself is thought to be mediated heavily by the cytokine TGF-β, and possibly other cytokines produced as a result of hyperactivated JAK2 kinase in the malignant clone. MF also features extramedullary hematopoiesis and progression to bone marrow failure, both of which may be mediated in part by responses to cytokines. In MF, elevated levels of individual cytokines in plasma are adverse prognostic indicators: elevated IL-8/CXCL8, in particular, predicts risk of transformation of MF to secondary AML (sAML). Tumor necrosis factor (TNF, also known as TNFα), may underlie malignant clonal dominance, based on results from mouse models. Human PV and ET, as well as MF, harbor overproduction of multiple cytokines, above what is observed in normal aging, which can lead to cellular signaling abnormalities separate from those directly mediated by hyperactivated JAK2 or MPL kinases. Evidence that NFκB pathway signaling is frequently hyperactivated in a pan-hematopoietic pattern in MPNs, including in cells outside the malignant clone, emphasizes that MPNs are pan-hematopoietic diseases, which remodel the bone marrow milieu to favor persistence of the malignancy. Clinical evidence that JAK2 inhibition by ruxolitinib in MF neither reliably reduces malignant clonal burden nor eliminates cytokine elevations, suggests targeting cytokine mediated signaling as a therapeutic strategy, which is being pursued in new clinical trials. Greater knowledge of inflammatory pathophysiology in MPNs can therefore contribute to the development of more effective therapy.
Collapse
Affiliation(s)
- Daniel Arthur Corpuz Fisher
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Jared Scott Fowles
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Amy Zhou
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Stephen Tracy Oh
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
8
|
Abad E, Samino S, Grodzicki RL, Pagano G, Trifuoggi M, Graifer D, Potesil D, Zdrahal Z, Yanes O, Lyakhovich A. Identification of metabolic changes leading to cancer susceptibility in Fanconi anemia cells. Cancer Lett 2020; 503:185-196. [PMID: 33316348 DOI: 10.1016/j.canlet.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder of bone marrow associated with aplastic anemia, congenital abnormalities and a high risk of malignancies. The identification of more than two dozen FA genes has revealed a plethora of interacting proteins that are mainly involved in repair of DNA interstrand crosslinks (ICLs). Other important findings associated with FA are inflammation, oxidative stress response, mitochondrial dysfunction and mitophagy. In this work, we performed quantitative proteomic and metabolomic analyses on defective FA cells and identified a number of metabolic abnormalities associated with cancer. In particular, an increased de novo purine biosynthesis, a high concentration of fumarate, and an accumulation of purinosomal clusters were found. This was in parallel with decreased OXPHOS and altered glycolysis. On the whole, our results indicate an association between the need for nitrogenous bases upon impaired DDR in FA cells with a subsequent increase in purine metabolism and a potential role in oncogenesis.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | | | - David Potesil
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona 43007, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
9
|
Xu J, Li X, Cole A, Sherman Z, Du W. Reduced Cell Division Control Protein 42 Activity Compromises Hematopoiesis-Supportive Function of Fanconi Anemia Mesenchymal Stromal Cells. Stem Cells 2018; 36:785-795. [PMID: 29377497 PMCID: PMC5918239 DOI: 10.1002/stem.2789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/20/2017] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Hematopoietic stem cells preserve their ability to self-renew and differentiate to different lineages in the bone marrow (BM) niche, which is composed in large part by BM stromal cells. Studies have shown that altered signaling in the BM niche results in leukemia initiation or progression. Fanconi anemia (FA) is an inherited BM failure syndrome associated with extremely high risk of leukemic transformation. By using two FA mouse models, here we have investigated the hematopoiesis-supportive function of FA BM mesenchymal stroma cells (MSCs). We found that MSCs deficient for Fanca or Fancc gene are defective in proliferation and prone to undergo senescence in vitro. Mechanistically, we show that the activity of cell division control protein 42 (Cdc42), a Rho GTPase known to be a critical regulator for cytoskeleton organization, is significantly reduced in FA MSCs. Furthermore, we demonstrate that this reduction in Cdc42 activity plays a causal role in defective hematopoiesis-supportive function of the FA MSCs. The progenies of wild-type hematopoietic stem and progenitor cells cocultured on FA MSCs exhibit compromised self-renewal capacity both in vitro and in vivo. Genetic correction of FA deficiency restores Cdc42 activity and improves the hematopoiesis-supportive capacity of FA MSC. Finally, ectopic expression of a constitutively active Cdc42 mutant, Cdc42F28L, or pretreatment with Wnt5a, increases the active Cdc42 level and rescues the hematopoietic supportive defects of FA MSCs. Taken together, our results identify a novel link between Cdc42 activity and the hematopoiesis-supportive function of MSCs and suggest that a niche-specific increase of Cdc42 activity may be beneficial for FA therapy. Stem Cells 2018;36:785-795.
Collapse
Affiliation(s)
- Jian Xu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506
| | - Xue Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Allison Cole
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506
| | - Zachary Sherman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506
- West Virginia University Cancer Institute, Morgantown, WV 26506
| |
Collapse
|
10
|
Abstract
Fanconi anemia is an inherited disease characterized by genomic instability, hypersensitivity to DNA cross-linking agents, bone marrow failure, short stature, skeletal abnormalities, and a high relative risk of myeloid leukemia and epithelial malignancies. The 21 Fanconi anemia genes encode proteins involved in multiple nuclear biochemical pathways that effect DNA interstrand crosslink repair. In the past, bone marrow failure was attributed solely to the failure of stem cells to repair DNA. Recently, non-canonical functions of many of the Fanconi anemia proteins have been described, including modulating responses to oxidative stress, viral infection, and inflammation as well as facilitating mitophagic responses and enhancing signals that promote stem cell function and survival. Some of these functions take place in non-nuclear sites and do not depend on the DNA damage response functions of the proteins. Dysfunctions of the canonical and non-canonical pathways that drive stem cell exhaustion and neoplastic clonal selection are reviewed, and the potential therapeutic importance of fully investigating the scope and interdependences of the canonical and non-canonical pathways is emphasized.
Collapse
Affiliation(s)
- Grover Bagby
- Departments of Medicine and Molecular and Medical Genetics, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Li Y, Amarachintha S, Wilson AF, Li X, Du W. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress. Cell Cycle 2017; 16:1201-1209. [PMID: 28475398 DOI: 10.1080/15384101.2017.1320627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G2/M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.
Collapse
Affiliation(s)
- Yibo Li
- a College of Pharmacy, South China Normal University , Guangzhou , China.,b Division of Experimental Hematology and Cancer Biology , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Surya Amarachintha
- b Division of Experimental Hematology and Cancer Biology , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Andrew F Wilson
- b Division of Experimental Hematology and Cancer Biology , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Xue Li
- a College of Pharmacy, South China Normal University , Guangzhou , China
| | - Wei Du
- b Division of Experimental Hematology and Cancer Biology , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA.,c Department of Pharmaceutical Sciences , School of Pharmacy, West Virginia University , Morgantown , WV , USA.,d West Virginia University Cancer Institute , Morgantown , WV , USA
| |
Collapse
|
12
|
Renaudin X, Koch Lerner L, Menck CFM, Rosselli F. The ubiquitin family meets the Fanconi anemia proteins. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:36-46. [PMID: 27543315 DOI: 10.1016/j.mrrev.2016.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
Fanconi anaemia (FA) is a hereditary disorder characterized by bone marrow failure, developmental defects, predisposition to cancer and chromosomal abnormalities. FA is caused by biallelic mutations that inactivate genes encoding proteins involved in replication stress-associated DNA damage responses. The 20 FANC proteins identified to date constitute the FANC pathway. A key event in this pathway involves the monoubiquitination of the FANCD2-FANCI heterodimer by the collective action of at least 10 different proteins assembled in the FANC core complex. The FANC core complex-mediated monoubiquitination of FANCD2-FANCI is essential to assemble the heterodimer in subnuclear, chromatin-associated, foci and to regulate the process of DNA repair as well as the rescue of stalled replication forks. Several recent works have demonstrated that the activity of the FANC pathway is linked to several other protein post-translational modifications from the ubiquitin-like family, including SUMO and NEDD8. These modifications are related to DNA damage responses but may also affect other cellular functions potentially related to the clinical phenotypes of the syndrome. This review summarizes the interplay between the ubiquitin and ubiquitin-like proteins and the FANC proteins that constitute a major pathway for the surveillance of the genomic integrity and addresses the implications of their interactions in maintaining genome stability.
Collapse
Affiliation(s)
- Xavier Renaudin
- CNRS UMR 8200-Equipe Labellisée "La Ligue Contre le Cancer"-Institut Gustave Roussy, 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris Sud, 91400 Orsay, France.
| | - Leticia Koch Lerner
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | | | - Filippo Rosselli
- CNRS UMR 8200-Equipe Labellisée "La Ligue Contre le Cancer"-Institut Gustave Roussy, 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris Sud, 91400 Orsay, France.
| |
Collapse
|
13
|
Garbati MR, Hays LE, Rathbun RK, Jillette N, Chin K, Al-Dhalimy M, Agarwal A, Newell AEH, Olson SB, Bagby GC. Cytokine overproduction and crosslinker hypersensitivity are unlinked in Fanconi anemia macrophages. J Leukoc Biol 2015; 99:455-65. [PMID: 26432900 DOI: 10.1189/jlb.3a0515-201r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/15/2015] [Indexed: 01/13/2023] Open
Abstract
The Fanconi anemia proteins participate in a canonical pathway that repairs cross-linking agent-induced DNA damage. Cells with inactivated Fanconi anemia genes are universally hypersensitive to such agents. Fanconi anemia-deficient hematopoietic stem cells are also hypersensitive to inflammatory cytokines, and, as importantly, Fanconi anemia macrophages overproduce such cytokines in response to TLR4 and TLR7/8 agonists. We questioned whether TLR-induced DNA damage is the primary cause of aberrantly regulated cytokine production in Fanconi anemia macrophages by quantifying TLR agonist-induced TNF-α production, DNA strand breaks, crosslinker-induced chromosomal breakage, and Fanconi anemia core complex function in Fanconi anemia complementation group C-deficient human and murine macrophages. Although both M1 and M2 polarized Fanconi anemia cells were predictably hypersensitive to mitomycin C, only M1 macrophages overproduced TNF-α in response to TLR-activating signals. DNA damaging agents alone did not induce TNF-α production in the absence of TLR agonists in wild-type or Fanconi anemia macrophages, and mitomycin C did not enhance TLR responses in either normal or Fanconi anemia cells. TLR4 and TLR7/8 activation induced cytokine overproduction in Fanconi anemia macrophages. Also, although TLR4 activation was associated with induced double strand breaks, TLR7/8 activation was not. That DNA strand breaks and chromosome breaks are neither necessary nor sufficient to account for the overproduction of inflammatory cytokines by Fanconi anemia cells suggests that noncanonical anti-inflammatory functions of Fanconi anemia complementation group C contribute to the aberrant macrophage phenotype and suggests that suppression of macrophage/TLR hyperreactivity might prevent cytokine-induced stem cell attrition in Fanconi anemia.
Collapse
Affiliation(s)
- Michael R Garbati
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Laura E Hays
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - R Keaney Rathbun
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Nathaniel Jillette
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Kathy Chin
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Muhsen Al-Dhalimy
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Amy E Hanlon Newell
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Susan B Olson
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Grover C Bagby
- *Northwest Veterans Affairs Cancer Research Center, Portland, Oregon, USA; Oregon Health & Science University, Portland, Oregon, USA; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
14
|
Svahn J, Lanza T, Rathbun K, Bagby G, Ravera S, Corsolini F, Pistorio A, Longoni D, Farruggia P, Dufour C, Cappelli E. p38 Mitogen-activated protein kinase inhibition enhances in vitro erythropoiesis of Fanconi anemia, complementation group A-deficient bone marrow cells. Exp Hematol 2014; 43:295-9. [PMID: 25534205 DOI: 10.1016/j.exphem.2014.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022]
Abstract
Bone marrow failure in Fanconi anemia (FA) has been linked in part to overproduction of inflammatory cytokines, to which FA stem and progenitor cells are hypersensitive. In cell lines and murine models p38 mitogen-activated protein kinase (MAPK)-dependent tumor necrosis factor α (TNF-α) overexpression can be induced by the Toll-like receptors (TLRs) 4 and 7/8 ligands Lipopolysaccharide (LPS) and R848. Ex vivo exposure of FA stem cells to TNF-α suppresses their replication and selects preleukemic clones. Here we show that inhibition of p38 MAPK also reduces TLR4 and 7/8-mediated TNF-α production in primary human FA complementation group A (FANCA)-deficient monocytes from nine patients and demonstrate that, while p38 MAPK inhibition also enhances clonal growth of FANCA-deficient erythroid progenitors, the effect was mediated indirectly by the influence of the inhibitor on auxiliary cells, not erythroid colony-forming units themselves. Taken together, these results support the view that inhibition of the p38 MAPK pathway in monocytes may improve hematopoiesis in FANCA patients.
Collapse
Affiliation(s)
- Johanna Svahn
- Hematology Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Tiziana Lanza
- Hematology Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Keaney Rathbun
- Oregon Health & Science University, Portland, OR, United States
| | - Grover Bagby
- Oregon Health & Science University, Portland, OR, United States
| | - Silvia Ravera
- DIFAR-Biochemistry Laboratory, Department of Pharmacology, University of Genoa, Genoa, Italy
| | - Fabio Corsolini
- Laboratorio Diagnosi Pre e Postnatale Malattie Metaboliche, Istituto Giannina Gaslini, Genoa, Italy
| | - Angela Pistorio
- Epidemiology and Biostatistics Unit, Istituto Giannina Gaslini, Genoa, Italy
| | | | - Piero Farruggia
- Pediatric Hematology and Oncology Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, Palermo, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
15
|
Aberrant overexpression of CD14 on granulocytes sensitizes the innate immune response in mDia1 heterozygous del(5q) MDS. Blood 2014; 124:780-90. [PMID: 24891322 DOI: 10.1182/blood-2014-01-552463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The myelodysplastic syndromes (MDSs) include a spectrum of stem cell malignancies characterized by an increased risk of developing acute myeloid leukemia. Heterozygous loss of chromosome 5q (del[5q]) is the most common cytogenetic abnormality in MDS. DIAPH1 is localized to 5q31 and encodes one of the formin proteins, mDia1, which is involved in linear actin polymerization. Mice with mDia1 deficiency develop hematologic features with age mimicking human myeloid neoplasm, but its role in the pathogenesis of MDS is unclear. Here we report that mDia1 heterozygous and knockout mice develop MDS phenotypes with age. In these mice, CD14 was aberrantly overexpressed on granulocytes in a cell-autonomous manner, leading to a hypersensitive innate immune response to lipopolysaccharide (LPS) stimuli through CD14/Toll-like receptor 4 signaling. Chronic stimulation with LPS accelerated the development of MDS in mDia1 heterozygous and knockout mice that can be rescued by lenalidomide. Similar findings of CD14 overexpression were observed on the bone marrow granulocytes of del(5q) MDS patients. Mechanistically, mDia1 deficiency led to a downregulation of membrane-associated genes and a specific upregulation of CD14 messenger RNA in granulocytes, but not in other lineages. These results underscore the significance of mDia1 heterozygosity in deregulated innate immune responses in del(5q) MDS.
Collapse
|
16
|
Tian T, Wang M, Ma D. TNF-α, a good or bad factor in hematological diseases? Stem Cell Investig 2014; 1:12. [PMID: 27358858 PMCID: PMC4923506 DOI: 10.3978/j.issn.2306-9759.2014.04.02] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/20/2014] [Indexed: 01/22/2023]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a highly pleiotropic cytokine involved in a spectrum of physiological processes that control inflammation, anti-tumor responses and homeostasis through two receptors, TNF-R1 and TNF-R2. In general, TNF-R1 mediates cytotoxicity, resistance to infection and stimulation of NF-κB. By contrast, TNF-R2 has been implicated in proliferation of T-cell line, thymocytes and human mononuclear cells. Hematological malignancies are the types of cancer that affect normal hematopoiesis, have a speedy development, high lethal rate and until now still have no effective treatment. Several studies have shown that inflammatory cytokines play an important role in the onset and progress of these diseases. In this review, we summarize the recent studies and evaluate the positive or negative role of TNF-α in some hematological malignancies or diseases with a malignant tendency.
Collapse
Affiliation(s)
- Tian Tian
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Min Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan 250012, China
| |
Collapse
|
17
|
Li J, Pang Q. Oxidative stress-associated protein tyrosine kinases and phosphatases in Fanconi anemia. Antioxid Redox Signal 2014; 20:2290-301. [PMID: 24206276 PMCID: PMC3995293 DOI: 10.1089/ars.2013.5715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress. Oxidative stress, defined as imbalance in pro-oxidant and antioxidant homeostasis, has been considered to contribute to disease development, including FA. RECENT ADVANCES A variety of signaling pathways may be influenced by oxidative stress, particularly the equilibrium between protein kinases and phosphatases, consequently leading to an aberrant phosphorylation state of cellular proteins. Dysfunction of kinases/phosphatases has been implicated in the pathophysiology of human diseases. In FA, evidence is emerging that links abnormal phosphorylation/de-phosphorylation of signaling molecules to clinical complications and malformations. CRITICAL ISSUES In this study, we review the recent findings on the oxidative stress-related kinases and phosphatases, particularly tyrosine phosphatases in FA. FUTURE DIRECTIONS Understanding the role of oxidative stress-related kinases and phosphatases in FA may provide unique and generic possibilities for the future development of therapeutic strategies by targeting the dysregulated protein kinases and phosphatases in a clinical setting.
Collapse
Affiliation(s)
- Jie Li
- 1 Division of Neurosurgery, Center for Theoretic and Applied Neuro-Oncology, Moores Cancer Center, University of California , San Diego, La Jolla, California
| | | |
Collapse
|
18
|
Kidane D, Chae WJ, Czochor J, Eckert KA, Glazer PM, Bothwell ALM, Sweasy JB. Interplay between DNA repair and inflammation, and the link to cancer. Crit Rev Biochem Mol Biol 2014; 49:116-39. [PMID: 24410153 DOI: 10.3109/10409238.2013.875514] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA damage and repair are linked to cancer. DNA damage that is induced endogenously or from exogenous sources has the potential to result in mutations and genomic instability if not properly repaired, eventually leading to cancer. Inflammation is also linked to cancer. Reactive oxygen and nitrogen species (RONs) produced by inflammatory cells at sites of infection can induce DNA damage. RONs can also amplify inflammatory responses, leading to increased DNA damage. Here, we focus on the links between DNA damage, repair, and inflammation, as they relate to cancer. We examine the interplay between chronic inflammation, DNA damage and repair and review recent findings in this rapidly emerging field, including the links between DNA damage and the innate immune system, and the roles of inflammation in altering the microbiome, which subsequently leads to the induction of DNA damage in the colon. Mouse models of defective DNA repair and inflammatory control are extensively reviewed, including treatment of mouse models with pathogens, which leads to DNA damage. The roles of microRNAs in regulating inflammation and DNA repair are discussed. Importantly, DNA repair and inflammation are linked in many important ways, and in some cases balance each other to maintain homeostasis. The failure to repair DNA damage or to control inflammatory responses has the potential to lead to cancer.
Collapse
Affiliation(s)
- Dawit Kidane
- Departments of Therapeutic Radiology and Genetics
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The inherited bone marrow failure (BMF) syndromes are a rare and diverse group of genetic disorders that ultimately result in the loss of blood production. The molecular defects underlying many of these conditions have been elucidated, and great progress has been made toward understanding the normal function of these gene products. This review will focus on perhaps the most well-known and genetically heterogeneous BMF syndrome: Fanconi anemia. More specifically, this account will review the current state of our knowledge on why the bone marrow fails in this illness and what this might tell us about the maintenance of bone marrow function and hematopoiesis.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | |
Collapse
|
20
|
Paiva RMA, Calado RT. Telomere dysfunction and hematologic disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:133-57. [PMID: 24993701 DOI: 10.1016/b978-0-12-397898-1.00006-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aplastic anemia is a disease in which the hematopoietic stem cell fails to adequately produce peripheral blood cells, causing pancytopenia. In some cases of acquired aplastic anemia and in inherited type of aplastic anemia, dyskeratosis congenita, telomere biology gene mutations and telomere shortening are etiologic. Telomere erosion hampers the ability of hematopoietic stem and progenitor cells to adequately replicate, clinically resulting in bone marrow failure. Additionally, telomerase mutations and short telomeres are genetic risk factors for the development of some hematologic cancers, including myelodysplastic syndrome, acute myeloid leukemia, and chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Raquel M A Paiva
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Internal Medicine, University of São Paulo at Ribeirão Preto School of Medicine, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
21
|
Immune status of Fanconi anemia patients: decrease in T CD8 and CD56dim CD16+ NK lymphocytes. Ann Hematol 2013; 93:761-7. [PMID: 24240977 DOI: 10.1007/s00277-013-1953-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Fanconi anemia (FA), a rare genetic disease in which patients' life is compromised mainly by hematological abnormalities and cancer prone, seems to be affected by subtle immune cell irregularities. Knowing that FA presents developmental abnormalities and, based on recent reports, suggesting that natural killer (NK) CD56(dim) and NK CD56(bright) correspond to sequential differentiation pathways, we investigated if there were changes on the total number of NK cells and subsets as well as on T CD4 and T CD8 lymphocytes and their ratio. A large sample of FA patients (n = 42) was used in this work, and the results were correlated to clinical hematological status of these patients. Among FA patients, a decreased proportion of T CD8(+) and NK CD56(dim)CD16(+) cells were observed when compared to healthy controls as well as an imbalance of the subsets NK lymphocytes. Data suggest that FA patients might have a defective cytotoxic response due to the lower number of cytotoxic cells as well as impairment in the differentiation process of the NK cells subsets which may be directly related to impairment of the immune surveillance observed in these patients.
Collapse
|
22
|
Bakker ST, de Winter JP, te Riele H. Learning from a paradox: recent insights into Fanconi anaemia through studying mouse models. Dis Model Mech 2013; 6:40-7. [PMID: 23268537 PMCID: PMC3529337 DOI: 10.1242/dmm.009795] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fanconi anaemia (FA) is a rare autosomal recessive or X-linked inherited disease characterised by an increased incidence of bone marrow failure (BMF), haematological malignancies and solid tumours. Cells from individuals with FA show a pronounced sensitivity to DNA interstrand crosslink (ICL)-inducing agents, which manifests as G2-M arrest, chromosomal aberrations and reduced cellular survival. To date, mutations in at least 15 different genes have been identified that cause FA; the products of all of these genes are thought to function together in the FA pathway, which is essential for ICL repair. Rapidly following the discovery of FA genes, mutant mice were generated to study the disease and the affected pathway. These mutant mice all show the characteristic cellular ICL-inducing agent sensitivity, but only partially recapitulate the developmental abnormalities, anaemia and cancer predisposition seen in individuals with FA. Therefore, the usefulness of modelling FA in mice has been questioned. In this Review, we argue that such scepticism is unjustified. We outline that haematopoietic defects and cancer predisposition are manifestations of FA gene defects in mice, albeit only in certain genetic backgrounds and under certain conditions. Most importantly, recent work has shown that developmental defects in FA mice also arise with concomitant inactivation of acetaldehyde metabolism, giving a strong clue about the nature of the endogenous lesion that must be repaired by the functional FA pathway. This body of work provides an excellent example of a paradox in FA research: that the dissimilarity, rather than the similarity, between mice and humans can provide insight into human disease. We expect that further study of mouse models of FA will help to uncover the mechanistic background of FA, ultimately leading to better treatment options for the disease.
Collapse
Affiliation(s)
- Sietske T Bakker
- Division of Biological Stress Response, Netherlands Cancer Institute, Plesmanlaan 121, NL-1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
23
|
Pagano G, Talamanca AA, Castello G, d'Ischia M, Pallardó FV, Petrović S, Porto B, Tiano L, Zatterale A. From clinical description, to in vitro and animal studies, and backward to patients: oxidative stress and mitochondrial dysfunction in Fanconi anemia. Free Radic Biol Med 2013; 58:118-25. [PMID: 23376230 DOI: 10.1016/j.freeradbiomed.2013.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/11/2013] [Accepted: 01/18/2013] [Indexed: 01/05/2023]
Abstract
Fanconi anemia (FA) is a rare genetic disease associated with deficiencies in DNA repair pathways. A body of literature points to a pro-oxidant state in FA patients, along with evidence for oxidative stress (OS) in the FA phenotype reported by in vitro, molecular, and animal studies. A highlight arises from the detection of mitochondrial dysfunction (MDF) in FA cell lines of complementation groups A, C, D2, and G. As yet lacking, in vivo studies should focus on FA-associated MDF, which may help in the understanding of the mitochondrial basis of OS detected in cells and body fluids from FA patients. Beyond the in vitro and animal databases, the available analytical devices may prompt the direct observation of metabolic and mitochondrial alterations in FA patients. These studies should evaluate a set of MDF-related endpoints, to be related to OS endpoints. The working hypothesis is raised that, parallel to OS, nitrosative stress might be another, so far unexplored, hallmark of the FA phenotype. The expected results may shed light on the FA pathogenesis and might provide grounds for pilot chemoprevention trials using mitochondrial nutrients.
Collapse
Affiliation(s)
- Giovanni Pagano
- ITN-Cancer Research Center, I-83013 Mercogliano, Avellino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Holmgren SC, Goren EM, Wood BL, Becker PS, Taylor JA. Immune defects in a mouse model of Fanconi anaemia. Br J Haematol 2012; 159:246-50. [DOI: 10.1111/bjh.12012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sigrid C. Holmgren
- Research and Development; Portland Veterans Affairs Medical Center; Portland; OR; US
| | - Emily M. Goren
- Research and Development; Portland Veterans Affairs Medical Center; Portland; OR; US
| | - Brent L. Wood
- Departments of Laboratory Medicine and Pathology; University of Washington; Seattle; WA; US
| | - Pamela S. Becker
- Division of Hematology; University of Washington; Seattle WA; US
| | | |
Collapse
|
25
|
Abstract
Bone marrow failure is a nearly universal complication of Fanconi anemia. The proteins encoded by FANC genes are involved in DNA damage responses through the formation of a multisubunit nuclear complex that facilitates the E3 ubiquitin ligase activity of FANCL. However, it is not known whether loss of E3 ubiquitin ligase activity accounts for the hematopoietic stem cell defects characteristic of Fanconi anemia. Here we provide evidence that FANCL increases the activity and expression of β-catenin, a key pluripotency factor in hematopoietic stem cells. We show that FANCL ubiquitinates β-catenin with atypical ubiquitin chain extension known to have nonproteolytic functions. Specifically, β-catenin modified with lysine-11 ubiquitin chain extension efficiently activates a lymphocyte enhancer-binding factor-T cell factor reporter. We also show that FANCL-deficient cells display diminished capacity to activate β-catenin leading to reduced transcription of Wnt-responsive targets c-Myc and Cyclin D1. Suppression of FANCL expression in normal human CD34(+) stem and progenitor cells results in fewer β-catenin active cells and inhibits expansion of multilineage progenitors. Together, these results suggest that diminished Wnt/β-catenin signaling may be an underlying molecular defect in FANCL-deficient hematopoietic stem cells leading to their accelerated loss.
Collapse
|
26
|
Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies. Anemia 2012; 2012:265790. [PMID: 22675615 PMCID: PMC3366203 DOI: 10.1155/2012/265790] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/13/2012] [Indexed: 12/31/2022] Open
Abstract
Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC). This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.
Collapse
|
27
|
Down-regulated expression of hsa-miR-181c in Fanconi anemia patients: implications in TNFα regulation and proliferation of hematopoietic progenitor cells. Blood 2012; 119:3042-9. [PMID: 22310912 DOI: 10.1182/blood-2011-01-331017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fanconi anemia (FA) is an inherited genetic disorder associated with BM failure and cancer predisposition. In the present study, we sought to elucidate the role of microRNAs (miRNAs) in the hematopoietic defects observed in FA patients. Initial studies showed that 3 miRNAs, hsa-miR-133a, hsa-miR-135b, and hsa-miR-181c, were significantly down-regulated in lymphoblastoid cell lines and fresh peripheral blood cells from FA patients. In vitro studies with cells expressing the luciferase reporter fused to the TNFα 3'-untranslated region confirmed in silico predictions suggesting an interaction between hsa-miR-181c and TNFα mRNA. These observations were consistent with the down-regulated expression of TNFα mediated by hsa-miR-181c in cells from healthy donors and cells from FA patients. Because of the relevance of TNFα in the hematopoietic defects of FA patients, in the present study, we transfected BM cells from FA patients with hsa-miR-181c to evaluate the impact of this miRNA on their clonogenic potential. hsa-miR-181c markedly increased the number and size of the myeloid and erythroid colonies generated by BM cells from FA patients. Our results offer new clues toward understanding the biologic basis of BM failure in FA patients and open new possibilities for the treatment of the hematologic dysfunction in FA patients based on miRNA regulation.
Collapse
|
28
|
p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes. Blood 2012; 119:1992-2002. [PMID: 22234699 DOI: 10.1182/blood-2011-06-354647] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fanconi anemia, complementation group C (FANCC)-deficient hematopoietic stem and progenitor cells are hypersensitive to a variety of inhibitory cytokines, one of which, TNFα, can induce BM failure and clonal evolution in Fancc-deficient mice. FANCC-deficient macrophages are also hypersensitive to TLR activation and produce TNFα in an unrestrained fashion. Reasoning that suppression of inhibitory cytokine production might enhance hematopoiesis, we screened small molecules using TLR agonist-stimulated FANCC- and Fanconi anemia, complementation group A (FANCA)-deficient macrophages containing an NF-κB/AP-1-responsive reporter gene (SEAP). Of the 75 small molecules screened, the p38 MAPK inhibitor BIRB 796 and dasatinib potently suppressed TLR8-dependent expression of the reporter gene. Fanconi anemia (FA) macrophages were hypersensitive to the TLR7/8 activator R848, overproducing SEAP and TNFα in response to all doses of the agonist. Low doses (50nM) of both agents inhibited p38 MAPK-dependent activation of MAPKAPK2 (MK2) and suppressed MK2-dependent TNFα production without substantially influencing TNFα gene transcription. Overproduction of TNFα by primary FA cells was likewise suppressed by these agents and involved inhibition of MK2 activation. Because MK2 is also known to influence production and/or sensitivity to 2 other suppressive factors (MIP-1α and IFNγ) to which FA hematopoietic progenitor cells are uniquely vulnerable, targeting of p38 MAPK in FA hematopoietic cells is a rational objective for preclinical evaluation.
Collapse
|
29
|
Xiao Y, Li H, Zhang J, Volk A, Zhang S, Wei W, Zhang S, Breslin P, Zhang J. TNF-α/Fas-RIP-1-induced cell death signaling separates murine hematopoietic stem cells/progenitors into 2 distinct populations. Blood 2011; 118:6057-67. [PMID: 21989986 PMCID: PMC9211406 DOI: 10.1182/blood-2011-06-359448] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/02/2011] [Indexed: 12/31/2022] Open
Abstract
We studied the effects of TNF-α and Fas-induced death signaling in hematopoietic stem and progenitor cells (HSPCs) by examining their contributions to the development of bone marrow failure syndromes in Tak1-knockout mice (Tak1(-/-)). We found that complete inactivation of TNF-α signaling by deleting both of its receptors, 1 and 2 (Tnfr1(-/-)r2(-/-)), can prevent the death of 30% to 40% of Tak1(-/-) HSPCs and partially repress the bone marrow failure phenotype of Tak1(-/-) mice. Fas deletion can prevent the death of 5% to 10% of Tak1(-/-) HSPCs but fails to further improve the survival of Tak1(-/-)Tnfr1(-/-)r2(-/-) HSPCs, suggesting that Fas might induce death within a subset of TNF-α-sensitive HSPCs. This TNF-α/Fas-induced cell death is a type of receptor-interacting protein-1 (RIP-1)-dependent programmed necrosis called necroptosis, which can be prevented by necrostatin-1, a specific RIP-1 inhibitor. In addition, we found that the remaining Tak1(-/-) HSPCs died of apoptosis mediated by the caspase-8-dependent extrinsic apoptotic pathway. This apoptosis can be converted into necroptosis by the inhibition of caspase-8 and prevented by inhibiting both caspase-8 and RIP-1 activities. We concluded that HSPCs are heterogeneous populations in response to death signaling stimulation. Tak1 mediates a critical survival signal, which protects against both TNF-α/Fas-RIP-1-dependent necroptosis and TNF-α/Fas-independent apoptosis in HSPCs.
Collapse
MESH Headings
- Anemia, Aplastic
- Animals
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Apoptosis/physiology
- Bone Marrow Diseases
- Bone Marrow Failure Disorders
- Caspase 3/metabolism
- Caspase 8/metabolism
- Caspase Inhibitors
- Cell Differentiation/physiology
- GTPase-Activating Proteins/antagonists & inhibitors
- GTPase-Activating Proteins/metabolism
- Hematopoietic Stem Cells/classification
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Hemoglobinuria, Paroxysmal/metabolism
- Hemoglobinuria, Paroxysmal/pathology
- Imidazoles/pharmacology
- Indoles/pharmacology
- MAP Kinase Kinase Kinases/genetics
- MAP Kinase Kinase Kinases/metabolism
- Mice
- Mice, Knockout
- Necrosis
- Phenotype
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tumor Necrosis Factor-alpha/metabolism
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Yechen Xiao
- Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu Y, Ballman K, Li D, Khan S, Derr-Yellin E, Shou W, Haneline LS. Impaired function of Fanconi anemia type C-deficient macrophages. J Leukoc Biol 2011; 91:333-40. [PMID: 22106009 DOI: 10.1189/jlb.0811418] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
FA is a genetic disorder characterized by BM failure, developmental defects, and cancer predisposition. Previous studies suggest that FA patients exhibit alterations in immunologic function. However, it is unclear whether the defects are immune cell-autonomous or secondary to leukopenia from evolving BM failure. Given the central role that macrophages have in the innate immune response, inflammation resolution, and antigen presentation for acquired immunity, we examined whether macrophages from Fancc-/- mice exhibit impaired function. Peritoneal inflammation induced by LPS or sodium periodate resulted in reduced monocyte/macrophage recruitment in Fancc-/- mice compared with WT controls. Fancc-/- mice also had decreased inflammatory monocytes mobilized into the peripheral blood after LPS treatment compared with controls. Furthermore, Fancc-/- peritoneal macrophages displayed cell-autonomous defects in function, including impaired adhesion to FN or endothelial cells, reduced chemoattractant-mediated migration, and decreased phagocytosis. Moreover, dysregulated F-actin rearrangement was detected in Fancc-/- macrophages after adhesion to FN, which was consistent with an observed reduction in RhoA-GTP levels. Importantly, these data suggest that impaired cytoskeletal rearrangements in Fancc-/- macrophages may be the common mechanism responsible for cell-autonomous defects detected in vitro, as well as altered monocyte/macrophage trafficking in vivo.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Lorenzo LPE, Chen H, Shatynski KE, Clark S, Yuan R, Harrison DE, Yarowsky PJ, Williams MS. Defective hematopoietic stem cell and lymphoid progenitor development in the Ts65Dn mouse model of Down syndrome: potential role of oxidative stress. Antioxid Redox Signal 2011; 15:2083-94. [PMID: 21504363 PMCID: PMC3166202 DOI: 10.1089/ars.2010.3798] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS Down Syndrome (DS), a genetic disease caused by a triplication of chromosome 21, is characterized by increased markers of oxidative stress. In addition to cognitive defects, patients with DS also display hematologic disorders and increased incidence of infections and leukemia. Using the Ts65Dn mouse model of DS, the goal of this study was to examine hematopoietic stem and lymphoid progenitor cell function in DS. RESULTS Analysis of hematopoietic progenitor populations showed that Ts65Dn mice possessed fewer functional hematopoietic stem cells and a significantly decreased percentage of bone marrow lymphoid progenitors. Increased reactive oxygen species and markers of oxidative stress were detected in hematopoietic stem cell populations and were associated with a loss of quiescence. Bone marrow progenitor populations expressed diminished levels of the IL-7Rα chain, which was associated with decreased proliferation and increased apoptosis. Modulating oxidative stress in vitro suggested that oxidative stress selectively leads to decreased IL-7Rα expression, and inhibits the survival of IL-7Rα-expressing hematopoietic progenitors, potentially linking increased reactive oxygen species and immunopathology. INNOVATION The study results identify a link between oxidative stress and diminished IL-7Rα expression and function. Further, the data suggest that this decrease in IL-7Rα is associated with defective hematopoietic development in Down Syndrome. CONCLUSION The data suggest that hematopoietic stem and lymphoid progenitor cell defects underlie immune dysfunction in DS and that increased oxidative stress and reduced cytokine signaling may alter hematologic development in Ts65Dn mice.
Collapse
Affiliation(s)
- Laureanne Pilar E Lorenzo
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Direct inhibition of TNF-α promoter activity by Fanconi anemia protein FANCD2. PLoS One 2011; 6:e23324. [PMID: 21912593 PMCID: PMC3166142 DOI: 10.1371/journal.pone.0023324] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/14/2011] [Indexed: 11/22/2022] Open
Abstract
Fanconi anemia (FA), an inherited disease, is associated with progressive bone marrow failure, predisposition to cancer, and genomic instability. Genes corresponding to 15 identified FA complementation groups have been cloned, and each gene product functions in the response to DNA damage induced by cross-linking agents and/or in protection against genome instability. Interestingly, overproduction of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and aberrant activation of NF-κB-dependent transcriptional activity have been observed in FA cells. Here we demonstrated that FANCD2 protein inhibits NF-κB activity in its monoubiquitination-dependent manner. Furthermore, we detected a specific association between FANCD2 and an NF-κB consensus element in the TNF-α promoter by electrophoretic mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) assay. Therefore, we propose FANCD2 deficiency promotes transcriptional activity of the TNF-α promoter and induces overproduction of TNF-which then sustains prolonged inflammatory responses. These results also suggest that artificial modulation of TNFα production could be a promising therapeutic approach to FA.
Collapse
|
33
|
TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood 2011; 118:6392-8. [PMID: 21860020 DOI: 10.1182/blood-2011-04-348144] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory cytokines such as TNFα are elevated in patients with myeloproliferative neoplasms (MPN), but their contribution to disease pathogenesis is unknown. Here we reveal a central role for TNFα in promoting clonal dominance of JAK2(V617F) expressing cells in MPN. We show that JAK2(V617F) kinase regulates TNFα expression in cell lines and primary MPN cells and TNFα expression is correlated with JAK2(V617F) allele burden. In clonogenic assays, normal controls show reduced colony formation in the presence of TNFα while colony formation by JAK2(V617F)-positive progenitor cells is resistant or stimulated by exposure to TNFα. Ectopic JAK2(V617F) expression confers TNFα resistance to normal murine progenitor cells and overcomes inherent TNFα hypersensitivity of Fanconi anemia complementation group C deficient progenitors. Lastly, absence of TNFα limits clonal expansion and attenuates disease in a murine model of JAK2(V617F)-positive MPN. Altogether our data are consistent with a model where JAK2(V617F) promotes clonal selection by conferring TNFα resistance to a preneoplastic TNFα sensitive cell, while simultaneously generating a TNFα-rich environment. Mutations that confer resistance to environmental stem cell stressors are a recognized mechanism of clonal selection and leukemogenesis in bone marrow failure syndromes and our data suggest that this mechanism is also critical to clonal selection in MPN.
Collapse
|
34
|
Kim JH, Park BL, Pasaje CFA, Bae JS, Park JS, Park SW, Uh ST, Choi JS, Kim YH, Kim MK, Choi IS, Cho SH, Choi BW, Park CS, Shin HD. Association of FANCC polymorphisms with FEV1 decline in aspirin exacerbated respiratory disease. Mol Biol Rep 2011; 39:2385-94. [PMID: 21670957 DOI: 10.1007/s11033-011-0989-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/28/2011] [Indexed: 11/24/2022]
Abstract
Aspirin exacerbated respiratory disease (AERD) is a clinical condition characterized by severe decline in forced expiratory volume in one second (FEV1) following the ingestion of non-steroidal anti-inflammatory drugs (NSAIDs), including aspirin. The exacerbated inflammatory response in Fancc-deficient mice has been reported to be associated with hemopoietic responses that are also related to AERD pathogenesis. To investigate associations of FANCC polymorphisms with AERD and related phenotypes, this study genotyped 25 common single nucleotide polymorphisms (SNPs) in a total of 592 Korean asthmatics including 163 AERD and 429 aspirin-tolerant asthma (ATA) subjects. Logistic analysis revealed that genetic polymorphisms of the FANCC gene might not be directly related to AERD development and nasal polyposis (P > 0.05). However, the FEV1 decline by aspirin provocation showed significant associations with FANCC polymorphisms (P = 0.006-0.04) and a haplotype (unique to rs4647416G > A, P = 0.01 under co-dominant, P = 0.006 under recessive model). In silico analysis showed that the "A" allele of rs4647376C > A, which was more prevalent in AERD than in ATA, could act as a potential branch point (BP) site for alternative splicing (BP score = 4.16). Although replications in independent cohorts and further functional evaluations are still needed, our preliminary findings suggest that FANCC polymorphisms might be associated with the obstructive symptoms in allergic diseases.
Collapse
Affiliation(s)
- Jeong-Hyun Kim
- Department of Life Science, Sogang University, Seoul 121-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Fanconi anemia (FA) is a human disease of bone marrow failure, leukemia, squamous cell carcinoma, and developmental anomalies, including hypogonadism and infertility. Bone marrow transplants improve hematopoietic phenotypes but do not prevent other cancers. FA arises from mutation in any of the 15 FANC genes that cooperate to repair double stranded DNA breaks by homologous recombination. Zebrafish has a single ortholog of each human FANC gene and unexpectedly, mutations in at least two of them (fancl and fancd1(brca2)) lead to female-to-male sex reversal. Investigations show that, as in human, zebrafish fanc genes are required for genome stability and for suppressing apoptosis in tissue culture cells, in embryos treated with DNA damaging agents, and in meiotic germ cells. The sex reversal phenotype requires the action of Tp53 (p53), an activator of apoptosis. These results suggest that in normal sex determination, zebrafish oocytes passing through meiosis signal the gonadal soma to maintain expression of aromatase, an enzyme that converts androgen to estrogen, thereby feminizing the gonad and the individual. According to this model, normal male and female zebrafish differ in genetic factors that control the strength of the late meiotic oocyte-derived signal, probably by regulating the number of meiotic oocytes, which environmental factors can also alter. Transcripts from fancd1(brca2) localize at the animal pole of the zebrafish oocyte cytoplasm and are required for normal oocyte nuclear architecture, for normal embryonic development, and for preventing ovarian tumors. Embryonic DNA repair and sex reversal phenotypes provide assays for the screening of small molecule libraries for therapeutic substances for FA.
Collapse
|
36
|
Vinciguerra P, Godinho SA, Parmar K, Pellman D, D'Andrea AD. Cytokinesis failure occurs in Fanconi anemia pathway-deficient murine and human bone marrow hematopoietic cells. J Clin Invest 2010; 120:3834-42. [PMID: 20921626 DOI: 10.1172/jci43391] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 08/18/2010] [Indexed: 01/18/2023] Open
Abstract
Fanconi anemia (FA) is a genomic instability disorder characterized by bone marrow failure and cancer predisposition. FA is caused by mutations in any one of several genes that encode proteins cooperating in a repair pathway and is required for cellular resistance to DNA crosslinking agents. Recent studies suggest that the FA pathway may also play a role in mitosis, since FANCD2 and FANCI, the 2 key FA proteins, are localized to the extremities of ultrafine DNA bridges (UFBs), which link sister chromatids during cell division. However, whether FA proteins regulate cell division remains unclear. Here we have shown that FA pathway-deficient cells display an increased number of UFBs compared with FA pathway-proficient cells. The UFBs were coated by BLM (the RecQ helicase mutated in Bloom syndrome) in early mitosis. In contrast, the FA protein FANCM was recruited to the UFBs at a later stage. The increased number of bridges in FA pathway-deficient cells correlated with a higher rate of cytokinesis failure resulting in binucleated cells. Binucleated cells were also detectable in primary murine FA pathway-deficient hematopoietic stem cells (HSCs) and bone marrow stromal cells from human patients with FA. Based on these observations, we suggest that cytokinesis failure followed by apoptosis may contribute to bone marrow failure in patients with FA.
Collapse
Affiliation(s)
- Patrizia Vinciguerra
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
37
|
Parmar K, Kim J, Sykes SM, Shimamura A, Stuckert P, Zhu K, Hamilton A, Deloach MK, Kutok JL, Akashi K, Gilliland DG, D'andrea A. Hematopoietic stem cell defects in mice with deficiency of Fancd2 or Usp1. Stem Cells 2010; 28:1186-95. [PMID: 20506303 DOI: 10.1002/stem.437] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fanconi anemia (FA) is a human genetic disease characterized by a DNA repair defect and progressive bone marrow failure. Central events in the FA pathway are the monoubiquitination of the Fancd2 protein and the removal of ubiquitin by the deubiquitinating enzyme, Usp1. Here, we have investigated the role of Fancd2 and Usp1 in the maintenance and function of murine hematopoietic stem cells (HSCs). Bone marrow from Fancd2-/- mice and Usp1-/- mice exhibited marked hematopoietic defects. A decreased frequency of the HSC populations including Lin-Sca-1+Kit+ cells and cells enriched for dormant HSCs expressing signaling lymphocyte activation molecule (SLAM) markers, was observed in the bone marrow of Fancd2-deficient mice. In addition, bone marrow from Fancd2-/- mice contained significantly reduced frequencies of late-developing cobblestone area-forming cell activity in vitro compared to the bone marrow from wild-type mice. Furthermore, Fancd2-deficient and Usp1-deficient bone marrow had defective long-term in vivo repopulating ability. Collectively, our data reveal novel functions of Fancd2 and Usp1 in maintaining the bone marrow HSC compartment and suggest that FA pathway disruption may account for bone marrow failure in FA patients.
Collapse
Affiliation(s)
- Kalindi Parmar
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Progressive bone marrow failure is a major cause of morbidity and mortality in human Fanconi Anemia patients. In an effort to develop a Fanconi Anemia murine model to study bone marrow failure, we found that Fancd2(-/-) mice have readily measurable hematopoietic defects. Fancd2 deficiency was associated with a significant decline in the size of the c-Kit(+)Sca-1(+)Lineage(-) (KSL) pool and reduced stem cell repopulation and spleen colony-forming capacity. Fancd2(-/-) KSL cells showed an abnormal cell cycle status and loss of quiescence. In addition, the supportive function of the marrow microenvironment was compromised in Fancd2(-/-) mice. Treatment with Sirt1-mimetic and the antioxidant drug, resveratrol, maintained Fancd2(-/-) KSL cells in quiescence, improved the marrow microenvironment, partially corrected the abnormal cell cycle status, and significantly improved the spleen colony-forming capacity of Fancd2(-/-) bone marrow cells. We conclude that Fancd2(-/-) mice have readily quantifiable hematopoietic defects, and that this model is well suited for pharmacologic screening studies.
Collapse
|
39
|
Abstract
Fancc suppresses cross-linker-induced genotoxicity, modulates growth-inhibitory cytokine responses, and modulates endotoxin responses. Although loss of the latter function is known to account for endotoxin-induced marrow failure in murine Fancc (mFancc)-deficient mice, some argue that cytokine and endotoxin hypersensitivities devolve simply from genomic instability. Seeking to resolve this question, we planned to ectopically express instructive human FANCC (hFANCC) mutants in murine Fancc-deficient hematopoietic stem cells. To first assure that hFANCC cDNA was competent in murine cells, we compared hFANCC and mFancc in complementation assays for cross-linking agent hypersensitivity and endotoxin hypersensitivity. We found that mFancc complemented murine Fancc-deficient cells in both assays, but that hFANCC fully suppressed only endotoxin hypersensitivity, not cross-linking agent hypersensitivity. These results support the notions that Fancc is multifunctional and that structural prerequisites for its genoprotective functions differ from those required to constrain endotoxin responses known to lead to marrow failure in Fancc-deficient mice.
Collapse
|
40
|
Yu J, Chu ESH, Wang R, Wang S, Wu CW, Wong VWS, Chan HLY, Farrell GC, Sung JJY. Heme oxygenase-1 protects against steatohepatitis in both cultured hepatocytes and mice. Gastroenterology 2010; 138:694-704, 704.e1. [PMID: 19818781 DOI: 10.1053/j.gastro.2009.09.058] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 09/03/2009] [Accepted: 09/20/2009] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Heme oxygenase-1 (HO-1), an antioxidant defense enzyme, has been shown to protect against oxidant-induced tissue injury. We investigated the role of HO-1 in nutritional steatohepatitis in vitro and in vivo. METHODS AML-12 hepatocytes were cultured in methionine- and choline-deficient (MCD) medium. Cells were transfected with an adenovirus vector that expressed HO-1 (Ad-HO-1) or incubated with the HO-1 inducer hemin or the HO-1 inhibitor stannic mesoporphyrin for 24 hours. C57BL6 mice and db/db mice were fed MCD or control diets, with or without hemin, for up to 4 weeks. RESULTS AML-12 cells exposed to MCD medium developed significant steatosis, increased release of alanine aminotransferase, and showed signs of oxidative injury. Incubation with hemin induced HO-1 protein, suppressed steatosis, and reduced levels of alanine aminotransferase and lipid peroxidation. A comparable effect was observed in cells transfected with Ad-HO-1, whereas incubation of these cells with stannic mesoporphyrin completely abolished the Ad-HO-1- or hemin-mediated protection of hepatocytes. Mice injected with hemin significantly attenuated MCD-induced steatohepatitis and increased HO-1 protein and activity. This effect was associated with up-regulation of antioxidant chaperones and enzymes, down-regulation of proinflammatory cytokines, and up-regulation of the anti-inflammatory interleukin-22. Moreover, the reduction in steatosis caused by hemin was affected by up-regulation of peroxisome proliferator-activated receptor-alpha and by down-regulation of sterol regulatory element binding protein-1c. CONCLUSIONS HO-1 can interrupt progression of nutritional steatohepatitis by inducing an antioxidant pathway, suppressing production of cytokines, and modifying fatty acid turnover. Induction of HO-1 might provide a new approach for treatment of steatohepatitis.
Collapse
Affiliation(s)
- Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lyakhovich A, Surrallés J. Constitutive activation of caspase-3 and Poly ADP ribose polymerase cleavage in fanconi anemia cells. Mol Cancer Res 2010; 8:46-56. [PMID: 20068062 DOI: 10.1158/1541-7786.mcr-09-0373] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fanconi anemia (FA) is a rare syndrome characterized by developmental abnormalities, progressive bone marrow failure, and cancer predisposition. Cells from FA patients exhibit hypersensitivity to DNA cross-linking agents and oxidative stress that may trigger apoptosis. Damage-induced activation of caspases and poly ADP ribose polymerase (PARP) enzymes have been described for some of the FA complementation groups. Here, we show the constitutive activation of caspase-3 and PARP cleavage in the FA cells without exposure to exogenous DNA-damaging factors. These effects can be reversed in the presence of reactive oxygen species scavenger N-acetylcystein. We also show the accumulation of oxidized proteins in FA cells, which is accompanied by the tumor necrosis factor (TNF)-alpha oversecretion and the upregulation of early stress response kinases pERK1/2 and p-P38. Suppression of TNF-alpha secretion by the extracellular signal-regulated kinase inhibitor PD98059 results in reduction of caspase-3 cleavage, suggesting a possible mechanism of caspases-3 activation in FA cells. Thus, the current study is the first evidence demonstrating the damage-independent activation of caspase-3 and PARP in FA cells, which seems to occur through mitogen-activated protein kinase activation and TNF-alpha oversecretion.
Collapse
Affiliation(s)
- Alex Lyakhovich
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | |
Collapse
|
42
|
Abstract
Rho family GTPases are intracellular signaling proteins regulating multiple pathways involved in cell actomyosin organization, adhesion, and proliferation. Our knowledge of their cellular functions comes mostly from previous biochemical studies that used mutant overexpression approaches in various clonal cell lines. Recent progress in understanding Rho GTPase functions in blood cell development and regulation by gene targeting of individual Rho GTPases in mice has allowed a genetic understanding of their physiologic roles in hematopoietic progenitors and mature lineages. In particular, mouse gene-targeting studies have provided convincing evidence that individual members of the Rho GTPase family are essential regulators of cell type-specific functions and stimuli-specific pathways in regulating hematopoietic stem cell interaction with bone marrow niche, erythropoiesis, and red blood cell actin dynamics, phagocyte migration and killing, and T- and B-cell maturation. In addition, deregulation of Rho GTPase family members has been associated with multiple human hematologic diseases such as neutrophil dysfunction, leukemia, and Fanconi anemia, raising the possibility that Rho GTPases and downstream signaling pathways are of therapeutic value. In this review we discuss recent genetic studies of Rho GTPases in hematopoiesis and several blood lineages and the implications of Rho GTPase signaling in hematologic malignancies, immune pathology. and anemia.
Collapse
|
43
|
Abstract
Tumor necrosis factor alpha (TNF-alpha) production is abnormally high in Fanconi anemia (FA) cells and contributes to the hematopoietic defects seen in FA complementation group C-deficient (Fancc(-/-)) mice. Applying gene expression microarray and proteomic methods to studies on FANCC-deficient cells we found that genes encoding proteins directly involved in ubiquitinylation are overrepresented in the signature of FA bone marrow cells and that ubiquitinylation profiles of FA-C and complemented cells were substantially different. Finding that Toll-like receptor 8 (TLR8) was one of the proteins ubiquitinylated only in mutant cells, we confirmed that TLR8 (or a TLR8-associated protein) is ubiquitinylated in mutant FA-C cells and that TNF-alpha production in mutant cells depended upon TLR8 and the canonical downstream signaling intermediates interleukin 1 receptor-associated kinase (IRAK) and IkappaB kinase-alpha/beta. FANCC-deficient THP-1 cells and macrophages from Fancc(-/-) mice overexpressed TNF-alpha in response to TLR8 agonists but not other TLR agonists. Ectopically expressed FANCC point mutants were capable of fully complementing the mitomycin-C hypersensitivity phenotype of FA-C cells but did not suppress TNF-alpha overproduction. In conclusion, FANCC suppresses TNF-alpha production in mononuclear phagocytes by suppressing TLR8 activity and this particular function of FANCC is independent of its function in protecting the genome from cross-linking agents.
Collapse
|
44
|
Abstract
Each of the thirteen identified Fanconi anemia (FA) genes is required for resistance to DNA interstrand crosslinking agents, such as mitomycin C, cisplatin, and melphalan. While these agents are excellent tools for understanding the function of FA proteins in DNA repair, it is uncertain whether a defect in the removal of DNA interstrand crosslinks (ICLs) is the basis for the pathophysiology of FA. For example, DNA interstrand crosslinking agents induce other types of DNA damage, in addition to ICLs. Further, other DNA-damaging agents, such as ionizing or ultraviolet radiation, activate the FA pathway, leading to monoubiquitination of FANCD2 and FANCI. Also, FA patients display congenital abnormalities, hematologic deficiencies, and a predisposition to cancer in the absence of an environmental source of ICLs that is external to cells. Here we consider potential sources of endogenous DNA damage, or endogenous stresses, to which FA proteins may respond. These include ICLs formed by products of lipid peroxidation, and other forms of oxidative DNA damage. FA proteins may also potentially respond to telomere shortening or replication stress. Defining these endogenous sources of DNA damage or stresses is critical for understanding the pathogenesis of deficiencies for FA proteins.We propose that FA proteins are centrally involved in the response to replication stress, including replication stress arising from oxidative DNA damage.
Collapse
Affiliation(s)
- Qishen Pang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | | |
Collapse
|
45
|
Elevated levels of IL-1beta in Fanconi anaemia group A patients due to a constitutively active phosphoinositide 3-kinase-Akt pathway are capable of promoting tumour cell proliferation. Biochem J 2009; 422:161-70. [PMID: 19473116 DOI: 10.1042/bj20082118] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
FA (Fanconi anaemia) is a hereditary disease characterized by congenital malformations, progressive bone marrow failure and an extraordinary elevated predisposition to develop cancer. In the present manuscript we describe an anomalous high level of the proinflammatory cytokine IL-1beta (interleukin-1beta) present in the serum of FA patients. The elevated levels of IL-1beta were completely reverted by transduction of a wild-type copy of the FancA cDNA into FA-A (FA group A) lymphocytes. Although the transcription factor NF-kappaB (nuclear factor-kappaB) is a well established regulator of IL-1beta expression, our experiments did not show any proof of elevated NF-kappaB activity in FA-A cells. However, we found that the overexpression of IL-1beta in FA-A cells is related to a constitutively activated PI3K (phosphoinositide 3-kinase)-Akt pathway in these cells. We provide evidence that the effect of Akt on IL-1beta activation is mediated by the inhibition of GSK3beta (glycogen synthase kinase 3beta). Finally, our data indicate that the levels of IL-1beta produced by FA-A lymphoblasts are enough to promote an activation of the cell cycle in primary glioblastoma progenitor cells. Together, these results demonstrate that the constitutive activation of the PI3K-Akt pathway in FA cells upregulates the expression of IL-1beta through an NF-kappaB-independent mechanism and that this overproduction activates the proliferation of tumour cells.
Collapse
|
46
|
Bagby GC, Meyers G. Myelodysplasia and acute leukemia as late complications of marrow failure: future prospects for leukemia prevention. Hematol Oncol Clin North Am 2009; 23:361-76. [PMID: 19327589 DOI: 10.1016/j.hoc.2009.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Patients who have acquired and inherited bone marrow failure syndromes are at risk for the development of clonal neoplasms including acute myeloid leukemia, myelodysplastic syndrome, and paroxysmal nocturnal hemoglobinuria. This article reviews the evidence supporting a model of clonal selection, a paradigm that provides a reasonable expectation that these often fatal complications might be prevented in the future.
Collapse
Affiliation(s)
- Grover C Bagby
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA.
| | | |
Collapse
|
47
|
Parmar K, D'Andrea A, Niedernhofer LJ. Mouse models of Fanconi anemia. Mutat Res 2009; 668:133-40. [PMID: 19427003 DOI: 10.1016/j.mrfmmm.2009.03.015] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/18/2009] [Accepted: 03/30/2009] [Indexed: 12/18/2022]
Abstract
Fanconi anemia is a rare inherited disease characterized by congenital anomalies, growth retardation, aplastic anemia and an increased risk of acute myeloid leukemia and squamous cell carcinomas. The disease is caused by mutation in genes encoding proteins required for the Fanconi anemia pathway, a response mechanism to replicative stress, including that caused by genotoxins that cause DNA interstrand crosslinks. Defects in the Fanconi anemia pathway lead to genomic instability and apoptosis of proliferating cells. To date, 13 complementation groups of Fanconi anemia were identified. Five of these genes have been deleted or mutated in the mouse, as well as a sixth key regulatory gene, to create mouse models of Fanconi anemia. This review summarizes the phenotype of each of the Fanconi anemia mouse models and highlights how genetic and interventional studies using the strains have yielded novel insight into therapeutic strategies for Fanconi anemia and into how the Fanconi anemia pathway protects against genomic instability.
Collapse
Affiliation(s)
- Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
48
|
Ectopic HOXB4 overcomes the inhibitory effect of tumor necrosis factor-{alpha} on Fanconi anemia hematopoietic stem and progenitor cells. Blood 2009; 113:5111-20. [PMID: 19270262 DOI: 10.1182/blood-2008-09-180224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ectopic delivery of HOXB4 elicits the expansion of engrafting hematopoietic stem cells (HSCs). We hypothesized that inhibition of tumor necrosis factor-alpha (TNF-alpha) signaling may be central to the self-renewal signature of HOXB4. Because HSCs derived from Fanconi anemia (FA) knockout mice are hypersensitive to TNF-alpha, we studied Fancc(-/-) HSCs to determine the physiologic effects of HOXB4 on TNF-alpha sensitivity and the relationship of these effects to the engraftment defect of FA HSCs. Overexpression of HOXB4 reversed the in vitro hypersensitivity to TNF-alpha of Fancc(-/-) HSCs and progenitors (P) and partially rescued the engraftment defect of these cells. Coexpression of HOXB4 and the correcting FA-C protein resulted in full correction compared with wild-type (WT) HSCs. Ectopic expression of HOXB4 resulted in a reduction in both apoptosis and reactive oxygen species in Fancc(-/-) but not WT HSC/P. HOXB4 overexpression was also associated with a significant reduction in surface expression of TNF-alpha receptors on Fancc(-/-) HSC/P. Finally, enhanced engraftment was seen even when HOXB4 was expressed in a time-limited fashion during in vivo reconstitution. Thus, the HOXB4 engraftment signature may be related to its effects on TNF-alpha signaling, and this pathway may be a molecular target for timed pharmacologic manipulation of HSC during reconstitution.
Collapse
|
49
|
Distinct roles of stress-activated protein kinases in Fanconi anemia-type C-deficient hematopoiesis. Blood 2009; 113:2655-60. [PMID: 19168785 DOI: 10.1182/blood-2008-09-181420] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The underlying molecular mechanisms that promote bone marrow failure in Fanconi anemia are incompletely understood. Evidence suggests that enhanced apoptosis of hematopoietic precursors is a major contributing factor. Previously, enhanced apoptosis of Fanconi anemia type C-deficient (Fancc(-/-)) progenitors was shown to involve aberrant p38 MAPK activation. Given the importance of c-Jun N-terminal kinase (JNK) in the stress response, we tested whether enhanced apoptosis of Fancc(-/-) cells also involved altered JNK activation. In Fancc(-/-) murine embryonic fibroblasts, tumor necrosis factor alpha (TNF-alpha) induced elevated JNK activity. In addition, JNK inhibition protected Fancc(-/-) murine embryonic fibroblasts and c-kit(+) bone marrow cells from TNF-alpha-induced apoptosis. Importantly, hematopoietic progenitor assays demonstrated that JNK inhibition enhanced Fancc(-/-) colony formation in the presence of TNF-alpha. Competitive repopulation assays showed that Fancc(-/-) donor cells cultured with the JNK inhibitor had equivalent levels of donor chimerism compared with Fancc(-/-) donor cells cultured with vehicle control. In contrast, culturing Fancc(-/-) cells with a p38 MAPK inhibitor significantly increased repopulating ability, supporting an integral role of p38 MAPK in maintaining Fancc(-/-) hematopoietic stem cell function. Taken together, these data suggest that p38 MAPK, but not JNK, has a critical role in maintaining the engraftment of Fancc(-/-)-reconstituting cells under conditions of stress.
Collapse
|
50
|
Titus TA, Yan YL, Wilson C, Starks AM, Frohnmayer JD, Bremiller RA, Cañestro C, Rodriguez-Mari A, He X, Postlethwait JH. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics. Mutat Res 2008; 668:117-32. [PMID: 19101574 DOI: 10.1016/j.mrfmmm.2008.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 11/23/2008] [Indexed: 10/21/2022]
Abstract
Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions.
Collapse
Affiliation(s)
- Tom A Titus
- Institute of Neuroscience, University of Oregon, 1425 E. 13th Avenue, Eugene, OR 97403, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|